
IBM z Systems

IBM Rexx Language Update:
Classic Rexx and The Rexx Compiler

Virgil Hein IBM
vhein@us.ibm.com

March 2018

mailto:vhein@us.ibm.com

IBM z Systems

Disclaimers

2 IBM Rexx Language Update: Classic Rexx and The Rexx Compiler © 2014, 2016 IBM Corporation

 The information contained in this presentation is provided for
informational purposes only.

 While efforts were made to verify the completeness and accuracy of
the information contained in this presentation, it is provided “as is”,
without warranty of any kind, express or implied.

 In addition, this information is based on IBM’s current product plans
and strategy, which are subject to change by IBM without notice.

 IBM shall not be responsible for any damages arising out of the use
of, or otherwise related to, this presentation or any other
documentation.

 Nothing contained in this presentation is intended to, or shall have
the effect of:

• Creating any warranty or representation from IBM (or its affiliates or
its or their suppliers and/or licensors); or

• Altering the terms and conditions of the applicable license agreement
governing the use of IBM software.

IBM z Systems

Agenda

3 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 HLASM TextBook
 REXX products
 External environments and interfaces
 Key functions and instructions
 REXX compound variables vs. data stack
 I/O
 Troubleshooting
 Programming style and techniques
 REXX Enhancements (z/OS)

IBM z Systems

HLASM TextBook

4 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 HLASM TextBook V 1.00
 Marist College web site:

http://idcp.marist.edu/enterprisesystemseducation/Assembler%20Language%20Programming
%20for%20IBM%20z%20System%20Servers.pdf

 HLASM TextBook V 2.00
 PDF: Assembler Language Programming for IBM Systems Z Servers V2.00

http://idcp.marist.edu/enterprisesystemseducation/Assembler%20Language%20Programming%20for%20IBM%20z%20System%20Servers.pdf

IBM z Systems

REXX Interpreter and Libraries

5 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 The Interpreter executes (interprets) REXX code “line by line”
• Included in all z/OS and z/VM releases

 A REXX library is required to execute compiled programs
• Compiled REXX is not an LE language

 Two REXX library choices:
• (Runtime) Library – a priced IBM product
• Alternate library – a free IBM download

• Uses the native system’s REXX interpreter
 At execution, compiled REXX will use whichever library is

available:
• (Runtime) Library
• Alternate Library

IBM z Systems

The REXX Products

6 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 IBM Compiler for REXX on zSeries Release 4
• z/VM, z/OS: product number 5695-013

 IBM Library for REXX on zSeries Release 4
• z/VM, z/OS: product number 5695-014

 z/VSE
• Part of operating system

 IBM Alternate Library for REXX on zSeries Release 4
• Included in z/OS base operating system (V1.9 and later)
• Free download for z/VM (and z/OS)

• http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html
 REXX Interpreter

• Included in all z/OS and z/VM releases

http://www.ibm.com/software/awdtools/rexx/rexxzseries/altlibrary.html

IBM z Systems

Why Use a REXX Compiler?

7 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Program performance
• Known value propagation
• Assign constants at compile time
• Common sub-expression elimination
• stem.i processing

 Source code protection
• Source code not in deliverables

 Improved productivity and quality
• Syntax checks all code statements
• Source and cross reference listings

 Compiler control directives
• %include, %page, %copyright, %stub, %sysdate, %systime, %testhalt

IBM z Systems

REXX Compiler Issues / Updates

8 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Interpreter issue:
• If daylight saving time ended while a long-running REXX program was

executing, the REXX elapsed time failed due to a negative interval
• Fixed in Interpreter
• Queued to be fixed in the Compiler

 11 PMRs addressed in Compiler in 2016 (no common pattern)
 1 REXX library APAR (first APAR for several years)

• Occasional program check due to scanning past the end of a page
when checking whether a stem tail was numeric if the length was zero
(which wrapped to 255).

 Reported problem (PMR)
• Time stamp on compiler listing incorrect by 27 seconds

• Does not take leap seconds into account
• Leap second support added to MVS in 1993
• REXX compiler PMR 03766,124,848 noting time stamp fails to

allow for leap seconds
• PTF available, awaiting customer feedback

IBM z Systems

REXX User Example 1

9 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Received email noting:
• Have successfully copied large datasets to 64-bit memory and manipulated them using

STORAGE function.
• Your samples also appear in the REXX Reference manual with several typos, e.g. mixing 24 and

25 bytes when retrieving data.
– One obvious matter - left to the clever programmers - is that a 64-bit memory object must

pre-exist before you can copy data into it.
– User wrote REXX functions to create (IARV64 REQUEST=GETSTOR) and delete (IARV64

REQUEST=DETACH) such memory objects. Commented that REXX should provide such
functions? (Or at least that the documentation should mention that objects must exist
before 64-bit storage can be successfully referenced? - - STORAGE function could do it
behind the covers, but it does not.)

– User assisted client (Lloyds Banking Group) utilizing the above, noting that “64 bit access
by STORAGE solved a huge practical problem” (3 week effort).

REXX Reference manual used was: SA32-0972 TSO/E REXX Reference.

z/OS V2R2 TSO/E REXX Reference (SA32-0972-02)

https://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?SSN=17C1Q0000387868264&FNC=PBL&PBL=SA32-0972-02PBCEEBO200005894&TRL=TXTSRH

IBM z Systems

REXX User Example 2

10 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Received email noting:
• Currently I work an ReXX to update some error messages in a DB2-Table and face the

problem that the value of the error message is set to upper case by calling DSNREXX. (But
in Germany we use mixed case for everything, esp. error messages ;-))

• I double checked the ReXX-Variable for the error message and it contains mixed case before
calling DSNREXX.

• In your presentation you suggested to use “Use upper case for calls to external routines
(commands)” for Capitalization. Is this really a suggestion or does DSNREXX always set
everything to upper case?

• If yes/no - do you have an idea how I can force DSNREXX to avoid translating my error
message to upper case?

• There is no rule on whether or where you use all lower-case, mixed case, or all caps in REXX.
It is strictly a style argument, and the suggestions the presentation makes are included (as a
FYI) accordingly.

• Note that if one prefers to use some other style or standard, they may certainly do so.

REXX External Environments

IBM z Systems

External Environments

12 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 ADDRESS instruction is used to define the external
environment to receive host commands

• For example, to set TSO/E as the environment to receive
commands

ADDRESS TSO

 Several host command environments available in z/OS
 A few host command environments available in z/VM

IBM z Systems

Host Command Environments in z/OS

13 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• TSO
• Used to run TSO/E commands like ALLOCATE and TRANSMIT
• Only available to REXX running in a TSO/E address space
• The default environment in a TSO/E address space
• Example:

Address TSO “ALLOC FI(INDD) DA(‘USERID.SOURCE’) SHR”

• MVS
• Use to run a subset of TSO/E commands like EXECIO and

MAKEBUF
• The default environment in a non-TSO/E address space
• Example:

Address MVS “EXECIO * DISKR MYINDD (FINIS STEM MYVAR”

IBM z Systems

Host Command Environments in z/OS

14 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• ISPEXEC
• Used to invoke ISPF services like DISPLAY and SELECT
• Only available to REXX running in ISPF
• Example:

Address ISPEXEC “DISPLAY PANEL(APANEL)”

• ISREDIT
• Used to invoke ISPF edit macro commands like FIND and

DELETE
• Only available to REXX running in an ISPF edit session
• Example:

Address ISREDIT “DELETE .ZFIRST .ZLAST”

• Many more!

IBM z Systems

Host Command Environments in z/OS …

15 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• CONSOLE
• LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
• SYSCALL
• SDSF
• DSNREXX

IBM z Systems

Host Command Environments in z/OS …

16 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• CONSOLE
• Used to invoke MVS system and subsystem commands
• Only available to REXX running in a TSO/E address space
• Requires an extended MCS console session
• Requires CONSOLE command authority
• Example:

“CONSOLE ACTIVATE”
Address Console “D A” /* Display system activity */

“CONSOLE DEACTIVATE”

Result:
IEE114I
JOBS

04.50.01
M/S

2011.173
TS USERS

ACTIVITY
SYSAS

602
INITS

ACTIVE/MAX VTAM OAS

00002 00014 00002 00032 00005 00001/00020 00010

IBM z Systems

Host Command Environments in z/OS …

17 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 LINK, LINKMVS, LINKPGM, ATTACH, ATTCHMVS, ATTCHPGM
• Host command environments for linking to and attaching unauthorized programs
• Available to REXX running in any address space
• LINK & ATTACH – can pass one character string to program
• LINKMVS & ATTCHMVS – pass multiple parameters; half-word length field precedes

each parameter value
• LINKPGM & ATTCHPGM – pass multiple parameters; no half-word length field
• Example:

“FREE FI(SYSOUT SORTIN SORTOUT SYSIN)”
“ALLOC
“ALLOC
“ALLOC
“ALLOC

FI(SYSOUT)
FI(SORTIN)
FI(SORTOUT)
FI(SYSIN)

DA(*)”
DA('VANDYKE.SORTIN') REUSE”
DA('VANDYKE.SORTOUT') REUSE”
DA('VANDYKE.SORT.STMTS') SHR REUSE”

sortparm = “EQUALS”
Address LINKMVS “SORT sortparm”

IBM z Systems

Host Command Environments in z/OS …

18 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• SYSCALL
• Used to invoke interfaces to z/OS UNIX callable services
• The default environment for REXX run from the z/OS UNIX file system
• Use syscalls(‘ON’) function to establish the SYSCALL host environment for

a REXX run from TSO/E or MVS batch
• Example:

Call Syscalls ‘ON’
Address Syscall ‘readdir
Do i=1 to root.0
Say root.i

End

/ root.’

Result:
…
bin
Dev
etc

…

IBM z Systems

Host Command Environments in z/OS …

19 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• SDSF
• Used to invoke interfaces to SDSF panels and panel actions
• Use isfcalls(‘ON’) function to establish the SDSF host environment
• Use the ISFEXEC host command to access an SDSF panel
• Panel fields returned in stem variables
• Use the ISFACT host command to take an action or modify a job value
• Example:

rc=ISFCalls(“ON”)
Address SDSF “ISFEXEC ST”
Do ix = 1 to JNAME.0
If Pos(“MYREXX”,JNAME.ix) = 1 Then
Do

say “Cancelling job ID” JOBID.ix “for MYREXX”
Address SDSF “ISFACT ST TOKEN(‘”TOKEN.ix”’)

PARM(NP
P)”

End
End
rc=ISFCalls(“OFF”)
Exit

IBM z Systems

Host Command Environments in z/OS …

20 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

• DSNREXX
• Provides access to DB2 application programming interfaces from REXX
• Any SQL command can be executed from REXX

 Only dynamic SQL supported from REXX
• Use RXSUBCOM to make DSNREXX host environment available
• Must CONNECT to required DB2 subsystem
• Can call SQL Stored Procedures

• Example:
RXSUBCOM(‘ADD’,’DSNREXX’,’DSNREXX’)
subSys = ‘DB2PRD’
Address DSNREXX “CONNECT” subsys
owner = ‘PRODTBL’
recordkey = ‘ROW2DEL’
sql_stmt = “DELETE * FROM” owner”.MYTABLE” ,

"WHERE TBLKEY = ‘”recordkey”’”
Address DSNREXX “EXECSQL EXECUTE IMMEDIATE”
sql_stmt Address DSNREXX “DISCONNECT”

IBM z Systems

Other External Environments in z/OS

21 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 IPCS
• Used to invoke IPCS subcommands from REXX
• Only available when run from in an IPCS session

 CPICOMM, LU62, and APPCMVS
• Supports the writing of APPC/MVS transaction programs (TPs) in

REXX
• Programs can communicate using SAA common programming

interface (CPI) communications calls and APPC/MVS calls

IBM z Systems

Other “Environments” and Interfaces in z/OS

22 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 System REXX
• A function package that allows REXX EXECs to be

executed outside of conventional TSO/E and Batch
environments

• Can be invoked using assembler macro interface AXREXX
or through an operator command

• Easy way for Web Based Servers to run
commands/functions and get back pertinent details

• EXEC runs in problem state, key 8, in an APF authorized
address space under the MASTER subsystem

• Two modes of execution
• TSO=NO runs in MVS host environment

address space shared with up to 64 other EXECs
limited data set support
runs isolated in a single address space can
safely allocate data sets
does not support all TSO functionality

• TSO=YES

IBM z Systems

Other “Environments” and Interfaces . . .

23 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 RACF Interfaces
• IRRXUTIL

• REXX interface to R_admin callable service (IRRSEQ00) extract request
• Stores output from extract request in a set of stem variables

myrc=IRRXUTIL(“EXTRACT”,”FACILITY”,”BPX.DAEMON”,”RACF”,””,”FALSE”)
Say “Profile name: “||RACF.profile
Do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say “ “||RACF.BASE.ACLID.a||”:”||RACF.BASE.ACLACS.a
End

• RACVAR function
• Provides information from the ACEE about the running user
• Arguments: USERID, GROUPID, SECLABEL, ACEESTAT

If racvar(‘ACEESTAT’) <> ‘NO ACEE’ Then
Say “You are connected to group “ racvar(‘GROUPID’)”.”

IBM z Systems

Other “Environments” and Interfaces . . .

24 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Other ISPF Interfaces
• Panel REXX

• Allows REXX to be run in a panel procedure
• *REXX statement used to invoke it
• REXX can be coded directly in the procedure or taken

from a SYSEXEC or SYSPROC DD member
• REXX can modify the values of ISPF variables

• File Tailoring Skeleton REXX
• Allows REXX to be run in a skeleton
•)REXX control statement used to invoke it
• REXX can be coded directly in the procedure or taken

from a SYSEXEC or SYSPROC DD member
• REXX can modify the values of ISPF variables

IBM z Systems

Host Command Environments in z/VM

25 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 CMS (default)
• Commands treated as if entered on the CMS command line

• Translation of parameter list
 Uppercasing and tokenizing

• Same search order as CMS command line
 COMMAND

• Basic CMS CMSCALL command resolution
• No translation of parameter list

 No uppercasing of tokenized parameter lists
• To call an EXEC, prefix the command with the word EXEC
• To send a command to CP, use the prefix CP

 CPICOMM, CPIRR, OPENVM
 Generally, best practice is to use “Address Command” at the

top of REXX EXECs that will be run in CMS environment

Key Instructions and Functions

IBM z Systems

Instructions vs. Functions

27 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Keyword instruction
• One or more clauses
• First word is a keyword that identifies the instruction

Arg, Do, If, Parse, …

 Instruction
• Statement that performs an assignment of a value to a variable

counter = 1

 Function
• Must return a single result string (i.e. must be on the right side of

an equal sign)
• Built-in - provided as part of the REXX language
• Internal - create your own
• External – create your own or use platform unique functions

 Subroutine
• Called like a function, but may not return data

IBM z Systems

Key Instructions – Parse
 Parse

• Allows the use of a template to split a source string
into multiple components

• Syntax:

 Short forms to some of these commands exist
• NOT RECOMMENDED
• But you may see them in another user’s code you must maintain

• ARG
 Short form for PARSE UPPER ARG

• PULL
 Short form for PARSE UPPER PULL

28 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Parse Templates

29 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Simple template
• Divides the source string into blank-delimited words and assigns them

to the variables named in the template
• The last variable gets the rest of the string exactly as entered

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourthvar

firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘ string ’

IBM z Systems

Parse Templates

30 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Simple template
• A period is a placeholder in a template

• A “dummy” variable used to collect unwanted data
• Notice the double quotes so the single quote is recognized as part of the string

datastring = “Last one gets what's left”
Parse Var datastring firstvar . secondvar

firstvar -> “Last”
secondvar -> “gets what’s left”

• Often used at the end of Parse statement to take “the rest of the data”

datastring = “Last one gets what's left”
Parse Var datastring firstvar secondvar .

firstvar -> “Last”
secondvar -> “one”

• Causes the last variable to get the last word without leading and trailing blanks

datastring = ‘ Write the blank-delimited string ’
Parse Var datastring firstvar secondvar thirdvar fourhvar

. firstvar -> ‘Write’
secondvar -> ‘the’
thirdvar -> ‘blank-delimited’
fourthvar -> ‘string’

IBM z Systems

Parse Templates . . .
 String pattern template

• A literal or variable string pattern indicating where the
source string should be split

• Assumes blank-delimited if no other pattern specified
datastring = ‘ Write the

Literal:

firstvar (delim) secondvar .

Result (the same in both cases):

firstvar -> ‘ Write the
secondvar -> ‘delimited’

blank’

blank-delimited string ’
Literal

Parse Var datastring

Variable:

delim = ‘-’
Parse Var datastring

firstvar ‘-’ secondvar .

delimited

Blank
delimited

31 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Parse Templates . . .

32 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Positional pattern template
• Use numeric values to identify the character positions at which to

split data in the source string
• An absolute positional pattern is a number or a number preceded by

an equal sign
----+----1----+----2----+----3----+----4----+

Datastring = ‘Cowlishaw
Parse Var datastring =1

surname -> ‘Cowlishaw

Mike UK ’

surname =20 chrname =35 country =46 .

’chrname -> ‘Mike
country -> ‘UK ’

’

• A relative positional pattern is a number preceded by a plus or minus sign
• Plus or minus indicates movement right or left, respectively, from the last match

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw
Parse Var datastring =1

surname -> ‘Cowlishaw ’

Mike UK ’
surname +19 chrname +15 country +11 .

chrname -> ‘Mike
country -> ‘UK

’
’

IBM z Systems

Parse Templates . . .
 Positional pattern template – removing blanks

• Specify an absolute positional pattern
• Insert periods to strip blanks

----+----1----+----2----+----3----+----4----+
datastring = ‘Cowlishaw Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw’
chrname -> ‘Mike’
country -> ‘UK’

If data starts in column 1 and is blank-delimited, this is the same as
Parse Var datastring surname chrname country

• Warning – won’t work if any of the data has more than one “word”
----+----1----+----2----+----3----+----4----+

datastring = ‘Cowlishaw, Jr. Mike UK ’
Parse Var datastring =1 surname . =20 chrname . =35 country .

surname -> ‘Cowlishaw,’
chrname -> ‘Mike’
country -> ‘UK’

Blank
delimited

33 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

Compound Variables and Data Stack

IBM z Systems

What is a Compound Variable?

35 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 A way to reference a collection of related values
• Also called a stem variable or stem array

 Variable name is stem followed by zero or more tails
• stem must be simple variable ending in a period
• tail must be simple variable or decimal integer
• Multiple tails are separated by periods

 Each tail variable is replaced by its value
• Default value of stem and tail is the variable names used for stem and tail
• Each tail references a dimension of the collection

 The resulting derived name is used to access a specific value from the collection
 Tails which are variables are replaced by their respective values

• If no value assigned, takes on the uppercase value of the variable name

day.1 stem:
tail:

DAY.
1

array.j stem:
tail:

ARRAY.
J

name = ‘Smith’
phone = 12345
employee.name.phone stem:

tail:
EMPLOYEE.
Smith.123
45

IBM z Systems

Compound Variable Values
 Initializing a stem to some value automatically initializes every

compound variable with the same stem to the same value
Say month.12
month. = ‘Unknown’
month.3 = ‘March’
month.6 = ‘June’

Say month.12
monthnum = 3
Say month.monthnum

MONTH.12

Unknown

March

 Easy way to reset the values of compound variables
month. = ‘’
Say month.6 ‘’

 Drop instruction can be used to restore compound variables to their uninitialized state
Drop month.
Say month.6 MONTH.6

36 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Processing Compound Variables

37 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compound variables provide the ability to process one-dimensional arrays
• Use a numeric value for the tail
• Good practice - store the number of array entries in the compound variable with a tail

of 0 (zero)
• Often processed in a Do loop using the tail as the loop control variable

invitee.0 = 10
Do j = 1 to invitee.0

Say ‘Enter the name for invitee’ j
Parse Pull invitee.j

End
 Stems can be used with I/O functions to read data from and write data to a file on z/VM

or data set on z/OS
• Stream I/O
• EXECIO
• PIPE

 Stems can also be used with the external function OUTTRAP (z/OS) or PIPE (z/VM) to
capture output from commands

IBM z Systems

Processing Compound Variables . . .

38 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 The tail for a compound variable can be used as an index to related data
 The tail (index) and data can contain blanks
 Given the following input data:

----+----1----+----2----+----3----+----4----+

 The unique employee number value can be used as the tail of compound variables that hold the
rest of the person’s data

'PIPE < EMPLOYEE INFO A | STEM rec.'
Do j = 2 To rec.0
Parse Var rec.j =1 empnum name.empnum =25 location.empnum
End j
Say 'Which employee number do you want to learn about?'
Parse Upper Pull empnum
Say 'The name of employee' empnum 'is' Strip(name.empnum)'.'
Say 'The location of employee' empnum 'is' Strip(location.empnum)'.’
Exit

Employee# Name Location
A1234 M Cowlishaw United Kingdom
B5678 T Dean Portland
C9012 V Hein Austin
. . .

IBM z Systems

What is a Data Stack?
 An expandable data structure used to temporarily hold data items

(elements) until needed
 When an element is needed it is always removed from the top of the

stack
 A new element can be added either to the top (LIFO) or the bottom

(FIFO) of the stack
• FIFO stack is often called a queue

LIFO
Stack

39 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

FIFO
Stack
(Queue)

IBM z Systems

Manipulating the Data Stack

40 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 3 basic REXX instructions
• Push - put one element on the top of the stack

elemone = ‘new top element’
Push elemone

• Queue - put one element on the bottom of the stack
elemtwo = ‘new bottom element’
Queue elemtwo

• Parse Pull - remove an element from the (top) of the stack
Parse Pull nextthing

• Result:
nextthing ‘new top element’

 1 REXX function
• Queued() - returns the number of elements in the stack

num_elems = Queued()

IBM z Systems

Why Use the Data Stack?

41 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 To store a large number of data items for later use
• Size may be unpredictable or unknown

 Pass a large or unknown number of arguments between
EXECs or routines

 Specify commands to be run when the EXEC ends
• Elements left on the data stack when an EXEC ends are treated

as commands
Queue “TSOLIB RESET QUIET”
Queue “ALLOC FI(ISPLLIB) DA(‘ISP.SISPLOAD’
'SYS1.DFQLLIB‘) SHR REUSE”
Queue “TSOLIB ACTIVATE FILE(ISPLLIB) QUIET”
Queue “ISPF”

 Pass responses to an interactive command that runs when
the EXEC ends

• Example: z/VM DDR program

IBM z Systems

Quick Example of Processing the Data Stack

 A receiving (or called) program collects data from the stack
• Passed from sending/calling program

/* Sample stack processing */
Address Command
element.0 = Queued()
Do i = 1 To element.0
Parse Pull element.i
…

End
…

Full parsing capability

42 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

More Stack Functions and Options

43 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Buffers
 Additional stacks
 Some functions are z/OS only

IBM z Systems

Using Buffers in the Data Stack

 An EXEC can create a buffer in a data stack using the Makebuf
command
 All elements added after a Makebuf command are placed in the new

buffer
• Makebuf changes where the Queue instruction inserts new elements

• Remember Queue inserts at the “bottom” of the stack (or buffer)

44 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Using Buffers in the Data Stack . . .

45 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 An EXEC can use Makebuf to create multiple buffers in the data
stack

• Makebuf returns in the RC variable the number identifying the newly
created buffer

 Dropbuf command is used to remove a buffer from the data stack
• Allows an EXEC to easily remove temporary storage assigned to the data

stack
• A buffer number can be specified with Dropbuf to identify the buffer to

remove
• Default is to remove the most recently created buffer

• Dropbuf 0 results in an empty data stack (use with caution)
 z/OS only

• The Qbuf command is used to find out how many buffers have been
created

• The Qelem command is used to find out the number of elements in the
most recently created buffer

IBM z Systems

Using Buffers in the Data Stack . . .

46 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Important notes
• When an element is removed from an empty buffer, the buffer

disappears with no error or indication
• Keep track of where you are in buffers within the stack
• Used Queued() to keep track of the total number of elements in the

stack
• To remove a buffer

• Issue Dropbuf (the recommended approach)
or

• Remove an element (via Parse Pull) when the buffer is already empty
• The next request to remove an element will move

• To the next buffer if there is one (including buffer 0)
• To the external input queue if the stack (all buffers) are empty

IBM z Systems

Protecting Elements in the Data Stack – z/OS Only

 REXX code can use the stack, but protect itself from inadvertently
removing someone else’s data stack elements

• Create a new private data stack using the NEWSTACK command
 All elements added after a NEWSTACK command are placed in

the new data stack
• Elements on the original data stack cannot be accessed by an EXEC or

any called routines until the new stack is removed (not just emptied)
• When there are no more elements in the new data stack, information is

taken from the terminal (not the original data stack)

47 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Protecting Elements in the Data Stack - z/OS Only

48 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 DELSTACK - removes a data stack
• Removes the most recently created data stack

• Including all remaining elements in the stack
• Caution

• If no stack previously created with NEWSTACK, then
DELSTACK removes all the elements from the original stack

 QSTACK - returns the number of data stacks
• Including the original stack
• Puts the value in the variable RC

 Note: For z/OS, the QUEUED() function returns the
number of elements in the current data stack.

IBM z Systems

Data Stack vs Buffers

49 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Data Stack
• Advantages

• Protects data in the original stack
 Never defaults back to the “previous” stack in the chain
 Must specifically delete current stack to move to previous

stack
 Can easily request terminal input if also have items in the

stack
 Just create a new stack with nothing on it and issue “Pull”

• Disadvantages
• Only available on z/OS

 z/VM must issue “Parse External” to request terminal input if
data is in the stack

IBM z Systems

Data Stack vs Buffers

50 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Buffers
• Advantages

• Create a stack on top of the existing stack for new list of
items

• Use “QElem” (z/OS only) to keep track of how many items
in this buffer

• Disadvantages
• No guaranteed protection of previous stack in the chain

 If current stack is empty, will proceed to next one
automatically

IBM z Systems

Compound Variables vs Data Stack

51 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compound Variables
• Advantages

• Basically variables - REXX will manage them like other variables
• Only one step required to assign a value
• Provide opportunities for clever and imaginative processing

• Disadvantages
• Can not be used to pass data between external routines

 Conclusion
• Try to use compound variables whenever appropriate

• They are simpler

IBM z Systems

Compound Variables vs Data Stack

52 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Data Stack
• Advantages

• Can be used to pass data to external routines
• Able to specify commands to be run when the EXEC ends
• Can provide response(s) to an interactive command that runs

when the EXEC ends
• Disadvantages

• Program logic required for stack management
• Processing needs 2 steps

 Take data from input source and store in stack
 Read from stack into variables

• Stack attributes and commands are OS dependent

I/O and Troubleshooting

IBM z Systems

EXECIO Command – z/OS

54 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 A TSO/E REXX command that provides record-based
processing

• Used to read and write records from/to a z/OS sequential data set
or z/OS partitioned data set member

• Requires a DDNAME to be specified
• Use ALLOC command to allocate data set or member to a DD

 Records can be read into or written from compound variables
or the data stack

 Can also be used to:
• Open a data set without reading or writing any records
• Empty a data set
• Copy records from one data set to another
• Add records to the end of a sequential data set
• Update data in a data set, one record at a time

IBM z Systems

EXECIO Command – z/VM

55 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 CMS EXECIO command provides record-based processing
 Recommend using CMS Pipelines (PIPE command) instead

• Simpler to use
‘EXECIO * DISKR EMPLOYEE INFO A (STEM REC. FINIS’
vs
‘PIPE < EMPLOYEE INFO A | STEM rec.’

 PIPEs has much more function

IBM z Systems

Special Variables

56 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 RC variable
• Return code from external commands and

special REXX commands/statements
 RESULT variable

• Value of an expression returned by a subroutine

IBM z Systems

Troubleshooting – Condition Trapping

 Signal On and Call On instructions can be used to trap
exception conditions

 Syntax:

 Condition types:
– ERROR

– FAILURE

– HALT

– NOVALUE

– SYNTAX

– NOTREADY

- error upon return (positive return code)

- failure upon return (negative return code)

- an external attempt was made to interrupt and end execution

- attempt was made to use an uninitialized variable

- language processing error found during execution

- z/VM only. Error during input or output operation

57 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Troubleshooting – Condition Trapping. . .

58 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Good practice to enable condition handling to process unexpected errors
• Specifically Signal On NoValue

 Use REXX provided functions and variables to identify and report on exceptions
• CONDITION function – returns information on the current condition

• Name and description of the current condition
• Indication of whether the condition was trapped by SIGNAL or CALL
• Status of the current trapped condition

• RC variable
• For ERROR and FAILURE - ontains the command return code
• For SYNTAX - contains the syntax error number

• SIGL variable – line number of the clause that caused the condition

• ERRORTEXT function – returns REXX error message for a SYNTAX condition
Say ErrorText(rc)

• SOURCELINE function – returns a line of source from the REXX EXEC
Say Sourceline(sigl)

IBM z Systems

Troubleshooting – Trace Facility

 Provides powerful debugging capabilities
• Displays the results of expression evaluations
• Displays the variable values
• Follows the execution path
• Interactively pauses execution and runs REXX statements

 Activated using the Trace instruction and function
 Syntax:

59 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Troubleshooting – Trace Facility . . .

 Code example:

Trace R
If (A > B) | (C < 2 * D) Then
Say 'At least one expression was true.'

Else
Say 'Neither expression was true.'

 Result:

7 *-* If (A > B) | (C < 2 * D)

>>> "1"
- Then

8 *-* Say 'At least one expression was true.'
>>> "At least one expression was true."

At least one expression was true.

60 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

A = 1
B = 2
C = 3
D = 4

Trace Results

IBM z Systems

Troubleshooting – Trace Facility . . .
 Code example:

A = 1
B = 2
C = 3
D = 4
Trace I
If (A
Say

Else
Say

> B) | (C < 2 * D) Then
'At least one expression was true.'

'Neither expression was true.'

 Result:
6 *-* If (A > B) | (C < 2 * D)

>V> "1"
>V> "2"
>O> "0"
>V> "3"
>L> "2"
>V> "4"
>O> "8"
>O> "1"
>O> "1"
- Then

7 *.* Say 'At least one expression was true.‘
>L> “At least one expression was true.”

At least one expression was true.

Trace
Intermediates

61 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Troubleshooting – Trace Facility . . .

62 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Interactive trace provides additional debugging power
• Pause execution at specified points
• Insert instructions
• Re-execute the previous instruction
• Continue to the next traced instruction
• Change or terminate interactive tracing

 Starting interactive trace
• ? option with the TRACE instruction
• In TSO, use EXECUTIL TS command (Trace Start)

• Code in your REXX EXEC
• Issue from the command line to debug next REXX EXEC run
• Cause an attention interrupt and enter TS

IBM z Systems

Programming Style and Techniques

63 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Be consistent with your style
• Helps others read and maintain your code
• Having style rules will make the job of coding easier

 Indentation
• Improves readability
• Helps identify unbalanced or incomplete structures

• Do - End pairs
 Comments

• Provide them!
• Choices:

• In blocks
• To the right of the code

IBM z Systems

Programming Style and Techniques . . .

64 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Capitalization
• Can improve readability
• Suggestions

• Use all lowercase for variables
• Use mixed case (capitalize the first letter) for keywords,

labels, calls to internal subroutines
• Use upper case for calls to external routines (commands)

 Variable names
• Try to use meaningful names

• Helps understanding and readability
• Avoid 1 character names

• Easy to type but difficult to manage and understand
• Exception – indices to compound variables

• Avoid ending names with letter O or lowercase L
• Hard to distinguish between numbers 0 and 1

IBM z Systems

Programming Style and Techniques . . .

 Subroutines
• Subroutines are useful to break code into 'functional units' of not more than one page.

• Eases learning and debugging since the programmer can concentrate on a close-knit piece
of code that only does one thing; No observable performance impact

 Comparisons
• REXX supports exact (e.g. “==“) and inexact (e.g. “=“) operators

• Only use exact operators when appropriate
if action == "SAVE" then …

• Above comparison will fail if variable action is "SAVE "
• Avoid using non-standard NOT characters: “¬” and “/”

• Portability problem when transferring code to an ASCII platform
• Use “\=“, or less commonly used “\>“ “\<=

Extra blank

65 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

IBM z Systems

Programming Style and Techniques . . .

66 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Semicolons
• Can be used to combine multiple statements in one line

• DON’T – detracts from readability
• Languages like C and PL/I require a “;” to terminate a line

• Can also be done in REXX
• DON’T – doubles internal logic statement count for interpreted REXX

 Conditions
• For complex statements, REXX evaluates all Boolean expressions, even if

first fails:
If 1 = 2 & 3 = 4 & 5 = 5 Then Say 'Impossible‘

• Divide-by-zero can still occur if a=0
If a \== 0 & b/a > 1 Then ...

• Can be avoided by nesting IF statements:
If a \== 0 Then
If b/a > 1 Then ...

IBM z Systems

Programming Style and Techniques . . .

67 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Literals
• Important to use literals where appropriate

• For example: external commands
• Lazy programming can lead to unfortunate results

• For uninitialized variables: value=name
control errors cancel

• This usually works
 Breaks if any of the 3 words is a variable with value already assigned

• Also a performance cost for unnecessary variable lookups (20%+
more CPU)

• Instead enclose literals in quotation marks
‘CONTROL ERRORS CANCEL’

IBM z Systems

Programming Style and Techniques . . .

68 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 External commands
• Best practices

• Enclose in quotation marks
• Use uppercase
• Fully spell out the command

 Don’t assume any abbreviations that may not be
present if the EXEC is moved to another system

 Preface with the external environment as needed

REXX Enhancements in z/OS V2.1

IBM z Systems

REXX Enhancements in z/OS V2.1 and later

66 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 EXECIO enhanced to support I/O with RECFM=U, VS, VBS
 RECFM=U,VS,VBS support also added to callable I/O interface
 New TRAPMSG function allows IRX... messages, if issued from a command invoked

by the EXEC, to be captured via OUTTRAP
 STORAGE function now supports 64-bit addresses for both reading from and writing to

storage.
 Empty sequential data set can be part of a concatenation accessed by EXECIO,CLIST

I/O, PRINTDS if it is SMS managed
 LISTDSI enhanced (REXX and CLIST)
 RACF/NORACF operand
 Multi Volume Support
 Handles data sets with extended attributes
 APAR OA48348 - MVSVAR function allows symbol names up to 16 chars
 Other smaller requirements

 z/OS v2.2 enhancement allows for “long symbols” to be used
• APAR release to permit use of long system symbol names in REXX and CLIST

 Z/OS v2.3 comment:
• While significant zOS work for supporting 8-character USERID, not a specific REXX item

Long symbols example

| Assume the following symbols have been defined with SYMDEF
| statements in the active IEASYMxx member of 'SYS1.PARMLIB'.
| LONG_SYMBOL_NAME having value: "SY1T_ON_PLEX_A44T"
| EXTSYM_ having value:
| "<==THIS VALUE CAN BE UP TO 44 CHARS LONG===>"
|
| That is, IEASYMxx contains the definitions:
|SYMDEF(&LONG_SYMBOL_NAME='SY1T_ON_PLEX_A44T')
|SYMDEF(&EXTSYM_='<==THIS VALUE CAN BE UP TO 44 CHARS LONG===>')
|
| Then the MVSVAR function can be used to retrieve the values
| of these symbols as shown:
| z1 = MVSVAR('SYMDEF','LONG_SYMBOL_NAME')
| z2 = MVSVAR('SYMDEF','EXTSYM_')
| say z1
| <- Returns z1: SY1T_ON_PLEX_A44T
| say z2
| <- Returns z2: <==THIS VALUE CAN BE UP TO 44 CHARS LONG===>

71

Overview - EXECIO

 Over the years many customers have asked for the capability
to handle I/O to data sets containing records with Variable
Spanned (VS, VBS) RECFM, and with data sets having
undefined (U) RECFM. This includes the ability to handle
spanned files generated by SMF, or to read load library type
undefined files.

 Problem Statement / Need Addressed
– Provide the capability to read or write RECFM=VS, VBS, U type

data sets under REXX.
Note: RECFM=VS/VBS files do not support update mode (DISKRU).

 Solution
– EXECIO support extended

 Benefit / Value
– The power of REXX and EXECIO can be used to process data sets

with RECFM attributes that were formerly not supported.

72

Usage & Invocation

 Example 1 continued

ELSE
do

say 'File allocation error ...'
error = 1 /* Error occurred */

end
IF error = 0 then /* If no d is ok */

DO
"execio "inrec.0" DISKW OUTVBS (STEM inrec. FINIS" /* Write all

records read to the new file */
if rc=0 then

do
say 'Output to new VBS file completed successfully'
say 'Number of records copied ===> ' inrec.0

end
else

do
say 'Error writing to new VBS file '
error = 1 /* Error occurred */

end
END

73

Usage & Invocation
 Example 2. Use EXECIO to read a member of a RECFM=U file and change the

first occurrence of the word 'TSOREXX ' within each record to 'TSOEREXX'
before rewriting the record. If a record is not changed, it need not be rewritten.
/* REXX */
/* Alloc my Load Lib data set having RECFM=U BLKSIZE=32000 LRECL=0 */
"ALLOC FI(INOUTDD) DA('apar2.my.load(mymem)') SHR REUSE"
readcnt = 0 /* Initialize rec read cntr */
updtcnt = 0 /* Initialize rec update cntr */
error = 0 /* Initialize flag */
EoF = 0 /* Initialize flag */
do while (EoF=0 & error=0) /* Loop while more recs/no err */

"execio 1 DISKRU INOUTDD (STEM inrec." /* Read a rec for update */
if rc = 0 then /* If read ok */

do /* Replace 1st occurrence of 'TSOREXX' in record by 'TSOEREXX'
and write it back */

readcnt = readcnt + 1 /* Records read */
z = POS('TSOREXX ',inrec.1,1) /* Find target within rec */
if z /= 0 then /* If found, replace it */

do
inrec.1 = SUBSTR(inrec.1,1,z-1)||'TSOEREXX'|| ,

SUBSTR(inrec.1,z+LENGTH('TSOEREXX')) /*Replace it*/
"execio 1 DISKW INOUTDD (STEM inrec." /* Rewrite the update

made to the last record read*/

74

Usage & Invocation
 Example 2 continued

if rc > 0 then /* If error */
error=1 /* Indicate error */

else
updtcnt = updtcnt + 1 /* Incr update count */

end
else /* Else nothing changed, nothing

to rewrite */
NOP /* Continue with next record */

end
else /* Else non-0 RC */

if rc=2 then /* if end-of-file */
EoF=1 /* Indicate end-of-file */

else
error=1 /* Else read error */

end /* End do while */
"execio 0 DISKW INOUTDD (FINIS" /* Close the file */
if error = 1 then

say '*** Error occurred while updating file '
else

say updtcnt' of 'readcnt' records were changed'
"FREE FI(INOUTDD)"
exit 0

75

Overview – TRAPMSG function

 TRAPMSG – a new TSO/E REXX function used in conjunction with OUTTRAP
to permit REXX to trap REXX messages (i.e. IRX..... msgs) in some instances.
Prior to this, no IRX.... msg could be trapped.

 Problem Statement / Need Addressed
– REXX IRX..... messages should be trappable via OUTTRAP just as other output

(e.g. such as say output from nested execs) is trappable.

 Solution
– Use TRAPMSG('on') to tell REXX to treat REXX msg output in the same was as

any other output, for purposes of trapping.

 Benefit / Value
– REXX msgs issued by nested execs, and by host commands invoked by REXX

(e.g. execio) can now be trapped into an OUTTRAP variable, rather than
always being written to screen.

– CLIST error msgs from CLISTs invoked by REXX also now trappable.

76

Usage & Invocation

 TRAPMSG() - returns current setting. /* OFF perhaps */

 TRAPMSG('ON' | 'OFF') - enables or disables output trapping for IRX....
msgs. Default is 'OFF'

77

Usage & Invocation
 Example 1: A REXX exec invokes execio without allocating the indd file.

EXECIO will return RC=20 and an error message. By trapping the
message with OUTTRAP, the exec can decide what to do with the error.
(This same technique can be used to trap the IRX0250E message
if execio were to take an abend, like a space B37 abend.)

===
msgtrapstat = TRAPMSG('ON') /* Save current status and set

TRAPMSG ON to allow REXX msgs to be trapped */
outtrap_stat = OUTTRAP('line.') /* Enable outtrap */
/**/
/* Invoke TSO host cmd, execio, and trap any error msgs issued */
/**/
"execio 1 diskr indd (stem rec. finis"

if RC = 20 then /* If execio error occurred */
do i=1 to line.0
say '==> ' line.i /* Write any error msgs */

end
outtrap_stat = OUTTRAP('OFF') /* Disable outtrap */
msgtrapstat = TRAPMSG('OFF') /* Turn it off */
exit 0

78

Usage & Invocation
 Example 2: A REXX exec turns on OUTTRAP and TRAPMSG and invokes a second

REXX exec. The second REXX exec gets an IRX0040I message due to an invalid
function call. Exec1 is able to trap the message issued from exec2.

Note that if exec1 had made the bad function call, it could not trap the error message because a
function message is considered at the same level as the exec. This is similar to the fact that an
exec can use OUTTRAP to trap SAY statements from an exec that it invokes, but it cannot trap its
own SAY output.
===

/* REXX - exec1 */
trapit = OUTTRAP('line.')
trapmsg_stat = TRAPMSG('ON')
call exec2
do i=1 to line.0 /* Display any output trapped from exec2 */

say '==> ' line.
end
trapit = OUTTRAP('OFF')
trapmsg_stat = TRAPMSG('OFF')
exit 0

/* REXX - exec2 */
say 'In exec2 ...'
time = TIME('P') /* Invalid time operand, get msg IRX0040I*/
return time

79

Overview – STORAGE function
 z/OS can use address 64-bit storage, providing vastly expanded addressable

areas. REXX cannot read or write to these areas.

 Problem Statement / Need Addressed
– REXX STORAGE needs ability to view or change storage within 64-bit

addressable areas above the BAR.

 Solution
– STORAGE extended to handle 64-bit addresses, in addition traditional 24-

bit and 31-bit addresses.

 Benefit / Value
– Clever programmers can make use of 64-bit storage to greatly expand the

amount of data than can be maintained, in storage, by REXX.

80

Usage & Invocation

 STORAGE function now supports 64-bit address represented by 9-17
hexidecimal chars, consisting of 8-16 hex chars and an optional underscore
(“_”) separating high and low order half

 Retrieve 25-bytes from addr 000AAE35:
storet = STORAGE(000AAE35,25)

 Replace data at 0035D41F with 'TSO/E REXX'
storet = STORAGE(0035D41F,,'TSO/E REXX')

 The following illustrate valid 64-bit addresses that can be used with storage
storet = STORAGE(00000001EF_80000010,60) – read 60-bytes from
64-bit address 1EF_80000010

81

Usage & Invocation

The following illustrates some valid and invalid 64-bit addresses:

Hex Address passed Binary Address
to STORAGE used by STORAGE Comment
================ ================== ===================

_00000010 '0000000000000010'x - Valid 64-bit addr.
(Padded to left with
0's to 64-bits.)
Addresses same area as
31-bit '00000010'x addr.

0_00000010 '0000000000000010'x - Valid 64-bit addr.
Addresses same area
as _00000010.

0_80000010 '0000000080000010'x - Valid 64-bit addr.
Addr is 2GB beyond
the 0_00000010 addr.

000001EF10 '000000000001EF10'x - Valid 64-bit addr.
1EF_80000010 '000001EF80000010'x - Valid 64-bit addr.
1EF80000010 '000001EF80000010'x - Valid 64-bit addr

without "_" separator.
000001EF_80000010 '000001EF80000000'x - Valid 64-bit addr.
000001EF_10 Invalid Addr - Right half of 64-bit

addr <8 chars.

82

Usage & Invocation
Hex Address passed Binary Address
to STORAGE used by STORAGE Comment
================ ================== ===================

00000001EF_000010 Invalid Addr - Left half of addr >8
chars, right half <8
chars.

0000001EF_80000010 Invalid Addr - More than 16 hex chars
Also, left half more
than 8 chars.

00001EF8000001000 Invalid Addr - More than 16 hex chars

As an example of what you might expect, consider STORAGE used to
retrieve 25 bytes from a 64-bit addressable area:
say '<'C2X(STORAGE(1EF_80000010,25))'>'

/* Returns ...
<IARST64 COMM SIZE 000512 > perhaps */

83

Overview – LISTDSI enhanced
 Keep LISTDSI REXX function/ CLIST statement current with new features added

to z/OS, and improve current capabilities.

 Problem Statement / Need Addressed
– As new features are introduces to data sets, LISTDSI should be improved to

report on those. Also LISTDSI should be able to handle multi-volume data sets.

 Solution
– New variables have been added to LISTDSI.
– LISTDSI now provides information on all volumes of a multi-volume data set,

not just the first.
– RACF/NORACF operand added.

 Benefit / Value
– New capabilities help keep LISTDSI current.

84

Usage & Invocation

 LISTDSI 'dsname'... RACF/NORACF MULTIVOL/NOMULTIVOL
– Specifying NORACF means LISTDSI will not determine the RACF

status. This implies that LISTDSI will not attempt to open the data set
to gather additional information, even if open is necessary based on
another keyword. For example, for a PDS, if DIRECTORY is specified,
LISTDSI would open the data set to get directory info, but will not if
NORACF is specified.

– Specify NORACF if you do not want LISTDSI to query RACF as to
whether a data set is protected. (Default is RACF.)

– Specify MULTIVOL if you want information on the totality of all
volumes of a multi-volume data set. NOMULTIVOL provides
information on just the first volume (as prior to this support).

85

Usage & Invocation

 New LISTDSI variables set
– SYSNUMVOLS - Number of volumes used, always returned

• SYSVOLUMES - Volume names separated by blanks, up to
number in SYSNUMVOLS. Returns 7-char per volume (6-char
volume name plus 1 blank separator). Up to 412 chars (59
vols) .

• SYSVOLUME – existing variable, returns name of first volume

– SYSUSEDPERCENT - Percent pages used for PDSEs. Always
returned for PDSEs along with previously existing SYSUSEDPAGES.
One or all vols.

86

Usage & Invocation
 For EAV volumes:

– SYSCREATEJOB - Jobname that created data set, if available
e.g. PAYROLL

– SYSCREATESTEP- Stepname that created data set, if available
e.g. IKJEFT01

– SYSCREATETIME- Time that data set was created, if available in
format hh:mm:ss. (e.g. 02:35:15)

– SYSCREATE - Previously existing var, returns Create Date
(e.g. 2012/193)

 Existing variables with modified meaning
– SYSALLOC - one or all vols. Space allocated.
– SYSUSED – one or all vols. Space used.
– SYSEXTENTS – one or all vols. Number of extents.
– SYSRACFA - blank if NORACF. 'NONE'/'GENERIC'/'DISCRETE' if RACF

was specified or defaulted.

87

Enhancement Summary

New features of REXX now include
– Long symbols support
– Enhancements to EXECIO to support I/O to RECFM=VS,VBS,

U data sets.
– New TRAPMSG function.
– Enhancements to REXX STORAGE function to support 64-bit

addresses.
– Null SMS managed data sets allowed in a sequential

concatenation for EXECIO, CLIST I/O, PRINTDS.
– Enhancements to LISTDSI

88

More Details

 SA22-7790-11, z/OS TSO/E REXX Reference
 SA22-7781-08, z/OS TSO/E CLISTs
 SA22-7786-12, z/OS TSO/E Messages

89

Related Programs

IBM z Systems

CMS and TSO Pipelines

91 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 A powerful method of processing or manipulating data
 Can be called within REXX programs
 A collection of data processing elements connected in a

series
• Output of one element becomes the input to the next element
• For example, on z/VM

’PIPE CP QUERY DASD | STEM dasd.‘
• Issues the CP command QUERY DASD
• Response is written into the pipeline
• Next stage (STEM) receives the input and places it into the stem

variable “dasd”, setting dasd.0 to the number of lines of data
 Included in all current releases of z/VM
 Available as a separate product for TSO

• Batchpipes (5655-D45)

IBM z Systems

Open Object REXX

92 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Open Object REXX is available via open source community
• Runs on Linux on z Systems
• Many other platforms

 www.oorexx.org
• Managed by REXX Language Association

 99% compatible with other System z REXX programs
 Informal testing with SLES on memory and CPU constrained

system
• Compare PERL and OOREXX – OOREXX is much faster!
• Memory footprint of OOREXX is similar to PERL with several

modules loaded

http://www.oorexx.org/

IBM z Systems

(Open Source) NetRexx

93 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 An object oriented Rexx for the Java Virtual Machine (JVM)
• Write in REXX (or REXX-like)
• Compiler converts to Java source statements and

bytecode
 Available via open source community since 2011
 netrexx.org

• Managed by REXX Language Association

IBM z Systems

Additional Information and Contacts

94 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 IBM REXX Website
http://www.ibm.com/software/awdtools/rexx

 IBM Contacts
• Virgil Hein, vhein@us.ibm.com

• Compiler and Library for REXX on zSeries

http://www.ibm.com/software/awdtools/rexx
mailto:vhein@us.ibm.com

IBM z Systems

References

95 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compiler and Library for REXX User’s Guide and Reference (SH19-8160)
 REXX/VM User’s Guide (SC24-6222)
 REXX/VM Reference (SC24-6221)
 TSO/E REXX Reference (SA32-0972)
 z/OS V2R2 TSO/E REXX Reference (SA32-0972-02) added recently
 z/OS TSO/E CLISTs (SA32-0978)
 z/OS TSO/E Messages (SA32-0970)
 ISPF Services Guide for z/OS (SC19-3626)
 ISPF Dialog Developer’s Guide and Reference for z/OS (SC19-3619)
 ISPF Edit and Edit Macros for z/OS (SC19-3621)
 Using REXX and z/OS UNIX System Services (SA23-2283)
 SDSF Operation and Customization (SA23-2274)
 DB2 for z/OS Application Programming and SQL Guide (SC19-4051)
 z/OS MVS IPCS Commands (SA23-1382)
 z/OS MVS Authorized Assembler Services Guide (SA23-1371)
 Security Server RACF Macros and Interfaces (SA23-2288)

IBM z Systems

(Previous) References

96 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

 Compiler and Library for REXX User’s Guide and Reference (SH19-8160)
 REXX/VM User’s Guide (SC24-6222)
 REXX/VM Reference (SC24-6221)
 TSO/E REXX Reference (SA22-7790)
 SA22-7781-08, z/OS TSO/E CLISTs
 SA22-7786-12, z/OS TSO/E Messages
 ISPF Services Guide

• z/OS V1, SC19-3626
• z/OS V2, SC34-4819

 ISPF Dialog Developer’s Guide and Reference
• z/OS V1, SC19-3619
• z/OS V2, SC34-4821

 ISPF Edit and Edit Macros
• z/OS V1, SC19-3621
• z/OS V2, SC28-1312

 Using REXX and z/OS UNIX System Services (SA22-7806)
 SDSF Operation and Customization (SA22-7670)
 DB2 Application Programming and SQL Guide (SC19-4051)
 MVS IPCS Commands (SA22-7594)
 MVS Programming Authorized Assembler Services Guide (SA22-7605)
 Security Server RACF Macros and Interfaces (SA22-7682)

IBM z Systems

Thank
EnglishYou

Merci
French

Grazie
Italian

Gracias
Spanish

Obrigado
Brazilian Portuguese

Danke
German

Japanese

Russian

Arabic

Traditional Chinese

Simplified Chinese

Tamil
Thai

Korean
Hindi

97 REXX Language Coding Techniques © 2014, 2016 IBM Corporation

	Slide Number 1
	Disclaimers
	Agenda
	HLASM TextBook
	REXX Interpreter and Libraries
	The REXX Products
	Why Use a REXX Compiler?
	REXX Compiler Issues / Updates
	REXX User Example 1
	REXX User Example 2
	Slide Number 11
	External Environments
	Host Command Environments in z/OS
	Host Command Environments in z/OS
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Host Command Environments in z/OS …
	Other External Environments in z/OS
	Other “Environments” and Interfaces in z/OS
	Other “Environments” and Interfaces . . .
	Other “Environments” and Interfaces . . .
	Host Command Environments in z/VM
	Slide Number 26
	Instructions vs. Functions
	Key Instructions – Parse
	Parse Templates
	Parse Templates
	Parse Templates . . .
	Parse Templates . . .
	Parse Templates . . .
	Slide Number 34
	What is a Compound Variable?
	Compound Variable Values
	Processing Compound Variables
	Processing Compound Variables . . .
	What is a Data Stack?
	Manipulating the Data Stack
	Why Use the Data Stack?
	Quick Example of Processing the Data Stack
	More Stack Functions and Options
	Using Buffers in the Data Stack
	Using Buffers in the Data Stack . . .
	Using Buffers in the Data Stack . . .
	Protecting Elements in the Data Stack – z/OS Only
	Slide Number 48
	Data Stack vs Buffers
	Data Stack vs Buffers
	Compound Variables vs Data Stack
	Compound Variables vs Data Stack
	Slide Number 53
	EXECIO Command – z/OS
	EXECIO Command – z/VM
	Special Variables
	Troubleshooting – Condition Trapping
	Troubleshooting – Condition Trapping. . .
	Troubleshooting – Trace Facility
	Troubleshooting – Trace Facility . . .
	Troubleshooting – Trace Facility . . .
	Troubleshooting – Trace Facility . . .
	Programming Style and Techniques
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Programming Style and Techniques . . .
	Slide Number 69
	REXX Enhancements in z/OS V2.1 and later
	Long symbols example
	Overview - EXECIO
	Usage & Invocation
	Usage & Invocation
	Usage & Invocation
	Overview – TRAPMSG function
	Usage & Invocation
	Usage & Invocation
	Usage & Invocation
	Overview – STORAGE function
	Usage & Invocation
	Usage & Invocation
	Usage & Invocation
	Overview – LISTDSI enhanced
	Usage & Invocation
	Usage & Invocation
	 Usage & Invocation
	Enhancement Summary
	More Details
	Slide Number 90
	CMS and TSO Pipelines
	Open Object REXX
	(Open Source) NetRexx
	Additional Information and Contacts
	References
	 (Previous) References
	Slide Number 97

Assembler Language Programming
for

IBM System z™ Servers

Version 2.00

John R. Ehrman

IBM Silicon Valley Lab

Second Edition (February 2016)

IBM welcomes your comments. Please address them to

Virgil Hein
vhein@us.ibm.com

© Copyright IBM Corporation 2015
US Government Users Restricted Rights − Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

ii Assembler Language Programming for IBM System z™ Servers Version 2.00

Contents
Figures . xvi

Tables . xxix

Foreword . 1
Outline and Overview . 1
Programming Environments . 2
Levels of Difficulty (*) . 2
Exercises and Programming Problems . 2
Some Personal Observations . 2
Von Neumann Architecture . 5
Why Program in Assembler Language (and Why Not)? 5
Assembler Language Misconceptions . 8

Chapter I: Getting Started . 11
1. Some Basic Items . 12

1.1. Notation and Terminology . 12
1.2. Instruction Elements . 13

1.2.1. Register Names . 14
 2. Binary and Hexadecimal Numbers . 16

2.1. Positional Notation and Binary Numbers . 16
2.2. Hexadecimal Numbers . 17
2.3. Converting Integers from One Base to Another (*) 19
2.4. Examples of General Conversions (*) . 22
2.5. Number Representations . 24
2.6. Logical (Unsigned) Representation . 25
2.7. Two's Complement (Signed) Representation (*) 25
2.8. Computing Two's Complements . 27
2.9. Sign Extension . 30
2.10. Binary Addition . 31
2.11. Binary Subtraction . 32
2.12. How Additions and Subtractions Are Actually Performed (*) 34
2.13. A Circular View of Binary Arithmetic (*) . 36
2.14. Logical (Unsigned) and Arithmetic (Signed) Results (*) 37
2.15. Examples of Representations (*) . 38

Chapter II: System z . 41
 3. Conceptual Structure of System z . 42

3.1. Memory Organization . 43
3.2. Central Processing Unit . 45
3.3. General Registers . 45
3.4. Floating-Point Registers . 46
3.5. Program Status Word (PSW) . 47
3.6. Other Registers . 48
3.7. Input-Output (I/O) . 48
3.8. Features, Facilities, and Assists . 48
3.9. Microprograms and Millicode (*) . 48

 4. Instruction Execution . 50
4.1. Basic Instruction Cycle . 50
4.2. Basic Instruction Types . 51
4.3. Instruction Lengths . 53
4.4. Some Operation Codes (*) . 54
4.5. Interruptions (*) . 55
4.6. Exceptions and Program Interruptions (*) . 56
4.7. Machine Language and Assembler Language . 58
4.8. Processor Evolution . 59

 5. Memory Addressing . 61
5.1. The Addressing Halfword . 62

Contents iii

5.2. Examples of Effective Addresses . 63
5.3. Indexing . 63
5.4. Examples of Indexing . 65
5.5. Addressing Problems (*) . 66
5.6. Address Translation and Virtual Memory (*) . 67
5.7. Summary . 68

Chapter III: Assembler Language Programs . 71
 6. Assembler Language . 72

6.1. Processing Your Program . 72
6.1.1. Assembly . 72
6.1.2. Linking . 73
6.1.3. Loading and Execution . 73

6.2. Preparing Assembler Language Statements . 74
6.3. Statement Fields . 76

6.3.1. What's in a Name Field? (*) . 79
6.4. Writing Programs . 79
6.5. A Sample Program . 80
6.6. Basic Macro Instructions . 82
6.7. Summary . 82

 7. Self-Defining Terms and Symbols . 85
7.1. Self-Defining Terms . 85
7.2. EBCDIC Character Representation . 87
7.3. Symbols and Attributes . 89
7.4. Program Relocatability . 91
7.5. The Location Counter . 92
7.6. Assigning Values to Symbols . 93
7.7. Symbols and Variables . 94

 8. Terms, Operators, Expressions, and Operands . 96
8.1. Terms and Operators . 96
8.2. Expressions . 97
8.3. Evaluating Assembly-Time Expressions (*) . 98
8.4. Examples . 100
8.5. Machine Instruction Statement Operand Formats 102
8.6. Details of Expression Evaluation (*) . 103

 9. Instructions, Mnemonics, and Operands . 106
9.1. Basic RR-Type Instructions . 106
9.2. Writing RR-Type Instructions . 107
9.3. Basic RX-Type Instructions . 108
9.4. Writing RX-Type Instructions . 108
9.5. Explicit and Implied Addresses . 109
9.6. Typical RS- and SI-Type Instructions . 111
9.7. Writing RS- and SI-Type Instructions . 111
9.8. Typical SS-Type Instructions . 113
9.9. Writing SS-Type Instructions . 113
9.10. Summary . 115

 10. Establishing and Maintaining Addressability . 116
10.1. The BASR Instruction . 116
10.2. Computing Displacements . 117
10.3. Explicit Base and Displacement . 119
10.4. The USING Assembler Instruction and Implied Addresses 120
10.5. Location Counter Reference . 121
10.6. Destroying Base Registers . 122
10.7. Calculating Displacements: the Assembly Process, Pass One 123
10.8. Calculating Displacements: the Assembly Process, Pass Two 125
10.9. Multiple USING Table Entries . 127
10.10. The DROP Assembler Instruction . 128
10.11. Addressability Errors . 129
10.12. Resolutions With Register Zero (*) . 130
10.13. Summary . 132

10.13.1. How the Assembler Helps . 133

iv Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter IV: Defining Constants and Storage Areas . 135
 11. Defining Constants . 136

11.1. Defining Constants . 137
11.2. DC Instruction Statements and Operands . 138

11.2.1. Blanks in Nominal Values . 138
11.3. Boundary Alignment . 139
11.4. Length Modifiers . 140
11.5. Duplication Factors and Multiple Operands 141
11.6. Multiple Nominal Values . 142
11.7. Length Attributes . 143
11.8. Decimal Exponents (*) . 143

11.8.1. Decimal Exponents . 143
11.8.2. Exponent Modifiers . 144

 12. Basic Constants . 146
12.1. F-Type and H-Type Constants . 146
12.2. A-Type Address Constants . 147
12.3. Y-Type Address Constants . 149
12.4. Constants of Types C, X, and B . 150
12.5. Padding and Truncation . 152
12.6. Literals . 154
12.7. The LTORG Assembler Instruction . 156
12.8. Type Extensions . 157

 13. Data Storage Definition . 159
13.1. Storage Areas: The DS Assembler Instruction 159
13.2. Zero Duplication Factor . 160
13.3. The EQU Assembler Instruction . 162
13.4. EQU Instruction Extended Syntax (*) . 166
13.5. The ORG Assembler Instruction . 167
13.6. Parameterization . 169
13.7. Constants Depending on the Location Counter 171
13.8. Assembly Time and Execution Time, Revisited (*) 173
13.9. Summary Observations . 174

Chapter V: Basic Instructions . 177
 14. General Register Data Transmission . 178

14.1. Load and Store Instructions . 179
14.2. Multiple Loads and Stores . 180
14.3. Halfword Data . 182
14.4. Insert and Store Character . 184
14.5. ICM and STCM Instructions . 185
14.6. RR-Type Data Transmission Instructions . 187
14.7. Load, Store, and Insert for 64-bit General Registers 189
14.8. RRE-Type Data Transmission Instructions for 64-bit General Registers . . . 192
14.9. The Load and Test Instructions . 193
14.10. Mixed 32- and 64-bit Operands . 194
14.11. Other General Register Load Instructions (*) 195

14.11.1. Load Byte Instructions . 196
14.11.2. Load Logical Character Instructions . 196
14.11.3. Load Logical Halfword Instructions . 197
14.11.4. Load Logical (Word) Instructions . 197
14.11.5. Load Logical Thirty One Bit Instructions 197

14.12. Misunderstandings to Avoid . 198
14.13. Summary . 199

 15. Testing the Condition Code: Conditional Branching 204
15.1. The Branch Address . 204
15.2. The Branch Mask and Branch Condition . 205
15.3. Examples of Conditional Branch Instructions 206
15.4. No-Operation Instructions . 206

15.4.1. Special No-Operation Instructions (*) . 206
15.5. Conditional No-Operation . 207
15.6. Extended Mnemonics . 210
15.7. A Comment on Programming Style . 212

Contents v

15.8. A Design Oversight and a Modern “Correction” (*) 212
15.9. Summary . 213

 16. Fixed-Point Binary Addition, Subtraction, and Comparison 216
16.1. Signed-Arithmetic Add and Subtract Instructions 216
16.2. Signed-Arithmetic Operations Using 32-Bit Registers 217

16.2.1. Condition Code Settings After Arithmetic 218
16.3. Signed-Arithmetic Operations Using 64-Bit Registers 221
16.4. Signed-Arithmetic Compare Instructions . 222
16.5. Logical-Arithmetic Add and Subtract Instructions 224
16.6. Add With Carry, Subtract With Borrow (*) 228
16.7. Operations With Mixed 64-Bit and 32-Bit Operands 229
16.8. Logical-Arithmetic Compare Instructions . 232
16.9. Retrieving and Setting the Program Mask (*) 234
16.10. Summary . 235

 17. Binary Shifting . 242
17.1. Unit Shifts . 243
17.2. Single-Length Logical Shifts . 245

17.2.1. Three-Operand Shift Instructions . 247
17.3. Double-Length Logical Shifts . 248
17.4. Arithmetic Shift Instructions . 252
17.5. Rotating Shifts . 257
17.6. Calculated Shift Amounts . 257
17.7. Bit-Length Constants (*) . 259
17.8. Summary . 260

 18. Binary Multiplication and Division . 264
18.1. Overview of Multiplication Instructions . 264
18.2. Arithmetic (Signed) Multiplication Instructions 265

18.2.1. Double-Length Arithmetic Products . 265
18.2.2. Single-Length Arithmetic Products . 267

18.3. Logical (Unsigned) Multiplication Instructions 270
18.4. How Multiplication Is Done (*) . 272
18.5. Division Instructions . 274
18.6. Arithmetic (Signed) Division Instructions . 275

18.6.1. Double-Length Division . 275
18.6.2. Single-Length Division . 278

18.7. Logical (Unsigned) Division Instructions . 279
18.8. How Division Is Done (*) . 280
18.9. Summary . 283

 19. Logical Operations . 288
19.1. Logical Operations . 289
19.2. Register-Based Logical Instructions . 289
19.3. Logical AND . 290
19.4. Logical OR . 291
19.5. Logical Exclusive OR . 292
19.6. Interesting Uses of Logical Instructions (*) . 295
19.7. Summary . 297

Chapter VI: Addressing, Immediate Operands, and Loops 301
 20. Address Generation and Addressing Modes . 302

20.1. Address Generation . 302
20.1.1. Address Generation With 12-Bit Displacements 302
20.1.2. Address Generation With 20-Bit Displacements 302
20.1.3. Address Generation With Relative-Immediate Operands 305

20.2. Addressing Modes . 307
20.3. Load Address Instructions . 309
20.4. 64-Bit Virtual Addresses . 314
20.5. Summary . 314

 21. Immediate Operands . 316
21.1. Insert and Load Instructions with Immediate Operands 318

21.1.1. Logical-Immediate Insert Instructions . 318
21.1.2. Arithmetic- and Logical-Immediate Load Instructions 318

21.2. Arithmetic Instructions with Immediate Operands 321

vi Assembler Language Programming for IBM System z™ Servers Version 2.00

21.2.1. Arithmetic-Immediate Add and Subtract Instructions 321
21.2.2. Arithmetic-Immediate Compare Instructions 322
21.2.3. Arithmetic-Immediate Multiply Instructions 322

21.3. Logical Operations with Immediate Operands 323
21.3.1. Logical-Immediate AND Instructions . 323
21.3.2. Logical-Immediate OR Instructions . 323
21.3.3. Logical-Immediate XOR Instructions . 324

21.4. Summary . 325
 22. Branches, Loops, and Indexing . 329

22.1. Branch Relative on Condition Instructions . 329
22.2. A Simple Example of a Loop . 331
22.3. Simple Tables and Array Indexing . 332
22.4. Branch on Count Instructions . 334
22.5. Looping in General . 338
22.6. Branch on Index Instructions . 340
22.7. Examples Using BXLE . 343
22.8. Examples Using BXH . 346
22.9. Specialized Uses of BXH and BXLE (*) . 347
22.10. Summary . 349

Chapter VII: Bit and Character Data . 351
 23. Bit and Byte Data and Instructions . 352

23.1. SI- and SIY-Type Instructions . 352
23.2. MVI Instructions . 353
23.3. NI, OI, and XI Instructions . 353
23.4. CLI Instructions . 354
23.5. Test Under Mask Instructions . 356
23.6. Bit Data . 358
23.7. Avoiding Bit-Naming Problems (*) . 359
23.8. A Data Conversion Example . 361
23.9. Instruction Modification (*) . 361
23.10. Summary . 363

 24. Character Data and Basic Instructions . 365
24.1. Basic SS-Type Instructions . 365
24.2. Operand Specifications and Explicit Lengths 366
24.3. Symbol Length Attribute References . 368
24.4. Implied Lengths . 368
24.5. The Encoded Length “L” and Program Length “N” 370
24.6. The MVC and MVCIN Instructions . 372

24.6.1. MVC: Move Characters . 372
24.6.2. MVCIN: Move Characters Inverse . 373
24.6.3. MVCOS: Move Characters With Optional Specifications (*) 374

24.7. The NC, OC, and XC Instructions . 376
24.8. The CLC Instruction . 378
24.9. The TR (translate) Instruction . 379
24.10. The TRT and TRTR Instructions . 383

24.10.1. TRT . 384
24.10.2. T R T R . 387

24.11. The Execute Instructions . 389
24.11.1. Execute Instruction Without Target-Instruction Modification 390
24.11.2. Execute Instruction with Target-Instruction Modification 391
24.11.3. Comments on the Execute Instructions (*) 392
24.11.4. Modifiable Parts of Instructions . 393

24.12. Summary . 396
 25. Character Data and Extended Instructions . 403

25.1. Move Long and Compare Logical Long . 403
25.1.1. MVCL . 405
25.1.2. CLCL . 407

25.2. Move Long and Compare Logical Long Extended 410
25.2.1. MVCLE . 411
25.2.2. CLCLE . 413

25.3. Special “C-String” Instructions . 415

Contents vii

25.4. Search String Instruction . 415
25.5. Move String Instruction . 417
25.6. Compare Logical String Instruction . 419
25.7. Translate Extended Instruction . 421
25.8. Compare Until Substring Equal Instruction (*) 423
25.9. Summary . 425

 26. Other Types of Character Data (*) . 428
26.1. Character Representations . 428

26.1.0. An Early Character Encoding . 428
26.1.1. BCD characters . 429

26.2. EBCDIC Representations and Code Pages . 430
26.3. ASCII . 432
26.4. Double-Byte EBCDIC Data (*) . 434

26.4.1. The DBCS Option (*) . 436
26.4.2. G-Type DBCS Constants and Self-Defining Terms (*) 436
26.4.3. Continuation Rules for DBCS Data (*) 437

26.5. Unicode . 438
26.5.1. The Unicode Representation . 438
26.5.2. Glyphs and Characters . 439
26.5.3. Unicode Character Constants . 439

26.6. Unicode Instructions . 441
26.6.1. String Search, Move, and Compare . 441
26.6.2. Optional Operands (*) . 443
26.6.3. Translation . 444
26.6.4. Conversion Among Transformation Formats (*) 447

26.7. Translate and Test Extended . 450
26.8. Byte Reversal and Workstation Data . 453

26.8.1. Byte-Reversing Instructions . 453
26.9. Summary . 456

Chapter VIII: Zoned and Packed Decimal Data and Operations 459
 27. Zoned and Packed Decimal Representations . 460

27.1. Zoned Decimal Representation . 460
27.1.1. Why Zoned Decimal Is The Way It Is (*) 463

27.2. Zoned Decimal Constants . 464
27.3. Packed Decimal Representation . 465
27.4. Packed Decimal Constants . 467

27.4.1. Scale Attributes and Packed Decimal Constants (*) 467
27.5. Converting Between Packed and Zoned . 469
27.6. The PACK Instruction . 471
27.7. The UNPK Instruction . 474
27.8. Packing and Unpacking ASCII and Unicode Data (*) 478

27.8.1. Packing ASCII and Unicode Data . 478
27.8.2. Unpacking ASCII and Unicode Data . 479

27.9. Printing Hexadecimal Values . 481
27.10. Summary . 483

 28. Packed Decimal Arithmetic . 484
28.1. General Rules . 484

28.1.1. Precision and Accuracy . 485
28.2. Decimal Addition and Subtraction . 485
28.3. Decimal Comparison . 487
28.4. Decimal Multiplication . 489
28.5. Decimal Division . 490
28.6. True Decimal Addition (*) . 492
28.7. Complement Decimal Addition (*) . 493

 29. Packed Decimal Instructions . 497
29.1. TP Instruction . 498
29.2. ZAP Instruction . 499
29.3. AP and SP Instructions . 501
29.4. CP Instruction . 503
29.5. MP Instruction . 506
29.6. DP Instruction . 509

viii Assembler Language Programming for IBM System z™ Servers Version 2.00

29.7. SRP Instruction . 511
29.7.1. Biased and Unbiased Rounding with SRP (*) 513

29.8. MVO Instruction . 516
29.9. Decimal Shifting Using MVO (*) . 518

29.9.1. Shift Right an Odd Number of Digits . 518
29.9.2. Shift Left an Odd Number of Digits . 519
29.9.3. Shifting an Even Number of Digits . 519
29.9.4. Shifting Left an Even Number of Digits 520
29.9.5. Shifting Right an Even Number of Digits 520

29.10. Scaled Packed Decimal Computations: General Rules 522
29.10.1. Precision and Scale . 522
29.10.2. General Rules: Addition and Subtraction 523
29.10.3. General Rules: Multiplication . 523
29.10.4. General Rules: Division (*) . 524
29.10.5. COBOL and PL/I Notations (*) . 525

29.11. Example of a Packed Decimal “Business” Computation 526
29.11.1. The Wholesaler's Calculation . 526
29.11.2. The Retailer's Calculation . 527
29.11.3. Comments . 529
29.11.4. Using Integer and Scale Attributes (*) 529

29.12. Summary . 530
 30. Converting and Formatting Packed Decimal Data 532

30.1. CVD, CVDY, and CVDG Instructions . 532
30.2. CVB, CVBY, and CVBG Instructions . 534
30.3. Editing Overview . 536
30.4. Simple Examples of Editing . 538
30.5. Single-Field Editing . 541

30.5.1. Editing Negative Values . 541
30.5.2. Protecting High-Order Fields . 542

30.6. The EDMK Instruction . 543
30.7. Editing Multiple Fields (*) . 545
30.8. Summary Comments on Editing (*) . 546

Chapter IX: Floating-Point Data and Operations . 551
 31. Floating-Point Numbers: Introduction . 552

31.1. Scaled Fixed-Point Arithmetic . 552
31.2. Mixed Integer-Fraction Representation . 553

31.2.1. Scaled Fixed-Point Binary Arithmetic (*) 554
31.2.2. Scaled Fixed-Point Binary Constants (*) 555

31.3. Converting Fractions Between Bases (*) . 557
31.4. Why Use Floating-Point Numbers? . 559

31.4.1. Precision and Accuracy . 560
31.5. Floating-Point Representations . 560

31.5.1. Left Normalization . 561
31.5.2. Right Normalization . 562
31.5.3. No Normalization . 562
31.5.4. Some Additional Details (*) . 562

31.6. System z Floating-Point Representations . 564
31.7. System z Floating-Point Registers . 564
31.8. Floating-Point Constants . 567
31.9. Representation-Independent Floating-Point Instructions 568

31.9.1. Register-Storage Instructions . 568
31.9.2. Register-Register Instructions . 568
31.9.3. Load-Zero Instructions . 569
31.9.4. GPR-FPR Copying Instructions . 569
31.9.5. Sign-Copying Instruction . 570

31.10. Summary . 570
 32. Basic Concepts of Floating-Point Arithmetic . 573

32.1. Floating-Point Multiplication . 573
32.2. Pre-Normalization of Fraction Operands . 574
32.3. Floating-Point Rounding . 574
32.4. Guard and Rounding Digits (*) . 575

Contents ix

32.5. Integer-Based Representations (*) . 577
32.6. Floating-Point Division . 578
32.7. Floating-Point Addition and Subtraction . 578
32.8. Floating-Point Precision . 580
32.9. Floating-Point Range . 582
32.10. Exponents and Characteristics . 584
32.11. Summary . 585

 33. Hexadecimal Floating-Point Data and Operations 586
33.1. Hexadecimal Floating-Point Data . 586
33.2. Writing Hexadecimal Floating-Point Constants 590

33.2.1. Decimal Exponents . 591
33.3. Modifiers . 592

33.3.1. Length Modifiers . 592
33.3.2. Scale Modifiers (*) . 592
33.3.3. Exponent Modifiers . 593

33.4. Subtypes Q and H (*) . 594
33.4.1. LQ-Type Constants . 594
33.4.2. Subtype H . 595
33.4.3. Difficult Numbers (*) . 596

33.5. Basic Hexadecimal Floating-Point Instructions 597
33.6. Hexadecimal Floating-Point RR-Type Data-Movement Instructions 597
33.7. Hexadecimal Floating-Point Multiplication . 599

33.7.1. Exponent Overflow and Underflow. 602
33.8. Hexadecimal Floating-Point Division . 603

33.8.1. The Halve Instructions (*) . 604
33.9. Hexadecimal Floating-Point Addition and Subtraction 606

33.9.1. Unnormalized Addition and Subtraction 609
33.9.2. Older Uses of Unnormalized Addition (*) 609

33.10. Adding Operands of Like Sign (*) . 612
33.11. Adding Operands of Unlike Sign (*) . 612

33.11.1. Hexadecimal Floating-Point Complement Addition (*) 613
33.11.2. Implementing Hexadecimal Floating-Point Complement Addition (*) . 614

33.12. Hexadecimal Floating-Point Comparison . 615
33.13. Rounding and Lengthening Instructions . 616

33.13.1. Rounding Instructions . 616
33.13.2. Lengthening Instructions . 618

33.14. Converting Between Binary Integers and HFP 620
33.14.1. Converting Binary Integers to Hexadecimal Floating-Point 620
33.14.2. Converting Hexadecimal Floating-Point to Binary Integers 621

33.15. Hexadecimal Floating-Point Integers and Remainders (*) 625
33.16. Square Root Instructions (*) . 626
33.17. Multiply and Add/Subtract Instructions (*) 627
33.18. Some Hexadecimal Floating-Point History (*) 629

33.18.1. Zeroing Floating-Point Registers . 629
33.18.2. Hexadecimal Floating-Point to Binary Conversion Comments (*) . . . 629
33.18.3. Initial System/360 Oversights . 630

33.19. Summary . 630
 34. Binary Floating-Point Data and Operations . 638

34.1. Binary Floating-Point Data . 638
34.1.1. Data Representations . 639
34.1.2. Normal Numbers . 640
34.1.3. Special Values . 640
34.1.4. Range of the Representation . 641

34.2. Writing Binary Floating-Point Constants . 642
34.2.1. Decimal Exponents and Exponent Modifiers 644
34.2.2. Length Modifiers (*) . 645

34.3. Binary Floating-Point Arithmetic in General 646
34.3.1. Rounding Modes . 646
34.3.2. Denormalized Numbers . 647
34.3.3. Arithmetic with Zero, Infinity, and NaNs 648

34.4. Binary Floating-Point Exceptions, Interruptions, and Controls 649
34.4.1. Binary Floating-Point Exceptions (*) . 649

x Assembler Language Programming for IBM System z™ Servers Version 2.00

34.4.2. FPC Register Instructions (*) . 651
34.4.3. Exception Actions (*) . 651
34.4.4. Scaled Exponents (*) . 653

34.5. Basic Binary Floating-Point Instructions . 653
34.6. Binary Floating-Point RR-Type Data Movement Instructions 655
34.7. Binary Floating-Point Multiplication . 657
34.8. Binary Floating-Point Division . 659
34.9. Binary Floating-Point Addition and Subtraction 661
34.10. Binary Floating-Point Comparison . 662

34.10.1. Compare and Signal (*) . 663
34.11. Binary Floating-Point Rounding and Lengthening Instructions (*) 664

34.11.1. Rounding Instructions (*) . 664
34.11.2. Lengthening Instructions (*) . 664

34.12. Converting Between BFP and Binary Integers (*) 666
34.12.1. Converting Binary Integers to Binary Floating-Point (*) 666
34.12.2. Converting Binary Floating-Point to Binary Integers (*) 666

34.13. Binary Floating-Point Integers and Remainders (*) 668
34.13.1. Load FP Integer Instructions . 668
34.13.2. Divide to Integer Instructions (*) . 669

34.14. Binary Floating-Point Square Root Instructions (*) 671
34.15. Binary Floating-Point Multiply and Add/Subtract (*) 672
34.16. Summary . 673

 35. Decimal Floating-Point Data and Operations . 680
35.1. Representations . 681

35.1.1. Conceptual View of the Decimal Floating-Point Representation 682
35.2. System z Decimal Floating-Point Data Encoding and Representation (*) . . 684

35.2.1. Decimal Floating-Point Data Encoding (*) 685
35.2.2. Decimal Floating-Point Data Representation (*) 686
35.2.3. Decimal Floating-Point Combination Field (*) 687

35.3. Decimal Floating-Point Constants . 690
35.3.1. Rounding-Mode Suffixes for Decimal Floating-Point Constants 691
35.3.2. Decimal Exponents and Modifiers . 692

35.4. Decimal Floating-Point Data Classes (*) . 693
35.5. Decimal Floating-Point Operations: Rounding, Quanta, and Exceptions . . . 695

35.5.1. Rounding . 695
35.5.2. Preferred Exponent and Quantum . 696
35.5.3. DFP Exceptions . 698
35.4.4. Overflow/Underflow Scale Factors (*) . 699

35.6. Decimal Floating-Point Data Movement Instructions 699
35.6.1. Copy Sign . 699
35.6.2. Copy between General and Floating-Point Registers 700
35.6.3. Copy Among Floating-Point Registers 700

35.7. Decimal Floating-Point Arithmetic Instructions 701
35.7.1. Multiplication . 702
35.7.2. Division . 703
35.7.3. Addition and Subtraction . 703

35.8. Decimal Floating-Point Compare Instructions 705
35.8.1. Compare . 705
35.8.2. Compare and Signal . 705
35.8.3. Compare Biased Exponent . 706

35.9. Converting Decimal Floating-Point To and From Fixed Binary 707
35.9.1. Convert From Fixed Binary To DFP . 707
35.9.2. Convert From DFP To Fixed Binary . 707

35.10. Converting Decimal Floating-Point To/From Packed and Zoned Decimal . 709
35.10.1. Convert To/From Signed Packed Decimal 709
35.10.2. Convert To/From Unsigned Packed Decimal 711
35.10.3. Convert To/From Zoned Decimal . 712

35.11. Decimal Floating-Point Load Operations . 714
35.11.1. Load and Test, Complement, Negative, and Positive 714
35.11.2. Load Floating-Point Integer . 715
35.11.3. Load Lengthened . 716
35.11.4. Load Rounded . 717

Contents xi

35.12. Decimal Floating-Point Miscellaneous Operations (*) 718
35.12.1. Set Decimal Rounding Mode . 718
35.12.2. Extract and Insert Biased Exponent . 719
35.12.3. Extract Significance . 720
35.12.4. Shift Significand Left/Right . 720
35.12.5. Quantize . 722
35.12.6. Reround . 724
35.12.7. Decimal Floating-Point Data Groups (*) 726

35.13. Example of a Decimal Floating-Point “Business” Computation 728
35.13.1. The Wholesaler's Calculation . 728
35.13.2. The Retailer's Calculation . 729
35.13.3. Comparing Packed and Floating Decimal 729

35.14. Decimal Floating-Point Binary-Significand Format (*) 730
35.15. Summary . 731

 36. Floating-Point Summary . 739
36.1. Floating-Point Data Representations . 739
36.2. Floating-Point Properties . 741
36.3. Floating-Point Exceptions . 741
36.4. Defining Floating-Point Constants . 742
36.5. Converting Among Decimal, Hexadecimal and Binary Representations . . . 743

36.5.1. In-Out Conversions . 743
36.5.2. Out-In Conversions . 744
36.5.3. The PFPO Instruction (*) . 745

36.6. “Real” and “Realistic” (Floating-Point) Arithmetic 745
36.7. When Does Zero Not Behave Like Zero? (*) 747

36.7.1. Hexadecimal Floating-Point . 748
36.7.2. Binary Floating-Point . 748
36.7.3. Decimal Floating-Point . 749

36.8. Examples of Former Floating-Point Representations and Behaviors (*) . . . 749
36.9. Summary . 751

Chapter X: Large Programs and Modularization . 755
 37. Subroutines and Linkage Conventions . 756

37.1. Basic Concepts . 756
37.1.1. Linkage . 757
37.1.2. The Branch and Save Instructions . 757
37.1.3. Argument Passing . 759
37.1.4. Returned Values . 762
37.1.5. Status Preservation . 763

37.2. A General Linkage Convention . 765
37.3. Argument Passing . 766

37.3.1. Variable-Length Argument Lists . 767
37.3.2. Argument Lists with 64-Bit Addresses . 768

37.4. Save Areas . 770
37.4.1. Extended Save Area Conventions (*) . 773
37.4.2. Format-4 Save Area Conventions for 64-bit Registers (*) 773
37.4.3. Format-5 Save Area Conventions for 32- and 64-bit Registers (*) 774

37.5. Additional Conventions (*) . 777
37.5.1. Entry Point Identifiers (*) . 777
37.5.2. Calling Point Identifiers (*) . 778
37.5.3. Save Area Return Flags (*) . 778
37.5.4. Return Codes (*) . 779
37.5.5. Conventions for Floating-Point Registers 782
37.5.6. Main-Program Parameters . 782

37.6. Assisted Linkage (*) . 783
37.7. Lowest Level Subroutines . 785
37.8. Summary . 787

37.8.1. Standard Linkage Conventions . 787
 38. Large Programs, Control Sections, and Linking . 790

38.1. Uniform Addressability for Large Programs 790
38.1.1. Other Techniques (*) . 792

38.2. Simplifying Addressability Problems in Large Programs 797

xii Assembler Language Programming for IBM System z™ Servers Version 2.00

38.2.1. Internal Subroutines Without Local Addressability 797
38.2.2. Internal Subroutines With Local Addressability 798
38.2.3. Minimizing the Number of Base Registers 799
38.2.4. Relative Branches, Immediate Operands, and Long Displacements . . . 800
38.2.5. Separating Instructions and Data . 800

38.3. Separate Assemblies . 802
38.4. Control Sections . 803

38.4.1. Resuming Control Sections . 806
38.4.2. Literals in Multi-Section Assemblies (*) 808
38.4.3. Location Counter Discontinuities (*) . 808
38.4.4. Section Alignment (*) . 809
38.4.5. Threaded Location Counters (*) . 809
38.4.6. The “Location Counter” Instruction LOCTR (*) 810

38.5. External Symbols . 818
38.5.1. EXTRN and WXTRN Statements . 819
38.5.2. V-Type Address Constants . 820
38.5.3 ENTRY Statement . 821
38.5.4. The External Symbol Dictionary Listing 824
38.5.5. External Symbol Addressing and Residence Modes 827

38.6. Object Modules . 831
38.6.1. Relocation Dictionary and External Symbol Dictionary 832

38.7. Program Linking: Combining Object Modules 833
38.7.1. Assigning COMMON Sections . 836
38.7.2. Relocating Address Constants . 836
38.7.3. External Dummy Sections (*) . 838
38.7.4. Loading Object Modules (*) . 841

38.8. Load Modules and Program Objects . 845
38.8.1. External Subroutines and Assisted Linkage: Overlay (*) 847
38.8.2. Program Objects (*) . 848
38.8.3. The “Class Attribute” Instruction CATTR 851
38.8.4. Programming for Program Objects . 854
38.8.5. Comparing Load Modules and Program Objects 854

38.9. Loading Saved Modules into Storage . 855
38.9.1. Loading Load Modules . 855
38.9.2. Loading Program Objects . 856

38.10. Changing Addressing Modes . 858
38.10.1. The BASSM Instruction . 859
38.10.2. The BSM Instruction . 860
38.10.3. Branch and Return With Addressing Mode Change 861
38.10.4. Load Logical Thirty-One Bits Instructions 863

38.11. Summary . 866

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 871
 39. Dummy Control Sections and Enhanced USING Statements 872

39.1. Dummy Control Sections . 872
39.2. Multiple Data Structures . 875
39.3. Shortcomings of Ordinary USING Statements 876

39.3.1. Ordinary USINGs . 877
39.4. Labeled USING Statements and Qualified Symbols 882

39.4.1. Qualified Symbols . 882
39.4.2. Dropping a Labeled USING Statement 883
39.4.3. Labeled USING Statement Summary . 883

39.5. Dependent USING Statements . 885
39.5.1. Definition of Dependent USING Statements 886
39.5.2. Examples of Dependent USING Statements 886
39.5.3. Mapping a CSECT as a DSECT . 889
39.5.4. Dropping Dependent USINGs . 890
39.5.5. Dependent USING Statement Summary 890

39.6. Labeled Dependent USING Statements . 891
39.6.1. Nesting Structures Addressed with Ordinary USINGs 892
39.6.2. Nesting Structures Addressed with Labeled USINGs 892
39.6.3. Nested Structures Addressed with Labeled Dependent USINGs 892

Contents xiii

39.6.4. Multiple Nesting of Identical Structures 893
39.6.5. Mapping an Array of Identical Data Structures 895
39.6.6. Two MVS Data Control Blocks (DCBs) in a Program 896

39.7. Example of a Large “Personnel-File” Record (*) 897
39.7.1. Personnel-File Record Example: Comparing Birth Dates 902
39.7.2. Personnel-File Record Example: Comparing Different Dates 902
39.7.3. Personnel-File Record Example: Copying Addresses 903

39.8. Summary . 904
39.8.1. USING Statement Summary . 904
39.8.2. DROP Statement Summary . 905

 40. Basic Data Structures . 907
40.1. One-Dimensional Arrays . 908
40.2. Two-Dimensional Arrays . 910
40.3. General Array Subscripts . 913

40.3.1. Multi-Dimensional Arrays (*) . 913
40.3.2. Non-Homogeneous Arrays (Tables) . 914

40.4. Address Tables . 917
40.5. Searching an Ordered Array . 919
40.6. Stacks . 923

40.6.1. An Example Using a Stack . 923
40.6.2. An Example Implementing a Stack . 924

40.7. Lists . 927
40.7.1. List Insertion . 927
40.7.3. List Deletion . 929
40.7.4. Free Storage Lists . 929

40.8. Queues . 934
40.9. Trees . 937
40.10. Hash Tables . 941
40.11. Summary . 944

Chapter XII: System Services, Reenterability, and Recursion 949
 41. Using System Services . 950

41.1. Invoking System Services . 950
41.2. Invoking System Services with Macro Instructions 951
41.3. Macro Formats: Standard, List, and Execute 952

41.3.1. List form with Empty Argument List . 953
41.3.2. Register Forms and Arguments . 954
41.3.3. MODE=24, MODE=31 . 954
41.3.4. Mixed Case Macro Arguments . 955
41.3.5. The SYSSTATE Macro . 955

41.4. Causing Abnormal Termination . 956
41.5. Storage Management . 957

41.5.1. The GETMAIN Macro . 958
41.5.2. The FREEMAIN Macro . 959
41.5.3. The STORAGE Macro . 960
41.5.4. Subpools (*) . 961
41.5.5. Optional Operands (*) . 961

41.6. Basic Input and Output . 962
41.6.1. A Simple Scenario . 962
41.6.2. Access Techniques and Access Methods 966
41.6.3. The Data Control Block (DCB) . 966
41.6.4. Important Record Formats . 968
41.6.5. Opening the DCB . 969
41.6.6. Closing the DCB . 970
41.6.7. The DCBD Macro and the IHADCB Dummy Section 970
41.6.8. The DCBE Macro and 31-bit Address Mode 971
41.6.9. I/O Summary . 971
41.6.10. A Sample Program . 971

41.7. Handling Program Interruptions . 972
41.7.1. Program Interruptions . 973
41.7.2. Establishing a Program Interruption Exit 973
41.7.3. Terminating a Program Interruption Exit 974

xiv Assembler Language Programming for IBM System z™ Servers Version 2.00

41.7.4. Handling a Program Interruption . 975
41.8. Abnormal Terminations of Any Kind . 976

41.8.1. The ESTAE Macro . 978
41.8.2. Interruption Processing . 979
41.8.3. Percolation and Retry . 979
41.8.4. Summary . 980

41.9. Summary . 981
 42. Reenterability and Recursion . 983

42.1. Reenterability . 983
42.1.1. What it Means in General . 983
42.1.2. What it Means in Practice . 984
42.1.3. Assembly-Time Considerations . 984
42.1.4. At Linking Time . 984
42.1.5. Techniques . 985

42.2. Recursion . 987
42.3. Summary . 992

Appendix A: Conversion and Reference Tables . 995
Hexadecimal Digits in Decimal and Binary . 995
Hexadecimal Addition and Multiplication Tables . 996
Powers of 2 . 997
Multiples of Powers of Sixteen . 1000
Powers of 10 in Hexadecimal . 1001
Hexadecimal and Decimal Integers . 1003
Conversion Tables for Hexadecimal Fractions . 1011
EBCDIC Character Representation in Assembler Language Programs 1012
ASCII Character Representation in Assembler Language Programs 1013
DC Statement Types . 1014

Appendix B: Simple I/O Macros . 1015
B.1. Macro Facilities . 1015

B.1.1. The CONVERTI Macro Instruction . 1016
B.1.2. The CONVERTO Macro Instruction . 1017
B.1.3. The DUMPOUT Macro Instruction . 1018
B.1.4. The PRINTLIN Macro Instruction . 1018
B.1.5. The PRINTOUT Macro Instruction . 1019
B.1.6. The READCARD Macro Instruction . 1020
B.1.7. PRINTOUT and DUMPOUT Header . 1020
B.1.8. Usage Notes . 1021

B.2. Sample Program . 1021
B.3. The Macro Instruction Definitions . 1022

B.3.1. Operating System Environment and Installation Considerations 1023
B.4.1. CONVERTI Macro Definition . 1024
B.4.2. CONVERTO Macro Definition . 1024
B.4.3. DUMPOUT Macro Definition . 1025
B.4.4. PRINTLIN Macro Definition . 1026
B.4.5. PRINTOUT Macro Definition . 1026
B.4.6. READCARD Macro Definition . 1028
B.4.7. $$GENIO Macro Definition . 1028

Glossary of Terms and Abbreviations . 1041

Bibliography . 1057
Basic References . 1057
System/360 Architecture History . 1058
Assembler Design and Implementation . 1058
Other General References . 1058

Acknowledgments . 1059

Notices . 1061

Contents xv

Trademarks . 1061

Suggested Solutions to Selected Exercises and Programming Problems 1063
Section 1 Solutions . 1064
Section 2 Solutions . 1065
Section 3 Solutions . 1071
Section 4 Solutions . 1072
Section 5 Solutions . 1074
Section 6 Solutions . 1076
Section 7 Solutions . 1077
Section 8 Solutions . 1079
Section 9 Solutions . 1082
Section 10 Solutions . 1083
Section 11 Solutions . 1085
Section 12 Solutions . 1086
Section 13 Solutions . 1088
Section 14 Solutions . 1093
Section 15 Solutions . 1096
Section 16 Solutions . 1098
Section 17 Solutions . 1112
Section 18 Solutions . 1124
Section 19 Solutions . 1137
Section 20 Solutions . 1142
Section 21 Solutions . 1145
Section 22 Solutions . 1148
Section 23 Solutions . 1156
Section 24 Solutions . 1158
Section 25 Solutions . 1170
Section 26 Solutions . 1175
Section 27 Solutions . 1180
Section 28 Solutions . 1187
Section 29 Solutions . 1189
Section 30 Solutions . 1197
Section 31 Solutions . 1204
Section 32 Solutions . 1209
Section 33 Solutions . 1212
Section 34 Solutions . 1223
Section 35 Solutions . 1230
Section 36 Solutions . 1238
Section 37 Solutions . 1241
Section 38 Solutions . 1249
Section 39 Solutions . 1261
Section 40 Solutions . 1264
Section 41 Solutions . 1275
Section 42 Solutions . 1278

Index . 1281

Figures
 1. Example of numbering and notation . 12
 2. One stage of a binary adder . 35
 3. “Circular” representation of two's complement representation 36
 4. Conceptual structure of a typical computer . 42

5. Conceptual structure of System z . 43
 6. A byte containing 8 binary digits . 43
 7. A portion of memory, with addresses shown above each byte 43
 8. A portion of memory . 44

xvi Assembler Language Programming for IBM System z™ Servers Version 2.00

 9. A single 64-bit general register . 45
10. All sixteen general registers . 46
11. Four Floating-Point Registers . 47
12. Sketch of a Program Status Word . 47
13. Basic instruction cycle . 50
14. Instruction formats and data interactions . 52
15. Opcode bit patterns for typical instruction types . 53
16. Instruction cycle with interruptions . 55
17. Typical instruction format for old computers . 61
18. Structure of an addressing halfword . 62
19. Sketch of Effective Address calculation . 62
20. RX-type instruction, showing index register specification digit 64
21. Sketch of Effective Address calculation with indexing . 64
22. 31-bit Virtual Address . 68
23. Simple view of Assembler processing . 72
24. Simple view of program linking . 73
25. Simple view of program loading and execution . 74
26. Assembler Language statement columns . 75
27. Comment statement examples . 76
28. Block comments . 76
29. Statement fields for machine, assembler, and macro-instruction statements 77
30. A machine instruction statement . 78
31. An assembler instruction statement . 78
32. The macro-instruction statement RETURN . 78
33. A complete Assembler Language program . 81
34. RX Instruction with explicit operands . 109
35. A simple program segment . 117
36. Simple program segment with assembled contents . 118
37. Same program segment, at different memory addresses 118
38. Same program segment, with assembled contents . 118
39. Program segment with pre-calculated explicit base and displacements 119
40. Program segment with explicit base and Assembler-calculated displacements 119
41. Program Segment with USING Instruction . 120
42. Sample program segment with erroneous statement . 122
43. Sketch of pass one of an assembly . 124
44. Sketch of pass two of an assembly . 125
45. USING Table with one entry . 126
46. Program segment with second USING statement . 127
47. USING Table with multiple entries . 127
48. Assembled contents when two USINGs are active . 128
49. USING Table after DROP statement . 129
50. USING Table after second DROP statement . 130
51. Implied and explicit length specifications . 140
52. Multiple constants . 142
53. F-type constant with decimal exponent . 146
54. Character, hexadecimal, and binary constants . 150
55. Length attribute reference to two constants, one a literal 155
56. Describing fields of a (U.S.) telephone number . 160
57. Describing fields of an Assembler Language statement 161
58. Define a group of words . 161
59. Describing fields of an Assembler Language statement using ORG instructions 167
60. Describing an Assembler symbol cross-reference listing line 171
61. 32-bit portion of a 64-bit general register . 178
62. Sign extension by LH instruction . 183
63. Loss of significant digits using STH/LH . 183
64. Loss of significant digits using STH/LH . 183
65. Action of IC and STC instructions . 185
66. Interchanging two bytes with IC and STC . 185
67. Inserting a small number into a register . 185
68. Examples of some RR-type instructions . 188
69. 64-bit general register . 189
70. Sign extension by LGH instruction . 191

Figures xvii

71. Examples of some RR-type instructions for 64-bit operands 192
72. Sign extension by LHR instruction . 193
73. Sign extension for instructions with mixed 32- and 64-bit signed operands 195
74. Sign extension by Load Byte instructions . 196
75. Zero extension by Load Logical Character instructions 197
76. Operation of Load Logical Halfword instructions . 197
77. Operation of Load Logical word instructions . 197
78. Operation of Load Logical Thirty One Bits instructions 198
79. Examples of conditional branch instructions . 205
80. CNOP alignments and operands . 209
81. Calculate a sum with an intermediate test . 217
82. Calculate the sum of the first N odd integers . 218
83. Example of arithmetic addition and subtraction . 218
84. Testing the result of arithmetic instructions . 218
85. Calculate a 64-bit sum with an intermediate test . 221
86. Adding two 64-bit numbers . 221
87. Examples of arithmetic comparisons . 222
88. Calculate the sum of N odd integers . 223
89. Adding two 64-bit numbers logically . 225
90. Double-length complementation . 225
91. Double-length complementation, a simpler way . 226
92. Double-length addition . 226
93. Double-length subtraction . 226
94. Example of logical addition and subtraction . 227
95. Double-length addition with carry . 229
96. Double-length subtraction with borrow . 229
97. Sign extension for instructions with mixed 32- and 64-bit signed operands 230
98. Calculate a 64-bit sum with an intermediate test . 230
99. Calculate a 64-bit sum with an intermediate test . 230
100. Sign extension for instructions with mixed 32- and 64-bit unsigned operands 231
101. Examples of logical comparisons . 232
102. Comparing logically ordered values . 233
103. Bit positions used by IPM and SPM instructions (System/360 PSW sketch) 234
104. Register contents before shifting . 243
105. Logical unit shift left . 244
106. Logical unit shift right . 244
107. Arithmetic unit shift right . 244
108. Arithmetic unit shift left . 244
109. Rounding an integer to the next higher multiple of 8 246
110. A 6-byte data entry . 246
111. Storage definitions for a 6-byte data entry . 246
112. Using shift instructions for a 6-byte data item . 246
113. Shifting to make the low-order bit one (1) . 248
114. Shifting to make the low-order bit one (2) . 249
115. Four integers packed in a 32-bit word . 249
116. Extracting one packed integer from a 32-bit word . 249
117. Unpacking four unsigned integers using right shifts . 250
118. Unpacking four unsigned integers using left shifts . 250
119. Unpacking four signed integers . 254
120. Logical rotate unit shift . 257
121. Packing four unsigned bit-length constants in a 32-bit word 260
122. Packing four signed bit-length constants in a 32-bit word 260
123. General layout of multiplication operands . 265
124. Double-length product of multiply operations . 266
125. Calculate the sum of the first 10 cubed integers . 267
126. Illustration of binary multiplication . 273
127. General result of divide operation . 274
128. Operands of double-length division . 275
129. Example of division by 3 . 276
130. Example of rounded integer division . 276
131. Example of rounded integer division with signed dividend 277
132. Ensuring a valid arithmetic division . 277

xviii Assembler Language Programming for IBM System z™ Servers Version 2.00

133. Causing a fixed-point divide interruption . 277
134. Operands of single-length division before division . 278
135. Operands of single-length division after division . 278
136. Example of logical division . 280
137. Illustration of binary division . 282
138. Logical operations AND, OR, and XOR . 289
139. Examples of logical operations . 290
140. Inserting a new integer value using AND and OR . 291
141. Data masking using Exclusive OR . 292
142. Rounding to the next multiple of 8 . 293
143. Rounding to the next multiple of 8 . 293
144. Complementing a double-length integer . 293
145. Effective Address generation for long-displacement instructions 303
146. Addressability range with 12-bit displacements . 304
147. Addressability range with 20-bit displacements . 304
148. Effective Address formation for relative-immediate instructions 305
149. Areas of memory addressed by three AMODEs . 308
150. System z PSW showing addressing-mode bits . 308
151. Loading integer constants with the LAY instruction 310
152. Counting number of shifts to make rightmost bit a 1-bit 311
153. Using LA to set a branch address . 311
154. 64-bit Virtual Address . 314
155. 64-bit Virtual Address with Region Indexes . 314
156. Instruction classes, including RI, RIL . 316
157. Four halfwords in a 64-bit general register . 317
158. Operation of six Insert Immediate instructions . 318
159. Operation of LHI instruction . 319
160. Operation of LGHI instruction . 319
161. Examples of load-immediate instructions . 320
162. Operation of six logical load instructions . 320
163. Extracting an unsigned integer value using AND Immediate 323
164. Inserting a new integer value using AND Immediate 323
165. Data masking using immediate operands . 324
166. Data masking using a symbolically defined immediate operand 324
167. A simple loop to scan and replace characters . 332
168. A simple loop, using indexing . 333
169. Indexing into a branch table . 333
170. A backward loop to scan and replace characters . 334
171. Calculate the sum of the first N odd integers . 335
172. Store the cubes of the first 10 integers . 336
173. Sketch of a Do-Until loop . 339
174. Sketch of a Do-While loop . 339
175. Store the cubes of the first 10 integers in a different way 340
176. Operation of BXH and BXLE instructions . 342
177. Operation of BXH and BXLE instructions . 342
178. Replacing special characters with blanks, using BXLE 343
179. Creating a table of cubed integers using BXLE . 344
180. Creating a table of cubed integers using BXLE . 344
181. Creating a table of cubed integers with addresses as controls 344
182. Creating a table of cubed integers using BXH . 346
183. Creating a table of cubed integers, using BXH in a special way 346
184. Examples of the MVI instruction . 353
185. Examples of the NI instruction . 354
186. Examples of the OI instruction . 354
187. Example of the XI instruction . 354
188. A simpler loop to scan and replace characters . 355
189. Setting an overflow-indication flag bit . 357
190. Adding alternate list elements twice . 357
191. Defining bit names safely . 360
192. Using safely-defined bit names . 360
193. Converting a binary integer to characters . 361
194. Adding alternate list elements twice, with program modification 362

Figures xix

195. Adding alternate list elements twice, without program modification 363
196. Assembler Language syntax of basic SS-type instructions 366
197. Examples of SS-type instruction operands . 367
198. SS-type instruction using a Length Attribute reference 369
199. Examples of Length Specification Bytes . 372
200. Emulated operation of MVC instruction . 372
201. Example of Move Inverse instruction . 373
202. Emulated operation of MVCIN instruction . 374
203. Example of MVCOS instruction . 375
204. Inserting bits in a word using logical SS-type instructions 377
205. Emulating the TR instruction . 380
206. TR instruction to change special characters to blanks 380
207. Translating hex digits to EBCDIC characters (1) . 381
208. Translating hex digits to EBCDIC characters (2) . 381
209. Searching for punctuation characters using CLI . 385
210. Searching for punctuation characters using TRT . 385
211. Using TRT to validate numeric characters . 385
212. Using TRT to scan for embedded quotations . 386
213. Using TRT to scan a string of names and build an occurrence list 387
214. Using TRTR to validate numeric characters . 387
215. Scanning a string backward using CLI . 388
216. Scanning a string backward using TRTR . 388
217. Executing a list of instructions . 390
218. Executing a list of instructions . 390
219. Constructing an executed instruction . 391
220. Moving a string of bytes of unknown length . 392
221. Register use by CLCL and MVCL . 404
222. Conceptual execution of the MVCL instruction . 406
223. Using MVCL to set a field to blanks . 406
224. Moving a message with padding and length checking 406
225. Conceptual execution of the CLCL instruction . 408
226. Using CLCL to test for blanks . 408
227. Comparing two records without padding . 409
228. Register use by MVCLE and CLCLE . 411
229. Conceptual execution of the MVCLE instruction . 412
230. Using MVCLE to set a field to blanks . 413
231. Using MVCLE to initialize an area to zero . 413
232. Conceptual execution of the CLCLE instruction . 413
233. Using CLCLE to test for all blanks . 414
234. Registers bounding the SRST search string . 416
235. Conceptual execution of the SRST instruction . 416
236. Conceptual execution of the MVST instruction . 418
237. Moving a null-terminated string . 418
238. Using MVST to isolate comma-separated tokens . 418
239. Conceptual execution of the CLST instruction . 420
240. Translating characters to upper case with TRE . 422
241. Examples using the CUSE instruction . 424
242. Fragment of an Institute-machine punched paper tape 428
243. Mixed single- and double-byte EBCDIC characters . 434
244. Examples of DBCS data . 435
245. Extended continuation for DBCS data . 437
246. CU-type constant generating Unicode characters . 440
247. Using MVCLU to initialize an area to Unicode spaces 442
248. Using CLCLU to test for Unicode spaces . 443
249. Assembler instruction statement for RRF-type instructions with an optional operand 444
250. Using TRTT to translate from DBCS to Unicode . 446
251. Translating a long string with TR and MVC, and with TROO 446
252. Bits of a UTF-16 Unicode character . 447
253. Bits of a UTF-16 Unicode surrogate pair . 447
254. Bits of a UTF-32 Unicode character from a UTF-16 surrogate pair 448
255. Example of using TRTE . 451
256. Big-Endian storage representation of X'87654321' . 453

xx Assembler Language Programming for IBM System z™ Servers Version 2.00

257. Little-Endian storage representation of X'87654321' 453
258. Byte reversal by LRV, LRVR, and STRV instructions 454
259. Byte reversal by LRVH and STRVH instructions . 454
260. Four integers packed in a Big-Endian 32-bit word . 455
261. The same four integers packed in a Little-Endian 32-bit word 455
262. Zone and numeric digits of a byte . 460
263. Example of MVN and MVZ instructions . 461
264. Zoned decimal sign conventions . 462
265. A zoned decimal number . 462
266. Zoned decimal constants with implied lengths . 464
267. Zoned decimal constants with explicit lengths . 464
268. Representation of a packed decimal number . 466
269. Packed decimal constants with implied lengths . 467
270. Packed decimal constants with explicit lengths . 467
271. Format of typical two-length SS-type instructions . 469
272. Examples of assembled PACK and UNPK instructions 470
273. Zoned and packed forms of +12345 . 471
274. PACK instruction operation . 471
275. Converting from zoned to packed decimal using PACK 471
276. Examples of the PACK instruction . 472
277. Digit swap using PACK . 472
278. Operation of the UNPK instruction . 475
279. Example of an UNPK instruction . 475
280. Examples of UNPK instructions . 475
281. Digit swap using UNPK . 476
282. Packing ASCII characters . 479
283. Packing Unicode characters . 479
284. Unpacking to ASCII and Unicode characters . 480
285. Unpacking hex digits (incorrectly) . 481
286. Unpacking hex digits (correctly) . 482
287. Converting hex data to printable characters . 482
288. Operands for packed decimal division . 490
289. Assembler Language syntax of the TP instruction . 498
290. Examples of the ZAP instruction . 500
291. Using ZAP to initialize a table of packed decimal operands 500
292. Initializing a table of decimal numbers using MVC . 500
293. Examples of the AP and SP instructions . 502
294. Adding a table of 50 packed decimal numbers . 502
295. Adding positive and negative items separately . 504
296. Finding the largest item in a table . 505
297. Example of decimal multiplication . 506
298. Using MP to square a table of decimal numbers . 507
299. Using ZAP to set correct decimal multiplicand length 507
300. Using ZAP to set correct decimal multiplicand length 507
301. Generating 0 − using MP . 508
302. Decimal division using DP . 509
303. Decimal division using Length Attribute References for operands 509
304. Computing the average of a table of decimal numbers 510
305. Assembler Language format of SRP machine instruction statement 511
306. Shifting a decimal operand left 3 places using SRP . 512
307. Shifting a decimal operand right 2 places using SRP 512
308. Shifting a decimal operand right 1 place with rounding using SRP 513
309. Shifting a decimal operand with an EXecuted SRP . 513
310. Operation of the MVO instruction . 516
311. Two Examples of MVO results . 516
312. Shifting a decimal operand right an odd number of digits 518
313. Shifting a decimal operand right an odd number of digits 518
314. Shifting a decimal operand left an odd number of digits 519
315. Shifting a decimal operand left by one digit . 519
316. Shifting a decimal operand left by three or more digits 519
317. Shifting a decimal operand left an even number of digits 520
318. Shifting a decimal operand left an even number of digits 520

Figures xxi

319. Shifting a decimal operand left an even number of digits 520
320. Shifting a decimal operand right an even number of digits 520
321. Shifting a decimal operand right an even number of digits 521
322. Ensuring decimal point alignment for packed decimal addition 523
323. A business calculation in packed decimal, part 1 . 527
324. A business calculation in packed decimal, part 2 . 527
325. A business calculation in packed decimal, part 3 . 528
326. A business calculation in packed decimal, part 4 . 528
327. Integer and Scale Attributes . 529
328. Using Scale Attributes in a SRP instruction . 529
329. Converting a 64-bit binary integer to packed decimal 533
330. Using CVD to format page numbers . 533
331. Converting decimal characters to binary . 535
332. Sketch of an editing operation . 536
333. Representation of an editing pattern . 537
334. Convert a packed decimal integer to characters using UNPK 538
335. Convert a packed decimal integer to characters using ED 538
336. Converting a 32-bit binary integer to characters . 540
337. Editing a binary integer with separating commas . 541
338. Editing a signed number . 542
339. Using field protection with ED . 542
340. Edited result with a floating currency symbol . 543
341. Edited result with a properly placed floating currency symbol 544
342. Integer value with optional sign and separating commas 544
343. Editing two packed decimal numbers into a single field 545
344. Editing multiple values . 545
345. Logical-operation description of the editing process . 547
346. ED and EDMK operation . 548
347. A data item containing an integer value . 552
348. A data item containing integer and fraction parts . 552
349. Values with radix point outside the digits . 553
350. Calculating a tax amount in scaled fixed decimal arithmetic 553
351. Calculating a tax amount in scaled fixed binary arithmetic 554
352. Two binary constants scaled by 2**28 . 555
353. Defining a scaled binary constant 10**12 . 555
354. Multiplying two scaled binary numbers . 556
355. Examples of data with widely ranging values . 559
356. A typical floating-point representation . 560
357. An example of a floating-point representation using 4 decimal digits 561
358. Another example of a floating-point representation using 4 decimal digits 561
359. A floating-point representation showing left normalized and unnormalized values . . 561
360. A floating-point representation showing right normalized and unnormalized values . 562
361. A floating-point representation showing values without normalization 562
362. Floating-point numbers with signed exponent . 563
363. Examples of approximate floating-point representations 563
364. Three floating-point data lengths . 564
365. Four floating-point registers . 564
366. All sixteen floating-point registers, showing register pairings 566
367. Integer-based representation of 73 in FPI(10,4) . 577
368. Illustrating floating-point division corrective right shift 578
369. Exponent range of representable and computable values 583
370. Hexadecimal floating-point number representations . 587
371. Quadword aligned constants and data . 594
372. Hexadecimal floating-point constants with rounding suffixes 595
373. Examples of hexadecimal floating-point instructions 598
374. Example of LTXR instruction . 598
375. Examples of extended-precision hexadecimal RR instructions 598
376. Short hexadecimal floating-point multiplication . 599
377. Floating-point registers used for hexadecimal floating-point multiplication 600
378. Calculating a table of short hexadecimal floating-point products 600
379. Calculating a table of long hexadecimal floating-point products 600
380. Floating-point registers used for hexadecimal floating-point multiplication 601

xxii Assembler Language Programming for IBM System z™ Servers Version 2.00

381. Example of hexadecimal floating-point divide instructions 604
382. Example of hexadecimal floating-point divide instructions 604
383. Example of a hexadecimal floating-point halve instruction 605
384. Hexadecimal halve instruction causing underflow . 605
385. Example of hexadecimal floating-point addition . 606
386. Evaluating a hexadecimal floating-point expression . 607
387. Evaluating a hexadecimal floating-point inner product 608
388. Evaluating a polynomial with hexadecimal floating-point arithmetic 608
389. Evaluating a quadratic polynomial . 608
390. Converting a binary integer to hexadecimal floating-point 609
391. Converting a hexadecimal floating-point number to a binary integer 610
392. Rounding a long hexadecimal floating-point number to short 617
393. Rounded inner product of long HFP numbers . 617
394. Manually rounding long to short (1) . 618
395. Manually rounding long to short (2) . 618
396. Manually rounding long to short (3) . 618
397. Converting a 32-bit integer to short hexadecimal floating-point 620
398. Converting a 64-bit integer to three hexadecimal floating-point values 620
399. Early conversion of integer to hexadecimal floating-point 621
400. Format of a machine instruction statement for converting HFP to binary 621
401. Calculating a HFP remainder . 625
402. Evaluating a hexadecimal floating-point remainder . 626
403. Examples of HFP square root instructions . 627
404. Three binary floating-point data representations . 639
405. Range of the binary floating-point representation . 641
406. A view of the binary floating-point representation . 642
407. Examples of short binary floating-point constants . 642
408. Examples of long and extended binary floating-point constants 643
409. Rounding indicators for binary floating-point constants 643
410. Examples of parameterized binary floating-point NaNs 644
411. Binary floating-point constants with decimal exponents and modifiers 645
412. Values representable with gradual underflow . 647
413. Floating-Point Control (FPC) register . 649
414. Examples of binary floating-point data movement instructions 656
415. Example of binary floating-point multiply instructions 657
416. Examples of binary floating-point multiplication overflow and underflow 658
417. Examples of binary floating-point multiply instructions 658
418. Example of binary floating-point denormalized product 658
419. Example of binary floating-point extended-precision operands 658
420. Examples of binary floating-point division . 659
421. Examples of binary floating-point division overflow and underflow 660
422. Examples of binary floating-point addition and subtraction 661
423. Examples of binary floating-point comparison . 663
424. Examples of binary floating-point compare and signal instructions 663
425. Examples of binary floating-point rounding instructions 664
426. Examples of BFP load lengthened instructions . 665
427. Examples of BFP load lengthened instructions with NaNs 665
428. Examples of binary integer to binary floating-point instructions 666
429. Examples of converting binary floating-point fractions to integers with rounding . . . 667
430. Examples of Convert to Fixed instructions . 667
431. Examples of load FP integer instructions . 669
432. Examples of divide to integer instructions . 670
433. Example of iterative divide to integer . 670
434. Iterative execution of a divide to integer instruction . 671
435. Examples of binary floating-point square root instructions 672
436. Example of binary floating-point multiply and add instructions 673
437. Hexadecimal and binary floating-point representations 681
438. Conceptual decimal floating-point representation . 682
439. Three decimal floating-point representations of the same value 683
440. Decimal floating-point data representation . 686
441. System z decimal floating-point representations . 687
442. DFP constants with exponent modifiers and decimal exponents 692

Figures xxiii

443. Examples of decimal floating-point Test Data Class instructions 694
444. Illustration of decimal floating-point rounding candidates 695
445. Illustration of decimal floating-point rounding candidates near zero 695
446. Floating-Point Control (FPC) register . 698
447. Examples of converting decimal floating-point to fixed binary 708
448. Examples of converting decimal floating-point to binary integer 709
449. Converting signed packed decimal to decimal floating-point 710
450. Converting decimal floating-point to signed packed decimal 710
451. Converting decimal floating-point to signed packed decimal 710
452. Converting unsigned packed decimal to decimal floating-point 711
453. Converting decimal floating-point to unsigned packed decimal 711
454. Effect of the mask operand on Convert from Zoned results 713
455. Examples of converting decimal floating-point to zoned 714
456. DFP arithmetic with short operands . 717
457. Floating-Point Control Register showing Decimal Rounding Mode bits 718
458. Example of extracting DFP biased exponent . 719
459. Example of inserting a biased DFP exponent . 720
460. Examples of DFP Extract Significance instructions . 720
461. Converting an extended decimal floating-point value to packed decimal 722
462. Calculate price plus tax . 724
463. Correctly rounding a cost to two decimal digits . 724
464. Example of a reround instruction . 725
465. Example of rerounding arbitrary amounts . 725
466. Examples of assembled DFP constants using rounding for reround 726
467. Example of DFP binary-significand format . 730
468. Sketch of short binary-significand format . 730
469. BCD-to-DPD encodings . 734
470. DPD-to-BCD translation . 735
471. Degraded precision in adding hexadecimal floating-point pseudo-zeros 748
472. Trivial example of a subroutine (1) . 757
473. Trivial example of a subroutine (2) . 757
474. Subroutine linkage using a BAS instruction . 758
475. Subroutine linkage using a BASR instruction . 759
476. Subroutine linkage using an address constant . 759
477. Simple shift subroutine (1) . 760
478. Simple shift subroutine (2) . 760
479. Simple shift subroutine with named arguments (3) . 760
480. Simple shift subroutine (4) using argument addresses 761
481. Simple shift subroutine (5) with argument addresses in memory 761
482. Subroutine call with inline arguments . 761
483. Subroutine returning past inline argument . 762
484. Subroutine call with inline argument addresses . 762
485. Subroutine with argument address list . 763
486. Subroutine saves and restores registers . 764
487. General argument-passing scheme . 766
488. Subroutine call using an argument address list . 766
489. Subroutine called with an argument address list . 766
490. Constructing an argument address list . 767
491. Two variable-length argument lists . 767
492. Calling a subroutine with a variable-length argument list 767
493. Subroutine called with a variable-length argument list 767
494. Sketch of a variable-length argument list . 768
495. Sample 64-bit argument list addresses . 768
496. Standard save area layout . 771
497. Sample subroutine calling sequence . 771
498. Save area chaining instructions . 772
499. Chained save areas . 772
500. Reloading registers and returning to a caller . 772
501. Format-4 save area layout . 774
502. Example of using a Format-4 save area . 774
503. Format-5 save area layout . 775
504. Saving registers using a Format-5 save area . 776

xxiv Assembler Language Programming for IBM System z™ Servers Version 2.00

505. Return from a routine using a Format-5 save area . 776
506. Example of an entry point identifier . 777
507. Example of two calling point identifiers . 778
508. Setting a return flag . 778
509. Setting a return code in register 15 . 779
510. Testing a return code returned in register 15 . 780
511. Using a return code as a branch index . 780
512. Using a return code as a branch index with relative branch instructions 780
513. Checking for valid return code values . 780
514. Setting a reason code in register 0 . 781
515. Using RETURN macros to set return flags and return codes 781
516. Returning to an error branch without a return code . 781
517. Call with error branch instructions . 782
518. Convention for passing main-program parameters . 782
519. Example of calling with assisted linkage . 784
520. Example of a routine to implement assisted linkage . 784
521. Assisted linkage routine with counters . 784
522. Example of a lowest level subroutine . 786
523. Establish three base registers (1) . 791
524. Establish three base registers (2) . 791
525. Establish three base registers (3) . 791
526. Establish three base registers (4) . 792
527. Establish three base registers (5) . 792
528. Establish three base registers with risks (6) . 792
529. Establish three base registers (7) . 793
530. Establish three base registers (8) . 793
531. Establish three base registers (9) . 793
532. Calling a subroutine not needing local addressability 798
533. Calling a subroutine not locally addressable . 799
534. Subroutine with local addressability . 799
535. Replacing based branch instructions with relative-immediates 800
536. Replacing a based EXecute instruction with EXRL . 800
537. Replacing references to constants with immediate operands 800
538. Replacing short unsigned displacements with long signed displacements 800
539. A program fragment needing reorganization . 801
540. A program fragment after reorganization . 801
541. Reorganizing a program to minimize base registers . 801
542. Incorrect implied reference to a different control section 804
543. Correct implied reference to a different control section 804
544. USING Table with two entries . 805
545. Main program and subroutine in one assembly . 805
546. Main program, subroutine, and common section in one assembly 806
547. Resuming control sections . 806
548. Main program and subroutine in one assembly, multiple CSects 807
549. Statements with Location Counter discontinuities . 808
550. Technique for rounding the length of a CSECT . 809
551. Rearrangement of source groups by LOCTR . 811
552. Simple example of LOCTR (1) . 811
553. Simple example of LOCTR (2) . 812
554. Simple example of LOCTR (3) . 812
555. A program fragment using LOCTR for reorganization 812
556. Organizing a program to minimize addressability problems 813
557. Organizing a program to minimize addressability problems 813
558. Simple example of LOCTR (4) . 814
559. Example of unexpected LOCTR behavior (1) . 814
560. Example of unexpected LOCTR behavior (2) . 815
561. Calling ShftRt as an external routine . 819
562. ShftRt subroutine as a separate assembly . 819
563. External references using relative branch instructions 820
564. Using WXTRN to test whether a routine was linked 820
565. Calling ShftRt as an external routine . 821
566. ShftRt subroutine in a different CSect . 822

Figures xxv

567. Main program with ENTRY for data . 822
568. Subroutine using EXTRN to reference data . 822
569. Subroutine using EXTRN and adcons to reference data 823
570. Subroutine with entries for two similar functions . 824
571. Subroutine with two similar functions and some common code 824
572. Sample assembly with external symbols . 825
573. External symbol dictionary from sample assembly . 825
574. Program assembled with different SECTALGN options 827
575. Example of ESD listings with different SECTALGN options 827
576. Assigning RMODE and AMODE to a section name 828
577. ESD showing RMODE and AMODE of section names 829
578. Example of two source modules to be linked . 834
579. Sketch of object module from source module 1 . 834
580. Sketch of object module from source module 2 . 835
581. Composite ESD after reading first object module . 835
582. Composite ESD after loading second object module 836
583. Composite ESD after assigning memory addresses . 836
584. Memory layout of loaded program . 837
585. Sample DXD declarations . 838
586. External dummy section declaration . 838
587. Referencing external dummy items with Q-cons . 838
588. External dummy items in ESD listing . 839
589. Separate DXD declaration . 839
590. Example of a completed External Dummy Section . 839
591. Retrieving an External Dummy Section item . 840
592. PL/I technique for loading Pseudo Registers . 840
593. ESDID Translation Table entry for an incoming symbol 842
594. A typical load-time CESD entry . 842
595. Composite ESD after assigning load module addresses 845
596. Sketch of a load module . 846
597. A load module after loading . 847
598. Sketch of program object structure . 849
599. Sample program assembled with the GOFF option . 849
600. ESD from program assembled with the GOFF option 850
601. Assigning AMODE to an entry symbol . 851
602. ESD showing AMODE assigned to entry and external symbols 851
603. Sample program defining two Sections and three Classes 851
604. Assignment of instructions and data into elements . 851
605. Assembly listing for sample program . 852
606. External symbol dictionary for sample program . 852
607. Example of declaring parts in a GOFF Class . 853
608. ESD for parts in a GOFF Class . 853
609. Sketch of virtual memory . 856
610. Sample program defining two Sections and three Classes 856
611. Sketch of classes in virtual memory . 857
612. System z PSW showing addressing-mode bits . 858
613. Important addressing mode bits for BASSM . 859
614. BASSM setting of first-operand register for 24-, 31-, and 64-bit addressing modes . . 859
615. Sketch of residence and addressing modes . 863
616. Example showing why LLGT/LLGTR are necessary 864
617. Example showing why LLGTR is important . 865
618. Example of a dummy control section . 873
619. Example using a dummy control section . 873
620. USING Table with two entries, one for a dummy section 874
621. Object code from references to a dummy control section 874
622. Example using a dummy control section . 874
623. A poor method for describing two instances of a record 875
624. A better record description with a DSECT . 876
625. Ordinary USING statement syntax . 876
626. Copying a field from Old record to New . 877
627. Incorrect addressing with ordinary USING . 878
628. Correct but awkward addressing with ordinary USING 878

xxvi Assembler Language Programming for IBM System z™ Servers Version 2.00

629. Manual coding of base and displacement for a large DSECT 879
630. Labeled USING statement syntax . 882
631. Qualified symbol syntax . 882
632. Examples of qualifier definitions . 882
633. Copying a field with Labeled USINGs . 883
634. DROP statement for Labeled USING . 883
635. Concurrently active Ordinary and Labeled USINGs 884
636. Dummy control section for record address . 885
637. Improved definition of a record description . 885
638. Mapping a substructure with a second DSECT . 886
639. Dependent USING statement syntax . 886
640. Anchoring an internal DSECT with a Dependent USING 887
641. Outer DSECT with two nested DSECTs . 887
642. Assembler listing of multiple Dependent USINGs and DSECTs 888
643. Three independent data structures with one base register 888
644. Defining DSECTs for three independent data structures 889
645. Defining a mapping of three independent but contiguous data structures 889
646. Example of a message-skeleton CSECT . 889
647. Example of mapping a CSECT as though it is a DSECT 890
648. Labeled Dependent USING statement syntax . 891
649. Nesting two identical structures within a third . 891
650. Addressing two nested DSECTs with Labeled Dependent USINGs 893
651. Data in nested DSECTs addressed with Labeled Dependent USINGs 893
652. Multiply-Nested Data Structures . 893
653. Doubly Nested DSECT definitions . 894
654. Addressing doubly nested DSECT definitions . 894
655. Using the Labeled Dependent USINGs to move data 895
656. Addressing two DCBs with ordinary USINGs . 896
657. Addressing instructions and DCBs with one register 897
658. Define a personnel-file record . 898
659. Employee-record Person DSECT . 898
660. Employee-record Date DSECT . 898
661. Employee-record Address DSECT . 899
662. Employee-record Phone DSECT . 899
663. DSECT nesting in an employee record . 900
664. Anchoring various DSECTs within Employee record 901
665. Manipulating fields within an Employee record . 901
666. Addressing DSECTs within Employee record with ordinary USINGs 901
667. Comparing dates of birth in Employee record . 902
668. Comparing date fields in different parts of an Employee record 902
669. Copying addresses with an Employee Record . 903
670. Example of a one-dimensional array of halfwords . 908
671. Sum of array elements with known subscript bounds 908
672. Sum of array elements with unknown subscript bounds 909
673. Typical arrangement of elements of a matrix . 910
674. Storing an array in column order . 910
675. Storing an array in row order . 910
676. Retrieving a specified element of an array . 911
677. Retrieving a specified element of an array efficiently 912
678. Searching for a matching table entry . 914
679. Searching for a table entry mapped by a DSECT . 915
680. USING Table with two entries, one for a DSECT . 915
681. Creating a table of addresses . 917
682. Creating a better table of addresses . 917
683. Creating a table of addresses at assembly time . 918
684. Example of a binary search . 921
685. A stack growing toward higher addresses . 924
686. A stack implemented as an array . 924
687. Pushing a data item onto a stack . 924
688. Adding top two elements of a stack . 925
689. A stack growing toward lower addresses . 925
690. Add top two elements of a stack . 925

Figures xxvii

691. Sketch of a linked list . 927
692. Inserting an element into a linked list . 928
693. Example of inserting an element into a linked list . 928
694. DSECT describing a list element . 928
695. Mapping multiple list elements with Labeled USINGs 928
696. Deleting an element from a linked list . 929
697. Example of deleting an element from a linked list . 929
698. Example of deleting an element from a linked list . 929
699. Defining a free storage list as an array . 930
700. Initializing a free storage list as an array . 930
701. Example of a list anchor . 930
702. DSECT mapping a list anchor . 930
703. Defining an anchor for a working list . 931
704. Moving a list element from the FSL to the working list 931
705. A two-dimensional array to implement a linked list . 932
706. Initializing a two-dimensional array implementing a linked list 932
707. Structure of a queue element . 934
708. A queue with several elements . 934
709. DSECT structure of a typical queue element . 934
710. An element to be inserted into a queue . 935
711. A queue after insertion of a new element . 935
712. Instructions to insert a new queue element . 935
713. Insert a new list element with ordinary USINGs . 936
714. Ordinary-USING Code to Insert a New List Element 936
715. Labeled USING example: inserting a new queue element 936
716. Node of a binary tree . 937
717. DSECT structure of a typical tree element . 937
718. Three nodes of a binary tree . 938
719. A growing binary tree with seven nodes . 938
720. Entering a new node in a binary tree . 939
721. Retrieving data from a binary tree . 940
722. Example of a binary tree of 7 elements . 940
723. Example of searching a hash table . 942
724. Example of searching a hash table . 943
725. Sample macro invocation, Standard form . 951
726. Generated statements from an OPEN macro . 952
727. Sample macro invocation using List form . 952
728. Generated statements from a List form OPEN macro 953
729. Sample macro invocation using Execute form . 953
730. Generated statements from an Execute form OPEN macro 953
731. Sample macro invocation using empty List form . 953
732. Generated instructions from empty List form . 953
733. Sample macro invocation using Execute form . 953
734. Generated statements from an Execute form OPEN macro 953
735. Another macro invocation using Execute form and same List form 954
736. An R-Type macro invocation generating an argument in a register 954
737. Generated statements from R-Type macro . 954
738. A macro invocation with arguments in registers . 954
739. Generated statements from a Standard-form macro with arguments in registers 954
740. A Standard macro invocation specifying MODE=31 955
741. Generated statements from a Standard-for macro with MODE=31 955
742. Example of a mixed-case positional macro argument 955
743. Example of mixed-case keyword macro arguments . 955
744. Example of mixed-case keyword macro arguments . 955
745. Sample ABEND macro . 956
746. Generated statements from an ABEND macro . 957
747. Sample R=type GETMAIN request . 958
748. Expansion of a sample R-type GETMAIN request . 959
749. Expansion of a sample VRU-type GETMAIN request 959
750. Example of an R-type FREEMAIN macro . 960
751. Sample STORAGE OBTAIN request . 960
752. Example of a STORAGE OBTAIN macro expansion 961

xxviii Assembler Language Programming for IBM System z™ Servers Version 2.00

753. Sample STORAGE RELEASE request . 961
754. Example of a STORAGE RELEASE macro expansion 961
755. A Data Set with records you want to read . 962
756. You submitted a job with a program to read the records 963
757. Your program, loaded into memory before execution 963
758. Your program after executing the OPEN macro . 964
759. Your program after executing the GET macro . 965
760. Your program after executing the CLOSE macro . 965
761. Example of typical DCB parameters . 968
762. Unblocked and blocked F-type record and block formats 968
763. Unblocked and blocked V-type record and block formats 969
764. U-type block formats . 969
765. Completion of a DCB during OPEN processing . 969
766. DCBD operands . 970
767. DCBD operands . 970
768. Using IHADCB to map two different DCBs simultaneously 970
769. A complete sample program . 972
770. Instruction cycle with interruptions . 973
771. Establishing a program interruption exit . 973
772. Expansion of an ESPIE macro establishing a program interruption exit 974
773. Terminating a program interruption exit . 974
774. Expansion of an ESPIE macro terminating a program interruption exit 974
775. ESA/390-mode old PSW in EPIE . 975
776. Sketch of interruption handling control flow . 977
777. A simple ESTAE macro. 979
778. Skeleton form of a reenterable program . 985
779. I/O macros in a reenterable program . 986
780. Assembly listing for a simple reenterable program . 986
781. Example of a reenterable, recursive routine . 990
782. Assembly listing of the reenterable recursive routine 991

Tables
 1. Binary, decimal, and hexadecimal . 18
 2. Multiples of powers of sixteen (part 1 of 2) . 20
 3. Multiples of powers of sixteen (part 2 of 2) . 21
 4. Examples of two's complement representation . 29
 5. Examples of sign extension . 31
 6. RR-type instruction format . 52
 7. RX-type and RS-type instruction format . 52
 8. SI-type instruction format . 52
 9. SS-type instruction format . 53
10. Instruction Length Code and instruction types . 54
11. General instruction classifications . 55
12. Punched-card image of a RETURN statement . 78
13. Assembler Language EBCDIC character representation 87
14. Differences between Assembler Language and high-level language symbols 94
15. Expressions with absolute and relocatable terms . 99
16. Typical RR-type instructions . 106
17. RR-type instruction . 107
18. Typical RX-type instructions . 108
19. RX-type instruction . 108
20. Operands of RX-type instructions . 109
21. Typical RS- and SI-type instructions . 111
22. Typical RS-type instruction . 111
23. Operands of RS-type instructions . 112
24. Typical SI-type instruction . 112
25. Operands of SI-type instructions . 112

Figures xxix

26. Typical SS-type instructions . 113
27. Typical type SS-1 instruction with one length field . 113
28. Operands of type SS-1 single-length instructions . 113
29. Typical type SS-2 instruction with two length fields . 114
30. Operands of type SS-2 two-length instructions . 114
31. Examples of truncated and padded constants . 152
32. Truncation/padding rules for some DC operands . 153
33. Truncation and padding rules for some DC operands with extended types 158
34. Load/Store instructions for 32-bit general registers . 179
35. Format of an RX-type instruction . 179
36. Multiple load/store instructions for 32-bit general registers 180
37. RS-type instruction format . 180
38. Halfword load/store instructions for 32-bit general registers 182
39. Character insert/store instructions for 32-bit general registers 184
40. Insert/Store characters under mask instructions for 32-bit general registers 185
41. RS-type instruction format for ICM and STCM . 186
42. CC settings after ICM instruction . 187
43. Register/register instructions for 32-bit general registers 187
44. Action of five RR-type general register instructions . 188
45. Condition Code settings . 188
46. Register/storage instructions for 64-bit general registers 189
47. RXY-type instruction format . 190
48. RSY-type instruction format. 190
49. RRE-type instruction format . 192
50. Register/register instructions for 64-bit general registers 192
51. Action of five RR-type 64-bit general register instructions 192
52. Load and Test instructions . 194
53. Register/register instructions for 64-bit general registers 194
54. Action of 32-bit-to-64-bit general register instructions 194
55. Other general register load instructions . 196
56. Summary of instructions discussed in this section . 200
57. BCR instruction . 205
58. BC instruction . 205
59. Mask bits and corresponding CC values . 205
60. CNOP operands . 208
61. Extended branch mnemonics and their branch mask values 210
62. Frequently used add and subtract instructions . 216
63. CC settings for arithmetic add and subtract instructions 217
64. Arithmetic compare instructions . 222
65. CC settings after arithmetic comparisons . 222
66. Logical arithmetic instructions . 224
67. CC settings for logical add and subtract instructions 224
68. CC indications for logical addition and subtraction . 225
69. CC settings after logical addition . 228
70. CC settings after logical subtraction . 228
71. Logical arithmetic instructions with carry/borrow . 228
72. Instructions for mixed-length operands . 230
73. Arithmetic compare instructions . 232
74. CC settings after logical comparisons . 232
75. IPM and SPM instructions . 234
76. Program Mask bits . 235
77. Summary of instructions discussed in this section . 236
78. General register shift instructions . 242
79. RS-type shift instruction . 243
80. RSY-type instruction format . 243
81. CC settings for arithmetic shift instructions . 252
82. Summary of shift instructions discussed in this section 260
83. Binary integer multiply instructions . 264
84. Double-length arithmetic multiply instructions . 265
85. Single-length arithmetic multiply instructions . 268
86. Logical multiply instructions . 270
87. Binary divide instructions . 274

xxx Assembler Language Programming for IBM System z™ Servers Version 2.00

88. Arithmetic divide instructions . 275
89. Binary divide instructions . 279
90. Summary of multiply instructions discussed in this section 283
91. Summary of divide instructions discussed in this section 283
92. Logical operations involving general registers . 288
93. CC settings by logical instructions . 289
94. Summary of the logical operations AND, OR, XOR 297
95. Logical-operation instructions discussed in this section 297
96. Format of RXY- and RSY-type instructions . 302
97. Format of R-I instructions with 16-bit immediate operands 305
98. Format of R-I instructions with 32-bit immediate operands 305
99. PSW addressing-mode bits . 309
100. Load Address instructions . 309
101. Load Address instructions described in this section . 314
102. RI-type instruction . 317
103. RIL-type instruction . 317
104. Insert-Immediate instructions . 318
105. Load and insert instructions with immediate operands 319
106. Arithmetic-immediate add and subtract instructions . 321
107. Arithmetic-immediate compare instructions . 322
108. Arithmetic-immediate multiply instructions . 322
109. AND-immediate instructions . 323
110. OR-immediate instructions . 324
111. XOR-immediate instructions . 324
112. Load and insert instructions with immediate operands 326
113. Arithmetic instructions with immediate operands . 326
114. Logical instructions with immediate operands . 326
115. Format of the BRC instruction . 329
116. Format of the BRCL instruction . 329
117. Extended branch relative on condition mnemonics and their branch mask values . . . 330
118. Branch on count instructions . 334
119. Extended mnemonics for branch relative on count instructions 334
120. Branch on index instructions . 341
121. RS-type BXH and BXLE instructions . 341
122. RSY-type BXHG and BXLEG instructions . 341
123. RSI-type BRXH and BRXLE instructions . 341
124. RIE-type BRXHG and BRXLG instructions . 341
125. Extended mnemonics for branch relative on index instructions 343
126. Branch relative on condition instructions . 349
127. Branch instructions for loop control . 349
128. SI-type instruction format . 352
129. SIY-type instruction format . 352
130. SI-type instruction actions . 353
131. Move Immediate instructions . 353
132. Logical Storage-Immediate instructions . 353
133. CC settings by SI-type logical instructions . 354
134. Compare Immediate instructions . 354
135. CC settings after CLI instruction . 355
136. Storage-Immediate instructions . 356
137. CC settings after TM instruction . 356
138. Storage-Immediate instructions . 363
139. Basic character-handling instructions . 365
140. Format of single-length SS-type instructions . 365
141. Instruction types and operand formats . 367
142. SS-type instructions with explicit length . 367
143. SS-type instructions with implied length . 368
144. Determining the Length Specification Byte . 370
145. MVCOS instruction . 374
146. SSF instruction format used for the MVCOS instruction 374
147. Condition Code settings for TRT and TRTR instructions 384
148. Execute instructions . 389
149. Modifiable portions of typical EX target instructions 394

Tables xxxi

150. Operands of single-length SS-type instructions . 396
151. Basic instructions for data in storage . 397
152. Basic character-handling instructions using padding characters 404
153. CC settings after MVCL . 405
154. CC settings after CLCL . 407
155. Format of MVCLE and CLCLE instructions . 410
156. CC settings after MVCLE . 412
157. CC settings after CLCLE . 414
158. Character-handling instructions for terminated strings 415
159. Format of RRE-type instructions . 415
160. CC settings for SRST instruction . 416
161. CC settings for MVST instruction . 417
162. CC settings for CLST instruction . 419
163. CC settings for TRE instruction . 421
164. Compare Until Substring Equal instruction . 423
165. Condition Code settings by CUSE . 424
166. Results of examples using the CUSE instruction . 424
167. Extended instructions for character data . 425
168. Punched paper tape encodings with values 00-0F . 429
169. Punched paper tape encodings with values 10-1F . 429
170. Old six-bit BCD character representation . 430
171. Sample EBCDIC characters with varying code points among code pages 431
172. 7-bit ASCII character representation . 433
173. Japanese DBCS assignments . 435
174. DBCS encoding . 435
175. Sample Unicode assignments . 439
176. Unicode string instructions . 441
177. CC settings for SRSTU instruction . 441
178. CC settings after MVCLU . 442
179. CC settings after CLCLU . 443
180. RRE-type instruction . 443
181. RRF-format instruction with an optional operand . 444
182. Unicode translate instructions . 444
183. Arguments and translate tables for TRxx instructions 445
184. Registers used by TRxx instructions . 445
185. Condition Code settings for TRxx instructions . 445
186. Unicode format conversion instructions . 448
187. CC settings after Unicode format conversion instructions 448
188. Translate and Test Extended instructions . 450
189. Function-code table sizes for TRTE, TRTRE . 450
190. Condition code settings for TRTE, TRTRE . 451
191. Byte-reversing load and store instructions . 453
192. Extended instructions for Unicode data . 456
193. Unicode-based translate instructions . 456
194. Unicode format conversion instructions . 456
195. Summary of byte-reversing instructions . 456
196. Basic packed and zoned decimal instructions . 460
197. Examples of zoned decimal data . 462
198. Punched-card image of two numbers, +12345 and −67890 463
199. Examples of packed decimal data . 466
200. Format of two-length SS-type instructions . 469
201. Operands of two-length SS-type instructions . 470
202. Format of PKA and PKU instructions . 478
203. Format of UNPKA and UNPKU instructions . 479
204. CC settings after UNPKA, UNPKU instructions . 480
205. Instructions for moving numeric and zone digits . 483
206. Instructions for packing and unpacking data . 483
207. CC settings for decimal addition and subtraction . 486
208. CC setting after decimal comparison . 488
209. Packed decimal arithmetic instructions . 497
210. Operand formats for TP instruction . 498
211. Format of the TP instruction . 498

xxxii Assembler Language Programming for IBM System z™ Servers Version 2.00

212. CC settings for the TP instruction . 498
213. CC settings by the ZAP, AP, and SP instructions . 499
214. CC setting by the CP instruction . 504
215. Format of the SRP instruction . 511
216. Summary of decimal instruction behavior . 530
217. Instructions used for converting and formatting packed decimal 532
218. Format of the ED and EDMK instructions . 536
219. CC settings after ED, EDMK . 544
220. ED and EDMK treatment of pattern characters . 547
221. Basic floating-point instructions . 568
222. Instructions copying data between FPRs . 568
223. Floating-point Load Zero instructions . 569
224. Instructions moving data between FPRs and GPRs 570
225. Copy Sign instruction . 570
226. Basic Load/Store instructions for floating-point operands 571
227. Instructions moving operands between GPRs and FPRs 571
228. Hexadecimal floating-point data representations . 587
229. Unnormalized and normalized short hexadecimal floating-point numbers 588
230. Short hexadecimal floating-point numbers . 588
231. Long hexadecimal floating-point numbers . 589
232. Extended hexadecimal floating-point numbers . 589
233. Assembled hexadecimal floating-point constants . 591
234. Hex floating-point constants with decimal exponents 591
235. Length-modified hexadecimal floating-point constants 592
236. Hexadecimal floating-point constants with modifiers 594
237. Hexadecimal floating-point rounding modes with subtype H 595
238. Symbolic hexadecimal floating-point constants . 596
239. “Difficult” hexadecimal floating-point conversion values 596
240. Data-moving hexadecimal floating-point instructions 597
241. Hexadecimal floating-point Multiply instructions . 599
242. Summary of hexadecimal floating-point multiplication results 601
243. Hexadecimal floating-point Divide instructions . 603
244. Hexadecimal floating-point Halve instructions . 604
245. Hexadecimal floating-point Add/Subtract instructions 606
246. Hexadecimal floating-point Compare instructions . 615
247. CC settings for hexadecimal floating-point comparison 616
248. Hexadecimal floating-point Round instructions . 616
249. Hexadecimal floating-point Load Lengthened instructions 619
250. Hexadecimal floating-point FPR/GPR conversion instructions 620
251. Format of HFP to fixed binary instructions . 621
252. Rounding modifiers for HFP-to-binary conversion . 621
253. CC settings for HFP-to-binary conversion . 622
254. Instructions moving/converting binary and hexadecimal floating-point operands . . . 622
255. Hexadecimal floating-point instructions generating floating-point integers 625
256. Hexadecimal floating-point Square Root instructions 627
257. Hexadecimal floating-point Multiply and add/subtract instructions 627
258. Format of RRF-type HFP multiply and add/subtract instructions 628
259. Format of RXF-type multiply and add/subtract instructions 628
260. Hexadecimal floating-point Move/Test instructions . 631
261. Hexadecimal floating-point Multiply instructions . 631
262. Hexadecimal floating-point Divide instructions . 631
263. Hexadecimal floating-point Add, Subtract, and Compare instructions 631
264. Hexadecimal floating-point Round instructions . 632
265. Hexadecimal floating-point Lengthening instructions 632
266. Convert hexadecimal floating-point to binary instructions 632
267. Convert binary to hexadecimal floating-point instructions 632
268. Form hexadecimal floating-point integer instructions 632
269. Hexadecimal floating-point Square Root instructions 632
270. Hexadecimal floating-point Multiply-Add/Subtract instructions 633
271. Binary floating-point data representations . 638
272. Examples of short-precision binary floating-point normal values 640
273. Examples of short-precision binary floating-point denormalized values 640

Tables xxxiii

274. Examples of short-precision binary floating-point special values 641
275. Nominal-value operands for binary floating-point special values 644
276. Assembled binary floating-point special-value constants 644
277. Minimum bit lengths for binary floating-point constants 645
278. Binary floating-point DXC values . 650
279. Binary floating-point FPC register control instructions 651
280. Invalid operation binary floating-point exception . 652
281. Divide by zero binary floating-point exception . 652
282. Exponent overflow binary floating-point exception . 652
283. Exponent underflow binary floating-point exception 652
284. Inexact result binary floating-point exception . 652
285. BFP overflow/underflow scale factors . 653
286. Binary floating-point Test Data Class instructions . 654
287. Test Data Class second-operand bits . 654
288. Test Data Class second-operand test-bit/tested-value correspondence 654
289. Binary floating-point RR-type data movement instructions 655
290. CC settings for BFP data movement instructions . 656
291. Binary floating-point Multiply instructions . 657
292. Binary floating-point Divide instructions . 659
293. Binary floating-point Add and Subtract instructions 661
294. CC settings after BFP add/subtract instructions . 661
295. Binary floating-point Compare instructions . 662
296. CC settings for BFP comparisons . 662
297. Binary floating-point Compare and Signal instructions 663
298. Binary floating-point Round instructions . 664
299. Binary floating-point Lengthening instructions . 665
300. Binary integer to binary floating-point conversion instructions 666
301. Binary floating-point to integer conversion instructions 666
302. Format of BFP Convert To Fixed instructions . 666
303. Rounding modifier for BFP convert to fixed instructions 667
304. CC settings after convert to binary instructions . 667
305. Load floating-point integer instructions . 668
306. Rounding mode modifiers for BFP load integer instructions 669
307. Binary floating-point Divide to Integer instructions . 669
308. Format of BFP Divide to Integer instructions . 669
309. CC settings after divide to integer instructions . 670
310. Binary floating-point Square Root instructions . 671
311. Binary floating-point Multiply and Add/Subtract instructions 672
312. Summary of binary floating-point instructions with uniform operand lengths 673
313. Binary floating-point Multiply instructions . 674
314. Binary floating-point Round instructions . 674
315. Binary floating-point Lengthening instructions . 674
316. Convert binary floating-point to binary integer instructions 675
317. Convert binary integer to binary floating-point instructions 675
318. Summary of binary floating-point operations and exceptions 675
319. Decimal floating-point data representations . 684
320. Declet encoding for BCD digits . 685
321. Converting decimal floating-point declets to BCD digits 686
322. First five bits of special-values Combination Field . 687
323. First 5 bits of finite-value Combination Field . 688
324. Properties of decimal floating-point representations . 689
325. Assembled decimal floating-point special-value constants 690
326. Examples of decimal floating-point short precision zeros 691
327. Assembler rounding-mode suffixes for DFP constants 691
328. Decimal floating-point Test Data Class instructions . 693
329. DFP Test Data Class second-operand bits . 694
330. Test Data Class test-bit vs. tested-class correspondence 694
331. Example of DFP rounding modes . 696
332. Preferred quanta for some decimal floating-point operations 698
333. Decimal floating-point additional DXC value . 699
334. Decimal floating-point quantum exception . 699
335. Decimal floating-point scale factors for exponent spills 699

xxxiv Assembler Language Programming for IBM System z™ Servers Version 2.00

336. Copy Sign instruction . 700
337. Instructions moving data between FPRs and GPRs 700
338. Instructions copying data between FPRs . 700
339. Decimal floating-point basic arithmetic instructions . 701
340. Format of DFP arithmetic instructions . 701
341. Format of DFP arithmetic instructions with rounding mask 701
342. Instruction-specific rounding mask values . 702
343. CC settings for Add/Subtract instructions . 704
344. CC settings for Compare instructions . 705
345. Decimal floating-point Compare instructions . 705
346. Decimal floating-point Compare and Signal instructions 705
347. Decimal floating-point Compare Biased Exponent instructions 706
348. CC settings for Compare Biased Exponent instructions 706
349. Decimal floating-point convert to/from fixed binary instructions 707
350. Format of Convert to Fixed Binary instructions . 708
351. Format of Convert to Fixed Binary instructions . 708
352. CC settings for Convert to Fixed instructions . 708
353. Decimal floating-point convert to/from signed packed decimal instructions 709
354. Format of Convert to Signed Packed instructions . 709
355. Decimal floating-point convert to/from unsigned packed decimal instructions 711
356. Instructions converting between decimal floating-point and zoned decimal 712
357. Format of DFP/zoned decimal conversion instructions 712
358. Condition Code settings for Convert to Zoned . 713
359. Decimal floating-point Load and Test instructions . 715
360. CC setting after DFP Load and Test instructions . 715
361. Instructions copying/complementing data between FPRs 715
362. Decimal floating-point Load Floating-point Integer instructions 715
363. Format of Load FP Integer instructions . 715
364. Decimal floating-point Load Lengthened instructions 716
365. Load Lengthened special operand control mask . 716
366. Decimal floating-point rounding/lengthening instructions 717
367. Decimal floating-point Set Rounding Mode instruction 718
368. Decimal floating-point Insert/Extract Biased Exponent instructions 719
369. Extracted Biased Exponent for DFP special values . 719
370. DFP Insert Biased Exponent results . 720
371. Decimal floating-point Extract Significance instructions 720
372. Decimal floating-point Shift Significand instructions 721
373. Format of DFP shift instructions . 721
374. Decimal floating-point Quantize instructions . 722
375. Format of decimal floating-point Quantize instructions 722
376. Decimal floating-point Reround instructions . 724
377. Decimal floating-point Test Data Group instructions 726
378. Test Data Group second-operand bits . 726
379. DFP Test Data Class and Test Data Group instructions 732
380. DFP Arithmetic and related instructions . 732
381. DFP length and type conversion instructions . 732
382. DFP rounding and lengthening instructions . 732
383. DFP data-loading instructions . 733
384. Instructions copying between FPRs and GPRs . 733
385. Instruction setting decimal rounding mode . 733
386. Non-canonical declets . 733
387. Summary of System z floating-point representations 739
388. Adding 0.1 in hexadecimal, binary, and decimal floating-point 741
389. Exception behavior for hexadecimal floating-point . 741
390. Exception behavior for binary and decimal floating-point 741
391. Length modifiers of floating-point constants . 742
392. Assembler rounding-mode suffixes for floating-point constants 742
393. Internal precision required for faithful In-Out conversion 744
394. Decimal precision required for faithful Out-In conversion 744
395. Perform Floating-Point Operation instruction . 745
396. Laws of real and realistic arithmetic . 746
397. Examples of hexadecimal floating-point pseudo-zeros 748

Tables xxxv

398. Examples of other floating-point representations . 750
399. Equivalent decimal and floating-point precisions . 751
400. Branch and Save instructions . 758
401. Standard (Format-0) Save Area . 770
402. Standard Format-4 save area . 773
403. Standard Format-5 save area . 775
404. AMODE values . 827
405. RMODE values . 828
406. Default AMODE and RMODE values . 828
407. Valid combinations of AMODE and RMODE values 828
408. Differences in linking COMMONs and External dummy items 841
409. ESD symbol search types . 841
410. Matching existing CESD SD symbol to incoming symbols 843
411. Matching existing CESD LD symbol to incoming symbols 843
412. Matching existing CESD CM symbol to incoming symbols 843
413. Matching existing CESD ER symbol to incoming symbols 844
414. Matching existing CESD ER symbol to incoming symbols 844
415. Comparing load modules and program objects . 855
416. Instructions to change addressing mode . 858
417. CC settings for TAM instruction . 858
418. PSW addressing-mode bits . 858
419. BASSM actions summary . 860
420. Operation of BSM instruction . 860
421. BSM actions summary . 861
422. Instruction pairs for call/return with possible AMODE change 862
423. Calling among addressing modes within an assembly 863
424. LLGT and LLGTR instructions . 863
425. Symbol table entries for DSECT symbols . 873
426. Summary of USING Statements . 905
427. Summary of DROP Statement Behaviors . 905
428. Example of a non-homogeneous array . 914
429. Array addressing with a table of addresses . 917
430. Example of an address table's contents . 918
431. Supervisor and Program Call instructions . 950
432. SVC instruction . 950
433. PC instruction format . 951
433. Program Call instruction . 951
434. GETMAIN request options . 958
435. FREEMAIN request options . 960
436. Comparing QSAM and BSAM . 966
437. Partial contents of Extended Program Interruption Element (EPIE) 975
438. Hexadecimal, decimal, and binary . 995
439. Hexadecimal Addition Table . 996
440. Hexadecimal Multiplication Table . 996
441. Integer powers of 2 . 997
442. Integer powers of 2 . 998
443. Multiples of powers of sixteen (part 1 of 2) . 1000
444. Multiples of powers of sixteen (part 2 of 2) . 1000
445. Powers of 10 expressed in hexadecimal . 1001
446. Assembler Language EBCDIC character representation 1012
447. 7-bit ASCII character representation . 1013
448. High Level Assembler DC-Statement Constant Types 1014
449. ASCII Character Representation . 1077
450. Examples of different types of integer division . 1129
451. Comparing five binary floating-point operands . 1225

xxxvi Assembler Language Programming for IBM System z™ Servers Version 2.00

Tables xxxvii

xxxviii Assembler Language Programming for IBM System z™ Servers Version 2.00

Foreword

FFFFFFFFFFFF WW WW
FFFFFFFFFFFF WW WW
FF WW WW
FF WW WW
FF WW WW
FFFFFFFF WW WW
FFFFFFFF WW WW WW
FF WW WWWW WW
FF WW WW WW WW
FF WWWW WWWW
FF WWW WWW
FF WW WW

Outline and Overview

We will survey many aspects of Assembler Language programming on System z processors.

Chapters I-IV cover basic material needed for almost all programs.

• Chapter I introduces some notation we'll use, and discusses the important topics of binary and
hexadecimal number representations and arithmetic, and conversion among number represen-
tations.

• Chapter II introduces the “Central Processing Unit” or CPU. We'll survey central memory,
the registers you'll use in your programs, and the Program Status Word (PSW). Then we'll
look at some basic types of instructions and their operation codes, and see how they refer to
data in memory.

• Chapter III describes basic properties of the Assembler Language, including symbols, self-
defining terms, and expression evaluation. Then we will see how to write Assembler Language
statements and their components. Last, we discuss the key concept of addressability and the
important USING statement.

• Chapter IV describes methods for defining often-used data types, and techniques for organizing
data items in your programs.

• The six sections of Chapter V discuss basic instructions, emphasizing those that operate on
data in the general registers, and the important “conditional branch” instructions.

• Chapter VI considers addressing techniques, loops and other iterative processes, and
“immediate” instructions containing useful operands.

• Chapter VII discusses bit and character data and techniques for handling them.

• Chapter VIII examines the packed and zoned decimal data representations, instructions for
packed decimal arithmetic, and for conversion between those representations and EBCDIC
characters.

• Chapter IX describes general concepts of floating-point arithmetic and the three floating-point
representations supported by System z: hexadecimal, binary, and decimal, and instructions for
manipulating data in and among each of the representations. It concludes with a summary of
important differences between floating-point and mathematicians' “real” arithmetics.

• Chapter X discusses large programs and modularization techniques such as subroutines and
common linkage conventions, how to combine separately assembled (or compiled) routines
into a single executable program, and how to change addressing modes.

• Chapter XI describes the powerful “Dummy Control Section” and the enhanced USING
statements, and shows how to apply them to several basic data structures.

Foreword 1

• Chapter XII introduces common techniques for accessing operating system services, basics of
exception handling, and uses of reenterability and recursion.

• Appendix A contains reference and conversion tables.

• Appendix B describes a set of useful macro instructions that handle simple input, output, con-
version, and display operations.

Programming Environments

Every programming language must eventually deal with the environments under which the pro-
grams will be run. While we will see many examples of program segments, we will defer complete
programs until later sections.

I assume your programs will execute on one of z/OS™, z/VM™, or z/VSE™. I have purposely
omitted discussion of z/Linux™, because Assembler Language is little used in that environment.

If you like, browse the solutions to the Programming Problems: these are complete programs
that have been executed successfully, and produce what I believe are correct answers. The simple
conventions used here for communicating with the Operating System's Supervisor are described in
“Appendix B: Simple I/O Macros” on page 1015; these may be augmented or replaced as desired.

The conventions and procedures needed to execute an Assembler Language program in your
computing environment should be locally available to you.

Levels of Difficulty (*)

This material varies in depth and detail. Where a detailed portion can be skipped with no loss of
continuity, the heading is tagged with a parenthesized asterisk (*), as in the heading just above.

Exercises and Programming Problems

Exercises and programming problems appear throughout. Some are integral to the material, while
others explore interesting sidelines. Exercises and programming problems are rated in order of
estimated difficulty from 1 to 5; the most useful or illustrative exercises are tagged with a plus (+),
and are strongly recommended.

In all cases, the exercises and programming problems are important.

Some Personal Observations

1. Some exercises ask you to find what is wrong with a statement or instruction sequence.
While it may be poor style (or manners) to show coding errors, I feel justified in doing so on
two grounds: pedagogical value and self-defense.

• First, it helps to see wrong or poor ways to do something, as well as correct or better
ways.

• Second, some programs may be written by people who learned from examples containing
errors — and their programs will be processing my bills, checking my tax returns, and cal-
culating my bank balance. I want your programs — and theirs — to be as safe, correct,
and reliable as possible.

I trust you will understand. I am of course willing to have you point out my errors. If you
find any, please let me know so I can correct them.

2. This is not intended to be a cookbook. I have tried to give not just occasional recipes for
doing some basic tasks, but a view of some underlying processor structures and the language
closest to the processor, Assembler Language. You may have already been introduced to
programming a computer using a “higher-level” language, and are probably familiar with
concepts such as loops and conditional branching. Because the internal structures of com-
puters have many similarities, I sometimes try to point out not only what a particular

2 Assembler Language Programming for IBM System z™ Servers Version 2.00

instruction does, but also why it does it that way. Learning to program other processors will
then be a comfortable extension of the concepts and techniques you learned here.

3. This book is too large1 to be used as a text for a programming class of normal length. I
expect that most instructors will use those portions most useful for their selection of topics;
other portions may have information that can be sampled as desired.

I assume you are interested mainly in writing “application-level” programs for z/Architecture
processors, not specialized or privileged operating system components. This text therefore
deals with nonprivileged instructions, which in any event are the great majority of
instructions in all programs.

4. I confess that levels of detail may vary depending on my level of interest in a particular topic.

5. The Exercise and Programming Problem solutions should be considered as samples, and are
not in any way intended to be the “correct” solutions.2 If yours are shorter, simpler, or just
plain nicer, so much the better. But if your solutions seem to be two or three times longer
than these, you may want to study them for suggestions of workable approaches to solving a
programming problem.

6. Some of this material is based on lecture notes I created for Assembler Language classes
when I was at the Stanford Linear Accelerator Center in Menlo Park, California.

1 Yes, this book is too long. As my Chinese-restaurant fortune cookie said: “You have a love for words, and should
write a book.”

2 I urge you not to look at them before you're tried your own solutions (or if you're completely stuck at some point).
It's OK to learn from someone else's programs, but best it you do it only after you're tried your own.

Foreword 3

IIIIIIIIII NN NN
IIIIIIIIII NNN NN

II NNNN NN
II NN NN NN
II NN NN NN
II NN NN NN
II NN NN NN
II NN NN NN
II NN NNNN
II NN NNN

IIIIIIIIII NN NN
IIIIIIIIII NN NN

A digital computer can be considered from various viewpoints; here are five possible views, each
treating the computer's inner workings in successively less detail.

• To an engineer concerned with designing its logical circuits, a computer might be thought of as
a collection of devices for controlling and ordering the flow of electrical signals.

• At another level, a person concerned with methods used to make these logical circuits perform
operations such as addition and division might treat a computer as a collection of registers,
switches, and control mechanisms that perform a series of steps leading (say) to the computa-
tion of a quotient.

• At the next level one might consider a computer's basic operations to be single arithmetic
operations, a simple data movement, or a test of a single piece of data.

• Another viewpoint (typical of “higher-level languages”) considers the basic operations to be
moving blocks of data, evaluating and assigning mathematical expressions, and controlling
counting and testing operations.

• At yet another level, as in certain applications such as traffic simulation, data reduction, and
network analysis, the computer processes information in a form closely approximating the
problem under consideration, and produces output directly applicable to that problem.

Each of these views is of course not especially distinct from its neighbors. We will be primarily
concerned with the middle level, considering the basic operations or instructions that we want the
computer to perform, such as single arithmetic or logical operations, simple data transmission
operations, etc. We will also consider the computer from “neighboring” viewpoints: sometimes it
is useful to know some details of the internal sequencing of operations such as multiplication and
branching; at other times it will be convenient to consider groups of instructions such as macro
instructions that perform operations in a larger context.

The level that is our primary concern is usually known as “Assembler Language programming” or
“assembler coding”.3 The assembler we'll describe is the IBM High Level Assembler for z/OS &
z/VM & z/VSE, known as “HLASM”. It also can be used on IBM Linux for System z.

Getting the desired machine language instructions and data into the computer in executable form
requires the aid of a number of programs: the most important for us is the assembler. Other
important programs are the linker4 and the operating system Supervisor. Each will be considered
in the appropriate context.

3 Some people call it “BAL” — meaning “Basic Assembler Language” — but the language is not basic (nor is it
BASIC) except in the sense that it can be fundamental to understanding the System z processor's operations.

4 The term “linker” here stands for several important programs that combine and load programs for execution. Their
names vary among operating systems (Binder or Linkage Editor and Program Loader on z/OS, Loader and Link
Editor on z/VM, Linkage Editor on z/VSE, etc.)

4 Assembler Language Programming for IBM System z™ Servers Version 2.00

To give hardware designers greater freedom to implement instructions in the best way, without
your having to be aware of each implementation's techniques, IBM describes an “architecture”.
A processor's architecture defines the actions of instructions, I/O, storage, etc. to describe a
known set of behaviors, while giving processor designers flexibility in implementing those behav-
iors.

It will help to have available a copy of the z/Architecture Principles of Operation manual. It is
easily obtained, and is the reference for basic System z architecture. You should consult it regu-
larly when we discuss individual instructions.

 Remember!

The Assembler Language itself is quite simple. The syntax is sparse, there
are few “reserved words”, and almost no structuring rules. The main
challenge in learning Assembler Language is learning about the processor
for which you're writing programs.

Von Neumann Architecture

The IBM System z processor is one of a large class of computers known as “Von Neumann
Architecture”, named after John Von Neumann, a mathematician at the Institute for Advanced
Study (IAS) in Princeton, NJ, USA. He and colleagues designed a processor in which programs
and data shared the same memory. A machine was built to that design in the early 1950s, and the
overall design (sometimes called “Institute machines”) was widely adapted in the U.S., Europe,
Japan, and Australia.5

Why Program in Assembler Language (and Why Not)?

Before going any further, ask why you're considering writing programs in Assembler Language.
These are some reasons for programming in Assembler Language:

1. You have to.

Maybe you're taking a course like “Assembler Language Programming”, or you've been
made responsible for an existing Assembler Language application.

2. You want to.

It's useful to know, or maybe you're just curious about what is really going on inside the
processor when you write high-level language programs. The architecture represented by
System/360 and its modern descendants has pervaded the computing industry since the
mid-1960's, and will continue to do so for many years. Because you may encounter some
modern incarnation of the System/360 family, it helps to be familiar with its architecture.

3. It's educational.

Programming in Assembler Language is the best way to learn how the processor works.
Even if you program in high-level languages, there will be times when understanding the
processor's properties will help you understand why certain choices and tradeoffs are made in
programming in those languages.

4. It's fundamental.

A key to writing efficient software is understanding the underlying hardware; no language
other than Assembler Language provides such insights. Even if you don't write much Assem-
bler Language code, writing good high-level language programs often depends on knowing
how to write good Assembler Language programs.

Debugging a problem in high-level language applications may require knowing some machine
language. (You might say that a language needing this kind of debugging isn't very “high-
level”, but it is necessary at times.)

5 Why do I care? My first computer was the ILLIAC I, built to the IAS design.

Foreword 5

Assembler Language is also a natural vehicle for recovering lost source code (yes, it
happens!). Object or binary programs can easily be disassembled into Assembler Language
source programs.

5. It can be more efficient.

Efficiency depends on many things. Because you can specify almost the exact instruction
sequences you want, you can do many things to improve program efficiency. If you know
which parts of a program consume the most time, recoding those parts in Assembler Lan-
guage can often lead to savings.

However, pursuing efficiency has limits. Programmers have been known to struggle happily
over a program modification that will save a few seconds of processor execution time over
the program's lifetime.6

There is another objection to using Assembler Language to attain efficiency: some modern
compilers can produce quite efficient code for certain applications.7 However, even clever
coding and powerful compilers can't help a badly implemented algorithm. Also, you may
have difficulty learning the costs of various high-level language statements.

6. It's independent.

Error recovery (and avoidance) can be simpler in Assembler Language than with high-level
languages.

You need not rely on the presence of any run-time environment other than the operating
system environment in which your program will execute. You can access many services that
may not be available to high-level languages.

7. It's more flexible.

There are some processor instructions and facilities for which higher-level languages provide
limited or no support. And even when these facilities are supported, their expression in such
languages may be inefficient, restricted, or difficult to use. Assembler Language may be the
simplest, or even the only, way to access those facilities.

Unlike many high-level languages, Assembler Language imposes no assumptions about how
you should (or must) structure your programs. Someone else's program structures or con-
cepts of proper programming technique aren't forced on you by the language, and you have
more freedom to choose solutions you like.

8. It's more powerful.

In addition to Assembler Language's efficiency and flexibility, you also have available to you
the entire repertoire of the processor's instruction set. New instructions on your CPU are
usable immediately; you don't need to wait for high-level language compilers to “catch up”
to the latest architecture. (Some instructions, though, may require special privileges such as
executing in supervisor state.)

9. It's more fun.

You can do things your own way. You can define the meanings of each and every piece of
your program, and not have to be satisfied with assurances that “the compiler (or the system)
takes care of that for you”.

10. It's controllable.

Unlike “higher-level” languages, the assembler creates machine language instructions and data
in exactly the form and order you specify. It doesn't try to organize (or re-organize) anything
for you; there are no “helpful” intermediaries between you and the processor. In a nutshell,
“What you write is what you get”.

6 And possibly wasting many more seconds of processor time re-assembling and re-linking the program than will be
ever saved during its execution! (Yes, I've done that...)

7 Compilers do have occasional errors; finding problems with the generated code is easier if you know Assembler
Language.

6 Assembler Language Programming for IBM System z™ Servers Version 2.00

11. It's stable.

You needn't worry about re-translating and re-testing programs with new releases of com-
pilers or run-time libraries; the object code won't change each time you re-assemble.

12. It's parameterizable.

Because assembler languages have been with us for almost as long as computers, a lot has
been learned about minimizing the pain of modification: we will see that the Assembler Lan-
guage is very rich in possibilities for parameterization. That is, you can revise a value in just
one place in your program, and the assembler automatically adjusts the portions of your
program that depend on that value.

13. It's extensible.

This is one of the best reasons for programming in Assembler Language: you can define
macro instructions that have whatever meaning you want them to have. You can design and
create an entire programming language of your own, and then build other languages on top
of that, for as many levels as you like or need. Macro-instructions also provide some
“insulation” between your program and the habits of the Operating System under whose
control it will run.

Macro instructions are definitely a highly satisfying aspect of Assembler Language program-
ming. Unfortunately, we don't have room here to describe conditional assembly and macros.

Conversely, there are also reasons for not programming in Assembler Language.

1. The language can be verbose.

Economy of expression is not a characteristic of most Assembler Languages except (and this
is an important exception) for the availability of macro instructions. Usually, you must write
more lines of code to do a simple task than if you had chosen a higher-level language.

This is due mainly to the richness of the z/Architecture processor's instruction set, because
the Assembler Language itself is quite simple.

2. The language is very flexible.

It can be too flexible for some users. There are many acceptable ways to use Assembler
Language to solve a given problem, and almost all problems can be solved with a small and
manageable set of instructions.

3. The language is idiosyncratic.

To a large extent, the occasional lapses of regularity and coherence in the syntax and seman-
tics of the Assembler Language are due to irregularities in the System z instruction set and
architecture: instructions that do similar things may have different syntaxes. Thus, the
Assembler Language contains occasional “special cases” and “exceptions to the rules”. (This
is of course not unique to Assembler Language!)

4. The language's flexibility means it's easier to make errors.

While this reason is implicit in the previous three, it also is part of the price you pay for
being able to specify everything yourself; you have more chances to make mistakes. We will
see that there are good ways to avoid some of the pitfalls that this extra freedom provides.

5. Programs can be harder to debug.

In some cases, programmers may not write programs so they can detect processing errors, or
terminate gracefully. Because programs can be written with great freedom, they might not be
organized so that errors do a minimum amount of damage. Similarly, some programmers are
often reluctant to insert the extra instructions necessary to leave an easily-followed diagnostic
trail for the person (you?) trying to discover why your program did something unexpected.

6. Programs may seem hard to maintain.

Maintenance costs are much more strongly influenced by the structure and clarity of the code
than by the language used to write it. Extensive research has shown little difference in mainte-
nance costs between Assembler Language and high-level languages.

Foreword 7

7. Lack of a run-time library.

Assembler Language programs can be written as a component of a high-level language appli-
cation. But “stand-alone” Assembler Language applications may not have access to the run-
time libraries provided with most high-level languages. By using careful modular design
techniques, this lack can be overcome with a set of routines or macro instructions that
provide functions shareable among many applications.

Assembler Language programs can access run-time libraries, so long as they adhere to appro-
priate programming conventions; this can often reduce programming effort.

8. Lack of portability.

Unlike programs written in some high-level languages, assembler language code is intended
for execution only on the processors for which it is created. (And, high-level language pro-
grams are not always easily moved to other processor architectures!)

If none of the reasons for programming in Assembler Language has much appeal to you — you
don't have to program in Assembler Language, you don't need its efficiency, flexibility, power, or
extensibility, and your sources of amusement (or employment) lie elsewhere — then don't. Use
whatever tool will do the job with the least time, effort, and nuisance, and get on to whatever task
comes next.

Assembler Language Misconceptions

These are some common misconceptions about Assembler Language:

• Assembler Language is dead.

For many small-environment or short-lived applications, fast implementation is more impor-
tant than long life, small size or high performance. But many substantial organizations have
made major investments in Assembler Language applications that must be fast, compact, and
can process high volumes of data efficiently; such applications need regular enhancement.

• It's hard.

The language itself is trivially simple. Understanding programs in any programming language is
more a matter of clear coding and good style and organization. Any programming task can be
made easy or difficult. (We'll offer occasional bits of advice on ways to simplify your program-
ming challenges.)

• Assembler Language programs are faster than compiled programs.

That depends more on your choice of algorithms, the high-level language, and its compiler.
You can write slow programs in any language.

• Assembler Language programs are hard to read.

Only if you write them that way! But you do need to understand the System z instructions.

• It's hard to manage all those base registers.

Not at all: careful program organization and appropriate instruction choice easily make it a
non-problem.

• Assembler Language is hard to maintain, especially if you don't have the needed skills.

Extensive research shows little difference in maintenance costs among programming languages,
and lack of skills is a problem for any programming language.

• Many applications written in Assembler Language can be replaced with “out-of-the-box”
functionality.

It's rare that a purchased software package does exactly what your organization needs; you
must pay in time and money for negotiating, training, and adaptations that you could com-
plete “at home” more promptly and cheaply.

• You don't need to worry about efficiency, because a faster CPU will be along in a year.

8 Assembler Language Programming for IBM System z™ Servers Version 2.00

Rarely true, because growing businesses continually need to process more data and their pro-
grams must provide new capabilities. Once you fall behind, it's difficult to rewrite inefficient
applications.

• Converting an Assembler Language application to a high-level language will make it easier to
hire skilled programmers.

There are some critical factors here: research has shown that

1. Changing language has many hidden costs and should be avoided.

2. High-level languages do not improve reliability or maintainability.

3. Problem-domain expertise is often more important than programming-language expertise.
It it much easier to train people who understand your business and business processes in
the language you need, rather than hiring people who have the necessary language skill.

Some further considerations include:

− Transition and testing require system stability, which implies possible lost business oppor-
tunity.

− Converting and validating test cases can be a major effort in itself.

− High stress levels for “bilingual” staff.

• You can't do “Structured Programming” in Assembler Language.

− By using a set of Structured Programming macros such as those available with the High
Level Assembler, programs can be as fully structured as any high-level language program.

− Because you have full control over the separation of code and data into individual modules,
you can have greater flexibility in determining the structure of an application than a typical
high-level language may provide.

 Remember!

What's good about Assembler Language?
 Almost everything you do works OK.

What's bad about Assembler Language?
 Almost everything you do works OK.

Exercises

0.1.1.(1)+ Why are you interested in Assembler Language?

0.1.2.(0) What is the difficulty level of this exercise?

Foreword 9

10 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter I: Getting Started

IIIIIIIIII
IIIIIIIIII
 II
 II
 II
 II
 II
 II
 II
 II
IIIIIIIIII
IIIIIIIIII

In this chapter, we will look at factors involved in Assembler Language programming, and then
investigate the binary number representation and its arithmetic.

• Section 1 looks at some notation, terminology, and conventions we'll use.

• Section 2 describes basic topics about the number representations used in System z processors:
binary and hexadecimal numbers, arithmetic and logical representations, 2's complement arith-
metic, and discusses alternative number representations.

Chapter I: Getting Started 11

1. Some Basic Items

 11
111
1111

 11
 11
 11
 11
 11
 11
 11
1111111111
1111111111

In this section we introduce some basic terms and notations that we'll use later, and then investi-
gate the important properties of the binary number representation.

1.1. Notation and Terminology

• Some diagrams and figures need to show the lengths and positions of parts of the figure. In
Figure 1 we want to show some object's structure, and to indicate the amount of space
required for each of its components. To do this, we place a number above the field to indicate
its length. In cases where we also indicate the numbering and positions of the digits in that
component, we use numbers below the field, at its right and left ends. Two four-digit fields in
an eight-digit area would be as shown in Figure 1:

4 4 �─── Field widths
┌────────┬────────┐
│ Field1 │ Field2 │
└────────┴────────┘
0 3 4 7 �─── Start and end positions of fields

Figure 1. Example of numbering and notation

By convention, numbering starts with digit zero on the left. We call the leftmost digit, digits,
or portion of a field the high-order part of the field; the rightmost digit, digits, or portion of the
field the low-order part. Thus, position 0 in this figure is the high-order digit, and position 7 is
the low-order digit.

• Standard mathematical symbols such as subscripts and superscripts, and the capital Sigma used
to denote summation are hard to produce, so we sometimes use a slightly different notation.
For subscripted quantities like Bk (“B-sub-k”) we will sometimes use “Bk”, but also either
“Bk” or the programming-language convention “B(k)”. For quantities like “element i,j of
ARRAY” or “ARRAY-sub-i,j” (often written “ARRAYi,j”) we write “ARRAY(i,j)”. There
are very few places where the juxtaposition of two letters like “XY” means multiplying X and
Y, but these will be obvious from the context where they appear. In some cases we use super-
scripts for quantities like 105 and Bk, but we also use the common notation of paired asterisks
to denote exponentiation, as in 10**5 and B**k.

12 Assembler Language Programming for IBM System z™ Servers Version 2.00

• For the operations of addition, subtraction, multiplication, and division, we use the operators
+, − , *, and / respectively. (In some descriptions, we use “×” for multiplication and “÷ ” for
division.) We use vertical bars or the functional notation ABS() to denote absolute values: |x|
and ABS(x) mean the magnitude of the quantity x.

• To denote the contents of something called “x”, we use c(x) or C(x). Sometimes the object
whose contents we're interested in will be an identifiable object such as a register, so that we
might speak of the contents of Register 1 as c(R1). At other times we may speak of the con-
tents of something whose actual form or location is not precisely known, such as an area of
memory that has been given the name AREA; in this case we still use the notation c(AREA).

• Some words have similar but different meanings. For example, the word “operand” is used in
several different senses in most of the literature describing System z and its Assembler Lan-
guage.

1. In the description of instructions in the z/Architecture Principles of Operation, an operand
is the object being operated on, or is involved in the instruction. For example, in

LM R1,R3,S2
the contents of general register designated by R1 is the first operand, and the contents of
storage addressed by S2 is the second operand. Note that operand numbers may not corre-
spond to their sequential position!

2. In an Assembler Language statement, an operand is defined by its position in the operand
field. For example, in

LM 2,12,SAVE

the first operand is 2, the second operand is 12, and the third operand is the symbol SAVE.
Note the difference in operand numbering compared to the z/Architecture Principles of
Operation description!

3. During execution, an operand is the subject of an operation: an operand is something
being acted on or operated on by an instruction as it is executed in the processor. For
example, in

LM 2,12,SAVE

one operand is the contents of general register 2, and another operand is the contents of
memory named by the symbol SAVE.

We'll try to clarify these differences; the intended sense will be usually clear from the context in
which the word appears.

• Sometimes we need to indicate positions where a blank or space character should appear.
Rather than use a blank “ ” character, we sometimes use a “•” character. For example,

John•Q.•Public
has a blank on each side of the middle initial.

• Sometimes we refer to the “euro” character. Because this document formatter doesn't have
that exact character, we use ∈ as the best available approximation.

Exercises

1.1.1.(1) What is the total width of the fields illustrated in Figure 1 on page 12?

1.2. Instruction Elements

We will often refer to parts of a machine instruction. In the z/Architecture Principles of
Operation, you will see notations like

R1,R2 or D2(X2,B2) or M1 or I2 or L1
where the subscripted letters specify numeric values appearing in the fields of a machine instruc-
tion. They are simply a way to indicate numbers that you or the assembler must provide. In
particular:

• A notation like “R1” is simply a number that usually denotes any register, not “register
number 1”.

Chapter I: Getting Started 13

• “GR R1” means the general register denoted by the number used in place of R1.

• “GR1” means general register 1.

We'll clarify these and other details as we proceed.

1.2.1. Register Names

We refer regularly to registers, using small numbers like 0, 12, etc. Some people like to use
“names” like R0 and R12 for them. They can be helpful, but can also be very misleading, because
“R0” isn't really a register name; it's only a name for a number. (Some exercises will help you
understand why it can be misleading.) I don't want you to develop a habit of thinking that names
like “R0” always mean “register 0”. I prefer to use just numbers like “0” or “12” to designate
register names.8 That said, we will sometimes refer to a specific register using terms like R0 and
R12, meaning specifically general registers 0 and 12.

Unlike some other processors and their assemblers, there are no reserved register names or
symbols in the System z Assembler Language.

Exercises

1.2.1.(1) If R1 has value 9, what register is referenced by GR R1?

Terms and Definitions
algorithm

A finite sequence of well-defined steps for solving a problem. After al Khwarizmi, a nick-
name of the 9th century Persian astronomer and mathematician Abu Jafar Muhammad ibn
Musa, who authored many books on arithmetic and algebra. He worked in Baghdad and his
nickname alludes to his place of origin, Khwarizm (Khiva), in present-day Uzbekistan and
Turkmenistan.

architecture
A description of “the attributes of a system as seen by the programmer, i.e., the conceptual
structure and functional behavior, as distinct from the organization of the data flow and con-
trols, and the physical implementation.”9

assembler
A program that translates programs written in Assembler Language to machine language
instructions and data.

Assembler Language
A lower-level language allowing programmers maximum freedom in specifying processor
instructions, providing powerful “macro instruction” facilities supporting encapsulation and
economy of expression.

blank
A nonempty, finite-width invisible character; a space. In contexts where explicit blank spaces
appear, we sometimes use the “•” character.

HLASM
IBM's High Level Assembler for z/OS and z/VM and z/VSE. The assembler we describe
here.

8 One reason for using symbolic register names was that all early assemblers' “Symbol Cross Reference” (a list of all
symbols used in your program) showed the places where the names were used — and searching the cross-reference
might be the only way to know which instructions might have referenced specific registers. The IBM High Level
Assembler for z/OS & z/VM & z/VSE provides a “Register Cross Reference” showing where the general registers
were used, whether or not they were named. So, it's no longer necessary to “name” registers.

9 G.M. Amdahl, G.A. Blaauw, and F.P. Brooks, Jr. Architecture of the IBM System/360, IBM Journal of Research
and Development Vol. 8 No. 2, 1964, reprinted in IBM Journal of Research and Development Vol. 44 No. 1/2,
January/March 2000.

14 Assembler Language Programming for IBM System z™ Servers Version 2.00

operator
A character specifying a mathematical operation: + for addition, − for subtraction, * or × for
multiplication, and / or ÷ for division.

space
A nonempty, finite-width invisible character; a blank character. In contexts where explicit
blank spaces appear, we sometimes use the “•” character.

Chapter I: Getting Started 15

2. Binary and Hexadecimal Numbers

 2222222222
222222222222
22 22

22
22
22

22
 22

22
22
222222222222
222222222222

In this section we examine number representations and methods for converting numbers in those
representations to and from decimal. Then we examine arithmetic using numbers in the binary
representation.

System z, like most other digital computers, uses binary—base two—numbers for most internal
arithmetic. A binary digit takes only values 0 and 1; because it is relatively simple to build a
mechanical or electrical device representing a binary digit, the binary representation is quite
natural. For example, a 1 digit may be represented by the presence of a current through a circuit
component or by the presence of a positive voltage at some point. Facility with binary numbers is
fundamental to understanding the basic operations of System z, so it is important to understand
the binary number representation.

For now, all numbers are assumed to be integers. This means that the “decimal point” (the
“radix point” or “binary point”) lies at the right end of the number. We will discuss nonintegral
(fractional) numbers in Sections 29 and 31.

We are familiar with numbers using radixes other than 10. Times (and angles) measure minutes
and seconds using radix 60; hours are counted using radix 24; and before The United Kingdom
changed to a decimal monetary system: radix 20 for shillings and radix 12 for pence. Binary is
easier.

2.1. Positional Notation and Binary Numbers

In base ten, writing a number such as “1705” means the quantity

1000 + 700 + 00 + 5,

which can also be written as

1×1000 + 7×100 + 0×10 + 5×1,
or as

1×103 + 7×102 + 0×101 + 5×100.

That is, each digit position as we move to the left is weighted by one more power of the base, ten.

16 Assembler Language Programming for IBM System z™ Servers Version 2.00

Similarly, when in binary notation we write “11010” we mean

10000 + 1000 + 000 + 10 + 0,

1×24 + 1×23 + 0×22 + 1×21 + 0×20,

1×16 + 1×8 + 0×4 + 1×2 + 0×1
which is not the same as what is meant by the decimal number 11010, where powers of ten are
understood. In fact, the binary number 11010 is the representation (in the number system with
base two) of the decimal number 26: the sum in this example is 16+8+2.

To clarify which base is intended we use a notation like the Assembler's: if base 10 is intended,
the digits are written normally; if base 2 is intended, the binary digits are preceded by a “B” and
an apostrophe, and are followed by an apostrophe. For example:

26 = B'11010', 1 = B'1', 10 = B'1010', 8 = B'1000', 999 = B'1111100111'.

Positional notation can be used for any base (or radix). For example, if humans had only one
hand we might use base 5 for numbering, so that 1413 in base 5 would have decimal value 233 (in
our ten-finger decimal world):

14135 = 1×53 + 4×52 + 1×51 + 3×50

= 125 + 100 + 5 + 3
= 23310

Exercises

2.1.1.(1)+ Determine the decimal value of the following binary numbers: (a) B'000010110', (b)
B'000101100', (c) B'10101010', (d) B'1111111'.

2.1.2.(1)+ Suppose a binary number is represented by a single 1-bit followed by a string of n
zero bits (100...00). What is its value?

2.1.3.(2) Suppose a binary number is represented by a string of n one bits (111...11). What is
its value?

2.2. Hexadecimal Numbers

As values become larger, the number of binary digits required becomes larger also (over three
times as many bits as decimal digits), so we use a more compact notation for binary numbers. If
we consider groups of four binary digits at a time, the possible decimal values that can be repres-
ented run from zero to fifteen. If we then represent each of these groups by the “digits” 0, 1, 2, 3,
4, 5, 6, 7, 8, 9, A, B, C, D, E, F, we can establish the correspondences shown in Table 1 on
page 18. (The letters A through F are a natural choice for “digits”, but we could actually have
chosen any other six symbols to represent the “digits” to which we assign the values 10, 11, ...,
15.10)

We use the same positional notation for base 16 number representation as for decimal and binary
numbers. Thus, we can write the base 16 number A97E16 as

A×163 + 9×162 + 7×161 + E×160,

or

10×163 + 9×162 + 7×161 + 14×160 = 10×4096 + 9×256 + 7×16 + 14 = 43390.

10 In fact, some early computers such as the ILLIAC I used the characters K, S, N, J, F, and L because those letters
had the required binary 4-bit hole combinations on 5-hole punched paper teletype tape. (Remembering those six
letters was helped by the phrase “Kind Souls Never Josh Fat Ladies”.)

Chapter I: Getting Started 17

Why use something as unfamiliar as a base-sixteen representation for numbers that are binary in
nature? Base 16 is compact and convenient for expressing long strings of binary digits, and a
natural representation for System z. Other groupings are possible; another form is “octal”, or
base eight, in which the binary digits are grouped by threes.11

The base sixteen digits in the third column are called hexadecimal12 or hex digits, and we use them
in most situations when we need to refer to binary numbers. As with binary numbers, a notation
similar to the Assembler's will denote hexadecimal quantities: the hexadecimal digits are preceded
by an “X” and an apostrophe, and are followed by an apostrophe. For example:

26 = B'11010' = X'1A', X'26' = B'100110' = 38,

1 = B'1' = X'1', 10 = B'1010' = X'A',

B'1000' = 8 = X'8', 100 = X'64' = B'1100100'.

Converting numbers between binary and hexadecimal representations is easy:

• To convert a hexadecimal number to binary, substitute for each hexadecimal digit the four
binary digits it represents.

• To convert a binary number to hexadecimal, group the binary digits four at a time starting
from the right (adding extra zeros at the left end if needed), and substitute the corresponding
hexadecimal digit.

For example:

X'D5B' = B'1101 0101 1011' (hexadecimal to binary),

B'11 1110 1000' = X'3E8' (binary to hexadecimal).

In the second example we could add two extra binary zero digits at the left or “high-order” end of
the number without affecting its value; similarly, we can omit high-order zero digits, and write

X'11' = B'10001' (rather than B'00010001').

Table 1. Binary, decimal, and
hexadecimal

Binary
Digits

Decimal
Value

Hex
Digit

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

11 Processors whose word lengths were “natural” multiples of 3 included the IBM 70x and 709x processors with 36-bit
words, and several Control Data Corporation (CDC) processors with 48-bit words. Most processors now have word
lengths that are a multiple of 8 bits.

12 The correct term for base 16 is “sexadecimal” (or even “hexadecadic”), but you can understand that abbreviating the
term “sexadecimal” would not be appropriate for dignified corporations.

18 Assembler Language Programming for IBM System z™ Servers Version 2.00

Don't omit zeros on the right! That is, B'00111100' ≠ X'F'.

Converting between decimal and hexadecimal representations is more cumbersome; it is simplest
to use Tables 2 and 3 starting on page 20 below, and the tables in “Appendix A: Conversion and
Reference Tables” on page 995. The following section discusses general methods for converting
integers from one base to another; if you are satisfied to use the tables, the next section may be
skipped.

We use these abbreviations regularly: bit means “binary digit”, and hex is an abbreviation for
“hexadecimal”.

Exercises

2.2.1.(1) Convert the following hexadecimal numbers to binary: (a) X'A', (b) X'2B', (c) X'3E8'.

2.2.2.(1) Make a table similar to Table 1 on page 18 showing binary, decimal, and octal (base
8) values.

2.2.3.(2) In grouping bits to form hex digits, why can't we start at the left? That is, why do we
begin grouping at the radix point?

2.2.4.(2)+ Create addition and multiplication tables for single hexadecimal digits.

2.2.5.(1) Convert the following octal numbers to hexadecimal:

1. 21474
2. 77777
3. 1750
4. 60341303
5. 4631

2.2.6.(3) You may have noticed that the characters in many cartoons and comics have only four
fingers. To help them with “cartoon arithmetic”, create base-8 (octal) addition and multipli-
cation tables.

2.3. Converting Integers from One Base to Another (*)

In our familiar notation, a string of digits like 73294 in some base A means

7×A4 + 3×A3 + 2×A2 + 9×A1 + 4×A0.

Using symbols, the digit string

dn ... d3 d2 d1 d0

is the representation in some base A of a number X:

X = dn×An + ... + d3×A3 + d2×A2 + d1×A1 + d0×A0.

The subscripts on the digits d match the power of the base A. If A has value 10, then the digit
string 73294 is the familiar decimal number seventy-three thousand, two hundred ninety four.

Suppose we want to convert X from its representation in base A to its representation in a new
base B, with digits e0, e1, e2, etc.:

X = em×Bm + ... + e3×B3 + e2×B2 + e1×B1 + e0×B0.

We know the old and new bases A and B, and the digits dk of the old representation. To find the
digits ek of the new representation, we use the following scheme;

1. Divide X (in base A notation and arithmetic) by the new base B; save the quotient. The
remainder is the low-order digit e0. This can be seen from the definition of the quotient and
remainder:

Chapter I: Getting Started 19

X = B × Quotient + Remainder
= B × [em×B(m-1) + ... + e3×B2 + e2×B1 + e1×B0] + e0.

where the term in square brackets is the quotient.

For example, taking A to be 10 and B to be 16, we convert 73294 to hex:

X = 73294 = 16 × Quotient + Remainder = 16 × 4580 + 14,
so e0 = 14 = X'E'.

2. Now, divide the saved quotient by B; save the new quotient, and the new remainder is e1.

In our example, dividing 4580 by 16 gives quotient 286 and remainder 4, the value of the
next digit, e1.

3. Continue this process until a zero quotient is obtained. The successive remainders are the
desired digits e0, e1, ..., em; they were obtained in order of increasing significance, from right
to left.

Continuing to divide by 16 in our example, we obtain remainders 14, 1, and 1; these are the
digits e2, e3, and e4 respectively. The result of this sample conversion shows that 73294 (base
10) has value 11E4E (base 16).

Our most frequent conversions are between decimal and binary or hexadecimal; use Tables 2 and
3, or the conversion tables in Appendix A.

1. If the number is small enough, find it in the conversion tables.

2. For larger numbers,

a. To convert from hex to decimal, find each digit's decimal value in the tables in Tables 2
and 3, and evaluate the sum.

b. To convert from decimal to hex, find the largest power of 16 in the tables that is less
than or equal to your number, subtract that number, and note the corresponding hex
digit. Repeat, writing the hex digits from left to right. The following example shows how
to do this for the decimal value 1000:

1000
-768 hex digit 3
 232
-224 hex digit E

8
-8 hex digit 8
0

so that 1000 (decimal) is X'3E8'.

Table 2. Multiples of powers of sixteen (part 1 of 2)

Hex Digit × 160 × 161 × 162 × 163 × 164

1 1 16 256 4,096 65,536
2 2 32 512 8,192 131,072
3 3 48 768 12,288 196,608
4 4 64 1,024 16,384 262,144
5 5 80 1,280 20,480 327,680
6 6 96 1,536 24,576 393,216
7 7 112 1,792 28,672 458,752
8 8 128 2,048 32,768 524,288
9 9 144 2,304 36,864 589,824
A 10 160 2,560 40,960 655,360
B 11 176 2,816 45,056 720,896
C 12 192 3,072 49,152 786,432
D 13 208 3,328 53,248 851,968
E 14 224 3,584 57,344 917,504
F 15 240 3,840 61,440 983,040

20 Assembler Language Programming for IBM System z™ Servers Version 2.00

The binary powers 210, 220, and 230 are often abbreviated by the letters “K”, “M”, and “G”.
Thus, it is common to refer to the decimal number 4,096 = 212 as “4K”. Similarly, 3×220 might
be referred to as “3M”. Thus, for example, an area of memory (which we'll discuss in Section
3.1) containing 8,192 storage locations might be said to contain “8K bytes” or “8 K-bytes”.13

Exercises

2.3.1.(2)+ Convert these numbers from the given base to the new bases.

1. 26293 (base 10) to bases 2, 4, 8, and 16.
2. X'2FACED' (base 16) to bases 10 and 2.
3. X'BABEF00D' (base 16) to bases 10 and 8.
4. X'C0FFEE' (base 16) to bases 10 and 2.

2.3.2.(2) Convert the following to decimal.

1. X'7FFFFFFF'
2. X'C1C2C3'
3. X'4040405C' (This digit pattern will reappear in other forms!)

2.3.3.(3) Make a table of the hexadecimal values of the squares of the integers from 1 to 32.

2.3.4.(2)+ Convert the following hexadecimal numbers to decimal.

1. X'257'
2. X'7FFA'
3. X'8008'
4. X'E000'
5. X'FFFA'
6. X'E1010'

2.3.5.(3) Suppose we must convert a number from its representation in base A to its represen-
tation in base B. In which base will it be most convenient to do the arithmetic involved in the
conversion? How does the result depend on the base used for the conversion?

2.3.6.(2) Convert these octal (base 8) numbers to base 10: (a) 5061, (b) 257, (c) 192. Work
carefully!

Table 3. Multiples of powers of sixteen (part 2 of 2)

Hex Digit × 165 × 166 × 167

1 1,048,576 16,777,216 268,435,456
2 2,097,152 33,554,432 536,870,912
3 3,145,728 50,331,648 805,306,368
4 4,194,304 67,108,864 1,073,741,824
5 5,242,880 83,886,080 1,342,177,280
6 6,291,456 100,663,296 1,610,612,736
7 7,340,032 117,440,512 1,879,048,192
8 8,388,608 134,217,728 2,147,483,648
9 9,437,184 150,994,944 2,415,919,104
A 10,485,760 167,772,160 2,684,354,560
B 11,534,336 184,549,376 2,952,790,016
C 12,582,912 201,326,592 3,221,225,472
D 13,631,488 218,103,808 3,489,660,928
E 14,680,064 234,881,024 3,758,096,384
F 15,728,640 251,658,240 4,026,531,840

13 More properly, the abbreviations K, M, and G refer to the closest powers of 10: one thousand = 1K = 103, one
million = 1M = 106, etc. To avoid this confusion, you can use the more precise terms “Ki”, “Mi”, and “Gi” to
refer to the binary powers. But few computer people bother.

Chapter I: Getting Started 21

2.3.7.(2) What decimal values are represented by the binary numbers 9K, 5M, and 2G?

2.4. Examples of General Conversions (*)

We will use the division methods described in the previous section to illustrate conversions from
one base to another.

1. Convert 19 (base 10) to base 2.

9 4 2 1 0
2)19 2)9 2)4 2)2 2)1

18 8 4 2 0
1=e0 1=e1 0=e2 0=e3 1=e4

Hence, 19 = B'10011'.

2. Convert 1000 (base 10) to base 16. (The conversion arithmetic is done in base 10.)

62 3 0
16)1000 16)62 16)3

 992 48 0
 8=e0 14 (X'E')=e1 3=e2

Hence 1000 = X'3E8'.

3. Convert 627 (base 10) to base 9.

69 7 0
9)627 9)69 9)7

621 63 0
6=e0 6=e1 7=e2

so that 627 (base 10) = 766 (base 9).

4. Convert 766 (base 9) to base 7. First, we convert to base 10, and then do the arithmetic in
decimal:

766 (base 9) = 7×81 + 6×9 + 6 = 567 + 54 + 6 = 627 (base 10)

89 12 1 0
7)627 7)89 7)12 7)1

623 84 7 0
4=e0 5=e1 5=e2 1=e3

so that 766 (base 9) = 1554 (base 7).

If you are mathematically inclined:

Just for fun, now do the conversion in base 9:

 108 13 1 0
7)766 7)108 7)13 7)1

762 103 7 0
4=e0 5=e1 5=e2 1=e3

Thus 766 (base 9) = 1554 (base 7) again. This shows that you can
do base conversion using any (other) base for the arithmetic.

5. Convert 1413 (base 5) to base 10. This is simplest if we expand the positional notation:

1413 (base 5) = 1×125 + 4×25 + 1×5 + 3 = 23310.

22 Assembler Language Programming for IBM System z™ Servers Version 2.00

If you are still (or very) mathematically inclined:

Alternatively, since 10 (base 10) = 20 (base 5), we can do the con-
version in base 5 arithmetic:

43 2 0
20)1413 20)43 20)2

130 40 0
113 3=e1 2=e2
110
3=e0

Again, we find 1413 (base 5) = 233 (base 10).

6. Convert X'3E8' to base 10. In this case it is simpler to evaluate the positional notation:

X'3E8' = 3×162 + 14×161 + 8×160,

and then evaluate this sum in decimal. Thus we find

X'3E8' = 3×256 + 14×16 + 8 = 768 + 224 + 8 = 1000.

This type of conversion can be simpler if you use the table of multiples of powers of 16 in Tables
2 and 3, or the conversion tables in Appendix A.

Exercises

2.4.1.(2) Perform the indicated conversions. For number bases greater than 10, assume that the
“digits” corresponding to 10, 11, 12, etc., are represented by the letters A, B, C, etc., respec-
tively.

1. Convert 31659 (base 10) to bases 8, 4, and 2.
2. Convert 6917 (base 10) to bases 5, 13, and 16.
3. Convert X'EF2A' (base 16) to bases 10 and 13.

2.4.2.(2)+ Make a table of the hexadecimal representations of the first ten powers of ten, from
100 to 109. (Suggestion: use hexadecimal arithmetic, and multiply each term by X'A' to obtain
the next.)

2.4.3.(3) Make a table like those in Tables 2 and 3, except that the nine multiples of the powers
of ten from 0 to 9 should be expressed in hexadecimal notation.

2.4.4.(3) Convert B'1111101000' to base 10 using binary arithmetic (that is, divide by B'1010').

2.4.5.(3) Convert 73294 (base 10) to bases 11, 12, 13, 14, and 15. Can you make any use of the
result of converting to base N to help in converting to base N+1?

2.4.6.(3) Make a base seven multiplication table. Use it to perform the following conversions
directly, without first converting to base ten: (1) 526 (base 7) to base 16, (2) 10110 (base 7) to
base 8, (3) 61436 (base 7) to base 8, (4) 666 (base 7) to base 10.

2.4.7.(2) Convert 629 (base 11) to bases 10 and 12.

2.4.8.(3) In converting from some base A to base 10, it is usually most convenient to expand
the positional notation as illustrated in Examples 5 and 6 of Section 2.4. We can also expand
the positional form by rewriting it in “nested” form:

X = (((...(dn×A)+...+d3)×A+d2)×A+d1)×A+d0.

That is, the leftmost digit is multiplied by A, the next digit is added to it and the result is multi-
plied by A, and so forth until the rightmost digit has been added. Using this technique, perform
the following conversions.

1. 2F3 (base 25) to base 10.
2. 61436 (base 8) to base 10.

Chapter I: Getting Started 23

3. X'DEFACE' (base 16) to base 10.
4. 999 (base 10) to base 16.

2.4.9.(2) In applying the “nested multiplication” technique of the previous exercise to conver-
sions from base A to base B, what base should be used for the conversion arithmetic?

2.4.10.(3) Using the base seven multiplication table you made in Exercise 2.4.6, perform the
following conversions in base 7 arithmetic: (1) 526 (base 10) to base 16, (2) 10110 (base 2) to
base 5, (3) 61436 (base 8) to base 10, (4) 666 (base 10) to base 7.

2.4.11.(3) Write the decimal value 8 in bases 8, 7, 6, 5, 4, 3, 2, and 1.

2.4.12.(3) If you have two numbers in bases A and B, what is a necessary relationship between
A and B that will allow you to use the same “digit grouping” technique you used to convert
between binary and hexadecimal?

2.4.13.(3) Show the value of 1610 in bases 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, and 3.

2.4.14.(4) Using base 7 arithmetic, calculate the sum and product of 4357 and 647. First,
convert those two numbers to base 10 and then add and multiply the results in base 10; then
use those results to test that you have evaluated the base 7 sum and product correctly.

2.4.15.(2) Convert the following decimal values to base 3: 2, 6, 10, 12, 16, 28, 41, 99, 104.

2.5. Number Representations

Now that we know how to convert numbers between binary and hexadecimal, we will see how
they are used in System z for address calculations, indexing, and integer arithmetic. Up to now,
we have examined the binary number representation only for nonnegative numbers; representing
negative numbers requires further consideration.

There are three fixed-point (integer) number representations in common use: the radix-
complement, the sign-magnitude, and the diminished radix-complement representations. In prac-
tice, the widely-used radix-complement representation is called the two's complement
representation, and the diminished radix-complement representation is called the ones' complement
representation.14 Two of these representations are used in System z: the two's complement form is
used for addressing and integer arithmetic, and the sign-magnitude form is used for floating-point
and packed decimal numbers. A variation of the radix-complement form is used internally for
packed decimal arithmetic, which we'll see in Chapter VIII.

With so many representations, you might wonder why the System z designers settled on two's
complement. The reason follows from the processor's “architecture”: since virtually all computers
use the two's complement representation for address arithmetic, and because in System z the
general registers are used for both arithmetic and addressing, it is natural that ordinary integer
arithmetic has the same form.

We will illustrate the following discussion using 32-bit numbers, corresponding (as we shall see) to
the length of a word in memory and half the length of a general register.15

14 Why is it called “two's complement”? The name of the ones' complement representation seems obvious: just comple-
ment each bit by subtracting it from 1 (or, change 0 to 1 and 1 to 0); but we don't get the two's complement by
subtracting each bit from 2! We'll explain this oddity shortly.

15 z/Architecture provides 64-bit general registers, but for now our examples will use the 32-bit length.

24 Assembler Language Programming for IBM System z™ Servers Version 2.00

2.6. Logical (Unsigned) Representation

To begin, we examine what is represented by the rightmost 32 bits of any nonnegative integer.

Thus, if a number is less than 232, its value can be held correctly in the 32 available bits. If it is
greater than or equal to 232, some significant bits are lost off the left end. (That is, the number's
value is represented modulo 232.) Some instructions perform unsigned addition and subtraction
with numbers that satisfy the inequalities

0 ≤ x ≤ 232-1.

Such arithmetic is called logical or unsigned arithmetic; we call this the logical or unsigned repre-
sentation of binary numbers. If the 32 bits of a logical binary integer are denoted b31,b30,...,b1,b0
(this temporary scheme is the reverse of the field-numbering convention introduced in Figure 1
on page 12), then the value X represented by the binary digits b31b30...b1b0 is

X = b31×231 + b30×230 + ... + b2×22 + b1×21 + b0×20

in the logical representation. This is the most common numeric interpretation of a string of bits.

The representation of a nonnegative 32-bit number less than 231 is the same in the sign-
magnitude, ones' complement, and two's complement representations (and is also the same as its
logical representation), no matter which of the three forms is chosen to represent negative
numbers. Since the two's complement representation is used for most integer arithmetic in
System z, we will investigate its properties in detail. Arithmetic using binary numbers in this
representation will be covered shortly.

Exercises

2.6.1.(2)+ Give the decimal value of the following hexadecimal numbers in the logical represen-
tation:

1. X'DEADBEEF'
2. X'FFFFFFFF'
3. X'DEC0DED1'

This is represented
by:

0 X'00000000'
1 X'00000001'

130 X'00000082'
224 −1 X'00FFFFFF'
231 −1 X'7FFFFFFF'

231 X'80000000'
232 −1 X'FFFFFFFF'
232+ 1 X'100000001'

2.7. Two's Complement (Signed) Representation (*)

This section describes the mathematical justification for the two's complement representation.
You can skip to Section 2.8 where a simple “recipe” for calculating the two's complement of a
number is shown on page 27.

Most programs must deal with both positive and negative numbers. A single bit (usually, the left-
most) is used to represent the number's sign. A 0 bit represents a “ +” sign, and a 1 bit represents
a “ −” sign.

First, the two's complement representation of a 32-bit nonnegative binary integer Y satisfying the
inequalities

0 ≤ Y ≤ 231−1 (numbers within that range with a “+” sign bit)
is the same as the logical representation. 231 −1 is the largest integer that can be represented using
31 bits; the remaining (32nd) digit at the left end is zero, the sign digit.

Chapter I: Getting Started 25

Now, consider negative numbers. The two's complement representation of a negative integer Y
satisfying the inequalities

−231 ≤ Y ≤ −1 (numbers within that range with a “−” sign bit)
is simply 232 +Y. The bit pattern representing this value can be found this way. The leftmost bit
is set to 1 to indicate that the number is negative, and the remaining 31 bits are set to the binary
representation of the nonnegative integer (231+Y). The result therefore satisfies the inequalities

0 ≤ 231+Y ≤ 231−1.
The reasons for representing negative numbers this way are not obvious, but we will see that it
leads to very simple rules for performing arithmetic on signed binary numbers.

In effect, we have done the following: if Y is positive, we find its value by adding the individual
terms (bi×2i); because the leftmost (sign) bit is zero, it does not contribute to the sum. If Y is
negative, the sum of the rightmost 31 bits is (231+Y), and the leftmost bit is 1. Now, if we assign
value −231 to the sign bit, we can combine these to obtain

Y = (−231)×b31 + b30×230 + ... + b2×22 + b1×21 + b0×20,

where the digits b30 through b0 are the representation of 231+Y, not the representation of |Y|,
the absolute value of Y. This formula is almost the same as that used for the logical represen-
tation, except that the leftmost bit has negative “weight”. (There are good reasons to assign −231

to the sign bit.)

Finally, we will see how the representations of positive and negative numbers work together. The
relationship between the logical and two's complement representations is seen by examining the
above sum for the logical representation of X:

Xlogical = b31×231 + b30×230 + ... + b2×22 + b1×21 + b0×20.

If b31 is zero, the logical and two's complement representations yield the same value, and
Yarith = X logical. Now, suppose we are given the 32-bit two's complement representation of a
negative number Yarith, and we want to know the value those 32 bits would represent if we con-
sider them as the logical representation of a number Xlogical. Since bit b31 is 1, indicating a nega-
tive number, and we represent the remaining 31 bits of Yarith by (Yarith +231), we find that

Xlogical = 231 + (Yarith + 231) = (Yarith + 232) (modulo 232).

This is interesting: because we can only represent numbers less than 232 in the 32-bit logical repre-
sentation, Yarith +232 for nonnegative Y must have the same bit pattern as Xlogical, since the extra
(232) bit is lost. Thus, for

0 ≤ Xlogical ≤ 232−1 and −231 ≤ Yarith ≤ 231−1,
we have the following key relation between the logical and two's complement representations:

Xlogical = (Yarith + 232) (modulo 232).

That is, the bit pattern corresponding to the two's complement representation of any positive or neg-
ative number −231 ≤ Y ≤ + 231 −1 is the rightmost 32 bits of the sum 232 +Y (modulo 232).

Why it is called “two's” complement?

This equation is the original source of the term “two's complement”. In
the earliest computers it was customary to treat binary numbers as frac-
tions: the representation was the same as just described, except that the
“binary point” or “radix point” was assumed to lie just to the right of the
sign bit rather than at the right-hand end of the number, so that values
were in the range −1 ≤ value < +1. The equation giving the relation-
ship between logical and arithmetic representations was then written

X = Y + 2 (modulo 2),

so that the representation of a negative number was obtained by finding
its complement with respect to 2: its “two's” complement.

26 Assembler Language Programming for IBM System z™ Servers Version 2.00

Calculating the two's complement representation of a negative number is very cumbersome if we
follow the above steps for any negative number Y: we would first have to calculate the binary
representation of the positive quantity 231+ Y . But calculating (231 −1+Y)+1 instead is very
simple, because the representation of 231 −1 is exactly 31 one-bits. Now, because Y is negative,

231−1 + Y = (231−1) − |Y|.

Thus |Y|, the magnitude of Y, is subtracted from a string of 31 one-bits. But wherever |Y| has a
one bit, the resulting difference bit will be zero, and vice versa. Thus, there is no need to subtract!
Just change each of the 31 bits of |Y| to its opposite (namely the result of subtracting it from 1),
and we have the value of 231 −1− |Y|. This result is called the “ones' complement” of |Y|. Finally,
we add 1 to the rightmost bit position to get 231+Y, set the leftmost bit (the sign bit) to 1, and
we are done.

If Yarith was nonnegative, complementing all 32 bits automatically sets a 1-bit in the sign; and if
Yarith was negative, complementing all 32 bits sets the sign to zero. So, we don't have to do
anything special with the sign bit!

This simple method lets us find the binary representation (in the two's complement represen-
tation) of a negative number, as we will see in the next section.

Exercises

2.7.1.(3) Convert X'AB0DE' to base 15, using hexadecimal arithmetic throughout.

2.7.2.(3) We saw that the radix-complement representation of a number Y in radix r with n
digits is

rn+Y (modulo rn)

Suppose r=10 and n=4. Show the ten's-complement representation of the following values,
and indicate which are and are not validly representable.
(1) +729, (2) −729, (3) −1, (4) +9999, (5) −5000, (6) +5000, (7) −9999.

2.7.3.(2) What is the decimal value of the 12-bit binary number 100000000001 in a signed two's
complement representation?

2.7.4.(3) Based on your results of Exercise 2.7.3, give an expression for the value of the n-bit
binary number 10000...000001 in a signed two's complement representation.

2.7.5.(3)+ Knowing the logical representation of the three numbers in Exercise 2.6.1, convert
them to their signed decimal representation.

2.8. Computing Two's Complements

A simple scheme for computing two's complements is based on the observation that the represen-
tation of a negative number Y is simply 232 − |Y|.

Two's-Complementation Recipe

Given a binary number Y, to find the two's complement representation
of −Y:

1. Take the ones' complement of all bits of Y: change 0 digits to 1,
and 1 digits to 0.

2. Add 1 in the low-order (rightmost) position, and ignore carries out
of the leftmost position.

These two examples do the arithmetic with eight binary digits rather than thirty-two.

1. Find the two's complement representation of −2.

Chapter I: Getting Started 27

(1) representation of +2: 0000 0010
(2) form ones' complement: 1111 1101
(3) add one: + 1

1111 1110

2. Find the two's complement representation of −75.

(1) representation of +75: 0100 1011
(2) form ones' complement: 1011 0100
(3) add one: + 1

1011 0101

This recipe also works in the opposite direction.

3. Find the two's complement representation of B'11111110' (−2).

(1) form ones' complement: 0000 0001
(2) add one: + 1

0000 0010

This is the binary representation of +2; thus the two's complement of the two's complement of a
number is the original number. So, our recipe for computing complements does not depend on
the sign of the original operand.

Two unusual cases arise during complementation when all the bits except the sign bit are zero:
the complemented result is the same as the original operand.

4. Find the two's complement representation of B'00000000'.

(1) form ones' complement: 1111 1111
(2) add one: + 1

(carry one off left end) 0000 0000

The result is zero, and the carry of a 1 bit out the left-hand end is lost. Thus the negative of zero
is still zero. This is mathematically satisfying: there is no negative zero.16

5. Find the 8-bit two's complement representation of B'10000000'.

(1) form ones' complement: 0111 1111
(2) add one: + 1

1000 0000

In this case, the complement of the number is also the same as the original number. This partic-
ular number, a negative sign bit with all other bits zero, is called the “maximum negative
number”. It is well defined, and behaves normally in all arithmetic operations except that is has
no representable negation.

The maximum negative number has no corresponding positive value available for the represent-
able negative value. We say that we have generated an overflow condition—the result is too large
to fit into the number of bits allotted for it. Overflow will be treated in more detail in the fol-
lowing sections on two's complement arithmetic.

Some examples of numbers in the 32-bit arithmetic representation are shown in Table 4 on
page 29.

16 Some older computers used the ones' complement representation for binary integers, so negative zeros were possible.
System z packed decimal and floating-point numbers (discussed in Chapters VIII and IX) support negative zeros.

28 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 4. Examples of two's complement representation

The number of values with positive sign is the same as the number of values with negative sign,
since every bit may be chosen arbitrarily. Because zero has a positive sign bit, it is sometimes
treated as a positive number, even though (mathematically) it has no sign. If we exclude zero as a
positive number, then there is one fewer member of the set of positive values than of the set of
negative values, since there is no representation for +231. With 32 bits, we can represent 232

values: between −1 and −231 there are 231 values; 0 is a single value; between +1 and +231 −1
there are 231 −1 values. The total number of possible signed values is therefore 231+ 1 + (2 31 −1),
or 232.

Unfortunately, the terminology used to describe this process can be confusing. We are actually
describing the mathematical operation of negation that turns a value into its negative. For other
number representations, the operation that forms the negative of a number will be different,
because there are many ways to represent a negative number. However, sometimes
complementation is used to describe the operation of negation! For example, we often talk about
the binary representation of some number, and then say that in negating that quantity we have
formed its two's complement.

Exercises

2.8.1.(1) Why does the simple two-step prescription for computing complements given above
not depend on the sign of the number being complemented?

2.8.2.(2)+ Give the decimal values represented by each of the following 16-bit numbers,
assuming that the binary values are in two's complement representation:

1. X'0257'
2. X'7FFA'
3. X'8008'
4. X'E000'
5. X'FFFA'

(See Exercise 2.3.4. also.)

2.8.3.(2) It is sometimes said that the complement of a number X is the same as −X. State this
more precisely.

2.8.4.(2) Four 16-bit areas of a program are named A, B, C, and D. Their contents are

c(A) = X'7D40'
c(B) = X'D000'
c(C) = X'15A2'
c(D) = X'800A'

If they are the signed 16-bit two's complement binary representations of four decimal numbers,
determine their decimal values.

Decimal Value
32-bit Two's
Complement

Representation

0 X'00000000'
1 X'00000001'

256 X'00000100'
5000 X'00001388'

+2147483647 (+231 −1) X'7FFFFFFF'
−2147483648 (−231) X'80000000'

−2147483647 (−231+ 1) X'80000001'
−5000 X'FFFFEC78'
−256 X'FFFFFF00'

−2 X'FFFFFFFE'
−1 X'FFFFFFFF'

Chapter I: Getting Started 29

2.8.5.(2) Given the quantities Z = 0, A = 1, B = 9, C = 62, D = 101, E = 255, F = 256,
give the nine-bit (eight bits plus sign) representations of the positive and negative values of each
quantity in the two's complement representation.

2.8.6.(3) Give the 32-bit two's complement representation (in either hexadecimal or binary) of
both the positive and negative values of the following decimal integers: (1) 10, (2) 729, (3)
1000000, (4) 1000000000, (5) 2147483648, (6) 65535, (7) 2147483647.

2.8.7.(3) Sometimes two's complementation is described by these steps:

• Subtract 1
• Complement all bits

Does this differ from the two's complementation recipe given on page 27? Create examples that
show how this form does or does not differ from that recipe.

2.8.8.(1) Give the 16-bit two's complement binary representation of each decimal number in
hexadecimal.

1. +13055
2. −9582

2.8.9.(2)+ Show the 32-bit hexadecimal value of the two's complement binary representation of
each of the following decimal values.

1. +5
2. −97
3. +65795
4. −16777158
5. +16777219
6. −78606

2.8.10.(1)+ Assuming a 16-bit two's complement representation, give the signed decimal values
of these hexadecimal values.

1. X'B00F'
2. X'FFF1'
3. X'0FFF'
4. X'F001'

2.9. Sign Extension

In the representation of nonnegative numbers, an arbitrary number of zero bits may be attached
to the left end of a number without affecting its value. For example, the 8-bit and 16-bit repres-
entations of +9 are

B'0000 1001' and B'0000 0000 0000 1001'

respectively. Similarly for negative numbers, we can add any number of 1 bits at the left without
affecting the value. For example, the 8-bit and 16-bit two's complement representations of −9 are

B'1111 0111' and B'1111 1111 1111 0111'

respectively. Thus, for numbers that can be represented correctly in a given number of bits, the
correct representation using a larger number of bits is found by duplicating the sign bit toward the
left as many places as desired. This is called sign extension, and is illustrated in the following:

30 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 5. Examples of sign extension

We will discuss sign extension again when we examine instructions that perform shifting, and
instructions that perform arithmetic on operands of different lengths.

Exercises

2.9.1.(2) Provide the 32-bit sign extensions in binary and hexadecimal notation of the five items
in Exercise 2.8.2.

Length Representation of +1 Representation of −1

8 bits X'01' X'FF'
16 bits X'0001' X'FFFF'
32 bits X'00000001' X'FFFFFFFF'
64 bits X'0000000000000001' X'FFFFFFFFFFFFFFFF'

2.10. Binary Addition

Though number-representation details may vary slightly from one processor to another, the
methods for performing binary arithmetic remain nearly the same for all processors. Thus the fol-
lowing is slightly more general than if only System z is discussed. The rules for adding binary
digits are:

0 0 1 1
+0 +1 +0 +1
0 1 1 10 (carry)

Adding numbers in the logical representation is simplest, because all the bits are numeric digits
and do not represent signs. The only unusual condition is whether or not a carry occurs out of
the leftmost digit position, which would indicate whether the resulting sum is or is not correctly
representable by the number of bits available.

In the two's complement representation, addition is performed in the same way, but the result is
interpreted somewhat differently.

1. All bits of each operand are added, including sign bits, and carries out the left end of the sum
are lost. (This is the same as for adding numbers in the logical representation.)

2. If the result cannot be correctly represented using the number of digits available, a fixed-point
overflow condition occurs. The actions taken when an overflow condition occurs will vary;
sometimes it can be ignored.

Using signed 4-bit binary values, we know that valid values must lie in the range
−8 ≤ value ≤ +7. we first add B'0010' (+2) to itself, and then we add B'0100' (+4) to itself.

0010 0100
+0010 +0100
0100 (no overflow) 1000 (overflow)

In the first case, 2+2=4, which lies in the representable range for our 4-bit numbers. But in the
second case, 4+4 = −8, because +8 is not representable. That is, the sum has overflowed.

A fixed-point overflow condition is possible only when adding operands of like sign: adding
numbers with opposite signs always produces a representable result (or, as is often said, the result
is in range). When an overflow occurs, the sign of the result is always the opposite of the sign of
the two operands. The actual method used to detect overflow is simpler, since sign-change
detection would require remembering the signs of both operands for comparison against the sign
of the sum. Here is how it's done:

Overflow Detection Recipe

If the carries into and out of the sign bit position disagree, arithmetic
overflow has occurred.

Chapter I: Getting Started 31

There are two kinds of binary addition: arithmetic and logical. They produce identical bit pat-
terns, as we will see in Section 2.14. Overflow is detected only for arithmetic addition, while
logical addition is concerned only with a possible carry out of the high-order bit position.

Exercises

2.10.1.(2)+ Consider adding the 8-bit binary number X'F5' to itself. There is no carry from
X'5'+X'5'=X'A', but there is a carry from X'F'+X'F'=X'1E'. Since the carry out of the low-
order digit position is different from the carry out of the high-order digit position, has overflow
occurred?

2.11. Binary Subtraction

Subtraction is performed by adding the two's complement of the number to be subtracted, the
second operand. That is, A −B is calculated as A+ (−B), where (−B) is the two's complement of
B. A few examples using 8-bit binary two's complement arithmetic will help illustrate addition
and subtraction.

While this prescription is essentially correct, there is a minor but important complication we'll
examine after illustrating the basic scheme. (In Examples 6 and 7, note that the carries into and
out of the high-order bit are different.)

• Example 1.

5-3: 0000 0101
-0000 0011

becomes
0000 0101
+1111 1101

(carry lost) 0000 0010 = 2

• Example 2.

3-5: 0000 0011
-0000 0101

becomes
0000 0011
+1111 1011

(no carry) 1111 1110 = -2

• Example 3.

25-(-17): 0001 1001
-1110 1111

becomes
0001 1001
+0001 0001

(no carry) 0010 1010 = 42

• Example 4.

(-17)-25: 1110 1111
-0001 1001

becomes
1110 1111
+1110 0111

(carry lost) 1101 0110 = -42

32 Assembler Language Programming for IBM System z™ Servers Version 2.00

• Example 5.

-17-(-25): 1110 1111
-1110 0111

becomes
1110 1111
+0001 1001

(carry lost) 0000 1000 = 8

• Example 6.

67-(-93): 0100 0011
-1010 0011

becomes
0100 0011
+0101 1101

(no carry) 1010 0000 = -96 (overflow)

• Example 7.

(-93)-67: 1010 0011
-0100 0011

becomes
1010 0011
+1011 1101

(carry lost) 0110 0000 = 96 (overflow)

• Example 8.

-128-(-93): 1000 0000
-1010 0011

becomes
1000 0000
+0101 1101

(no carry) 1101 1101 = -35

• Example 9.

3-3: 0000 0011
-0000 0011

becomes
0000 0011
+1111 1101

(carry lost) 0000 0000 = 0

The above examples illustrate addition and subtraction and give the expected results. However,
there is one case where the method as given above fails to detect correctly the presence or absence
of overflow, and this occurs when the maximum negative number is being subtracted from some-
thing. (This is the minor complication mentioned previously.)

• Example 10.

1-(-128): 0000 0001
-1000 0000

becomes
0000 0001
+1000 0000

(no carry) 1000 0001 = -127 (no overflow found?)

• Example 11.

-1-(-128): 1111 1111
-1000 0000

becomes
1111 1111
+1000 0000

(carry lost) 0111 1111 = +127 (overflow indicated?)

Chapter I: Getting Started 33

In each of these two last cases, the result seems to be arithmetically correct, but our original over-
flow indication is incorrect. This is because taking the two's complement of the maximum nega-
tive number before adding it has already generated an overflow condition. To see how the
processor can still use our overflow detection scheme as originally described (the carries into and
out of the leftmost bit differ), it is worth examining the actual addition process in slightly more
detail. The next section may be omitted if you are uninterested in such details, but be sure to
learn the “Binary Subtraction Recipe” on page 35.

Exercises

2.11.1.(2) Give the 32-bit integer representation in hexadecimal or binary of the result of the
following operations, where the operands are given as decimal numbers.

1. 10 − (−10)
2. 729−65535
3. 2147483647+2
4. 1000000000+ (−2147483647)
5. 0− (+0)
6. (−10)+10

Do the arithmetic in the two's complement representation, indicating for each case (1) the pres-
ence or absence of overflow, and (2) the presence or absence of a carry out of the leftmost digit
position.

2.11.2.(2) Assume that the values defined in Exercise 2.8.4 are used to compute three 16-bit
numbers X, Y, and Z. Using 16-bit binary arithmetic, determine the final (hex) contents of the
16-bit fields named X, Y, and Z, and whether or not an overflow condition has occurred.

c(X) = c(A) - c(C)
c(Y) = c(B) + c(D)
c(Z) = c(A) + c(D)

2.11.3.(3) Suppose you want to subtract 1 from a binary number. A suggested technique uses
these two steps: (1) change all the rightmost zeros to ones, and (2) change the previous right-
most one to zero. Create examples to show that this technique is or is not correct.

2.11.4.(4) Assume that the method in Exercise 2.11.3 is correct. How can you detect overflow
conditions?

2.11.5.(2) Evaluate each of the following 32-bit sums and differences, and in each case deter-
mine (a) whether an arithmetic overflow occurs, and (b) whether there is a carry out of the
leftmost bit.

1. X'7D26F071'+X'B40E99A4'
2. X'7D26F071'-X'B40E99A4'
3. X'FFFFF39A'+X'FFFE4B06'
4. X'FFFFF39A'-X'FFFE4B06'
5. X'80000003'+X'0000007C'
6. X'80000003'+X'8000007C'

2.12. How Additions and Subtractions Are Actually Performed (*)

Remember that the two's complement of a number (the two's complement representation of the
negation of a number) is found by inverting each bit of the number and then adding a one in the
low-order position. Digital circuits that invert bits are called NOT circuits. Similarly, adding a 1
bit to the low-order digit position is also easy, because each digit position of an adder circuit must
add the corresponding bits of the two input operands A and B, and the carry bit from the next
lower-order bit position, as illustrated in figure 2. as illustrated in Figure 2 on page 35.

34 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌─────────┐
│Bit n of │
│Operand A│
└─┬───────┘

┌────────────┐ ┌────────┐ │┌────────────┐
│ Carry bit │ │ Adder │�───┘│ Carry bit │
│ to Adder │�──┤Position│�────┤from Adder │
│Position n+1│ │ n │�───┐│Position n-1│
└────────────┘ └──┬─────┘ │└────────────┘

┌─────────┐ │ ┌┴────────┐
│Bit n of │ │ │Bit n of │
│ sum A+B │�──┘ │Operand B│
└─────────┘ └─────────┘

Figure 2. One stage of a binary adder

In the lowest-order position of the adder there will be no carry from a lower-order bit position.
However, if an identical adder circuit is used, it still has a carry input that can be used to insert
the 1 bit to be added to the low-order position during a complementation or subtraction opera-
tion! Thus subtraction is simply a matter of passing the second operand through a bit inverter
(forming the ones' complement), and then activating the low-order carry input to the adder to add
the required one-bit.

Binary Subtraction Recipe

Subtraction is performed by adding the ones' complement of the second
operand and a low-order one-bit to the first operand, in a single opera-
tion. The subtraction in Example 10 is evaluated this way:

 1-(-128): 0000 0001 first operand
-1000 0000 second operand

becomes
0000 0001 first operand
0111 1111 ones' complement of second operand
+ 1 complementation bit

(0)1000 0001 (overflow!)

An overflow is indicated because carries into (1) and out of the high-order bit (0) are different.

Exercises

2.12.1.(2) For each of the quantities defined in Exercise 2.8.5 on page 30, compute the fol-
lowing nine-bit values, indicating for each case whether or not there is a carry out of the high-
order digit position, and whether or not an overflow has occurred. (Some of the values may not
be representable; state which.) (1) A +C; (2) D −E; (3) Z + (−F); (4) (−E) −C; (5) (−B) +A; (6)
C −Z; (7) A+ (−A).

2.12.2.(3) In the ones' complement representation, subtraction is sometimes described this way:

• Take the ones' complement of the subtrahend (the number to be subtracted), and add the
operands. Cross off the high-order digit and add 1 to the sum.

• If the subtrahend is greater than the minuend (the number from which the subtrahend is
subtracted), take the ones' complement of the subtrahend, add the operands, then comple-
ment the result and put a minus sign in the high-order position.

Construct some examples showing how this process works, for operands of both signs and of
various magnitudes.

Chapter I: Getting Started 35

2.13. A Circular View of Binary Arithmetic (*)

We'll use a four-bit binary representation to illustrate some concepts we have been discussing.
The “circular” diagram in Figure 3 contains all 16 possible four-bit numbers.

│
o 0100

0101 o │ o 0011
│

0110 o │ o 0010
│
│

0111 o │ o 0001
│

x overflow point │
│ 0000

─────•──────────────────────┼──────────────────────o────
1000 │

│ carry point x
│

1001 • │ • 1111
│
│

1010 • │ • 1110
│

1011 • │ • 1101
• 1100
│

Figure 3. “Circular” representation of two's complement representation

First, suppose the numbers are considered to be the logical representation of the integers from 0
to 15. Counting up from 0000 by one takes us around the circle counter-clockwise from 0000 to
1111 and then back to 0000, as we would expect for numbers modulo 24. Adding and subtracting
two numbers can be thought of as adding and subtracting the angles (measured counter-clockwise
from 0000) represented by the numbers. Thus,

0100 + 0110 = 1010, and 1100 + 0111 = 0011.

A carry condition occurs in addition if we go past the “carry point” in the counter-clockwise
direction; similarly, a “borrow” condition occurs in subtraction if we go past the “carry point” in
the clockwise direction.

For the two's complement representation, the negative of a number is the one vertically opposite
it across the horizontal axis. Thus, the negative of 0011 is 1101, and the negative of 0001 is 1111.
We also see that the numbers 0000 and 1000 are their own negatives, just as we found in exam-
ples 4 and 5 of Section 2.8 above.

Now, consider the numbers to be the signed 4-bit two's complement representation of the integers
from −8 to +7. In the figure, the numbers with a zero sign bit are represented by open circles (o),
and the numbers with a sign bit = 1 are represented by the solid black dots (•). As before, we
can visualize adding and subtracting numbers by adding or subtracting the corresponding angles
represented by the numbers. Now, however, we can detect overflow conditions as well: if in
adding or subtracting we move in either direction past the “overflow point” between 1000 and
0111, an overflow condition occurs. Thus if we add

0110 + 0011 = 1001

we generate an overflow by passing the overflow point in a counter-clockwise direction. Similarly,
in the subtraction

1010 - 0110 = 0100

we generate an overflow by passing the overflow point in a clockwise direction.

36 Assembler Language Programming for IBM System z™ Servers Version 2.00

Experiment with this diagram; it reveals many properties of two's complement arithmetic.

Exercises

2.13.1.(3)+ In many early editions of the System/360 Principles of Operation, the Subtract oper-
ation was described as follows: “Subtraction is performed by adding the two's complement of
the second operand to the first operand. All 32 bits of both operands participate. If the carries
out of the sign-bit position and the high-order numeric bit position agree, the difference is satis-
factory; if they disagree, an overflow occurs.”

This differs from the subtraction rule given in Section 2.13. Construct one or more examples
that will show that these two descriptions are not precisely equivalent.

2.14. Logical (Unsigned) and Arithmetic (Signed) Results (*)

We can show that the correct algebraic result is obtained by simply adding all the bits of the
operands in the two's complement representation as though they were logical operands. For
32-bit operands, the logical representation X corresponding to an arithmetic signed integer x satis-
fies the relation

X = 232 + x (modulo 232),

then the sum of two logical operands X and Y is

(X + Y) = 232 + 232 + (x + y) (modulo 232)
= 232 + (x + y) (modulo 232)
= x + y

Thus the arithmetic and logical sums give the same binary result; the leftmost bits and the high-
order two carry bits are just interpreted differently in the two representations.

Logical vs. arithmetic

Logical and arithmetic sums and differences of binary integers produce
identical bit patterns.

We can make a further observation about adding and subtracting numbers in the logical represen-
tation. From the examples in Section 2.11, we see that in subtraction, if the second operand is
logically smaller than or equal to the first (see examples 1, 4, 5, 7, 9, and 11) then there will be a
carry out of the leftmost bit position. Conversely, we see (in examples 2, 3, 6, 8, and 10) that if
the first operand is logically smaller than the second operand subtracted from it, there is no carry
out of the left end. In these latter cases we have in some sense generated a “negative” logical
answer, since the result is not correctly represented to the given number of bits. We'll see exam-
ples of these cases when we examine instructions that perform logical arithmetic.

Exercises

2.14.1.(2) Assuming an eleven-bit word, give the logical and two's complement representations
of the following quantities: (1) 200, (2) 1023, (3) −1000, (4) 2047, (5) −1, (6) −1024, (7)
−1023, (8) 1024, (9) −0. If a quantity is not representable, indicate that it is not.

2.14.2.(2)+ Consider the four five-bit binary numbers

A=11111, B=00010, C=10000, D=01111.

For each pair of values (like A+A, A+B, etc.) determine (a) their sum, (b) whether or not a
carry occurs, and (c) for arithmetic addition, whether or not an overflow occurs. Display the
results in a short table. (Because addition is commutative: — X+Y = Y+X — you will need to
evaluate only ten sums.)

2.14.3.(3)+ Using the same values for A,B,C,D in Exercise 2.14.2, determine the result, the carry
condition, and the arithmetic overflow condition for pair-wise subtraction (like A-B, B-A, etc.)

Chapter I: Getting Started 37

of these values. Display your results in a short table; this time your table will need all 16
entries, because subtraction is non-commutative: X−Y ≠ Y−X.

2.14.4.(2)+ Can an overflow be caused by subtracting two numbers of opposite signs?

2.15. Examples of Representations (*)

It may help to see the differences among the sign-magnitude, radix complement (two's comple-
ment), and diminished radix-complement (ones' complement) representations.17 All 5-bit binary
numbers with positive and negative values would be represented as shown in the following table.

In the sign-magnitude and ones' (diminished radix) complement representations, there are two
distinct representations for zero. In the two's (radix complement) representation, there is no rep-
resentation for +16 corresponding to the valid representation for −16.

The sign bit in the sign-magnitude representation is attached to the (unsigned) magnitude of the
value. However, the “sign bit” in the two's complement representation is not just an indicator: it
is numerically significant.

Representing signed numbers in a computer always involves tradeoffs: how should “peculiar”
cases like these be handled?

Binary
Digits

Logical
Representation

Sign-
Magnitude

Ones'
Complement

Two's
Complement

00000 0 +0 +0 0
00001 1 +1 +1 +1
00010 2 +2 +2 +2
00011 3 +3 +3 +3
00100 4 +4 +4 +4
00101 5 +5 +5 +5
00110 6 +6 +6 +6
00111 7 +7 +7 +7
01000 8 +8 +8 +8
01001 9 +9 +9 +9
01010 10 +10 +10 +10
01011 11 +11 +11 +11
01100 12 +12 +12 +12
01101 13 +13 +13 +13
01110 14 +14 +14 +14
01111 15 +15 +15 +15
10000 16 −0 −15 −16
10001 17 −1 −14 −15
10010 18 −2 −13 −14
10011 19 −3 −12 −13
10100 20 −4 −11 −12
10101 21 −5 −10 −11
10110 22 −6 −9 −10
10111 23 −7 −8 −9
11000 24 −8 −7 −8
11001 25 −9 −6 −7
11010 26 −10 −5 −6
11011 27 −11 −4 −5
11100 28 −12 −3 −4
11101 29 −13 −2 −3
11110 30 −14 −1 −2
11111 31 −15 −0 −1

17 More formally, the representation in radix r of an n-bit negative number X is rn − X in the two's complement repre-
sentation, and (rn − 1) − X in the ones' complement representation.

38 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

2.15.1.(2) Suppose your computer uses the ten's complement representation for integers. (This
representation was very widely used in mechanical desk calculators, and in many early com-
puters.) Write the following values in ten's-complement notation: (1) +28, (2) −49, (3) +527,
(4) −333, (5) −1234, (6) +2469.

2.15.2.(3) Using the representations you calculated in Exercise 2.15.1, evaluate the following
using ten's complement arithmetic: (a) +28+ (−49), (b) +527+ (−333), (c) −1234+2469.

2.15.3.(3) Write the values in Exercise 2.15.1 in the diminished radix-complement (nines' com-
plement) representation.

Terms and Definitions
arithmetic representation

A signed number representation.

bit
A binary digit, taking values 0 and 1.

diminished radix-complement representation
A signed representation where negative numbers are represented by subtracting each digit
from (the radix minus 1).

hex
See hexadecimal.

hexadecimal
A base-16 representation. Its digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

logical representation
An unsigned number representation.

ones' complement representation
A signed binary representation where negative numbers are represented by changing each 0
bit to a 1 bit and vice versa.

overflow
The sum, difference, product, or quotient of two numbers is too large to be correctly repres-
ented in the number of digits provided.

radix-complement representation
A signed representation where the numerically significant high-order digit contains sign infor-
mation.

sign-magnitude representation
The familiar signed representation of numbers with prefixed + or − signs.

two's complement representation
A signed binary representation where the high-order bit contains sign information, and has
weight −2n −1.

Chapter I: Getting Started 39

40 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter II: System z

IIIIIIIIII IIIIIIIIII
IIIIIIIIII IIIIIIIIII

II II
II II
II II
II II
II II
II II
II II
II II

IIIIIIIIII IIIIIIIIII
IIIIIIIIII IIIIIIIIII

This chapter's three sections introduce the main features of System z processors:

• Section 3 describes basic structures: memory organization and addressing, general purpose reg-
isters, the Program Status Word (PSW), and other topics.

• Section 4 discusses the instruction cycle, basic machine instruction types and lengths,
exceptions and interruptions and their effects on the instruction cycle.

• Section 5 covers address calculation, the “addressing halfword”, Effective Addresses, indexing,
addressing problems, and virtual memory.

Chapter II: System z 41

3. Conceptual Structure of System z

 3333333333
333333333333
33 33

33
33

3333
3333

33
33

33 33
333333333333
 3333333333

We can describe the structure of most computers in terms of four functional units: memory, arith-
metic, control, and input-output. A real computer may not identify components this way, but it
helps us to think of them as distinct units.

┌──────────┐ Control ┌─────────┐ Control ┌────────────┐
│Arithmetic│�─ ─ ─ ─ ─ ─ ─ ─�│ Control │�─ ─ ─ ─ ─ ─ ─ ─�│Input─output│
│ Unit │ │ Unit │ │ Unit │
└─────┬────┘ └────┬────┘ └─────┬──────┘

� � �
│Data │Data │Data
� � �

┌─────┴───────────────────────────┴────────────────────────────┴──────┐
│ │
│ Memory │
│ │
└───┘

Figure 4. Conceptual structure of a typical computer

The solid lines in Figure 4 represent data paths among the various units, and the dashed lines
indicate the flow of control signals. As indicated, the same memory holds instructions for the
control unit and the data used by the arithmetic and input-output units. This gives modern digital
processors their flexibility and power: they can treat instructions as data or data as instructions.

System z makes no special distinction between the arithmetic and control units, and the combina-
tion is often called the “Central Processing Unit”, or “CPU”.

42 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌──────────────────────────────┐ Control ┌──────────────┐
│ Central Processing │�─ ─ ─ ─ ─ ─ ─ ─�│ Input─output │
│ Unit │ │ Unit │
└──────────────┬───────────────┘ └──────┬───────┘

� �
│Data │Data
� �

┌──────────────┴──┴───────┐
│ │
│ Memory │
│ │
└───┘

Figure 5. Conceptual structure of System z

“Memory” is sometimes called “central storage” or similar terms. It refers to that part of the
processor holding the directly accessible instructions and data to be manipulated by those
instructions.

As Figure 5 indicates, input and output — once initiated by the CPU — is performed between
external devices and memory, and does not pass through the CPU. The Input-output Unit com-
municates the status of its operations to the CPU, indicating error conditions or completion of
the operation.

3.1. Memory Organization

Digital computers deal with data consisting of binary digits, easily and rapidly accessed from
“central memory”. The basic data item is an eight-bit group called a byte.18 The bits in a byte are
numbered from 0 to 7, beginning on the left with the numerically most significant digit. (The
importance of designating the “left” side of a byte will be clearer when we consider groups of
bytes.) In Figure 6, the leftmost bit is a 1-bit, and the rightmost bit is a 0-bit.

 �─8 bits─�
┌──────────┐
│ 11010010 │
└──────────┘
0 7

Figure 6. A byte containing 8 binary digits

Bytes in memory are arranged so that each byte may be referenced as easily as any other. The
bytes are individually numbered beginning at zero; the number associated with each byte is called
its memory address. Memory may be thought of as a linear string of bits; the bits are grouped
into bytes arranged in order of increasing addresses. Only bytes have addresses; bits within a byte
don't have their own addresses.

.. 701 702 703 704 705 706 707 ..
─ ─┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬─ ─

│ byte │ byte │ byte │ byte │ byte │ byte │ byte │
─ ─┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴─ ─

Figure 7. A portion of memory, with addresses shown above each byte

The bits in a byte are accessed (or “read”) by the CPU without being changed. Reading the con-
tents of a byte does not affect the contents; the memory provides the CPU with a copy of the

18 Because the eight bits in a byte are often described using two hex digits, some people like to call a “half byte” hex
digit a cute name like “nibble” or even “nybble”. We won't.

Chapter II: System z 43

contents of a byte. Storing (or “writing”) a new bit pattern into a byte replaces the previous con-
tents.

Many machine instructions referring to memory actually refer to a group of consecutive bytes. In
such situations the group is normally addressed by referring to its leftmost member, the byte with
the lowest address in the group.19 Also, some instructions require the address of a group of bytes
(the address of the leftmost byte) to also be a multiple of the length of the group, in which case
we say that the group is aligned.20 The possible lengths for such groups of bytes are 2, 4, 8, or 16;
we sometimes refer to them as halfwords, words (or fullwords), doublewords, and quadwords
respectively.

 8DF 8E0 8E1 8E2 8E3 8E4 8E5 8E6 8E7 8E8 8E9 8EA 8EB 8EC 8ED 8EE 8EF 8F0
─┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
─┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─

│ halfword │ halfword │ halfword │ halfword │ halfword │ halfword │ halfword │ halfword │
│�────────word─────────�│�────────word─────────�│�────────word─────────�│�────────word─────────�│
│�─────────────────doubleword──────────────────�│�─────────────────doubleword──────────────────�│
│�──quadword───�│

Figure 8. A portion of memory

When some operation manipulates a group of bytes, we call that group an “operand”: something
that is “operated on”. The group always consists of data from consecutively-addressed bytes in
memory.

Some operations treat the operand as a string of bits whose meaning for that operation is inde-
pendent of the fact that they are arranged into 8-bit bytes in memory. For example, suppose a
halfword operand (a group of two bytes whose address is divisible by 2) is specified for an opera-
tion, and the address of the 16-bit operand is X'8EA'. Then the 16 bits in the bytes at X'8EA' and
X'8EB' will be treated as a single 16-bit halfword, and we ignore the fact that they are stored in
memory as two distinct eight-bit bytes. Thus, bit 0 of the halfword operand — its leftmost bit —
corresponds to bit 0 of the byte at X'8EA', and bit 15 of the halfword operand — its rightmost bit
— corresponds to bit 7 of the byte at X'8EB'.21

Bytes in memory contain only bit patterns. Whether the bit pattern is interpreted as an instruc-
tion, or as one of many types of data, depends only on the context of its use; at one time it may
be data, and at another, an instruction. Whatever the interpretation, however, a byte is simply a
group of eight bits.

We now see why we use hexadecimal (base 16) notation for expressing binary numbers instead of
octal (base 8) notation. It is simplest to arrange bits in groups of the same size, and the presence
of eight bits in a byte makes four-bit groups natural. A half-byte contains 4 bits, exactly the
number of bits needed to represent one hex digit. If octal notation is used, a byte would contain
two three-bit octal digits and two extra bits.

Exercises

3.1.1.(2)+ An area of memory reserved for data begins at address X'2EC9' and ends with address
X'30A6' (including the start and end bytes!). How many bytes are there in the area, and how
many halfwords, words, and doublewords can be stored in the area?

3.1.2.(1) The memory of System z can be thought of as a continuous string of bits. Does each
individual bit in memory have an address? Explain.

19 This is true with few exceptions, which we will note as they appear. For now, remember “leftmost” as the rule.
20 In early System/360 processors, many memory operands had to be aligned on byte boundaries whose addresses were

a multiple of the operand's length. While this is no longer required for most (but not all) instructions, proper align-
ment is always a good programming practice.

21 z/Architecture processors use what is called “big-endian” addressing; we'll examine “endianness” in detail in Chapter
VII, Section 26.7.

44 Assembler Language Programming for IBM System z™ Servers Version 2.00

3.1.3.(2) Suppose we are interested in the string of contiguous bits starting with bit 5 of
memory address X'1A023' and ending with bit 1 of the byte at memory address X'1A03B'
(including the start and end bits). Determine the number of bits in the string.

3.1.4.(1) State which of the following addresses refer to halfwords, words, and doublewords:
(1) X'123456'; (2) X'234567'; (3) X'345678'; (4) X'000BBC'.

3.1.5.(1) Determine the number of bits that can be stored in a memory area of the following
sizes: (1) X'20000' bytes, (2) X'8000' bytes, (3) X'200000' bytes.

3.1.6.(1) Express the contents of the byte in Figure 6 on page 43 in octal notation and in
hexadecimal notation.

3.1.7.(1)+ If you examine the rightmost hex digit of a memory address, what can you tell about
the alignment of the address?

3.2. Central Processing Unit

The CPU performs the operations specified by your program. An important element of the CPU
is a set of registers, a special and very fast form of memory kept very close to the instruction and
data processing functions of the CPU.

• The general registers are used for arithmetic and logical operations, and to hold addresses of
data and instructions;22

• the Floating-Point Registers are used for floating-point arithmetic and data;

• the Program Status Word is used by the CPU to control the progress of your program as it is
executed.

3.3. General Registers

There are sixteen general registers, numbered from zero to fifteen. Each is 64 bits (or 16 hex
digits or 8 bytes) long. They are represented schematically in Figures 9 and 10.

�───────────────────────────── 64 bits ─────────────────────────────
�─────────── 32 bits ──────────── �─────────── 32 bits ────────────
┌─────────────────────────────────┬─────────────────────────────────┐
│ │ │
└─────────────────────────────────┴─────────────────────────────────┘
0 31 32 63

Figure 9. A single 64-bit general register

When we discuss instructions that do 32- and 64-bit arithmetic, we'll understand why this picture
shows two 32-bit parts of a 64-bit general register.

22 Because the general registers are used for so many activities, they are sometimes called “General Purpose Registers”.

Chapter II: System z 45

┌──┬──┐
│ General Register 0 │ General Register 1 │
├──┼──┤
│ General Register 2 │ General Register 3 │
├──┼──┤
│ General Register 4 │ General Register 5 │
├──┼──┤
│ General Register 6 │ General Register 7 │
├──┼──┤
│ General Register 8 │ General Register 9 │
├──┼──┤
│ General Register 10 │ General Register 11 │
├──┼──┤
│ General Register 12 │ General Register 13 │
├──┼──┤
│ General Register 14 │ General Register 15 │
└──┴──┘
Figure 10. All sixteen general registers

This figure arranges the registers in pairs, the left register being even-numbered and the right being
the next higher odd-numbered register. Some operations require using a pair of registers, and in
such cases it is always an even-odd-numbered pair.

We will often refer to the general registers using a short notation: we sometimes write “GRn”
(meaning the rightmost 32 bits of a 64-bit register) or “GGn” (meaning all 64 bits) or simply
“Rn” to refer to general register n when the register length is clear from context. Thus, in
Figure 10, we might use R1 to mean register 1, R14 to mean register 14, and so on.

Be Careful!

“R1” (without a subscript) is not the same as the notation “R1” (with a
subscript). This difference will be important when we discuss machine
instructions.

Exercises

3.3.1.(1) Suppose a shifting operation requires the use of a pair of general registers. Is it possible
to perform the shifting operation using both GR7 and GR8? Using GR15 and GR0? Using
GR6 and GR7?

3.3.2.(1) How many bytes can be placed in a pair of general registers?

3.4. Floating-Point Registers

On the earliest System/360 models only four floating-point registers were available, and then only
as an option. Sixteen are always present in System z processors, as we will see in Section 32.7.
Each is 64 bits (16 hex digits, 8 bytes, or 1 doubleword) long. We will look into this more deeply
when we discuss floating-point instructions and data in Chapter IX.

46 Assembler Language Programming for IBM System z™ Servers Version 2.00

�───────────────────────── 64 bits ─────────────────────────
┌───┐
│ F0 │
├───┤
│ F2 │
├───┤
│ F4 │
├───┤
│ F6 │
└───┘
 0 63

Figure 11. Four Floating-Point Registers

Sometimes the floating-point registers contain operands 32 bits long. In this case they use only
the left half of the register, and the rightmost 32 bits are ignored. In other situations, a floating-
point instruction using 128-bit operands will use a pair of floating-point registers.

We won't mention the floating-point registers until we discuss instructions for floating-point arith-
metic. We sometimes use the abbreviations “FPRn” or “FRn” or “Fn” to refer to floating-point
registers.

In some cases we use “register” to describe a general register or a floating-point register (or some
other type of register); which is meant will be clear from context.

Exercises

3.4.1.(1) How many short (32-bit) floating-point numbers can be held in a floating-point reg-
ister?

3.4.2.(3) Can you think of any reasons why the designers of System/360 and System z included
a separate set of registers for floating-point arithmetic? That is, why should it not be possible to
use the general registers for binary integer arithmetic, addresses, and floating-point arithmetic?

3.5. Program Status Word (PSW)

Usually, the Program Status Word (PSW) is of no immediate concern, and you need not worry
about its contents. It is another internal register that contains various fields indicating the status of
the program being executed. As the System/360 and System z processors have evolved, the PSW
has taken several forms.

For our purposes, we need to know about only a few parts of a PSW: the Instruction Address
(IA), the Condition Code (CC), the Instruction Length Code (ILC), and the Program Mask
(PM). Of these, the IA is most important now; we'll see more about the others later.

Figure 12 illustrates these four parts of a PSW (and the “System Flags”). The IA is always in the
rightmost position; the positions of the other three aren't significant. (In fact, PSWs since about
1975 no longer have a field for the ILC.)

┌────────┬─ ─ ─ ─ ─┬─┬─ ─┬─┬─ ─┬────┬─ ─ ─ ─ ─┬────────────────────────────────┐
│ System │ │I│ │C│ │Pro─│ │ Instruction │
│ Flags │ │L│ │C│ │gram│ │ Address │
│ │ │C│ │ │ │Mask│ │ (IA) │
└────────┴─ ─ ─ ─ ─┴─┴─ ─┴─┴─ ─┴────┴─ ─ ─ ─ ─┴────────────────────────────────┘

Figure 12. Sketch of a Program Status Word

The PSW for the currently executing program resides in the CPU, not in memory.

The CC is set (given a value) by some instructions — for example, to indicate that the result of an
addition operation is a negative number. Other instructions may have no effect on the CC; in

Chapter II: System z 47

such cases we say that it is not set, or that its value is unchanged. Still other instructions can test
the value of the CC and make decisions based on the result.

Among the system flag bits in the PSW is the “P” bit, which determines whether or not the CPU
will allow certain instructions to be executed. If the “P” bit is 1, the CPU is in Problem State and
will not execute privileged instructions, such as those specifying Input-Output operations. If you
try to execute a privileged instruction while the CPU is in Problem State, a program interruption
will occur instead. When the “P” bit is 0, the CPU is in Supervisor State, and it allows any
instruction to be executed. This is how supervisory programs retain control over activities critical
to the smooth operation of a complex programming system.

3.6. Other Registers

In all System z processors, the CPU contains many additional registers including Access Registers
and Control Registers. The Access Registers are used for special types of addressing. The
Control Registers are not normally available to application programs: they are not used for arith-
metic or for addressing by a program because they control various execution functions.

We'll say more about these and other registers as needed.

3.7. Input-Output (I/O)

Data transmission between main memory and external devices is managed by channels. Channels
transmit bytes of data from an external device to memory, or from memory to an external device,
while allowing the CPU to continue with the execution of a processing program. We will use
some simple forms of I/O later, especially for Programming Problems at the end of each chapter.

3.8. Features, Facilities, and Assists

The System z family of processors has grown from its original System/360 capabilities.23 The
added capabilities are sometimes called “features”, “facilities”, or “assists”. For example, the
“long-displacement” facility is a recent addition. We assume that your CPU has all the facilities
needed to execute our instructions and program examples.

3.9. Microprograms and Millicode (*)

For the earliest System/360 models, internal operations were controlled by “microprograms” that
were kept in a special type of read-only memory. The internal circuits were then “programmed”
by a combination of hardware and micro-instructions to act like a System/360 processor!

Modern processors, in contrast, use a combination of hardware, microcode, and “millicode”
instructions to execute the instructions you write, and to perform other CPU “housekeeping”
functions. Millicode instructions are kept in a reserved area of main memory. They are very
similar to your instructions, but can do things that your “normal” instructions can't do.24 The set
of millicode instructions is sometimes referred to as “firmware”.

Terms and Definitions
byte

A group of 8 bits; the basic addressable unit of memory.

23 This is quite an understatement.
24 If you're interested in learning more about millicode, see the article by Lisa Heller and Mark Farrell in the I B M

Journal of Research and Development, Vol. 48 No. 3/4, May/July 2004.

48 Assembler Language Programming for IBM System z™ Servers Version 2.00

CC
Condition Code, a 2-bit field in the PSW used to indicate the status or result of executing
certain instructions.

CPU
Central Processing Unit

FPR
Floating-Point Register

GR
General Register

ILC
See Instruction Length Code.

Instruction Length Code
A 2-bit field in low storage indicating the length in halfwords of an instruction that caused a
particular type of interruption.

millicode
Internal instructions used by the CPU to perform operations too complex to be done cost-
effectively in hardware.

problem state
A state in which the CPU disallows the execution of certain privileged instructions.

PSW
Program Status Word, containing information about the current state of a program.

supervisor state
A state in which the CPU allows the execution of all instructions.

Chapter II: System z 49

4. Instruction Execution

44
444
4444
44 44
44 44
44 44
44444444444
444444444444

44
44
44
44

In this section we see how instructions are executed by the CPU, and then look at examples of
the formats used for five representative classes of instructions.

As we saw in Figure 5 on page 43, instructions executed by the computer reside in memory
along with the data to be processed. Instructions in System z can be 2, 4, or 6 bytes long.
Instructions are always aligned so that the leftmost byte is on a halfword boundary: that is, the
address of an instruction must always be divisible by two. This alignment does not depend on the
length of the instruction; it doesn't matter, for instance, that a 4-byte instruction begins halfway
between two word boundaries. It is more precise to say that instructions are 1, 2, or 3 halfwords
long.

Unlike some types of data, there is no requirement that an instruction start at an address that is a
multiple of its length; only that it start on a halfword boundary.

4.1. Basic Instruction Cycle

The process of executing instructions may be visualized in Figure 13.

 ┌───────┐ ┌────────┐ ┌─────────┐
┌────�│ FETCH ├─────�│ DECODE ├─────�│ EXECUTE ├────┐
│ └───────┘ └────────┘ └─────────┘ │
│ │
└───┘

Figure 13. Basic instruction cycle

In the “fetch” portion of the cycle, the CPU locates the instruction beginning at the halfword in
memory whose address is contained in the rightmost part of the PSW (the Instruction Address, or
IA), and places it into an internal register where it is decoded. Though this internal register is not
accessible to programs, we will refer to it as the Instruction Register, or IR. The CPU determines
the length of the instruction by examining its first two bits, as we will see shortly.

To complete the fetch portion of the cycle, the CPU adds the length in bytes of the instruction
now in the Instruction Register to the IA in the PSW, so that the IA will contain the address of
the next instruction to be fetched when the current instruction completes its execution. This

50 Assembler Language Programming for IBM System z™ Servers Version 2.00

means that instructions must be packed tightly in memory; there are no leftover bytes or gaps
between instructions executed in sequence.

To decode the instruction, the CPU examines the bit pattern in the IR to see what action is
intended. Since (1) the bytes were brought from memory and (2) the memory contains both data
and instructions, the bytes brought to the IR may actually represent data and not instructions.
The CPU has no way of knowing this; it simply goes to the memory address in the IA portion of
the PSW and fetches those bytes into the IR to be interpreted as an instruction. If this is what
you intended, good; otherwise, strange things can happen.

Not all of the possible bit patterns in the IR might represent “valid” instructions (i.e., actions the
CPU can execute, or will allow to execute). The decoding mechanism can sometimes detect con-
fused situations (such as data being interpreted as instructions) before too much damage has been
done, and cause remedial actions to be initiated.

Assuming that the bytes in the IR contain a valid instruction, further actions may be necessary
before the decoding is completed, such as calculating addresses of the operands to be manipulated
during the execute portion of the cycle.

During the execution phase, the actual operation is performed. It could cause the contents of one
general register to replace the contents of another, or it may involve many intermediate steps of
complicated logic or arithmetic. If no errors are detected during the execution phase (such as
attempting to divide a number by zero), the CPU resumes the instruction cycle by returning to
the fetch portion of the cycle.

We sometimes refer to the entire cycle of fetching, decoding, and executing an instruction simply
as “executing” that instruction.

 Instructions

The IA portion of the PSW addresses the next instruction to be fetched.
If you didn't intend the fetched bytes to be an instruction, it's a mistake
you must correct.

Exercises

4.1.1.(2) How could you build a CPU without a separate Instruction Address (such as in the
z/Architecture PSW)?

4.2. Basic Instruction Types

The instructions provided by the original System/360 processors had five formats:

1. register-and-register (RR)
2. register-and-indexed-storage (RX)
3. register-and-storage (RS)
4. storage-and-immediate (SI)
5. storage-and-storage (SS)

Modern System z processors support over 30 instruction formats that we'll introduce as needed.
These five formats are enough for now, because newer instruction formats are variations on these
basic forms.

The letters RR, RX, RS, SI, and SS are abbreviations that indicate the type, or class, of an
instruction. Individual instructions belonging to each class will be treated in later chapters.

Figure 14 on page 52 gives a useful way to visualize the behavior of these classes:

• RR-type instructions operate on data within registers;

• RX- and RS-type instructions operate on data between registers and memory;

Chapter II: System z 51

• SS-type instructions operate on data in two memory locations; and

• SI-type instructions operate on data in memory using an operand in an instruction.

┌─────────────────────────────┐
│ Registers │
└─────────┬──────────┬──────┬─┘

└──�────�──┘ �
RR │

┌───────────────────┐ │RX,
│ Instruction │ │RS
└───────────────┬───┘ │

SI│ SS │
� ┌──�────�──┐ �

┌─┴───────┴──────────┴──────┴─┐
│ Memory │
└─────────────────────────────┘

Figure 14. Instruction formats and data interactions

The first byte of an instruction always contains an operation code (often abbreviated “opcode”),
specifying the operation to be performed. The second byte usually contains data about the
location, type, or length of the data to be operated on. This second byte has several forms: it is
called the “register specification” byte (for RR, RX, and RS instructions), the “immediate data”
byte (for SI instructions), or the “length specification” byte (for SS instructions).25 The interpreta-
tion of this second byte therefore depends on the class to which the instruction belongs.

• RR-type instructions are always one halfword long.

Table 6. RR-type instruction
format

• RX- and RS-type instructions are always two halfwords long.

Table 7. RX-type and RS-type instruction format

The RX- and RS-type instruction formats differ only in the interpretation of the bits in the
“Register Specification” byte.

• SI-type instructions are always two halfwords long.

Table 8. SI-type instruction format

Instead of a register specification, the second byte of an SI-type instruction contains an 8-bit
data item used in executing the instruction.

operation
code

register
specifica-

tion

operation
code

register
specifica-

tion
addressing halfword

operation
code

imme-
diate data addressing halfword

25 In some newer instructions, the second byte may contain another part of the opcode; and in some instructions, part
of the opcode may be in the sixth byte! The CPU knows, so you needn't worry.

52 Assembler Language Programming for IBM System z™ Servers Version 2.00

• SS-type instructions are always three halfwords long.

Table 9. SS-type instruction format

For most instructions except RR-type instructions, an addressing halfword is used by the CPU to
compute the address of an operand; this important process is described in “5.1. The Addressing
Halfword”, on page 62, and again in Section 20. These classifications are not exhaustive; many
newer instructions are variations on these basic forms.

Exercises

4.2.1.(1) Must a 4-byte RX-type instruction begin on a word boundary?

4.2.2.(1) What is the length of the shortest instruction in System z?

4.2.3.(2) How is it possible for instructions of different lengths to be packed tightly into
memory with no wasted bytes?

4.2.4.(1)+ May an instruction begin on a word boundary? On a doubleword boundary?

4.2.5.(2)+ Figure 14 on page 52 implies that both instructions and data reside in the same
memory. How can you tell if a given string of bytes represents instructions or data?

operation
code

length
specifica-

tion
addressing halfword addressing halfword

4.3. Instruction Lengths

The first two bits of the operation code tell the CPU how many bytes to fetch from memory.
Since at least two bytes per instruction must always be fetched, the CPU can check the two
leading bits to tell how many more bytes (if any) are required. The bit patterns are shown in
Figure 15; “xxxxxx” represents the remaining six bits of the eight-bit operation code.

00xxxxxx 2-byte instructions such as RR-type
01xxxxxx 4-byte instructions such as RX-type
10xxxxxx 4-byte instructions such as RS- and SI-type
11xxxxxx 6-byte instructions such as SS-type

Figure 15. Opcode bit patterns for typical instruction types

If the first two bits of the opcode are 00 the instruction is one halfword long; if the bits are 01 or
10 it is two halfwords long; and if the bits are 11 it is three halfwords long.

Before decoding the instruction, the CPU places the number of pairs of bytes in the instruction
(the number of halfwords: 1, 2, or 3) into an internal two-bit PSW field called the Instruction
Length Code (ILC). It is important to remember that the two bits of the ILC are not the same as
the first two bits of the opcode. Table 10 on page 54* shows the relationship between the first 2
bits of the opcode and the ILC:

* Courtesy of Michael Stack.

Chapter II: System z 53

Table 10. Instruction Length Code and instruction types

If an error is detected during decoding or executing the instruction, the PSW at the time of the
error is saved, and the programmer can examine the ILC and the IA of the saved PSW to deter-
mine what instruction caused the error. If the ILC was not saved it would not be possible to
determine the exact location of the offending instruction, since the location of the next instruction
to be executed is already in the IA portion of the saved PSW, and the length of the bad instruc-
tion could have been 2, 4, or 6 bytes.

Exercises

4.3.1.(1) Is it possible for a six-byte instruction to be mistaken by the CPU for a four-byte
instruction? Explain.

4.3.2.(2)+ A program segment consists of the following six operations (only the opcodes are
given): X'05', X'58', X'89', X'5A', X'D2', X'50'. Determine the length in bytes of the program
segment.

4.3.3.(2) For each of the instructions in the previous exercise, determine the value of the
Instruction Length Code after each has been fetched.

4.3.4.(2) By examining Figure 15 on page 53, deduce a simple formula that can be used to
determine, for any System z instruction, what number should be added to the Instruction
Address in the PSW to give the address of the following instruction.

4.3.5.(2)+ Make (and study) a short table of four rows, with the following column headings:
(1) value of first two bits of opcode, (2) instruction type, (3) instruction length, (4) ILC after
instruction fetch is complete, and (5) number of addressing halfwords.

4.3.6.(2)+ The following twelve halfwords taken from memory are known to be a sequence of
instructions. (The spaces have been inserted for readability; the bytes in memory are contig-
uous.)

90EC D00C 0580 50D0 89EA D703 89EE 89EE 18CD 41D0 89E6 1B11

Determine (1) how many instructions there are, (2) their lengths, and (3) their types.

4.3.7.(3)+ Suppose you know the PSW and ILC after an execution error has occurred. How do
you determine the address of the instruction that caused the error?

4.3.8.(2) What would happen if gaps are left between instructions?

ILC
(decimal)

ILC
(binary)

Instruction
types

Opcode
bits 0-1 Instruction length

0 B'00' Not available

1 B'01' R R B'00' One halfword

2 B'10' RX B'01' Two halfwords

2 B'10' RS, SI B'10' Two halfwords

3 B'11' SS B'11' Three halfwords

4.4. Some Operation Codes (*)

Table 11 on page 55 summarizes the characteristics of some basic instructions, as they depend on
the first four bits of the operation code. As described above, the first two bits determine the type
and length of the instruction. The second pair of bits determines (to some degree) the operand
length or the general functions performed by the instructions. (These groupings are only approxi-
mate, but they may help you to appreciate how opcodes are designed.)

A closer examination of a complete table of operation codes reveals a great deal of symmetry in
the opcodes used for similar functions. For example, the four original System/360 instructions

54 Assembler Language Programming for IBM System z™ Servers Version 2.00

that perform the “Logical AND” operation all have operation codes where the second hex digit is
4 and the first hex digits differ by multiples of 4 (X'14', X'54', X'94', and X'D4').

Table 11. General instruction classifications

Since we will refer to instructions almost entirely using mnemonics — short abbreviations for their
full names — these details are only of minor interest.

Exercises

4.4.1.(2) Examine the operation codes given in Exercise 4.3.2, and determine their general
instruction classifications from Table 11.

First pair
of bits

Second pair of bits

00 01 10 11

00
(RR)

Branching, status
switching

Word logical,
fixed-point

binary

Long
hexadecimal

floating-point

Short
hexadecimal

floating-point

01
(RX)

Branching,
halfword fixed-

point

Word logical,
fixed-point

binary

Long
hexadecimal

floating-point

Short
hexadecimal

floating-point

10
(RS, SI)

Branching,
shifting, status

switching

Fixed-point,
logical, I/O Logical

11
(SS) Logical Packed decimal

4.5. Interruptions (*)

The instruction cycle shown in Section 4.1 on page 50 describes the basic mechanism of instruc-
tion sequencing. However, a more workable view requires understanding interruptions, sometimes
called interrupts. We'll discuss them briefly here, and in more detail when we describe possible
exceptions caused by instructions.

When an interruption occurs, the CPU stores the PSW that currently controls its operation in a
predefined area of memory, and immediately replaces it with a new one from a different prede-
fined area of memory. Many things can cause this PSW switching: a program may contain an
instruction that causes an interruption to occur, or some external event such as a completed I/O
operation could cause an interruption. The basic mechanism used for handling interruptions is
illustrated in Figure 16.

┌───────┐ ┌────────┐ ┌─────────┐
┌────�│ FETCH ├─────�│ DECODE ├─────�│ EXECUTE ├────┐
│ └───────┘ └────────┘ └─────────┘ │
│ │
� �
│ no ┌──────────┴────┐
│�───────────────────────────────────────┤Any Interrupts?│
│ └──────────┬────┘
│ │yes

 no � ┌───�│
 │ � yes �
┌───┴────┴──┐ ┌────────────┐ ┌────────────────────┴────┐
│ Any other │�───┤Load New PSW│�───│Note interruption cause, │
│interrupts?│ │from Memory │ │save Old PSW, status info│
└───────────┘ └────────────┘ └─────────────────────────┘

Figure 16. Instruction cycle with interruptions

Chapter II: System z 55

The usual cycle of fetching, decoding, and executing will continue undisturbed so long as no inter-
ruption occurs.26 When an interruption condition is present, the CPU first examines bits in the
PSW (or in the Program Mask or in other special registers) to see whether the interruption should
be accepted. If these bits are zero, the interruption condition is said to be masked or disabled,
and the CPU takes a default action before proceeding to the next instruction.

If the interruption is not masked (or is enabled), the CPU places information about the cause of
the condition into a reserved “Interruption Code” area near the low-address end of memory. The
CPU then stores the current (old) PSW and loads a new PSW. Instruction fetching then
resumes, with the next instruction being fetched from the memory address specified by the IA
portion of the newly-loaded PSW. This will almost always be in the Supervisor.

Normally, the new PSW will disable further interruptions until the Supervisor can save informa-
tion about the status of the program being interrupted. After this status information (such as
register contents and the old PSW) has been saved, the CPU can be enabled for further inter-
ruptions. After the interruptions have been handled, the saved status information is restored and
the interrupted program can be resumed.

These are the six classes of interruptions, with examples of possible causes:

1. Restart (operator action)
2. External (timer, clock comparator)
3. Machine Check27 (equipment malfunction)
4. Input-Output (an I/O device has signaled a condition)
5. Program (exception condition during program execution)
6. Supervisor Call (program requests an Operating System service)

Corresponding to each class is an area of memory where an old PSW is stored, and an area from
which a new PSW is loaded by the CPU. Thus there are six areas in memory into which old
PSWs are stored, and another six areas from which new PSWs are retrieved. These areas are at
fixed positions in the low-address end of memory; a programmer has no control over where they
are placed.

We sometimes distinguish two different classes of interruption. The first is caused by events whose
occurrence cannot be predicted, or for which a program cannot test in advance: these are some-
times called involuntary or asynchronous interrupts. The first four classes of interruption are invol-
untary. Except for the restart interruption, all the involuntary interruptions can be masked.

The program and supervisor call interruptions are voluntary or synchronous. They are mutually
exclusive, and cannot both occur at the same time. Program interruptions are caused by many
conditions, as you will discover. A supervisor call interruption occurs only as a result of exe-
cuting a Supervisor Call (SVC) instruction.

The program and supervisor call interrupts are “voluntary” because the program can (if it wishes)
know what instruction will be executed next, and what interruption-causing actions that instruc-
tion could take.

4.6. Exceptions and Program Interruptions (*)

Programs can create many types of exception condition. Some of them may not be serious, and
your program can tell the CPU to take some default action (like setting the Condition Code, or
generating a specified default result). Other exception conditions require interrupting the instruc-
tion cycle.

We will be most concerned with program interruptions. They may be caused by error conditions
detected during any of the three portions of the instruction cycle. For example, if the IA specifies

26 Figure 16 doesn't account for the possibility that an interruption can occur during the fetch or decode phases. In
almost all cases, this distinction is unimportant.

27 This interruption shouldn't be masked off because the CPU must save diagnostic information before the situation gets
worse.

56 Assembler Language Programming for IBM System z™ Servers Version 2.00

that an instruction should be fetched from an odd memory address, no fetch occurs and an inter-
ruption is generated instead. During the decode phase, the CPU may discover that the operation
code is invalid. Similarly, an error condition such as attempting to divide a number by zero may
occur during the execution phase.

Exceptions and Interruptions

Exception: An unusual condition possibly requiring attention; your
program may be able to request the CPU take a default
action and continue execution, or cause an interruption.

Interruption: An exception condition requiring alteration of the
normal sequence of program execution by passing
control to the Operating System.

For most program interruption conditions, the Operating System provides a brief indication of the
cause of the interruption. Additional diagnostic information may also be given, such as the old
PSW and the contents of the general and floating-point registers, and the contents of various areas
of memory. You can then use this information to try to deduce the cause of the interruption.

The most common types of program interruptions are shown below with their associated Inter-
ruption Codes. This list is not complete, but may help you find the causes of typical interruptions
generated by your programs.

I C = 1 Invalid Operation Code. The decoding phase has found an operation code that cannot
be executed. This could be due to (1) allowing data to be fetched as instructions, or (2)
the program's destroying part of itself.

I C = 2 Privileged Operation. The program is trying to execute an instruction not allowed in
problem state.

I C = 3 Execute exception. An execute instruction is attempting to execute another execute
instruction.

I C = 4 Access, Protection. The program has attempted to refer to some area of memory to
which access is not allowed. There can be other causes, but this is the most common.

I C = 5 Addressing. The program has attempted to address a nonexistent memory address.

I C = 6 Specification Error. This can be caused by many conditions, but a common cause is
referring to an odd-numbered register when an even-numbered register is required. An
odd IA in the PSW indicates an attempt to access an instruction not starting on a
halfword boundary.

I C = 7 Data Exception. This is caused by invalid packed decimal data, or by binary or decimal
floating-point conditions described in Chapter IX.

I C = 8 Fixed-Point Overflow. This is caused when a fixed-point binary result is too large.

I C = 9 Fixed-Point Divide Exception. A binary divide instruction has found that a quotient
would be too big to fit in a register, or a divisor is zero.

I C = A Decimal Overflow. A packed decimal result is too large to fit in the result field.

I C = B Decimal Divide. A packed decimal quotient is too large to fit in the result field, or a
divisor is zero.

I C = C Hexadecimal floating-point exponent overflow. A hexadecimal floating-point result is
too large.

I C = D Hexadecimal floating-point exponent underflow. A hexadecimal floating-point result is
too small.

I C = E Hexadecimal floating-point lost significance. A hexadecimal floating-point result has lost
all its significant digits.

I C = F Hexadecimal floating-point divide exception. A hexadecimal floating-point operation is
attempting to divide by zero.

Four of the fifteen possible program interruption conditions are often regarded as harmless: fixed-
point and decimal overflow exceptions, and hexadecimal floating-point exponent underflow and

Chapter II: System z 57

lost-significance exceptions. By setting an appropriate mask bit in the Program Mask to zero (see
Figure 12 on page 47), you can use the SPM instruction (described on page 234) to request that
the CPU take a predefined default action and continue execution without causing an interruption.
Other default actions can be requested for many floating-point operations, by setting mask bits in
the Floating-Point Control Register (more about this in Chapter IX).

Thus, exception conditions can sometimes cause an interruption, and sometimes take a default
action if the interruption is masked. For example, a fixed-point overflow if enabled will cause an
interruption with interruption code 8; but if masked off, the CPU will set the Condition Code to
3 before fetching the next instruction.

The CPU may seem overly cautious about detecting error conditions: the number of ways to gen-
erate interrupts sometimes seems larger than the number of ways to write a correct program!
However, these error-detection mechanisms help catch program errors: an interruption condition
will usually be generated before your program has gone too far, and you will have an indication
that something is wrong before the cause is obscured.

Consider the problem of finding program errors on a CPU in which all bit patterns represent
valid data or operation codes, and where none but the most unusual error conditions were caught.
The processor could offer little help, and you would have to write programs with many internal
checks and tests. In addition to the extra effort needed to write correct programs, the time used
for checking would cause the program to run more slowly. Program interruptions should be seen
as helpful clues from the CPU, and not as an indication that something is wrong with the
processor.

Exercises

4.6.1.(2)+ Suppose the contents of the following 8-byte System/360 PSW28 (sketched in
Figure 12 on page 47) was displayed as the result of a program interruption. What error con-
dition is immediately evident? (The “xxxxxxxx” digits are unimportant for this exercise.)

xxxxxxxx 4017E26F

4.6.2.(3) Suppose the 8-byte Program New PSW area of memory had been initialized with the
following “New PSW”: (The “xxxxxxxx” digits are unimportant for this exercise.)

xxxxxxxx 0000A237

What do you suppose would happen if any program interruption occurs?

4.6.3.(1) What caused the following Interruption Codes?

1. 0001
2. 0009
3. 000C

4.7. Machine Language and Assembler Language

Sometimes people refer to Assembler Language programming as “machine language” or
“processor language” programming. In the earliest days of digital computers, there were almost
no programming tools like assemblers and compilers, so the instructions and data for programs
had to be created in the form of binary (or decimal or hexadecimal) digits that were loaded
directly into memory for execution, without any intermediate translation.

Thus, we consider “machine language” to be the processor's internal bit patterns representing
instructions and data types. Because it's difficult to know (and work with) these bit patterns, we
use assemblers and compilers to convert a program from forms manageable by humans into the
forms needed by the processor.

28 The modern z/Architecture PSW is quite different!

58 Assembler Language Programming for IBM System z™ Servers Version 2.00

Even though Assembler Language is considered a lower-level language, we rarely program digital
computers in “machine language”, so it is no longer accurate to say we program in machine lan-
guage.29

4.8. Processor Evolution

Since the early days of System/360, many updates, changes, enhancements, and improvements
have been made to the original architecture. These have included 31-bit and 64-bit addressing
(which we'll see in Section 20), 64-bit registers, and a vast variety of new instructions. Many of
the instructions we'll see didn't exist in System/360. Each generation of processors has introduced
small and large enhancements; while we'll start with basic instructions that have been used for
many years, we'll also see many new forms that can simplify programming chores that were more
difficult or expensive when only the older instructions were available.

IBM has tried very hard to ensure that existing applications continue to execute correctly on each
new generation of processors. This concern with “backward compatibility” has made it easy for
users to increase the capacity and performance of their systems without having to rewrite and
retest large applications in which they have invested considerable time and effort.

Backward compatibility doesn't apply as uniformly to specialized programs that use system-
specific features, but most such features are typically managed by the operating system.

Terms and Definitions
decode

The CPU action of analyzing the contents of the IR to determine the validity and type of
instruction.

exception condition
A condition indicating an unusual result. Some exceptions can deliver a default result if an
interruption has been masked off by appropriate settings, while others always cause an inter-
ruption.

execute
The CPU's action of performing the operation requested by the instruction in the IR.

fetch
The CPU action of bringing halfwords from memory into the Instruction Register to be
interpreted as an instruction.

IC
Interruption Code, a value indicating the cause of an interruption.

ILC
See Instruction Length Code.

Instruction Length Code
A 2-bit field in low storage indicating the length in halfwords of an instruction that caused a
particular type of interruption.

interruption
A process taking control away from the currently executing instruction stream, saving infor-
mation about the interrupted program, and giving control to the Operating System Super-
visor.

IR
Instruction Register, a conceptual internal register in the CPU into which fetched instructions
are placed.

29 But some hardy souls still make corrective “patches” to programs in machine language, or enter machine language
instructions into memory using various testing and debugging techniques.

Chapter II: System z 59

machine language
The internal representations of instructions and data processed by a computer.

operation code
The portion of an instruction specifying the actions to be performed by the CPU when it
executes the instruction. Often called “opcode”.

PM
Program Mask, a 4-bit field in the PSW used to control whether or not certain types of
exception conditions should cause an interruption, or take a predefined default action.

60 Assembler Language Programming for IBM System z™ Servers Version 2.00

5. Memory Addressing

55555555555
555555555555
55
55
555555555
 5555555555

555
55
55
555

55555555555
555555555

We now describe how the CPU calculates addresses of data and instructions in memory when it
decodes the instructions of your program.

The addressing technique used in System z differs from that found in many earlier computers,
where the actual memory address (or addresses) of the operand (or operands) was part of the
instruction.

┌──────────┬───────────────────────────────────┐
│ opcode │ operand address │
└──────────┴───────────────────────────────────┘

Figure 17. Typical instruction format for old computers

When memory sizes were limited, this was a reasonable and efficient choice.30

Because the original System/360 architecture allowed addressing up to 224 bytes of memory, the
older technique of placing actual operand addresses into the instructions would have required at
least a 24-bit field for each such address. Since few processors had as many as 224 bytes of
memory, and because few programs needed as many as 224 bytes of memory to execute, many of
the bits in the 24-bit address field would be wasted by such a direct-addressing technique, and
instructions would be longer than needed.

In System z, the scheme used for addressing memory operands is much more flexible than using
actual operand addresses, and more economical in using the bits allotted to each instruction; but
more complex in the way it determines operand addresses.

The System z family of processors supports three modes of addressing. This section describes a
fundamental type of base-displacement address generation with 24-bit addresses. Section 20 in
Chapter VI describes 31-bit and 64-bit addressing, as well as two other types of address gener-
ation.

30 Another reason is that memory was very expensive! A really big machine might have had as many as 128 kilobytes of
memory; modern processors can have billions of times more.

Chapter II: System z 61

5.1. The Addressing Halfword

To refer to data or instructions in memory, a program will almost always use one of the general
registers, because the CPU uses information in a part of many instructions called an “addressing
halfword”. An addressing halfword always occupies a halfword in memory.

│�─4 bits─�│�──────────12 bits──────────�│
┌──────────┬─────────────────────────────┐
│base digit│ displacement │
└──────────┴─────────────────────────────┘
 0 3 4 15

Figure 18. Structure of an addressing halfword

The first 4 bits of the addressing halfword contain a hex digit called the base register specification
digit, or base digit.31 The base digit specifies a general register called the base register. The 12-bit
field in the rest of the addressing halfword contains an unsigned nonnegative number called the
displacement that takes values from 0 to 4095.

To generate the address of an operand, the CPU does the following:

Step 1: The 12-bit displacement is put at the right-hand end of an internal register called the
Effective Address Register (abbreviated “EAR”), and the leftmost bits of the EAR
are cleared to zeros.

Step 2a: If the base register specification digit is not zero, then the contents of the specified
general register (the base register) are added to the contents of the EAR, and carries
out the left end are ignored.

Step 2b: If the base register specification digit is zero, nothing is added to the EAR (so that
general register zero will never be used by the CPU as a base register). That is, a
zero base digit means “no register”.

The result in the EAR is called the Effective Address. It may be used as the address of an
operand in memory, and for many other purposes (such as a shift count). These steps are
sketched in Figure 19.

 �────── General Registers ────
│ ─ ─ ─ │ �─ Addressing Halfword ─
├───────────────────────────────┤ ┌───┬─────────────────────┐
│ │ │ b │ displacement │
├───────────────────────────────┤ └─┬─┴──────────┬──────────┘
│ │ │ │
├───────────────────────────────┤ │ │
│ │ │ �
├───────────────────────────────┤�─────────┘ ┌───────┐
│ General Register b │──────────────────│ Adder │
├───────────────────────────────┤ └───┬───┘
│ ─ ─ ─ │ │

�
┌─────────────────────────────────┐

EAR │ Effective Address │
└─────────────────────────────────┘

Figure 19. Sketch of Effective Address calculation

This method of generating addresses is called base-displacement addressing. In 24-bit addressing
mode (which we're assuming for now), only the rightmost 24 bits of the Effective Address are
used.

31 The base register specification digit was sometimes called the “base register address”, but this is misleading because
the base registers aren't “addressable” like bytes in memory.

62 Assembler Language Programming for IBM System z™ Servers Version 2.00

 Remember

An addressing halfword is not an address. It can be used to form an
Effective Address.

Exercises

5.1.1.(2) The use of the term “halfword” in describing an addressing halfword implies that it
(the addressing halfword) lies on a halfword boundary. Is this true under all circumstances?

5.1.2.(1) How many values may be assumed by the base register specification digit? How many
registers may be used by the CPU as base registers?

5.2. Examples of Effective Addresses

In the following examples, additions are done in both binary and hexadecimal arithmetic.

1. Suppose the addressing halfword of an instruction is 1011 001011010101 in binary (X'B2D5')
and suppose general register 11 contains

1100 0111 0011 1110 1001 0000 1010 1111

in binary (or C73E90AF in hex). Then, assuming we are generating 24-bit addresses, the
Effective Address of the instruction is

0000 0000 0000 0010 1101 0101 0002D5 (displacement)
 +0011 1110 1001 0000 1010 1111 3E90AF (base)
0011 1110 1001 0011 1000 0100 3E9384 (Effective Address)

2. Suppose the addressing halfword of the same instruction is X'0468'. Then the Effective
Address is X'000468', since general register zero is never used as a base register.

3. Suppose the addressing halfword of the same instruction is X'B000', and the contents of R11
are as before. Then the Effective Address is X'3E90AF'; a zero displacement is valid.

Exercises

5.2.1.(2)+ Assume general registers 0, 1, and 2 contain these values:

 c(GR0) = X'12001038'
 c(GR1) = X'0902A020'
 c(GR2) = X'001AAEA4'

Calculate the 24-bit Effective Address for these addressing halfwords: (1) X'206C', (2) X'1EEC',
(3) X'0FB0'.

5.2.2.(2)+ Assuming the same register contents as in Exercise 5.2.1, calculate the 24-bit Effec-
tive Address for these addressing halfwords: (1) X'1FEF', (2) X'0FC8', (3) X'2EA4'.

5.3. Indexing

After the displacement has been added to the base (if any), the CPU again checks the type of the
instruction. If the instruction is type RX, an indexing cycle is needed. The second byte of an
RX-type instruction (the “register specification” in Table 7 on page 52) contains two four-bit
fields: the second is called the index register specification digit or index register digit or index
digit, as shown in Figure 20 on page 64.

Chapter II: System z 63

8 bits 4 bits 4 bits 16 bits
┌──────────────┬────────┬────────┬────────────────────────────────┐
│ opcode │operand │index │ │
│ │register│register│ addressing halfword │
│ 01xxxxxx │digit │digit │ │
└──────────────┴────────┴────────┴────────────────────────────────┘
0 7 8 11 12 15 16 31

Figure 20. RX-type instruction, showing index register specification digit

Step 3: If the instruction is type RX, and the 4-bit index register specification digit is not
zero, then the contents of the general register specified by the index register specifi-
cation digit are added to the contents of the EAR (again ignoring carries out the left
end). A zero index digit means “no register”, not general register zero.

The resulting quantity in the EAR is still called the Effective Address (sometimes called the
Indexed Effective Address). These steps are sketched in Figure 21.

 �────── General Registers ────
│ ─ ─ ─ │ �─ Addressing Halfword ──
├───────────────────────────────┤ ┌───┬───┬────────────────────┐
│ │ │ x │ b │ displacement │
├───────────────────────────────┤ └─┬─┴─┬─┴─────────┬──────────┘
│ │ │ │ │
├───────────────────────────────┤ │ │ │
│ │ │ │ �
├───────────────────────────────┤�───┼───┘ ┌───────┐
│ General Register b │────┼──────────│ Adder │
├───────────────────────────────┤ │ └───┬───┘
│ │ │ �
├───────────────────────────────┤�───┘ ┌───────┐
│ General Register x │───────────────│ Adder │
├───────────────────────────────┤ └───┬───┘
│ ─ ─ ─ │ │

�
┌─────────────────────────────────┐

EAR │ Effective Address │
└─────────────────────────────────┘

Figure 21. Sketch of Effective Address calculation with indexing

Modern CPUs add the base and index register contents with a three-input adder, so there is actu-
ally only one calculation. The index register specification digit is sometimes called the index digit;
similarly, the specified register is the index register, and the quantity in it is the index.

Indexing is a powerful way to process structures of data items like arrays with uniform and regular
spacing, as we will see in Section 40. The addressing halfword provides the address of a fixed
position, and the index selects a particular item.

Exercises

5.3.1.(1) Draw a picture showing the locations of the base register specification digit, the base
register, and the base address. Then do the same for the corresponding index quantities.

5.3.2.(1) How does the CPU determine that an indexing cycle is needed during address compu-
tation?

5.3.3.(2) For each instruction type, determine the maximum number of general registers that
might be accessed by the CPU in calculating Effective Addresses.

5.3.4.(2) Under what circumstances will the CPU not calculate an Effective Address?

64 Assembler Language Programming for IBM System z™ Servers Version 2.00

5.4. Examples of Indexing

Continuing the examples of calculating Effective Addresss that we saw in Section 5.2:

4. Suppose an RX-type instruction is X'430A7468' and that GR7 contains X'12345678' and
GR10 contains X'FEDCBA98'. (The base register specification digit X'7' means that GR7 is
used as the source of the base address.) Again assuming we are generating 24-bit addresses, the
Effective Address is

 0000 0000 0000 0100 0110 1000 000468 (displacement)
+0011 0100 0101 0110 0111 1000 345678 (base, from GR7)
 0011 0100 0101 1010 1110 0000 345AE0
+1101 1100 1011 1010 1001 1000 DCBA98 (index, from GR10)
 0001 0001 0001 0101 0111 1000 111578 (Effective Address)

5. Suppose an RX-type instruction is X'43007468' and that the contents of GR7 are again
X'12345678'. Then the Effective Address is

 0000 0000 0000 0100 0110 1000 000468 (displacement)
+0011 0100 0101 0110 0111 1000 345678 (base)
 0011 0100 0101 1010 1110 0000 345AE0 (Effective Address)

(No indexing cycle is needed, since the index register specification digit is zero.)

6. Suppose an RX-type instruction is X'43070468' and that GR7 still contains X'12345678'. Then
the Effective Address is

 0000 0000 0000 0100 0110 1000 000468 (displacement)
+0000 0000 0000 0000 0000 0000 000000 (base)
 0000 0000 0000 0100 0110 1000 000468
+0011 0100 0101 0110 0111 1000 345678 (index)
 0011 0100 0101 1010 1110 0000 345AE0 (Effective Address)

In this example the values of the base and index register specification digits were interchanged
from those in example 5, so that the indexing cycle was required to compute the same Effec-
tive Address.

In situations where only one register is used to calculate an Effective Address (as above, where the
base digit was 0 and the index digit was 7), be careful not to call that register the base register,
even though it usually behaves like a base register in an RX-type instruction.32

Exercises

5.4.1.(1) Under what circumstances may GR0 be used as a base register? As an index register?

5.4.2.(3)+ Assume the hexadecimal contents of the general registers are as shown:

C(GR0) = 12001028 C(GR4) = 8888000E
C(GR1) = 8902A020 C(GR5) = 12345678
C(GR2) = 4F1AAEA4 C(GR6) = 0FDE3B72
C(GR3) = FFFFFFF8 C(GR7) = 92837465

and GR8 through GR15 contain zeros. Now, compute the 24-bit Effective Address of each of
the following instructions, paying careful attention to instruction type: (1) X'9803206C', (2)
X'50F10EEC', (3) X'41133333', (4) X'7A341DA4', (5) X'91220166', (6) X'8F120FB0'.

5.4.3.(3)+ Assume that the contents of the general registers are as shown below for GR0
through GR7, and that GR8 through GR15 contain zeros.

32 In the “Access Register” addressing mode, index and base registers participate differently in calculating Effective
Addresses: only base registers are used to select an Access Register.

Chapter II: System z 65

C(GR0) = 00000044 C(GR4) = 41800000
C(GR1) = 000902AE C(GR5) = 00010000
C(GR2) = A20710FC C(GR6) = 00FFFF00
C(GR3) = FFFFFFFF C(GR7) = FF000000

Now, compute the 24-bit Effective Address of each of the following instructions: (1)
X'41726100', (2) X'920710FC', (3) X'7A333002', (4) X'5806016C', (5) X'43B00044', (6)
X'90EC126A', (7) X'86052E4D'.

5.4.4.(3) Suppose the contents of the general registers are as shown in Exercise 5.5.2 below. For
each of the following instructions, determine the Effective Address, paying careful attention to
instruction type: (1) X'58040404', (2) X'91628DBC', (3) X'44FF7D5C'.

5.5. Addressing Problems (*)

The Effective Address in the EAR has many uses, most often to address operands in memory; it
is also used for other purposes such as shifting and branching.

Certain instructions operating on groups of bytes require the address of the leftmost (lowest-
addressed) byte of the operand group be exactly divisible by the length of the operand. If this
condition is not satisfied, a program interruption for a specification exception occurs. In early
processors, operand alignment was required for almost all instructions, but the requirement was
relaxed soon after.33 Few instructions in modern processors require strict operand alignment.

When you use base-displacement addressing with 12-bit displacements, the only part of the
memory that can be referenced without using a base register is the area with addresses 0 to
4095 = X'FFF', so you will almost always use a base register to refer to operands in memory.
(We'll see in Chapter VI, Section 20 that instructions with signed 20-bit displacements make this
4K-byte limitation much less severe.)

You can't put your program into those first 4096 bytes34 because that area of memory (and more)
is reserved by the CPU and the Operating System. This means that if you want to access a byte
in memory at address XX (where XX is greater than 4095), there must be a base register available
— one of registers 1 to 15. If a base register contains a base address, and XX lies between that
base address and the base address+4095, then we say that XX is addressable. If there is no such
number in a register, then the byte at XX is not addressable by your program.

When we place a number in a register to address a 4096-byte region of memory, that register
provides addressability for the region. However, if the number itself must be brought from
another portion of memory that is not currently addressable, we are back where we started,
needing another number to provide addressability for the first number.

Fortunately, there are simple solutions to the problems of establishing addressability. The BASR
instruction is often used (as we will see soon), and the Assembler's address constants also allow us
to refer to other areas of our program. Modern processors provide new ways to minimize these
addressing problems: long displacements and relative addressing. We will turn to them in Section
20 after we have investigated the most often-used instructions.

Exercises

5.5.1.(3)+ Suppose the general registers contain the values shown in Exercise 5.2.1. Which of
the following locations in memory (given in hexadecimal) are addressable through the use of
the base-displacement addressing technique? For each location that is addressable, derive an
addressing halfword that can be used to address it. (1) X'02ABCD', (2) X'000A4D', (3) X'001139',
(4) X'88888E', (5) X'02A010'.

33 Because many programs had to manage unaligned data items, extra instructions were needed to isolate and align the
required item. The processor designers were asked (urgently!) to remove the restriction wherever possible. The relax-
ation of the alignment requirement was called the “Byte-Oriented Operand Feature”; it soon was known as the
“BOOF”.

34 Unless you're writing your own operating system!

66 Assembler Language Programming for IBM System z™ Servers Version 2.00

5.5.2.(3)+ Suppose the contents of the general registers are as follows:

C(GR0) = 00010A20 C(GR8) = 8031B244
C(GR1) = 42319B7C C(GR9) = 00000010
C(GR2) = 91F0F002 C(GR10) = 723B94C1
C(GR3) = 1002340A C(GR11) = E931AB7F
C(GR4) = 00FF00FF C(GR12) = 00000E38
C(GR5) = D907C401 C(GR13) = 6B005000
C(GR6) = 12345678 C(GR14) = 80000000
C(GR7) = 992B42A3 C(GR15) = FFFFFFFF

For each of the following memory addresses, determine first whether or not that memory
location is addressable by a program using those registers. If it is addressable, determine an
addressing halfword (base-displacement halfword) that can be used to address the location. (1)
X'010A20', (2) X'FFFFFF', (3) X'6A0054', (4) X'31AB7E', (5) X'001234', (6) X'07D3C4', (7)
X'00A004', (8) X'31BB65', (9) X'9ABCDE', (10) X'07C401'.

5.5.3.(3) In Exercise 5.5.2, which locations are addressable through the base-displacement
addressing technique with indexing allowed? Derive an addressing halfword and the accompa-
nying index digit that (in an RX-type instruction) would make the locations addressable.

5.5.4.(3)+ Suppose the contents of the general registers are as shown in Exercise 5.1.2 on page
63 (note that registers 8 through 15 contain zeros). For each of the following memory
addresses, determine an addressing halfword that can be used to address that memory position.
If no such addressing halfword exists, say so. (1) X'000EEB', (2) X'001040', (3) X'072000'.
How many solutions are there for address (1)?

5.5.5.(4)+ In Exercise 5.5.1, which locations in memory are addressable through the base-
displacement addressing technique with indexing allowed? Derive an addressing halfword and
the accompanying index digit that (in an RX-type instruction) would make the locations
addressable. (Remember that Exercise 5.5.1 refers to Exercise 5.2.1.)

5.5.6.(1) Suppose a program can be put entirely within the first 4096 bytes of memory. Will it
use GR0 as a base register?

5.5.7.(2) Assume that the contents of the general registers are as shown in Exercise 5.5.2. For
each of the following SS-type instructions, compute both Effective Addresses (there are two
addressing halfwords in an SS instruction, as shown in Table 9 on page 53).
(1) X'D2078F1D57C4', (2) X'DCFFDCFF7000', (3) X'F26337390050', (4) X'D58DFE4FC016'.

5.6. Address Translation and Virtual Memory (*)

All models of System z support address translation, called Dynamic Address Translation (or
“DAT”). Address translation is invisible to application programs. It provides greater Operating
System flexibility in assigning programs to main memory, a heavily used resource. Address trans-
lation takes your program's “virtual” addresses and maps them invisibly into the “real addresses”
needed for references to “real” memory.

Without DAT, a reference to a byte at X'123456' addresses that byte in the physical or “real”
memory of the processor. When DAT is active, your reference to a byte (at your virtual Effective
Address X'123456') is translated into a “real” address (such as X'27D94FA') having no obvious
relation to your address; you can't determine the relation of your virtual addresses to the real
addresses to which they are mapped. The Operating System, working with the DAT facilities,
makes it possible for your program to operate as though it is addressing “real” memory; but only
the Operating System works with real addresses. This is why your addresses are called “virtual” —
they aren't real.

Address translation is simple in concept but complex in implementation. To illustrate, the virtual
(effective) address supplied by your program is divided into sections; for 31-bit addresses, they are
a segment index, a page index, and a byte index, as illustrated in Figure 22 on page 68.

Chapter II: System z 67

11 8 12
┌──────────────┬─────────┬──────────────────┐
│ segment │ page │ byte │
│ index │ index │ index │
└──────────────┴─────────┴──────────────────┘

Figure 22. 31-bit Virtual Address

To use these indexes for calculating real addresses, the Operating System first constructs (in a pro-
tected area of real memory) two sets of tables, page tables and a segment table, and it places the
address of the segment table (for example, taken from Control Register 1) into an internal field.
Your virtual address is translated into a real address roughly as follows:

Step 1: The segment table address is retrieved and the segment index is added to it. The result
is the address of one of the entries in a list of segment tables.

Step 2: The specified segment table entry (which contains the address of one of the entries in
a list of page tables) is retrieved, and the page table index is added to it. The result is
the address of an entry in the specified page table.

Step 3: The specified entry in the page table is retrieved, and attached to the left (high-order)
end of the byte index. The result is the real address of a byte in main memory.

We will not show examples of translation, since it is invisible to your program.

This description covers only very basic aspects of translation, and does not cover 64-bit virtual
addresses. There are many other details of the process, and (because translation is very heavily
used) the processor has a lot of additional hardware to optimize the process.

Exercises

5.6.1.(3) Some processors use a technique called indirect addressing. If a bit in the instruction
(called the indirect-addressing bit) is nonzero, the CPU uses the Effective Address not to access
an operand, but to access a second instruction. The Effective Address of this new instruction
then becomes the operand address that points to the desired operand. (On some processors, if
the instruction at the “indirect address” had its indirect-addressing bit set, then the entire
process repeats until an instruction is found without the indirect-addressing bit set.) Can you
think of reasons why indirect addressing is not provided by System z?

5.6.2.(0) Another aspect of early addressing techniques (whereby instructions contained actual
operand addresses) was that the address portions of instructions often had to be modified. Find
a programming “old-timer”: ask for an explanation of address modification techniques on
processors such as the IBM 7090, and why the method used on System z is so clearly superior.

5.7. Summary

As noted earlier, Effective Addresses are used for many purposes; the most common is to refer to
an operand in memory. Almost always, the operand is referred to by its lowest-addressed byte;
and if the operand is a binary integer, that byte contains the most significant (high-order) byte of
the integer. So, references to “low-order” and “high-order” may need to distinguish clearly
between memory addresses, bit ordering, and numeric significance.

Terms and Definitions
address translation (“Dynamic Address Translation”, DAT)

The procedure used by the CPU to convert virtual addresses into real addresses.

addressability
A base register and a displacement provide an Effective Address allowing valid reference to a
byte in memory.

68 Assembler Language Programming for IBM System z™ Servers Version 2.00

addressing halfword
A halfword containing a base register specification digit in the first 4 bits, and an unsigned
displacement in the remaining 12 bits. A key element of System z addressing.

base address
The execution-time contents of a base register.

base register
A general register used at execution time to form an Effective Address.

base register specification digit
The first 4 bits of an addressing halfword.

displacement
An unsigned 12-bit integer field in an addressing halfword used in generating Effective
Addresses.35

EAR (Effective Address Register)
A (conceptual) internal register used to hold Effective Addresses.

Effective Address
The address calculated from an addressing halfword, possibly with indexing.

index
The contents of an index register.

index register specification digit
4 bits of an RX-type instruction specifying a register with a value to be added to the Effective
Address calculated from an addressing halfword.

indexing
Computation of an Effective Address by adding a displacement to the contents of a base reg-
ister and an index register.

real address
The “true” address of a memory location.

virtual address
The address of a memory location that may physically reside at a different real address.

35 We will see in Section 20 that System z provides another form of base-displacement addressing with a signed 20-bit
displacement.

Chapter II: System z 69

70 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter III: Assembler Language Programs

IIIIIIIIII IIIIIIIIII IIIIIIIIII
IIIIIIIIII IIIIIIIIII IIIIIIIIII

II II II
II II II
II II II
II II II
II II II
II II II
II II II
II II II

IIIIIIIIII IIIIIIIIII IIIIIIIIII
IIIIIIIIII IIIIIIIIII IIIIIIIIII

We have seen how the CPU executes instructions and evaluates addresses; now we'll see how we
write Assembler Language programs.

• Section 6 describes typical steps involved in preparing, assembling, linking, and executing pro-
grams written in Assembler Language.

• Sections 7 and 8 examine the components from which machine, assembler, and macro instruc-
tion statements are formed.

• Section 9 describes five major machine-instruction types and how we write their operands in
machine instruction statements.

• Section 10 introduces the key concept of addressability in Assembler Language programs, a
necessary step for any program executed on System z.

Chapter III: Assembler Language Programs 71

6. Assembler Language

 6666666666
666666666666
66 66
66
66
66666666666
666666666666
66 66
66 66
66 66
666666666666
 6666666666

The Assembler is the program most used in creating specific instruction sequences for execution
by the processor.

First, we describe how to write programs and see the steps leading to their execution. The con-
ventions and rules for using the Assembler are called “Assembler Language”, even though there is
little resemblance to what most people mean by “language”.

6.1. Processing Your Program

First, we consider the steps involved in running an Assembler Language program:

1. assembly
2. linking
3. loading and execution

6.1.1. Assembly

Assembly is represented schematically in Figure 23. The Supervisor places the Assembler in
memory to begin assembling your source program.

┌───────────────────────┐
│ System z │
├───────────────────────┤

┌─────────┐ │ ┌───────────┐ │ ┌────────┐
│ Your │ │ │ │ │ │ Your │
│ Source ├────┼────│ Assembler ├─────┼────│ Object │
│ Program │ ┌─┼────│ ├─────┼─┐ │ Module │
└─────────┘ │ │ └───────────┘ │ │ └────────┘

│ └───────────────────────┘ │
 ┌───────────┴─────────┐ │ ┌─────────┐
 │ Libraries of Macro─ │ └─│ Your │
 │ Instructions and │ │ Program │
 │ other statements │ │ Listing │
 └─────────────────────┘ └─────────┘

Figure 23. Simple view of Assembler processing

72 Assembler Language Programming for IBM System z™ Servers Version 2.00

The Assembler reads the statements of your Assembler Language program, processes them — pos-
sibly with the help of some data in libraries of macro-instructions and other statements — converts
your Assembler Language program to machine language, and produces an object module con-
taining object code. Usually you will want a program listing showing your source program and
the generated object code, with additional information about the Assembler's processing and indi-
cations of errors it may have detected.

The Assembler converts the program from a form convenient for you (statements) to a form con-
venient for the processor (binary data and instructions), its machine language.

6.1.2. Linking

The Linker36 combines your object module with any others needed for execution. The linking
step is sketched in Figure 24; the Linker is placed in memory and begins execution.

┌──────────────────────┐
│ System z │
├──────────────────────┤

┌────────┐ │ ┌──────────┐ │ ┌────────┐
│ Your │ │ │ │ │ │ Your │
│ Object ├─────┼────│ Linker ├─────┼────│ Load │
│ Modules│ ┌──┼────│ ├─────┼─┐ │ Module │
└────────┘ │ │ └──────────┘ │ │ └────────┘

│ └──────────────────────┘ │
┌───────────┴──┐ │ ┌─────────┐
│ Libraries │ └─│ Your │
│ of Object or │ │ Linker │
│ Load Modules │ │ Listing │
└──────────────┘ └─────────┘

Figure 24. Simple view of program linking

The output of the Linker is a load module.37 The load module is written to a storage device, and a
listing of information summarizing the linking process is created.

The Linker also accepts load modules as input, allowing you to update or modify existing load
modules without having to reassemble all its components.

6.1.3. Loading and Execution

At execution time, the load module produced in the linking step is “loaded” into memory. An
essential feature of this process is relocation, which we'll investigate in Chapter X, Section 38.
The portion of the Supervisor that loads and relocates load modules is called the Program Loader.
Like the Linker, it is a program that treats other programs as data.

After your program has been loaded into memory, the Supervisor transfers control to it by setting
the Instruction Address in the PSW to the address of the instruction where you want execution to
begin. Your program then does whatever processing you told it to do38 and when it is finished it
returns control to the Supervisor.

36 We'll use “Linker” to mean any program (such as the Binder and Linkage Editor) that combines object module files
into executable files like load modules.

37 The output of a Linker has many many different names and forms, depending on the operating system and the
system Linker. For example, on System z the output of the z/OS binder can be a “load module” or a “program
object”; the output of the z/VSE Linker is a “phase”, and the output of the z/VM CMS loader is a “module”. We'll
use “load module” to mean a data set or file ready to be loaded directly into memory for execution.

38 Which may not always be what you intended!

Chapter III: Assembler Language Programs 73

┌────────────────────────┐
│ System z │
├────────────────────────┤

┌────────┐ │ ┌──────────┐ │
│ Load ├───┼─────│ Program │ │
│ Module │ │ │ Loader │ │
└────────┘ │ └─┬────────┘ │

│ │ Loads, and │
│ │ then passes │
│ │ control to │
│ � your program │

┌─────────┐ │ ┌─┴────────┐ │ ┌─────────┐
│ Your │ │ │ Your │ │ │ Your │
│ Program ├──┼─────│Relocated ├──────┼──│ Program │
│ Data │ │ │ Program │ │ │ Output │
└─────────┘ │ └──────────┘ │ └─────────┘

└────────────────────────┘
Figure 25. Simple view of program loading and execution

The last two linking and program-loading steps can be combined by using a Loader instead of the
Linker and Program Fetch routines. The Linker or Loader reads and relocates your object
modules directly into memory, and combines them with any necessary additional object and load
modules from the “Libraries of Object or Load Modules”.

An Assembler Language program is “processed” twice: once by the Assembler at assembly time,
and once by the CPU when it is executed at execution time (or run time). The difference between
these two times is important: the Assembler produces object modules with machine language
instructions and data to be placed into memory later; your data is processed only when your
program is finally loaded and your instructions are executed.

Exercises

6.1.1.(1) Draw a diagram combining Figures 23 through 25, to show the relationships between
the inputs and outputs of processing your programs at each step.

6.2. Preparing Assembler Language Statements

You prepare Assembler Language programs in the form of statements. There are four types:
comment statements, machine instruction statements, assembler instruction statements, and macro-
instruction statements. All four can be used in creating programs.

1. Comment statements provide explanatory material in the program so it will be easier for you
and others to read and understand. They are displayed in the program listing, but are not
translated into instructions or data and do not appear in the object module.

2. Machine instruction statements are converted by the Assembler into machine language
instructions for the CPU to execute when your program is loaded into memory for execution.

3. Assembler instruction statements provide information to the Assembler. They can be as
simple as statements generating data or specifying a title for the top of each page of the
listing, or can be more complicated, such as statements telling the Assembler that certain reg-
isters may be used as base registers. Some Assembler instruction statements cause the
Assembler to generate machine language data; others do not.

4. Macro instructions provide a compact assembly-time notation for groups of statements. They
are a convenient way to specify sequences of other statements (all four types are allowed) in
which parts of the generated statements can be changed to suit your needs. Macro
instructions are a very powerful and useful feature of the Assembler Language.

74 Assembler Language Programming for IBM System z™ Servers Version 2.00

The Assembler processes input records exactly 80 bytes long. Your records may not extend all
the way to 80 characters, but there must still be enough blank or other characters to extend its
length to 80. These 80-character records are often called “card-image” records.39

Statements occupy positions 1 through 71 of a line. Such positions are called “columns”.
Column 72 has a special meaning: if it is not blank, the next line is considered to be a continua-
tion of the line with the nonblank character in column 72, in such a way that the character in
column 16 of the second line is treated as following immediately after the character in column 71
of the preceding continued line.40 This is illustrated in Figure 26. These conventions — column 72
for the continuation indicator and column 16 where the statement continues — are almost always
used for machine instruction and assembler instruction statements.

Columns 73-80 may be used for any purposes (usually, for sequencing data).

 ┌── first character of a record last character of a record ──┐
 � �
1 10 20 30 40 50 60 70 80
....v....|....v....|....v....|....v....|....v....|....v....|....v....|....v....|
� � ��
 │ └── continue column (16) end column (71) ──┘│
 └── start column (1) nonblank character if continued ─────────────┘

Figure 26. Assembler Language statement columns

Columns 1 through 15 of a continuation line must be blank. (A common error is to write char-
acters in column 72 accidentally, so that the following line is treated as a continuation line, and
processed in an unexpected way.)

Columns 73 through 80 are ignored by the Assembler. Since all 80 columns of the input record
appear on the listing, the last 8 columns are often used for identification or sequencing informa-
tion.41

A comment statement is identified by an asterisk (*) in column 1. Any information may appear in
columns 2 through 71. Figure 27 on page 76 has examples of comment statements:

39 The choice of 80 characters goes back to the nearly universal use of “IBM cards”. For many years before and after
the introduction of System/360, programs and data were prepared on 80-column punched cards. So, we still say
“column” rather than something like “position”.

40 You can change these columns with the ICTL Assembler instruction statement. It allows other columns to be used
for the start, end, and continuation columns of a statement. The numbers given are the ones the Assembler uses if it
is not told otherwise. ICTL is almost never used, anyway; if you use ICTL to change those columns, other readers of
your program may be confused.

41 Even though IBM cards have 80 columns, early computers like the IBM 704 and 709 couldn't read the last 8
columns! Those processors had 36-bit words, so their card readers read alternate groups of 36 bits from the 12 rows
on a card into 24 words. This 72-column custom persists.

Chapter III: Assembler Language Programs 75

1 10 20 30 40 50 60 70 80
....v....|....v....|....v....|....v....|....v....|....v....|....v....|....v....|

 * This is a comment statement. It is not continued.

 * This comment statement is correctly continued: its continuation X ← column 72
on this next line starts in column 16.

 * This comment statement is also continued, but is an error: X
this continuation line has nonblank characters before column 16.

Figure 27. Comment statement examples

Figure 27 contains some entirely blank lines. They are often used to improve readability; the
Assembler copies them to the program listing, and they have no effect on your program.

Comment statements may be continued onto following lines, as shown in the figure above. This
is generally not a good practice; most programmers avoid column 72 in comment statements.

A common method for adding “blocks” of comments to a program is illustrated in Figure 28.

*
* This is a block of comments documenting the behavior of this
* program. Since we have not written any programs yet, this block
* only illustrates how you can include large amounts of descriptive
* text to your program to help readers and maintainers understand
* what the program does -- at least, what you intended it to do.
*

Figure 28. Block comments

Exercises

6.2.1.(1) For the Assembler you use, determine what rules apply to the columns of continued
statements after the first continuation.

6.3. Statement Fields

The machine instruction, Assembler instruction, and macro-instruction statements each have four
parts called fields: the name, operation, operand, and comment or remarks fields.42 An entry in the
operation field must always be present, and for certain statements an entry in some of the other
fields may or must be omitted.

If there is a name field entry in the statement, it must begin with a nonblank character in column
1. It is terminated by the first blank column after column 1. If no name field entry is desired,
column 1 must be left blank.

42 It's better to call this the “remarks” field, to avoid confusion with comment statements.

76 Assembler Language Programming for IBM System z™ Servers Version 2.00

After the name field and separated from it by one or more blanks is the operation field entry; it
ends with the first blank after the start of the operation field. The operation field entry is some-
times called the “mnemonic” or “operation” or “operation mnemonic”.43

After the operation field entry and separated from it by one or more blanks is the operand field
entry, which, like the name and operation field entries, terminates with the first blank column
detected after the start of the operand field entry, except for one special case (quoted strings)
described in the next section.

The rest of the input line is treated as remarks by the Assembler and is ignored. It does not influ-
ence the processing of the statement unless this field extends into column 72, indicating a contin-
uation on the next line. Except for the name field, there is no restriction on the columns where
the other three fields must start; they simply end with a blank column.

This allows free-field statements: you can arrange the information on the input lines of your
program as you like, but the fields must appear in the proper order. These rules are summarized
in Figure 29, where “┴” means “one or more blanks”.

column 1 end by column 71
� �
Name─Field─Entry ┴ Operation ┴ Operands ┴ Remarks

usually required usually always
optional required optional

Figure 29. Statement fields for machine, assembler, and macro-instruction statements

Even though any number of blanks can be used to separate the fields of a statement, it is cus-
tomary to improve program readability by making all operation, operand, and remarks fields
entries start in the same columns. For example, if your name-field entries are eight or fewer char-
acters long, place your operation field entries in column 10; similarly, if the operation field entries
are eight or fewer characters long, start your operand field entries in column 19. Later examples
of program fragments will show how this can be done.

A good programming practice is to use the remarks field to tell the reader what the statement is
supposed to do, and why. (Program comments and remarks sometimes say the program “does”
one thing, while it actually does something different when the CPU executes it!)

Good Programming Practice

Your program's comments and remarks should help the reader (who may
be you!) understand what each statement and group of statements is
doing, and why.

The term “operand” can be confusing. Section 3.1 on page 43 stated that an operand is something
in a register or in memory that is “operated on” during the execution portion of the instruction
cycle. “Operand” is also used here to describe the components that make up the operand field
entry of a statement! It helps to remember that the first meaning applies to the execution step of
a job, while the second meaning applies only during the assembly step.

Figure 30 on page 78 illustrates a machine instruction statement in which entries appear in all four
fields.

43 Be careful not to call it the “opcode”! That term is properly used for the bits of an instruction that tell the CPU what
to do. Sometimes people use “opcode” to mean both the operation field entry of an instruction — the mnemonic —
and the machine instruction bits, so listen carefully. Which is meant will usually be clear.

Chapter III: Assembler Language Programs 77

LOAD LR 7,3 Copy c(GR3) to GR7

Figure 30. A machine instruction statement

The operand field entry has two entries, “7” and “3”, separated by a comma. If the instruction is
executed in a program, it would cause the contents of general register 7 to be replaced by a copy
of the contents of general register 3.44

The assembler instruction statement in Figure 31 omits the name and comment field entries, and
causes the Assembler to put a “title” heading on each page of the program listing.

TITLE 'PROGRAM NO. 1'

Figure 31. An assembler instruction statement

Figure 32 shows an example of a macro-instruction statement in which only an operation field
entry appears.

RETURN

Figure 32. The macro-instruction statement RETURN

If the RETURN statement above had been prepared in the days of punched cards, the card45

might look like this:

Table 12. Punched-card image of a RETURN statement

The Assembler supports mixed-case characters, so you need not write symbols, operation field
entries, and most operand field entries using upper-case letters. (However, the Assembler treats
lower-case and upper-case letters as equivalent when they appear in symbols and operation field
entries; unlike some high-level languages, the Assembler is not case-sensitive except for characters
within quoted strings.) Thus, you could write Figure 32 as

RETURN
�
� ��

00000000000��000
11
22
33333333333�33
444444444444�444
5555555555�555�555
66
77
88
999999999�999�999IBM5081

44 The remarks in this statement are quite useless, because readers can see what the instruction does. Remarks should
explain reasons for doing something, like “Copy record count to GR7 for multiplication”.

45 The characters “IBM5081” in the bottom right corner of the “card” were called the “electro number”, the number of
the plate used for printing the cards. Number 5081 was used for cards with no other information than the row
numbers, zero through nine. The empty two rows at the top were called the “twelve” row and the “eleven” row. (This
card was also known as the “IBM Model 5081 Data Storage Device”.)

78 Assembler Language Programming for IBM System z™ Servers Version 2.00

Return

with the same results.

Mixed Case Names: Be Careful!

The Assembler accepts mixed-case names, but processes them internally
as through they are all in upper case. Thus, a symbol like AbCdEfgh is
considered to be the same as the symbol ABCDEFGH.

6.3.1. What's in a Name Field? (*)

Many items can appear in the name field of an instruction statement, such as:

• the name of a machine instruction
• the name of a data area
• a symbol to be given a value without naming any part of the program
• a Labeled USING qualifier (described in Chapter XI, Section 39.4)
• in the Conditional Assembler Language, a variable or sequence symbol
• characters to be copied to the sequence field of the object module
• ... and some statement require the name field to be empty!

Some people call the name field entry a “label” when it is the name of a machine instruction, but
in other contexts this can be very misleading. It's too easy to start thinking of all name-field
symbols as “labels” when they're actually used for other purposes.

Exercises

6.3.1.(1) Suppose a program contains the machine instruction statement shown in Figure 30 on
page 78. During what part of the job processing will the statement be read by the Assembler?
During what part of the job processing will the assembled hexadecimal instruction be fetched
by the CPU?

6.3.2.(1) In what column should the remarks field of a machine instruction statement begin?

6.3.3.(1) In what columns may the operation field entry of a machine instruction statement
begin?

6.3.4.(1) Which field in an assembler instruction statement is required?

6.3.5.(2)+ What types of statement may be written without an operation field? Without an
operand field? Without a remarks field?

6.3.6.(2)+ Suppose the machine instruction statement in Figure 30 on page 78 had been
written so that column 1 was blank, and the characters “LOAD” began in column 2. How
would the fields of the statement be interpreted?

6.3.7.(2) What types of Assembler Language statements may be written without an operation
field? Without a comment field?

6.4. Writing Programs

While these basic rules are nearly complete, you will be able to write executable programs after we
cover a few necessary details.

A program is a sequence of Assembler Language statements. The input to the Assembler should
consist of

Chapter III: Assembler Language Programs 79

1. a START statement,
2. the statements of your program, and
3. an END statement.

The START statement is written

progname START origin

The name-field symbol progname is the name of the program. It will usually have eight or fewer
letters. The origin operand is called the initial location or assumed origin of the program; its
value is used by the Assembler. For now, we will use zero for this initial location. Thus, the first
statement of a program should be something like

TEST START 0 First statement of program TEST

where TEST is the name of your program.

The last statement of the program must be an END statement telling the Assembler to stop
reading records. It is written

END progname Last statement of program

where the progname operand of the END statement should (for now) be the same as the progname
in the name field of the START statement. For our example, we would write

END TEST Begin execution at 'TEST'

The progname in the operand field of the END statement specifies the name of the instruction
where execution should start when the program is loaded into memory. The operand field entry
on the END statement may be omitted, but specifying it is a good programming practice, so we'll
write our sample programs this way.

The Assembler allows no symbol as the name-field entry in an END statement. Assembler Lan-
guage programs, unlike programs in many high-level languages, must not try to terminate exe-
cution by allowing control to reach the END statement. Doing so usually results in some form
of disaster, since the END assembler instruction statement only tells the Assembler to stop
reading records, and is not translated into executable instructions.

The START and END statements, when read by the Assembler, determine the beginning and end
of the statements to be assembled. The START statement may be preceded by a few types of
statements (such as TITLE and comment statements), but for now, assume it is the first state-
ment to be read. The END statement may not be followed by any other statement: it must be
last.

Some programmers like to start their programs with a CSECT (“Control SECTion”) statement
rather than START. It has the same effect, except that no operand field entry is allowed, so you
can't set the initial location or assumed origin value. We'll discuss control sections and the
CSECT instruction thoroughly in Chapter X, Section 38.

6.5. A Sample Program

Figure 33 on page 81 is a little program that prints my name. This set of records is typical of
those required on many System z systems. All statements begin in column 1 and end before
column 72. (The “Line n” comments are used only for this example; you don't need them for
your programs.)

80 Assembler Language Programming for IBM System z™ Servers Version 2.00

�─────────────────────────────── 80 characters ────────────────────────────────
//JRETEST JOB (A925,2236067977),'J.EHRMAN' Line 1
// EXEC ASMACLG Line 2
//C.SYSIN DD * Line 3
Test Start 0 First line of program Line 4

Print NoGen Line 5
* Sample Program Line 6

BASR 15,0 Establish a base register Line 7
Using *,15 Inform the Assembler Line 8
PRINTOUT MyName,* Print name and stop Line 9

MyName DC C'John R. Ehrman' Define constant with name Line 10
END Test Last statement Line 11

/* Line 12
Figure 33. A complete Assembler Language program

The first 3 lines and the last are control statements for the Supervisor; they are not part of your
program, and are not read by the Assembler. They tell the operating system to run the Assem-
bler, Linker, and Program Loader, and how to pass your program's statements to the Assembler.
The information on these lines follows the rules of a Job Control Language for an operating
system. Line 1 (the JOB statement) marks the beginning of a job: a unit of work for the com-
puter separate from all other units. Additional information on the JOB statement provides
accounting data such as an account number and a user name.

Line 2 (the EXEC statement) requests that the following program be assembled, linked, and exe-
cuted; Line 3 indicates that records for the Assembler follow immediately. The last line (the “/*”
or “end-of-file” statement) tells the Operating System that no more records are given to the
Assembler.

The Assembler Language program is contained in the remaining lines:

• Line 4 is the assembler instruction statement defining the name of your program as Test and
starts a Control Section to contain the machine language data and instructions of your
program when it is executed by the CPU.

• Line 5 is an assembler instruction statement; it causes the Assembler not to print statements
generated by the PRINTOUT macro-instruction in Line 9. (More about PRINTOUT and other useful
macro-instructions in Section 6.6 on page 82.)

• Line 6 is a comment statement.
• Line 7 is a machine instruction statement.
• Line 8 is an assembler instruction statement. (Lines 7 and 8 are important: we'll discuss them

in Section 10.)
• Line 9 is a macro-instruction statement that causes some data to be printed, and then returns

control to the Supervisor.
• Line 10 is an assembler instruction statement. The Assembler converts the characters enclosed

in the apostrophes into an internal form representing the characters.
• Line 11 is an assembler instruction statement. It tells the Assembler that no further statements

will be processed for this program. The operand field entry Test tells the Linker where you
want your program to begin execution.

Exercises

6.5.1.(1)+ Determine what control statements are required at your installation for the following
sequences of steps (if they are available): (1) assembling a program, (2) assembling and linking a
program, (3) assembling, linking, and executing a program, (4) assembling, loading, and exe-
cuting a program, and (5) linking and executing an object module created in a previous
assembly.

6.5.2.(1) At execution time, if control reaches the END statement, will that be the end of the
program?

6.5.3.(1) Examine the Assembler Language program in Figure 33. Which statements have
entries in the name field? In the operation field? In the operand field? In the comment field?

Chapter III: Assembler Language Programs 81

6.6. Basic Macro Instructions

For our sample programs, we need only very simple methods of reading 80-character “card-
image” records, printing strings of characters, displaying useful information, and displaying or
“dumping” areas of memory in hexadecimal format.

Your operating system may provide similar facilities already, but you should check to see how or
whether they differ from these. We will use these six macro-instructions, and show how they're
used in some programming examples.

PRINTOUT Print formatted information about data and registers

READCARD Read 80-byte card-image records

PRINTLIN Print lines of characters

DUMPOUT Dump memory in hexadecimal format

CONVERTI Convert decimal characters to a 32- or 64-bit binary integer

CONVERTO Convert a 32- or 64-bit binary number to decimal characters

The macro instructions and their operands are described in “Appendix B: Simple I/O Macros” on
page 1015.

6.7. Summary

The Assembler provides many facilities to simplify programming tasks.

1. It automatically resolves addresses into the base-displacement and other forms used by
System z. The Assembler determines the needed base and displacement so that correct Effec-
tive Addresses will be calculated at execution time.

2. Rather than remembering that operation code X'43' copies a byte from memory into the
right end of a general register, a mnemonic operation code gives a simple indication of what
the operation code does. (The term “operation code” is often abbreviated “opcode”.) The
opcode X'43' has mnemonic “IC”, which stands for “Insert Character”.

3. Symbols let you name areas of memory and other objects in your program.

4. Diagnostic messages warn you about possible errors and oversights.

5. The Assembler converts data from convenient external representations into internal forms.

6. It creates relocatable object code to be combined with other programs by the linker.

7. Using macro-instructions, you can define your own instruction names to supplement existing
instructions, and your own macro instructions can make use of previously defined sequences
of statements, including other macros!

8. It provides lots of other helpful information such as cross-references of symbols, registers, and
macros.

Terms and Definitions
Assembler

A program that converts Assembler Language statements into machine language, in the form
of an object module.

assembly time
The time when the Assembler is processing your program's statements, as distinct from the
time when the machine language instructions created from your Assembler Language
program are executed by the processor.

82 Assembler Language Programming for IBM System z™ Servers Version 2.00

code
An informal term for groups of Assembler Language statements.

execution time
The time when your program has been put in memory by the Program Loader and given
control. This may happen long after assembly time.

Job Control Language
The statements needed to tell your Operating System how to process your program through
the assembly, linking, and execution phases. “JCL” for short.

Linker
A program that converts and combines object modules and load modules into an executable
“load module” format ready for quick loading into memory by the Program Loader. The
term “Linker” can describe several programs:

Binder
The z/OS program that can generate load modules (and a newer form, program objects)
as well as place the linked program directly into memory.

Linkage Editor
The predecessor to the z/OS Binder; its functions are included in the Binder. A Linkage
Editor is used on z/VSE.

Loader
This can have several meanings:

• On z/VM systems, a program that can link object modules directly into memory for
execution, or generate a relocatable “MODULE”.

• On older OS/360 systems, a program that links object and load modules into
memory for execution; now called the “Batch Loader”.

load module
Our generic name for the output of a Linker; a mixture of machine language instructions and
data ready to be loaded directly into memory for execution.

macro instruction
A powerful means to encapsulate groups of statements under a single name, and then gen-
erate them (with possible programmer-determined modifications) by using the macro-
instruction name as an operation field entry.

mnemonic
A convenient shorthand for the name of an instruction. For example, the “Branch and Save”
instruction has mnemonic “BAS”.

object code
The machine language contents of an object module.

object module
The machine language information created by the Assembler, used as input to the Linker.

operand
(1) Something operated on by an instruction. (2) A field in a machine instruction statement.

origin
A starting value assigned by you (or by the Assembler) needed to calculate offsets and dis-
placements in your program. Because most programs are relocated, it's rarely necessary to
specify an origin.

Program Loader
The component of the Operating System that brings load modules into memory, makes final
relocations, and transfers control to your program.

relocation
A procedure used by the Linker and the Program Loader to ensure that addresses in your
loaded program are correct and usable.

statement
The contents of the records read and processed by the Assembler. There are four types:
comment statements, machine instruction statements, assembler instruction statements, and
macro-instruction statements.

Chapter III: Assembler Language Programs 83

statement field
One of the four fields of an Assembler Language statement (other than a comment state-
ment). They are the name, operation, operand, and the remarks fields. Which fields are
required and/or optional depends on the specific statement.

Programming Problems

Problem 6.1.(2)+ Write, assemble, link, and execute a short program (like the one in Figure 33
on page 81) that will print your name. Look through the printed output from the job, and
determine which parts were printed by the Assembler, the Linker, and the executed program. (If
your name contains apostrophes (like O'Brien), you must type a pair of them wherever you
want to print one, as in O''BRIEN.) Observe what is produced by the Assembler for each type
of statement.

Problem 6.2.(2)+ Using your solution to Problem 6.1 as a template, write and execute a
program that will generate a noncontroversial, culturally-sensitive, nonpolitical message such as

 Message = C'Hello, World!'

84 Assembler Language Programming for IBM System z™ Servers Version 2.00

7. Self-Defining Terms and Symbols

777777777777
777777777777
77 77

77
77
77
77
77
77
77

 77
 77

We now investigate two important features of the Assembler Language, self-defining terms and
symbols. Each has a numeric value. In a self-defining term, the value is constant and inherent in
the term, so you can think of them as different ways to write numbers. Self-defining terms are not
data! They are just numbers that can be written in any of several convenient forms; they all result
in 32-bit integer values. Symbols have values assigned by you and by the Assembler.

7.1. Self-Defining Terms

There are four46 basic types of self-defining term: decimal, hexadecimal, binary, and character. The
value of each is treated by the Assembler as a 32-bit two's complement number.

• A decimal self-defining term is an unsigned string of decimal digits. 12345, 98, and 007 are
examples of decimal self-defining terms. The size of a decimal self-defining term is determined
by the fact that 32 bits are allotted by the Assembler to hold its value during assembly.
Because it is unsigned, a decimal self-defining term must lie in the range from 0 to +231 −1
(2147483647). Thus, +2147483647 and −2147483647 are not valid decimal self-defining terms
because they are signed, even though their values can be correctly represented in 32 bits.

• A hexadecimal self-defining term is written as the letter “X”, an apostrophe, a string of
hexadecimal digits, and a second apostrophe. X'123456', X'FACED', and X'001B7' are examples
of hexadecimal self-defining terms. The value of a hexadecimal self-defining term must lie in
the range from 0 to +232 −1, or, between X'00000000' and X'FFFFFFFF'. If fewer than eight
digits are specified, the Assembler assumes that the omitted digits are high-order zeros. If the
high-order digit of an eight-digit hexadecimal self-defining term lies between X'8' and X'F', the
value of the term is negative.

Because hexadecimal terms represent just a string of bits, their value can be greater than
231 −1, unlike decimal terms.

• A binary self-defining term is written as the letter “B”, an apostrophe, a string of binary digits,
and a second apostrophe. B'110010', B'0001', and B'1111111100001100' are examples of
binary self-defining terms. Because 32 bits are allotted for the value of a self-defining term, at
most 31 binary digits may follow the first 1-bit. (For example,

46 A fifth type of self-defining term, the Graphic type, requires invoking the Assembler with the DBCS option. Its use is
beyond the scope of this section, but we'll meet it again in Chapter VI, Section 26.4.

Chapter III: Assembler Language Programs 85

B'00000000000000001000000000000000000000000' has 41 digits, but only 24 significant digits
follow the first 1.) If fewer than 32 digits are specified, the Assembler assumes that the
omitted digits are high-order zeros.

The value of a binary self-defining term must lie in the range from 0 to 232 −1. The value of a
binary self-defining term is negative if the leftmost significant bit of the 32-bit digit string con-
tains a 1-bit.

We will see in Chapter 4 that embedded blanks can be used in decimal, binary, and hexadecimal
constants to improve readability. However, embedded blanks cannot be used in self-defining
terms of those three types.

• A character self-defining term is written as the letter “C”, an apostrophe, a string of up to four
characters (except for two special cases to be described momentarily), and a second apos-
trophe. Thus, C'A', C'...', and C'A•B' are valid character self-defining terms. (Remember
that we are using “•” to represent a blank.) This last example, in which a blank appears, is
the one exception to the rule mentioned in the previous section that stated that the operand
field is terminated by the first blank column after it starts: if the blank is part of a character
string enclosed in apostrophes, as in a character self-defining term, it doesn't terminate the field
but is part of the operand. A blank terminating the operand field must appear outside of a
character string enclosed in apostrophes.

The two special cases concern the apostrophe (') and the ampersand (&). Since apostrophes
are used to delimit the character string, we need a way to get an apostrophe into the generated
character string. (The ampersand has special uses in macro-instructions.) We represent a
single apostrophe or ampersand in a character string by a pair of apostrophes or ampersands.
A character self-defining term containing a single apostrophe or a single ampersand is written
C'''' or C'&&'. This can lead to cryptic but valid forms like C'''''''' (for the three charac-
ters ''', giving a term with value X'007D7D7D'), and and C'&&''&&' (for the three characters
&'&, giving a term with value X'00507D50'). A pair of apostrophes is entered as two characters,
and should not be confused with the quotation mark (″), which is a single character.47

Character self-defining terms use the EBCDIC character representation described next.

Exercises

7.1.1.(2)+ Which of the following are valid self-defining terms? If you think a term is invalid,
explain why; otherwise, give the hexadecimal value of the term.

(1) 00000012345
(2) B'10101010101010101'
(3) X'0000B4DAD'
(4) X'B4DAD0000'
(5) +65535
(6) B'000000000001111000011110000111101'
(7) B'101011010001111000011110000111101'

7.1.2.(1) The maximum value of a decimal self-defining term is 231 −1, while the maximum
value a binary or hexadecimal self-defining term is 232 −1. Why are they different?

47 Unfortunately, people sometimes call the apostrophe or single quote a “quotation mark” or “single quotation mark”.
Calling a quotation mark a “double quote” or “″” doesn't help either, because it might be understood to mean a pair
of apostrophes.

86 Assembler Language Programming for IBM System z™ Servers Version 2.00

7.2. EBCDIC Character Representation

The value assigned to a binary, decimal, or hexadecimal self-defining term is clear, as they are
familiar bit patterns. But what value should we give to a character self-defining term? This
depends on the internal representation or code defined for characters. We could decide that the
value of C'A' should be the same as X'0A', or X'41', or X'74', or X'A1', or even X'C1'.

In System z the conventional character code is called the “Extended Binary Coded Decimal Inter-
change Code”, or EBCDIC for short.48 Each character is represented internally by an eight-bit
number — two hexadecimal digits — as indicated in Table 13. The internal bit patterns that repre-
sent external characters are a matter of choice; any mutually agreeable set is about as good as any
other. The Extended BCD code, or EBCDIC, is the code defined by the designers of System/360
for communicating with character-sensitive components of the computer such as the CPU,
printers, graphic display devices, etc. We will see other important character encodings in Chapter
IV, Section 12.8, and again in Chapter VII, Section 26.

This table shows the EBCDIC representation used by the Assembler, “Code Page 037”. (There
are many other EBCDIC code pages used around the world.)

In Table 13 we see that the value associated with the character self-defining term C'/' is the same
as that of the hexadecimal self-defining term X'61', the binary self-defining term B'1100001', and
the decimal self-defining term 97. Similarly, the character self-defining term C'''' has the same
value as the hexadecimal self-defining term X'7D', and C'&&' has the same value as X'50'. Which
type of term you choose is largely a matter of context; in some places, certain types will be more
natural than others.

Table 13. Assembler Language EBCDIC character representation

Char Hex Char Hex Char Hex Char Hex

Blank 40 e 85 y A8 S E2
. 4B f 86 z A9 T E3
(4D g 87 A C1 U E4
+ 4E h 88 B C2 V E5
& 50 i 89 C C3 W E6
$ 5B j 91 D C4 X E7
* 5C k 92 E C5 Y E8
) 5D l 93 F C6 Z E9
- 60 m 94 G C7 0 F0
/ 61 n 95 H C8 1 F1
, 6B o 96 I C9 2 F2
_ 6D p 97 J D1 3 F3
7B q 98 K D2 4 F4
@ 7C r 99 L D3 5 F5
' 7D s A2 M D4 6 F6
= 7E t A3 N D5 7 F7
a 81 u A4 O D6 8 F8
b 82 v A5 P D7 9 F9
c 83 w A6 Q D8
d 84 x A7 R D9

48 Occasionally it is even called BCD. That term is normally used to denote an older six-bit character code or even a
4-bit encoding of decimal digits; the eight-bit Extended BCD code is used to represent characters on System z.

Chapter III: Assembler Language Programs 87

The value of a character self-defining term is determined by right-adjusting the EBCDIC codes of
the characters in a 32-bit field, and filling with zero bits at the left end if needed. Thus, the value
of C'A' is X'000000C1', and the value of C'ABC' is X'00C1C2C3'.49

The characters shown in Table 13 on page 87 are the portion of the EBCDIC character set used
in the Assembler Language (except in character self-defining terms and character constants, where
all 256 possible characters are allowed). The codes for other characters are defined in the
z/Architecture Principles of Operation. It is worth remembering that the EBCDIC code for a
blank space is X'40'.

Exercises

7.2.1.(2)+ Which of the following are valid self-defining terms? If you think a term is invalid,
explain why; otherwise, give the hexadecimal value of the term.

(1) C'#@$'
(2) C'''''
(3) C'•A•B' (one leading blank)
(4) C'RUD'
(5) C'12'
(6) C'•••12' (three leading blanks)

7.2.2.(2)+ Give (in hexadecimal) the value of each of the following character self-defining terms:
(1) C'&&', (2) C'75', (3) C'''', (4) C'C''', (5) C'0', (6) C'SDT'.

7.2.3.(3) Another widely used character representation is the United States of America Standard
Code for Information Interchange, or ASCII. Determine the ASCII representation of the char-
acters in Table 13 on page 87.

7.2.4.(2)+ Give (in hexadecimal) the value of each of the following self-defining terms:
(1) C'''''''', (2) 1000, (3) B'01000', (4) C'&&''&&', (5) C',', (6) C'A=B'.

7.2.5.(3)+ For each of the following values, display all four self-defining terms that may be used
to represent it. (1) 64, (2) 245, (3) C'&&', (4) X'405C', (5) X'F9F9F9F9',
(6) B'110001011101100111010001'.

7.2.6.(1) What EBCDIC character would be represented by the bit pattern in the byte illus-
trated in Figure 6 on page 43?

7.2.7.(1) Show the hexadecimal value of each of the following self-defining terms:

(1) B'110010110000010111010110'
(2) C'A&&B'
(3) 54721
(4) X'B00B00'

7.2.8.(1) Consider the 16 bits 1101000111000101:

1. Write them as four hexadecimal digits.
2. Assuming the bits represent an unsigned (logical) binary number, give its value.
3. Assuming the bits represent a signed binary number in the two's complement represen-

tation, give its value.
4. Write them as two EBCDIC characters.

7.2.9.(1) Give the hexadecimal value of these self-defining terms:

49 In some cases, you might want to use a different character set in character terms. It is possible that the Assembler
might assume that your characters are represented in EBCDIC, and generate the wrong value. If you specify the
TRANSLATE and COMPAT(TRANSDT) options, Assembler will use your chosen representation for character
terms. (See the High Level Assembler Programmer's Guide for details.)

88 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. B'110010111000010111011001'
2. C'R&&Z'
3. 51401

7.2.10.(2)+ Give the value in hexadecimal of these self-defining terms:

(1) B'01110101100010'
(2) C'''+'
(3) 10010

7.3. Symbols and Attributes

Many programming problems can be greatly simplified by using symbols. If this were not so, we
might try to dispense with Assemblers and be content with producing programs consisting of
strings of hexadecimal digits; thus we would write the hex digits X'580064EC' instead of a machine
instruction statement containing symbols.

Symbols are more interesting than self-defining terms: they let you assign meaningful names to
parts of your program. You can give the name PLUS1 to an area containing the constant +1, and
the name READ to an instruction that reads data.

Three types of symbols are used in the Assembler Language: ordinary symbols, variable symbols,
and sequence symbols. The last two are used only in macro-instructions and in conditional
assembly, so we won't say more about them here.

There are two types of ordinary symbols: internal and external. External symbols are used during
linking to communicate with other programs (and are part of the object module, as we'll see in
Chapter X, Section 38), while internal symbols are used only during the assembly, and do not
appear in the object module.50

For now, we assume that all symbols are internal symbols. A word of caution: if you have done
some programming in a high-level language, you may be inclined to think of symbols as variables.
They aren't; the differences are described in Section 7.7 on page 94.

A symbol is a string of letters or digits, the first of which must be a letter. The characters “$”,
“_”, “#”, and “@” are considered to be letters in the Assembler Language.51 These special charac-
ters are not allowed in symbols:

() + - * / = . , ' & blank

Early Assemblers restricted symbols to at most eight characters, which is why the “customary”
operation field of a statement begins in column 10. HLASM allows mixed-case symbols up to 63
characters long, but there is no difference between upper and lower case letters. Thus, NAME, Name,
and name all refer to the same symbol.

The following are all valid symbols.

A Agent086 A1B2D3C4 _The_End
#235 O0@H ApoPlexy The_Utter_Final_Bitter_End
James KQED Prurient EtCetera
$746295 Wonka ZYZYGY99 Close_Files

50 Internal symbols are added to the object module if you specify the Assembler's TEST option, but that option is little
used now. The ADATA option is preferable, because it generates a SYSADATA “side file” containing much more
useful information that can be used by other programs like debuggers.

51 If there's any chance your program might be sent (or read or printed) outside the United States, avoid the “national”
characters #, @, and $. They may look different in other countries, or may even have different EBCDIC representa-
tions. Other characters usable in Assembler Language symbols — those in Table 13 on page 87 — always have the
same EBCDIC representations.

Chapter III: Assembler Language Programs 89

Note that the first character of the symbol OO@H must be the letter “O” and not the digit zero “0”.
(A good reason to avoid using symbols starting with the letter O!)

The following are not valid symbols, for the reasons given.

$7462.95 (decimal point not allowed)
Bond/007 (special character / not allowed)
Set Go (no blanks allowed)
Ten*Five (contains the special character *)
C'Wonka' (no apostrophes allowed)
2Faced (doesn't begin with a letter)
An_Absurdly_Long_Symbol_With_No_Use_Other_Than_To_Illustrate_Excessive_Symbol_Length (!)

Several numeric quantities called attributes are associated with a symbol. Symbols have six
primary attributes: value, relocation, length, type, scale, and integer.52 Of these, the value and
length attributes are most important; the rest will be described as needed. The length attribute is
especially useful, and we'll see how it's defined when we examine constant definitions in Section
11.

• The Assembler assigns numeric values to the attributes of a symbol when it encounters the
symbol as the name field entry in a statement. We say that a symbol has been defined when
numeric values have been given to its value, relocation, and length attributes. These three attri-
butes, like all other numeric attribute values, are always nonnegative.

• This terminology is clumsy: rather than the “numeric value of the value attribute” of a
symbol, we simply say the “value of the symbol”. Similarly, the “numeric value of the relo-
cation attribute” of a symbol is its “relocatability”. We say that a symbol whose relocation
attribute is nonzero is relocatable, and a symbol whose relocation attribute has a zero value is
not relocatable, or that it is absolute.53

• We call the “numeric value of the length attribute” of a symbol its “length attribute”. It
depends on the type of statement named by the symbol. Occasionally someone refers to the
“length” of a symbol when its length attribute is meant; but the length of a symbol might be
misunderstood to mean the number of characters in the symbol itself, which is rarely inter-
esting. The length attribute is different, and is very useful.

For example, while the symbol A is one character long, it could have length attribute 133!

Symbols are used mainly as names of places in the program. For example, in Figure 30 on
page 78, the symbol LOAD is the name of the instruction. Similarly, in the machine instruction
statement

GETCONST L 0,4(2,7)

the symbol GETCONST is the name of an area of the program containing a machine instruction. In
the Assembler instruction statement

TEN DC F'10'

the symbol TEN is the name of a word area of the program where the Assembler will place a
binary integer constant with decimal value 10.

In the macro-instruction statement

EXIT RETURN (14,12),T

the symbol EXIT names the area of the program containing the set of instructions generated by
the RETURN macro-instruction.

52 Conditional assembly supports additional attributes: Assembler, Count, Number, Defined, Opcode, and Program.
The Assembler, Opcode, and Type attributes have nonnumeric values.

53 A useful definition of the relocation attribute is that a symbol that names a place in a program is relocatable; details
are given in Section 7.6 on page 93. A convenient image is to think of the relocation attribute of a symbol as its
color: the Assembler assigns the same color to all symbols having the same relocation attribute, and no color to
absolute symbols.

90 Assembler Language Programming for IBM System z™ Servers Version 2.00

No symbol can be given a value in a comment statement.

Remember: the attributes of the symbols, and the symbols themselves, exist only at assembly
time. They help in producing the object program; internal symbols and their attributes are dis-
carded when the assembly is complete.54

Exercises

7.3.1.(2)+ Which of the following are valid symbols? If you think a symbol is invalid, explain
why.

(1) SuperBOY
(2) Captain Major
(3) KillerWhale
(4) Send400$Soon
(5) #@$!
(6) 4Hundred$Sent
(7) ?
(8) (Eight)
(9) @9AM

7.3.2.(2) Some Assemblers (for processors other than System z) allow you to define a symbol
as a string of alphanumeric characters at least one of which must be a letter (it needn't be the
first character). Can you think of any reasons why the designers of the Assembler Language
decided not to allow this form of symbol?

7.4. Program Relocatability

Understanding the value and relocation attributes of a symbol is usually not very important. You
can write lots of Assembler Language programs without ever having to know how and why the
Assembler uses these attributes. When things go wrong (and because things will go wrong), it is
worth understanding some basic features of value and relocation.

The most important part of the Assembler's task of converting a program from Assembler Lan-
guage statements to machine language code is determining the relative positions of all parts of
your program. To do this, the Assembler constructs an accurate model of the program as it will
eventually reside in memory when it is executed.

This model is necessarily incomplete, for two reasons:

1. The Assembler normally has no way to know where the program will eventually be placed in
memory by the Program Loader.

2. There is no way for the Assembler to know the relationship of the program it is assembling
to other programs that will be combined with it in the load module produced by the Linker.

Methods for handling the second reason will be treated when we discuss external linkages and
subroutines in Chapter X, Sections 37 and 38.

Because the Assembler cannot determine in advance what memory addresses will eventually hold
the program, it must produce a machine language program that will work correctly no matter
where it is placed at execution time. That is, the program must be relocatable. Thus, in building
its model of the final form of the program, the Assembler only needs to determine the relative
positions of the parts of the program it is assembling.

The Assembler doesn't know where the program will eventually be placed in memory, so it does
the next best thing:

54 This information can be saved in a SYSADATA “side file” when you specify the Assembler's ADATA option.

Chapter III: Assembler Language Programs 91

1. It assumes that the program starts at some arbitrary (or programmer-specified) origin, and
generates instructions and data based on that assumption.

2. It includes enough information about its assumptions in the object module, so the Linker
and the Program Loader can tell (a) what starting location was assumed, and (b) what parts
of the program will contain or depend on actual memory addresses at the time the program is
executed.

3. By computing the difference between the program's assembly-time starting location assumed
by the Assembler, and its true starting address assigned at execution time by the Supervisor,
the Program Loader can supply (“relocate”) the necessary true addresses used at execution
time.

In practice, very few parts of a program depend on knowing actual addresses; these will almost
always involve the use of address constants; we'll introduce them in Section 12.2 on page 147.
Many programs can be written to contain no address-dependent information.

7.5. The Location Counter

To help clarify the differences between assembly and execution times, we will make a careful and
important distinction between locations and addresses.

• Locations refer to positions in the Assembler's model of the program at assembly time.

• Addresses refer to the positions in memory, at execution time, where the various parts of the
program reside.

Locations and Addresses

Locations are used at assembly time; addresses are used at execution time.

The relationship between locations and addresses is close; they differ at most by a single constant
value, the difference between the Assembler's assumed assembly-time starting location and the
Supervisor's assigned execution-time starting address. This difference is handled by the Program
Loader when it relocates the program just before execution, so we don't have to worry about this
at assembly time. 55

To assign locations to the various parts of your program as it is assembled, the Assembler main-
tains an internal counter called the Location Counter, or LC. The initial value of the LC is the
“initial location” or “assumed origin” specified on the START statement (see Section 6.4 on page
79); or, if no initial location is specified, the Assembler assigns an initial LC value of zero.

As the Assembler reads your program, it determines how many bytes will be required in the
program for the instruction or data generated for each statement. It adds this number to the LC,
and then reads and processes the next statement. In this way, the Assembler determines the
location and length of each part of the program.

It is important to understand the difference between the Assembler's Location Counter and the
CPU's Instruction Address. The LC is a counter used by the Assembler at assembly time to
determine positions within a program; it goes away when the Assembler is removed from memory
at the completion of an assembly. The IA is a part of the CPU's PSW, and contains the address
of the next instruction to be fetched at execution time; it is always in use whenever any program is
being executed.

55 The Assembler puts the assumed origin into the object module to help the Linker adjust addresses correctly.

92 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

7.5.1.(3)+ In the following program segment, determine (1) the value attributes of all symbols,
and (2) the LC value at the time each statement is read by the Assembler. The length of the
generated instructions and data are given in the comment field of each statement.

EX7_5_1 START X'5000' 0 bytes generated
BASR 6,0 2 bytes generated

BEGIN L 2,N 4 bytes generated
A 2,ONE 4 bytes generated
ST 2,N 4 bytes generated

DUMMY DS XL22 22 bytes generated
N DC F'8' 4 bytes generated
ONE DC F'1' 4 bytes generated

We will revisit this program fragment in Section 10.

7.6. Assigning Values to Symbols

Instructions and data are given names by writing symbols as the name field entry of the state-
ment. When the Assembler encounters such a symbol, it enters it into a Symbol Table containing
the program's symbols and their attributes.

1. The value attribute (or simply, the value) of the symbol is determined from the contents of
the LC at the time the statement was processed, before adding the length of the generated
instruction or data.

2. The relocation attribute will be nonzero, to indicate that the symbol is relocatable. (We will
see shortly how to define absolute symbols that are not relocatable.)

3. The length (in bytes) of the generated instruction or data is assigned as the value of the length
attribute (in most cases).

There are, of course, occasional minor exceptions to these general rules.

There is a simple test to determine whether an internal symbol is relocatable: add a constant to
the initial value of the LC, and re-assemble the program. If the value of the symbol increases by
exactly the same amount, then the symbol is relocatable. If the value doesn't change at all, the
symbol is absolute.

The names of instructions and data areas in a program are relocatable; these are the most frequent
uses of symbols. The numeric value of the relocation attribute of a symbol is assigned by the
Assembler, and can be determined from the Assembler's External Symbol Dictionary, another part
of the object module.

To illustrate how values are assigned to symbols, suppose that when the statement named
GETCONST (on page 90) is read by the Assembler, the value of the LC is X'0007B6'. Then the
symbol GETCONST would appear in the Symbol Table with value X'0007B6'; it would be relocat-
able; and because the statement specifies an RX-type instruction, the length attribute will be 4.
Before reading the next statement, the Assembler increments the LC by the length of the instruc-
tion, so that its value will then be X'0007BA'.

Similarly, if the sample statement named TEN (on page 90) was encountered when the LC value
was X'012D88', then the value of the symbol TEN would be X'012D88'; it would be marked as
relocatable; and its length attribute would be 4. The LC value after incrementing would be
X'012D8C'.

To define an absolute symbol, we use the “EQU” assembler instruction statement:

symbol EQU self-defining term

This statement causes the value of the self-defining term to be assigned as the value attribute of
the symbol. (More about the EQU assembler instruction is in Section 13.3.) Thus, the statement

Chapter III: Assembler Language Programs 93

ABS425 EQU 425

defines the symbol ABS425 by assigning a value of 425 (X'000001A9'), a relocation attribute of
zero, and (for want of anything better) a length attribute of one. The symbol ABS425 is simply the
name of a number!

Absolute symbols give you great freedom and flexibility in writing your programs. We will find
many ways to use absolute symbols whose values do not change if the initial LC value is changed.

Exercises

7.6.1.(1) Why can a symbol not be given a value in a comment statement?

7.6.2.(1) The symbol TEN on page 89 will be assigned a length attribute of 4 by the Assembler.
What is the length of the symbol?

7.7. Symbols and Variables

In Assembler Language, we make some important distinctions in terminology. In high-level lan-
guages such as FORTRAN, COBOL, PL/I, and C, symbols are normally used to name variables:
you can assign new values to them as the program executes. Thus, you might write

BAD = GOOD + 7*(LOG(BETTER)/SQRT(BEST)) ; /* Assign new value to BAD */

and understand it to mean “evaluate the quotient of the results of the LOG and SQRT functions,
multiply that by 7, add the result to the current value of the variable GOOD, and assign the result as
the new value of the variable BAD.” Assembler Language doesn't work this way! The value of a
symbol is not the value of a variable of the same name.

Assembler symbols

Assembler Language symbols are not variables. There are no “variables”
in the Assembler Language we're describing!56

Some of the differences in the meanings of symbols in high-level languages and Assembler Lan-
guage are shown in Table 14.

Table 14. Differences between Assembler Language and high-level language symbols

We will have more to say about this in Section 13.8 on page 173.

Assembler Language High-Level Languages

Used only at assembly time Can be thought of as existing at execution
time

Names of places in a program Contain execution-time values

Contents of memory has a “value” Variable has a “value”

The name has a “location” value used by the
Assembler to lay out and organize the program

The name is thought of as naming the value of
a variable

56 The conditional assembly language does have variable symbols, but that topic is beyond what we're discussing now.

94 Assembler Language Programming for IBM System z™ Servers Version 2.00

Terms and Definitions
defined symbol

A symbol is defined when the Assembler assigns values to its value, relocation, and length
attributes.

EBCDIC
Extended Binary Code Decimal Interchange Code. Used to assign numeric values to charac-
ters. There are many EBCDIC encodings; they assign different values to some characters, but
all the alphabetic, numeric, and other characters used in the Assembler Language listed in
Table 13 on page 87 are invariant across EBCDIC encodings, except for the characters “$”,
“@”, and “#”.

Location Counter (LC)
A counter used by the Assembler at assembly time to build its model of the relative positions
of all components of an assembled program.

relocatable
A property of a program allowing it to execute correctly no matter where it is placed in
memory by the Program Loader.

relocation
Actions performed by the Linker and Program Loader to ensure that a program in memory
will execute correctly no matter where it is loaded. This may require assigning true execution-
time addresses to parts of a program.

self-defining term
One of binary, character, decimal, and hexadecimal. Its value is inherent in the term, and
does not depend on the values of other items in the program.

symbol
A name known at assembly time, to which various values are assigned. The values may be
absolute or relocatable (or even complexly relocatable, as we'll see in Section 8.3).

symbol attribute
Useful information about the properties of a symbol. Attributes include value, relocation,
length, type, scale, and integer. (Only the first three attributes are important for our current
needs.)

Chapter III: Assembler Language Programs 95

8. Terms, Operators, Expressions, and Operands

 8888888888
888888888888
88 88
88 88
88 88
 88888888
 88888888
88 88
88 88
88 88
888888888888
 8888888888

In this section we will see how to specify components of the operand field entry of various
instruction statements.

The operand field entry of a typical machine instruction statement is a sequence of operands sepa-
rated by commas. For example, a typical instruction statement might look like this:

symbol operation operand1,operand2,... optional remarks

where the name field symbol is often optional, and the operand field may specify zero to many
operands.

The operands are formed from expressions that are in turn formed by combining terms and opera-
tors.

8.1. Terms and Operators

The basic elements of an expression are terms. They can be any of the following items:

• a self-defining term
• a symbol
• a Location Counter reference
• a literal
• a Symbol Attribute reference

− Length
− Integer
− Scale

We will discuss Integer and Scale attributes later; while they aren't used frequently, they can be
very helpful in certain situations.

96 Assembler Language Programming for IBM System z™ Servers Version 2.00

 Terms

Length, integer, and scale attribute references to a symbol are always
absolute terms; a symbol can be either absolute or relocatable; literals
and Location Counter references are always relocatable. A self-defining
term is always absolute.

We have seen how to write symbols and self-defining terms. Literals are special symbols that
provide a convenient way to write constants, and we will discuss them in Section 12.6.

A Location Counter reference is written as a single asterisk; it has the attributes of the Assem-
bler's Location Counter, and a length attribute that depends on the type of statement where it is
used. The value of * as a Location Counter reference therefore changes during an assembly as the
LC value changes.

A symbol length attribute reference is written as a letter L followed by an apostrophe followed by
a symbol (or an asterisk, for a Location Counter reference).

L'SYMBOL or L'*

is an absolute term whose value is the length attribute of the term following the apostrophe.

The operators used for combining terms are + , − , *, and /, indicating addition, subtraction, mul-
tiplication, and division respectively. A term has no sign; however, + and − may be used as
unary or prefix operators, as in +5. In Assembler Language, the asterisk is therefore used in two
ways: to denote a Location Counter Reference and as the multiplication operator. The Assem-
bler can distinguish these two uses.

8.2. Expressions

An expression is an arithmetic combination of terms and operators. In the absence of unary plus
or minus signs or parentheses, an expression must begin and end with a term, and there must be
an operator between each pair of terms. To illustrate, two expressions are

GETCONST+X'4A' and X+L'X

The following expression uses all four types of self-defining term:

X'12'+C'.'-B'0001010001'+7

Parentheses may be used, as in ordinary mathematical use (and as in familiar procedural lan-
guages) to indicate groupings. In evaluating expressions, an expression in parentheses is treated as
a term. Thus

(A+2)*(X'4780'-JJ)

is an expression that is the product of two subexpressions, each of which has two terms and one
operator.

Syntactically, an expression may not contain two multiplication or division operators in suc-
cession, or an addition or subtraction operator followed by a multiplication or division operator.
For example:

*+2 valid because * is a Location Counter reference
-A, +A are valid uses of unary + and -
A++B, A--B, A+-B, A-+B are valid (second + and second - are unary operators)
A/+B, A/-B, A*+B, A*-B are valid (+ and - are unary operators)
A+/B, A-/B, A+*B, A-*B are invalid
A**B, A*/B, A/*B, A//B are invalid

Some syntactically valid expressions might not be evaluatable if either or both terms is relocatable
(to be described shortly).

Chapter III: Assembler Language Programs 97

An easy way to determine the validity of expressions with sucessive operators is to parenthesize
each operator with its immediately following term, so that A++B becomes A+(+B); because the
unary + in (+B) is equivalent to B, A++B is evaluated as A+B. (See Exercise 8.2.3.)

Exercises

8.2.1.(2) What would you expect to be the result of A--B, A+-B, and A-+B?

8.2.2.(1) What is the value of the expression X'12'+C'.'-B'0001010001'+7?

8.2.3.(2)+ Determine the syntactic validity of each of the following expressions; and if the
expression is valid, show its simplified form.

a. A+-+-B
b. A*--B
c. A-*-B
d. A---B
e. --A-++B

8.3. Evaluating Assembly-Time Expressions (*)

The rules for evaluating expressions are familiar, with one or two minor exceptions, so it's no
surprise that the Assembler evaluates 2+3 as 5.

Remember: we are describing the Assembler's evaluation of assembly-time expressions involving
the values of assembly-time symbols and other terms. This is entirely different from most high-
level languages, where an expression like A+B in a statement is evaluated at execution time, using
the values of the execution-time variables A and B.

The details of the rules can be rather complicated, so don't try to grasp everything on a first
reading. The examples on page 100 will help to illustrate the rules.

1. Each term (along with any preceding unary operator) is evaluated to word precision, 32 bits.
The relocation attribute of each term is noted, so that the relocation attribute of the entire
expression can be evaluated also, as described in rule 10 below.

2. Inner parenthesized subexpressions are evaluated first, using 32-bit two's complement arith-
metic. The resulting value is used in computing the rest of the expression. Thus in

(X'100'+2*(ABS425-420))+1

where ABS425 has value 425 (as defined on page 93), the subexpression (ABS425-420) would be
evaluated first. The value of the whole expression is X'0000010B', and is absolute.

3. Multiplications and divisions are done before additions and subtractions. Thus the value of
the expression just given would be evaluated as (X'100'+(2*(5)))+1 and not as
((X'100'+2)*(5))+1. Multiplication and division operators may not be combined, as in /*
and */.

4. Relocatable terms or subexpressions may not occur in multiplication or division operations.

5. Operations are performed in left-to-right order within a group of operations of the same pri-
ority. Thus 5*2/4 means the same as (5*2)/4, not 5*(2/4); similarly, 5/2*4 means the same as
(5/2)*4, not 5/(2*4).

6. Multiplications yield a 64-bit result, of which the rightmost 32 bits are kept, and the high-
order (leftmost) 32 bits are discarded. Significant bits can be lost if the product is too large.

7. Division always yields an integer result; the Assembler always discards remainders when eval-
uating expressions. Thus 5*2/4 has value 2, and 5*(2/4) has value zero. Division by zero is
permitted, and the result is simply set to zero.

98 Assembler Language Programming for IBM System z™ Servers Version 2.00

8. Negative quantities are carried in two's complement representation.

9. When the expression has been completely evaluated, the result is in 32-bit two's complement
form.

10. The relocation attribute of the result is found as follows; assume that the symbol A is relocat-
able:

• If there is an even number of relocatable terms appearing in the expression and they are
paired (that is, they have the same relocation attribute appearing with opposite signs) so
that a change in the relative origin assigned to the program has no effect on the value of
the expression, then the expression is absolute. For example, A-A+2 is an absolute
expression with value 2.

• If there is one remaining unpaired term not directly preceded by a minus sign, then the
expression is simply relocatable, and it has the relocation attribute of the unpaired term.
For example, A+2 is a simply relocatable expression.

• If there is more than one remaining unpaired relocatable term, or if the remaining term is
preceded by a minus sign, the expression is complexly relocatable. Intentional use of
complexly relocatable symbols is extremely rare. For example, 2-A is a complexly relocat-
able expression. (Some later examples will show how complex relocatability can happen,
so don't worry if this seems obscure.)

In general, you can determine the relocatability of an expression roughly as follows: first, compute
the value of the expression. Second, add some constant to the initial value of the LC, which will
cause the values of relocatable symbols to change. Third, recompute the value of the expression
using the new values of the symbols. If the new value of the expression is identical to the old
value, the expression is absolute; if the values differ by the amount added to the LC, the
expression is simply relocatable; otherwise it is complexly relocatable.

To summarize the rules for combining terms, let A and R represent respectively an absolute and a
simply relocatable expression. The rules for combining terms are summarized in Table 15.

Table 15. Expressions with absolute and relocatable terms

R−R is absolute only if both expressions have the same relocation attribute. Because this will
almost always be true, we assume (until further notice) that expressions of the form R−R are
absolute. We'll give a precise definition of the relocation attribute in Chapter X when we discuss
external symbols.

Machine instruction statement operands may never be complexly relocatable.

Exercises

8.3.1.(2)+ Suppose R stands for an arbitrary relocatable expression, and A stands for an arbitrary
absolute expression. State which of the following expressions are and are not valid in machine
instruction statement operands.

(1) R+R (2) A+R (3) R+A (4) A+A (5) R-R (6) A-R (7) R-A (8) A-A
(9) R*R (10) A*R (11) R*A (12) A*A (13) R/R (14) A/R (15) R/A (16) A/A

8.3.2.(2) Rule 7 on page 98 states that the Assembler always discards remainders in evaluating
expressions. Does this mean that a program cannot compute a remainder? Explain.

8.3.3.(2)+ The last row of Table 15 says that R-R can be complexly relocatable. How can the
difference of two simply relocatable symbols be complexly relocatable?

An expression of this form is

A+A, A-A, A*A, A/A absolute

R+A, R-A, A+R simply relocatable

R+R, A-R complexly relocatable

R*A, A*R, R/A, A/R, R*R, R/R forbidden

R-R absolute or complexly relocatable

Chapter III: Assembler Language Programs 99

8.4. Examples

For these examples, we assume that

• ABS425 is an absolute symbol of value 425 (or X'000001A9'),
• the value of the Location Counter is X'00011D46',
• REL1 is a relocatable symbol of value X'00010A20',
• REL2 is a relocatable symbol of value X'00012345' having length attribute 6, and
• The Location Counter, REL1, and REL2 have the same relocation attribute.

1. 5*2/4 = 10/4, an absolute expression of value X'00000002'.

2. 16*16*16*16*16*16 is an absolute expression of value X'01000000'.

3. 6-ABS425 has value X'FFFFFE5D', and is absolute.

4. (REL2-REL1)/(ABS425-B'011111') is an absolute expression of value X'00000010'.

5. REL2+C'-'+*+L'REL2-* is a relocatable expression of value X'000123AB'.

6. 2*REL2-REL1 is an invalid expression, because a relocatable term (REL2) occurs in a multiply
operation. (If the Assembler was able to evaluate the expression, it would be simply relocat-
able, and have value X'00013C6A'.)

7. Even REL1*1 and REL1*0 (as well as REL1/1 and REL1/0) are invalid expressions, even though
their values are perfectly well defined.

8. (1+(1+(1+(1+(1+(1+(1+(1+2)*2)*2)*2)*2)*2)*2)*2)+1 is an absolute expression, and has
value X'200'.

9. *+6 is a relocatable expression of value X'00011D4C'.

10. (REL2-*)*L'REL2 is an absolute expression of value X'000023FA'. Note the two distinct uses of
the asterisk!

The example of a machine instruction statement in Figure 30 on page 78 could have been written

LOAD LR C'45'-(7*X'2A36')+ABS425*B'11111'-235,18/(Q-Q)+3

though the gain in clarity is not obvious. More reasonable usage is illustrated in the following
statements.

* EXAMPLE 8_4_1
R7 EQU 7
R3 EQU 3
LOAD LR R7,R3

There is a difference between

1. the notational convenience of the symbol R7 defined in the first EQU statement above and
intended to mean general register 7,

2. the definition of an absolute symbol R7 to have the value 7, and
3. the use of the symbol as an operand in the operand field entry of a machine instruction state-

ment where the use of register 7 is intended.

Example 8_4_1 is equivalent to the two below. (The second is considered poor style, for obvious
reasons.)

* EXAMPLE 8_4_2 * EXAMPLE 8_4_3
ZORCH EQU 3 R7 EQU 3
ZILCH EQU 7 R3 EQU 7
LOAD LR ZILCH,ZORCH LOAD LR R3,R7

Expressions can also be used to good advantage in EQU statements. For example, suppose we
need to define a symbol NWords whose value gives the number of words in a table, and we also
need a symbol NBits whose value is the number of bits in the same table. We could define the
symbols in the following way.

100 Assembler Language Programming for IBM System z™ Servers Version 2.00

* Example 8_4_4 EQU with expressions
NWords EQU 75 Table has 75 word entries
BitsWd EQU 32 Number of bits per word
NBits EQU NWords*BitsWd Number of bits in the table

Exercises

8.4.1.(2) What are the values of the symbols NWords, BitsWd, and NBits in Example 8_4_4
above?

8.4.2.(3)+ The following short program segment contains instructions (whose purpose is of no
interest for this exercise) whose operand fields contain various expressions. For each expression,
determine (1) whether the expression is absolute or relocatable, and (2) the value of the
expression. The column headed “LOC” gives the hexadecimal value of the Location Counter
for each instruction.

LOC Statement
466 A L 4,B+X'1C'
46A BALR R6,0
46C B ST 4,C-A+X-2*(R6/2)
470 C SLL 5,2*C'-'-C'A'+2

USING B-2,R6-2
R6 EQU 9

474 X DS F Define Symbol X

8.4.3.(3)+ Assume that the Location Counter, and symbols REL1, REL2, and ABS425 have the
value and relocation attributes defined in the examples on page 100. Determine the value and
relocation attributes of the following expressions.

(1) REL1+C'2'/2
(2) REL1-REL2+ABS425
(3) C'45'-(7*X'2A36')+ABS425*B'11111'-235
(4) (8/(REL2-REL1)/X'107C')+3
(5) ABS425/((REL2-REL1)/X'C701'+3)
(6) *+ABS425*(*-REL1-4900)

8.4.4.(2) Assuming that the symbols REL1, REL2, and ABS425 have the attributes defined on page
100, determine the validity of each of the following expressions. Explain why you think any
expression is invalid.

(1) -2+ABS425
(2) ((REL1))*2-2*((REL1))
(3) REL1+C'7592'*B'10110'+ABS425
(4) B'10221'+REL2
(5) ABS425*74239661-2
(6) +X'1875'
(7) -*+REL2
(8) **1

8.4.5.(3) Assume that the symbols A and B are simply relocatable with the same relocation
attribute, and that they have values X'00172B9E' and X'00173AA6' respectively. Determine the
value and relocation attributes of the following expressions.

(1) B-A
(2) A+C'.'
(3) (A+X'00FFF')-(B-B'1101011100001')
(4) (B-A)/10
(5) B+C'B'/(B+B'101'-B)

8.4.6.(3)+ The symbols SAM and JOE are simply relocatable with the same relocation attribute,
and have values X'00174D0A' and X'0016FB63' respectively. The symbol BOB is absolute and has

Chapter III: Assembler Language Programs 101

value X'000003E8'. First, determine the validity of each of the following expressions. Then
determine the value and relocation of each of the valid expressions.

(1) 2*BOB+2*SAM-2*JOE
(2) BOB+(SAM+BOB)-(JOE+BOB)
(3) 2*(SAM-JOE)/5
(4) SAM-(B'10000'*(X'0010'*(BOB-C'H')))
(5) (2*SAM-2*JOE)/5
(6) 2*(JOE-SAM)/(SAM-JOE)

8.4.7.(4) Can you think of any reasons why the designers of the Assembler Language did not
allow relocatable terms to appear in multiplications or divisions? Assuming that the final value
of the term must be either relocatable or absolute, what modifications would be needed to
allow such expressions, as in example 6 on page 100?

8.4.8.(1) The symbols A and B are relocatable, and have values X'00172B9E' and X'00173AA6'
respectively. Determine the value and relocation of these expressions:

1. B-A
2. A+C'.'

8.5. Machine Instruction Statement Operand Formats

The operand field entry of a machine instruction statement consists of a sequence of operands
separated by commas, and terminated by a blank not enclosed in apostrophes. For example, the
operand field entry of the LR machine instruction statement in Examples 8_4_1 through 8_4_3
contains two operands, expressions of value 7 and 3 respectively.

An operand of a machine instruction statement has only one of three possible formats:

expr expr1(expr2) expr1(expr2,expr3)

where “expr” is an abbreviation for “expression”, and the subscripts indicate only that each expr
can be different from the others. To repeat: operands of machine instruction statements have one of
these three formats.

The third operand format has two interesting features. First, the comma between the second and
third expressions does not terminate the operand; it merely separates the expressions within the
parentheses. Second, the first of the expressions within the parentheses, expr2, may sometimes be
omitted, so that

expr1(,expr3)

is a valid form of the third operand format. The Assembler will assume that the omitted
expression is absolute and has value zero. The format expr1(expr2,) is never valid.

Examples of the first expr format are

ABLE 2*(SAM-JOE)/5 X'6D' TWO+2 *

Examples of the second expr1(expr2) format are

ABLE(4) X'6D'(POINTER) P(*-*) (A-ST)(2+ST)

Multiplication is not implied in the last example!

Finally, examples of the third expr1(expr2,expr3) format are

0(255,12) 8(,3) X(Y-8,Z/2) (A-B)(A-B,(A-B))

Again, no multiplication is implied in any example.

Depending on the machine instruction, one or more operands may be required; for each operand,
one or more of the operand formats may be valid. Also, depending on the type of the instruction,

102 Assembler Language Programming for IBM System z™ Servers Version 2.00

there may be restrictions on the value and relocation attributes of the expressions in an operand.
One of the most important restrictions is that all operands of a machine instruction statement
must either be absolute or simply relocatable; no complexly relocatable expressions are allowed.

For example, a typical RR-type instruction (as in the examples on page 100) has two operands:
each must be of the form

expr

For such RR-type instructions, the Assembler requires that the expressions must be absolute and
have value between 0 and 15.

Exercises

8.5.1.(2)+ For each of the following operands, determine whether it is of the first, second, or
third type. If the operand is invalid, explain why.

(1) A+B(5)
(2) A+(B+(5))
(3) A+C'('(C')')
(4) A(C',C')
(5) 7+(X'BAD'/B'01101')
(6) (C'(')(C'),',(C'(,)'))
(7) 0-0(0,0)
(8) 0/0(,0*0)
(9) C'''(A)'*C'A('(C')'')'-X'C'*C'X)')

8.6. Details of Expression Evaluation (*)

While the rules for writing specific machine instruction statement operands will be covered in the
later sections as new instruction types are introduced, this view of the rules for valid expressions
(stated in the previous section) can be summarized in these diagrams.57

1. An operand can take one of three forms:

operand
┌──────────┼────────────┐

expr expr(expr) expr(expr,expr)

2. An expression can take any of these three items involving a “factor” (this shows how unary
+ and − signs are described):

expr
┌────────┼────────────┐

factor ±factor factor±factor
3. A factor can take any of these three forms (this shows how multiplication and division have

higher priority than addition and subtraction):

factor
┌─────────────┼─────────────────┐

primary primary*primary primary/primary

4. A primary is either a term or a parenthesized expression:

primary
┌───┴───┐

term (expr)

5. Finally, a term in an expression is one of the following:

57 These five diagrams are pictorial representations of a notation known as “BNF”, which stands for either “Backus
Normal Form” (after John Backus, the leader of the team that created the first FORTRAN compiler in 1957), or
“Backus-Naur Form” (after John Backus and Peter Naur, who worked on defining the ALGOL language in
1958-1960.)

Chapter III: Assembler Language Programs 103

term
┌────────┬───────────┼─────────┬─────────┐

Symbol Self─ Location Literal Symbol
Defining Counter Attribute
Term Reference Reference

┌───┼───┐
L' I' S'

We haven't yet described Literals and Symbol Attribute References; they will appear shortly.

The quantities “factor” and “primary” do not appear anywhere in the Assembler Language. They
are used here only to help clarify the precedence of multiplication, division, addition, subtraction,
and parentheses.

Terms and Definitions
absolute symbol

A symbol whose value behaves in expressions like a self-defining term. Its value does not
change if the assumed origin of the program changes.

complex relocatability
A property of a symbol or expression whose relocation attribute is neither absolute or simply
relocatable.

expression
A combination of terms and operators to be evaluated by the Assembler.

expression evaluation
The procedure used by the Assembler to determine the value of an expression.

Length Attribute Reference
A term whose value is the length attribute of a symbol.

operator
One of * (meaning multiplication), / (meaning division), + (meaning addition), or −
(meaning subtraction). (The Assembler does not support **, which is sometimes used to
mean exponentiation.)

simple relocatability
A property of a symbol or expression whose value changes by the same amount as a change
to the program's assumed origin.

Symbol Attribute Reference
A term whose value is that of a symbol's attribute. The three most important types of
Symbol Attribute Reference are length, scale, and integer.

term
A symbol, self-defining term, Location Counter reference, literal, or symbol attribute refer-
ence.

Programming Problems

Problem 8.1.(2) Write and execute some test cases with your Assembler to determine whether it
allows you to specify a Length Attribute reference of any term, not just for symbols and
Location Counter References. Are there any cases that don't work? (Some test cases you might
try are L'2, L'(*-10), L'*, L'ABS425, L'425, L'=F'1', and L'L'*.)

Problem 8.2.(2) What is the length attribute of an expression? Suppose A and B are absolute
symbols with value 5 and 3 respectively, and they both have length attribute 1. Determine the
value of each of the following expressions: (1) L'A*B, (2) A*L'B, (3) L'(A*B). Evaluate them on
your Assembler. This code fragment may help you start:

104 Assembler Language Programming for IBM System z™ Servers Version 2.00

A Equ 5
B Equ 3
C1 Equ L'A*B
C2 Equ A*L'B
C3 Equ L'(A*B)

Try some similar expressions and see what happens.

Chapter III: Assembler Language Programs 105

9. Instructions, Mnemonics, and Operands

 9999999999
999999999999
99 99
99 99
99 99
999999999999
999999999999

99
99

99 99
999999999999
 9999999999

We will now see how to write some machine instruction statements, with various instruction
formats and examples of actual code sequences. The instructions in Table 16 and their behavior
will be discussed in detail later, so don't worry now about learning the mnemonics, operation
codes, or descriptions.

Mnemonics are short abbreviations for a word or phrase describing the action of each operation
code. A mnemonic may be as simple as “A” meaning “Add”, or “BXLE”, meaning “Branch on
Index Low or Equal”. We will look at several classes of instructions, showing how their operands
are written. Abbreviations and notations used to describe operands such as “R1”, “S2”, “I2”, etc.,
will be explained as we go along.

9.1. Basic RR-Type Instructions

Table 16 illustrates some common RR-type instructions, where “Op” and “Mnem” are abbrevi-
ations for “Operation Code” or “Opcode”, and “Mnemonic”.

Table 16. Typical RR-type instructions

Op Mnem Instruction Op Mnem Instruction

04 SPM Set Program Mask 05 BALR Branch And Link

06 BCTR Branch On Count 07 BCR Branch On Condition

0D BASR Branch And Save 0E MVCL Move Long

0F CLCL Compare Logical Long 10 LPR Load Positive

11 LNR Load Negative 12 LTR Load And Test

13 LCR Load Complement 14 N R AND

15 CLR Compare Logical 16 OR OR

17 XR Exclusive OR 18 LR Load

19 CR Compare 1A AR Add

1B SR Subtract 1C M R Multiply

1D D R Divide 1E ALR Add Logical

1F SLR Subtract Logical

106 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. Not all of the 64 available bit combinations between X'00' and X'3F' are used as actual oper-
ation codes. For example, IBM has promised not to use X'00' as an operation code.58

2. There are many other RR-type instructions, and several other RR-type instruction formats.
The examples that follow generally apply to all such instructions.

9.2. Writing RR-Type Instructions

For most RR instructions, the operand field entry in a machine instruction statement is written

R1,R2
where the operands “R1” and “R2” designate registers.59 (Some instructions require one or both of
the operands to be even numbers, designating even-numbered registers.)

The numeric subscripts “1” and “2” in the quantities “R1” and “R2” distinguish the operand
being referenced. Using the terms “first operand”, “second operand”, etc. consistently will help
you remember what actions are being performed by each instruction.

To explain the notation “R1,R2”, refer to the example of a machine instruction statement in
Figure 30 on page 78, where the operation and operand field entries were “LR” and “7,3”,
respectively. In this case, the “R1” operand is “7” and the “R2” operand is “3”. The quantities
R1 and R2 must be absolute expressions between 0 and 15. Thus, we could just as well have
written

LOAD LR X'7',B'11'

For these basic RR-type instructions, the values of the operand field expressions are placed by the
Assembler into two adjacent hexadecimal digits, called the “operand register specification digits”
in the second byte of the instruction. This second byte was denoted “register specification” in
Table 6 on page 52. Table 17 shows the positions of the register specification digits.

Table 17. RR-type instruc-
tion

For most RR instructions the R1 operand specifies the register that at execution time contains the
“first operand”. Our notation “R1” means a number specifying the R1 digit of an instruction; no
reference to general register register 1 (possibly denoted by GR1) is implied. You can of course
specify “1” as the value of the R1 operand!

We can now see the difference between (1) the “operands” of an instruction statement at
assembly time, and (2) the “operands” of a machine instruction at execution time. The operands
(first meaning) in the operand field entry of the instruction “LR 7,3” are the single characters 7
and 3, whereas at execution time the operands (second meaning) of the LR instruction will be the
data found in general registers 7 and 3. Table 16 on page 106 shows that the operation code
corresponding to the mnemonic LR is X'18', so the two-byte instruction generated by the Assem-
bler would be X'1873'.

Programming with RR instructions is easy. Suppose we wish to compute the sum of the contents
of general registers 2 and 14, subtract the contents of GR9 from the sum, and leave the result in
GR0. These statements will do the job.

opcode R1 R2

58 X'00' has not been assigned as a valid opcode for two reasons. First, unused areas of memory are often set to zero
when programs are initialized; programs that try to execute “instructions” from those areas will stop immediately
with a program interruption for an invalid instruction. (Sometimes, a programmer will purposely insert a X'0000'
halfword in a program to force it to stop at an exact position so the contents of registers and memory can be veri-
fied.) Also, programs like debuggers sometimes use X'00' as “breakpoints” to halt instruction tracing at a specified
place.

59 Some instructions have only one or even no explicit operands!

Chapter III: Assembler Language Programs 107

LR 0,2 Copy contents of GR2 to GR0
AR 0,14 Add contents of GR14 to GR0
SR 0,9 Subtract contents of GR9 from GR0

The instructions, their actions, and other properties will be described in subsequent sections.

Exercises

9.2.1.(2)+ Which of the following are valid register operands for an RR-type instruction?
(1) 0, (2) B'1101', (3) X'11', (4) 4*(X'F2'−C'0')/5+X'E', (5) 4*(X'F2'−C'0')/3+X'E'.

9.2.2.(2) Which of the values in Exercise 9.2.1 are valid operands if the instruction operand
requires an even-numbered register?

9.3. Basic RX-Type Instructions

Table 18 shows examples of some frequently-used RX-type instructions. As in Table 16, not all
of the 64 available digit combinations between X'40' and X'7F' are used as actual operation
codes. Again, you needn't try to remember them here.

Table 18. Typical RX-type instructions

Op Mnem Instruction Op Mnem Instruction

40 STH Store Halfword 41 LA Load Address

42 STC Store Character 43 IC Insert Character

44 EX Execute 45 BAL Branch And Link

46 BCT Branch On Count 47 BC Branch On Condition

48 LH Load Halfword 49 CH Compare Halfword

4A AH Add Halfword 4B SH Subtract Halfword

4C MH Multiply Halfword 4D BAS Branch And Save

4E CVD Convert To Decimal 4F CVB Convert To Binary

50 ST Store 54 N AND

55 CL Compare Logical 56 O OR

57 X Exclusive OR 58 L Load

59 C Compare 5A A Add

5B S Subtract 5C M Multiply

5D D Divide 5E AL Add Logical

5F SL Subtract Logical

9.4. Writing RX-Type Instructions

In this and the following section we will introduce some basic concepts, using RX-type
instructions as examples.

The format of an RX-type instruction was shown in Table 7 on page 52. We now look at the
parts of the instruction in Table 19 and describe Assembler Language techniques for specifying
them.

Table 19. RX-type instruction

opcode R1 X2 B2 D2

108 Assembler Language Programming for IBM System z™ Servers Version 2.00

As noted when we reviewed addressing in Section 5.3 on page 63, three components of an RX
instruction are used in computing an Effective Address: the index register specification digit X2,
the base register specification digit B2, and the displacement D2. The operand field entries may be
written in several ways, but they must yield values for the four needed quantities: R1, X2, B2, and
D2. Usually, values for all of these items need not be explicitly given; the Assembler can make
assumptions about what to provide in cases where values are not explicitly given. When the
Assembler provides values for something, we say that the values were “specified by default” or
“specified implicitly”.

The operand field entry of RX-type instructions has the general form

R1,address-specification

where “address-specification” will be described next. The operand register specification digit R1 is
formed according to the same rules given above for the R1 and R2 digits for RR instructions, and
must be an absolute expression with value between 0 and 15.

9.5. Explicit and Implied Addresses

For an explicit address, you supply the base and displacement; for an implied address, the Assem-
bler determines the base and displacement. (Section 10 will show you how it's done.)

Explicit and Implied Addresses

• Explicit: you specify the base and displacement.
• Implied: the Assembler calculates the base and displacement for you.

How this is done is explained in Section 10.

Suppose we wish to specify explicitly the values assigned to X2, B2, and D2: then, we write the
second operand (the “address-specification”) as

D2(X2,B2)

which is the third of the possible operand formats described in Section 8.5 on page 102. The
instructions in examples 4, 5, and 6 of Section 5.4 on page 65 could be written as shown in
Figure 34, where the assembled form is on the left, and the Assembler Language machine instruc-
tion statement is in the center; the displacements have the same value in each instruction.

430A7468 IC 0,1128(10,7) D2=1128, X2=10, B2=7
43007468 IC 0,1128(0,7) D2=1128, X2=0, B2=7
43070468 IC 0,1128(7,0) D2=1128, X2=7, B2=0

Figure 34. RX Instruction with explicit operands

Compare the machine language form of these three instructions to the fields in Table 19 on
page 108.

The four possible forms of the second operand of an RX instruction are shown below, where we
use “S2” to mean an implied address (which need not necessarily refer to a symbol, as we'll see!).

Table 20. Operands of RX-type instructions

In the two cases where an explicit address is written, each of the quantities D2, X2, and B2 must
be an absolute expression; X2 and B2 must have value less than 16, and D2 must have value less

Explicit Address Implied Address

Not Indexed D2(,B2) S2

Indexed D2(X2,B2) S2(X2)

Chapter III: Assembler Language Programs 109

than or equal to 4095=X'FFF'.60 The not-indexed form of an explicit address implies X2=0, as
we saw earlier; both indexed addresses specify an index digit.

In the two cases where an implied address is written, the quantity S2 may be either an absolute or
a relocatable expression. This means that we can write instructions such as

L 0,ANSWER Operand forms are R1,S2
L 0,16 Operand forms are R1,S2
LA 2,25*40 Operand forms are R1,S2

and let the Assembler assign the proper base and displacement; this is the subject of Section 10.
Note that the second operand of the first statement is a symbol (that we assume is relocatable),
while the second operand of the other two statements is an absolute expression.

For the moment, suppose the Assembler has sufficient information so that the instruction

IC 0,BYTE Operand forms are R1,S2
is translated into the hexadecimal digits 43007468, as in Figure 34 on page 109. Then if the
index register is GR10, the instruction

IC 0,BYTE(10) Operand forms are R1,S2(X2)

is translated into the hexadecimal digits 430A7468. In the last example in Figure 34 on page 109
we could have written the second operand with an indexed implied address of the form S2(X2), as
1128(7), where the S2 expression is absolute!

For example, it is common practice to load a small constant into a register using the LA (Load
Address) instruction:

LA 2,10 Put 10 in R2

and the operand 10 is an absolute implied address. This will almost never lead to difficulties; but
to be absolutely safe, you could write instead

LA 2,10(0,0) Put 10 in R2

and the operand now specifies an explicit address.

The only way the Assembler can decide among the four forms of address specification in Table 20
on page 109 is (1) by noting whether a left parenthesis follows the first expression (if not, the
address is implied), and (2) if there is a left parenthesis, by noting whether a comma appears
before the matching right parenthesis (if so, the address is explicit). There is of course no effect of
commas and parentheses in character self-defining terms.

It helps to remember that implied addresses almost always involve relocatable expressions, and
explicit addresses always involve absolute expressions. Sometimes we accidentally use a relocatable
expression where it should have been absolute, or an absolute expression where it should have
been relocatable. The Assembler usually (but not always) diagnoses such errors.

The most common form of address specification is an implied address, where the Assembler com-
putes the proper displacement for us. While we have now seen implied addresses in the context of
RX-type instructions, they are used in many other instruction types.

Exercises

9.5.1.(2) In Table 20 on page 109, use the rules of Section 8.5 to identify the format of each of
the four operands.

9.5.2.(2)+ The following are examples of the second operand of an RX-type instruction (the
address-specification). For each operand, determine (1) whether the address is implied or
explicit, and (2) whether indexing is specified. Assume that the symbols A, B, C are relocatable
with the same relocation attribute, and that the symbol N is absolute.

60 In Section 20 we will introduce instructions with signed 20-bit displacements.

110 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. B+X'1C'
2. C-A+B-2(N/2)
3. 2*C'-'-C'A'+2(N+N)
4. B-A((B-A)/2,((B-A)*2))
5. C'A'+A(C','-99)
6. N+N(,N)

9.5.3.(2) Assume that each of the operands in Exercise 8.5.1 on page 103 is used in an RX-type
instruction. Using the rules in Section 9.5, determine whether the addresses are explicit or
implied.

9.6. Typical RS- and SI-Type Instructions

The examples of basic RS-type and SI-type instructions in Table 21 are quite varied in the way
you specify their operand fields.

Table 21. Typical RS- and SI-type instructions

Op Mnem Type Instruction Op Mnem Type Instruction

90 STM RS Store Multiple 91 TM SI Test Under Mask

92 MVI SI Move Immediate 94 NI SI AND Immediate

86 BXH RS Branch On Index High 95 CLI SI Compare Logical Imme-
diate

87 BXLE RS Branch On Index Low or Equal 96 OI SI OR Immediate

97 XI SI Exclusive OR Immediate 88 SRL RS Shift Right Single Logical

98 LM RS Load Multiple 89 SLL RS Shift Left Single Logical

8A SRA RS Shift Right Single 8B SLA RS Shift Left Single

8C SRDL RS Shift Right Double Logical 8D SLDL RS Shift Left Double Logical

8E SRDA RS Shift Right Double 8F SLDA RS Shift Left Double

BD CLM RS Compare Logical Characters
Under Mask

BE STCM RS Store Characters Under
Mask

BF ICM RS Insert Characters Under Mask

Some instructions (like “Shift Double”) require a register operand to be an even number.

9.7. Writing RS- and SI-Type Instructions

We will show the operand field formats for RS-type and SI-type instructions separately, as they
are quite different.

The RS-type instruction format is similar to RX-type format, except that the X2 field is replaced
by an R3 field, so no indexing is performed when Effective Addresses are formed.

Table 22. Typical RS-type instruction

The operand fields of Assembler Language instructions specifying RS-type instructions are shown
in Table 23 on page 112. There are two forms, one with a single “Rn” operand and the other
with two, indicated by RS-1 and RS-2 meaning one or two register operands respectively.

opcode R1 R3 B2 D2

Chapter III: Assembler Language Programs 111

Table 23. Operands of RS-type instructions

Examples of RS-type instructions with explicit and implied addresses are:

SRA 11,2 Explicit address (RS-1 form)
SLDL 6,N Implied address (RS-1 form)
LM 14,12,12(13) Explicit address (RS-2 form)
STM 14,12,SaveArea+12 Implied address (RS-2 form)
BXLE 4,1,Loop_3 Implied address (RS-2 form)

SI-type instructions are different. The I2 operand is contained in the second byte of the instruc-
tion, as in Table 24:

Table 24. Typical SI-type instruction

Table 25 gives the operand fields of Assembler Language statements involving SI-type
instructions:

Table 25. Operands of SI-type instructions

Examples of SI-type instructions with explicit and implied addresses are:

MVI 0(6),C'*' Explicit S1 address
CLI Buffer,C'0' Implied S1 address

Exercises

9.7.1.(2) The following are operand fields that could be used in RS- and SI-type instructions.
Identify the type of instruction (RS-1, RS-2, or SI) for which they are valid, and the compo-
nents of the instruction to which each expression applies. State which expressions specify
explicit addresses and which specify implied addresses.

(1) 1(2),3
(2) 4,5(6)
(3) 7,8,9
(4) 10,11
(5) 14,15(16)
(6) 100,101

Explicit Address Implied Address

RS-1 R1,D2(B2) R1,S2

RS-2 R1,R3,D2(B2) R1,R3,S2

opcode I2 B1 D1

Explicit Address Implied Address

SI D1(B1),I2 S1,I2

112 Assembler Language Programming for IBM System z™ Servers Version 2.00

9.8. Typical SS-Type Instructions

Table 26 shows some examples of popular SS-type instructions. The column headed “Len”
shows the number of length fields in the instruction.

Table 26. Typical SS-type instructions

Op Mnem Len Instruction Op Mnem Len Instruction

D1 MVN 1 Move Numeric F0 SRP 2 Shift And Round

D2 MVC 1 Move F1 MVO 2 Move With Offset

D3 MVZ 1 Move Zone F2 PACK 2 Pack

D4 NC 1 AND F3 UNPK 2 Unpack

D5 CLC 1 Compare Logical

D6 OC 1 OR F8 ZAP 2 Zero And Add

D7 XC 1 Exclusive OR F9 CP 2 Compare

DC T R 1 Translate FA AP 2 Add

DD TRT 1 Translate And Test FB SP 2 Subtract

DE ED 1 Edit FC MP 2 Multiply

D F EDMK 1 Edit And Mark F D DP 2 Divide

ED, EDMK, SRP, and the last six instructions in the right-hand column operate on data stored
in packed decimal format, which is different from the data formats used for the general register
and floating-point instructions. We'll learn about them in Chapter VIII.

9.9. Writing SS-Type Instructions

Most SS-type instructions specify two addresses, and may have one or two length fields depending
on whether you must specify the length of only one operand (type SS-1) or of both operands
(type SS-2). Their formats are shown in Tables 27 and 29.

As with explicit and implied addresses, you can also specify explicit and implied lengths in SS-type
instructions. When we use implied lengths the Assembler determines the values put into the
length fields of the instruction, often by using the length attribute of a symbol. Implied lengths
are very useful, and we'll see many examples.

This is the format of instructions with a single length field.

Table 27. Typical type SS-1 instruction with one length field

Addresses and lengths may be specified explicitly or implicitly, as summarized in the following
tables. First, we examine the single-length instructions.

Table 28. Operands of type SS-1 single-length instructions

opcode L1 B1 D1 B2 D2

SS-1 Explicit Addresses Implied Addresses

Explicit Length D1(N1,B1),D2(B2) S1(N1),S2

Implied Length D1(,B1),D2(B2) S1,S2

Chapter III: Assembler Language Programs 113

When you write an instruction with an explicit length, you provide a “Length Expression” or
“program length”, denoted “N1”. The Assembler generates object code with an “Encoded
Length” or “machine length” denoted by “L1”. This seems strange: why are they different?

The Assembler generates the value of L1 by subtracting 1 from the value of N1 (unless N1 is
zero). We'll see why this is done when we discuss SS-type instructions starting in Section 24.

Some examples of SS-type instructions with a single length field are:

MVC 0(80,4),40(9) Explicit length and addresses
CLC Name(24),RecName Explicit length, implied addresses
TR OutCh(,15),0(12) Implied length, explicit addresses
XC Count,Count Implied length and addresses

where the symbol OutCh must be absolute. (This form is rarely used.)

SS-type instructions with two length fields have the format shown in Table 29.

Table 29. Typical type SS-2 instruction with two length fields

Many more combinations of explicit and implied lengths and addresses are available when you
use SS-type instructions with two length fields. Some of the Assembler Language operand field
combinations are shown below.

Table 30. Operands of type SS-2 two-length instructions

You can specify explicit lengths and addresses for either of the two operands; see Exercise 9.9.2.

As noted for SS-1 type instructions, the Encoded or machine lengths L1 and L2 are one less than
the Length Expressions or program lengths N1 and N2. We'll see these again in Chapter VIII.

Some examples of SS-type instructions with two length fields are:

PACK 0(8,4),40(5,9) Explicit lengths and addresses
ZAP Sum(14),OldSum(4) Explicit lengths, implied addresses
AP Total(,15),Num(,12) Implied lengths, explicit addresses
UNPK String,Data Implied lengths and addresses

The symbols Total and Num must be absolute for the third statement to be valid.

This SS-type instruction copies five bytes from a memory area named AREA to an area of memory
named FIELD:

MVC FIELD(5),AREA

Exercises

9.9.1.(2)+ The following operands could be used in SS-type instructions. State the operand for
which they may be valid, for both SS-1-type and SS-2-type instructions, and whether a length is
explicit or implied. (Validity and form may depend in the relocation attribute of the symbols.)

(1) 1(2)
(2) 4(5,6)
(3) A(L'B)
(4) Line

opcode L1 L2 B1 D1 B2 D2

SS-2 Explicit Addresses Implied Addresses

Explicit Lengths D1(N1,B1),D2(N2,B2) S1(N1),S2(N2)

Implied Lengths D1(,B1),D2(,B2) S1,S2

114 Assembler Language Programming for IBM System z™ Servers Version 2.00

(5) Line(80)
(6) XX(,5)

9.9.2.(2)+ Make a table to show all possible combinations of explicit and implied addresses,
and implicit and implied lengths, for SS-2 type instructions.

9.10. Summary

When describing the fields of both machine instructions and assembler instruction statements, we
use notations like S2, B1, N, L2, etc.

• Fields denoted S can be absolute or relocatable expressions, and are most often relocatable.
• Fields denoted B, D, I, L, N, and X must always be absolute expressions.

Terms and Definitions
Encoded Length

The contents of a Length Specification Byte; one less than the value of the Length
Expression (unless the Length Expression is zero, in which case the Encoded Length is also
zero).

explicit address
An address in which you specify the base register specification digit and the displacement as
absolute expressions.

explicit length
A length field that you specify explicitly.

implied address
An address where you expect the Assembler to assign a base register specification digit and a
displacement to an addressing halfword.

implied length
A length field completed by the Assembler based on its analysis of the operand.

Length Expression
A value you write in an SS-type instruction specifying the length of the operand(s).

machine length
An Encoded Length.

mnemonic
A character string representing an instruction, intended to be easier to remember than the
operation code of the instruction.

opcode
An abbreviation for operation code. Occasionally used when the term mnemonic is actually
meant.

operation code
The z/Architecture definition of an instruction's bit pattern to be decoded by the CPU to
determine what actions it should take.

program length
A Length Expression.

Chapter III: Assembler Language Programs 115

10. Establishing and Maintaining Addressability

11 00000000
111 0000000000
1111 00 00
11 00 00
11 00 00
11 00 00
11 00 00
11 00 00
11 00 00
11 00 00

1111111111 0000000000
1111111111 00000000

In Section 5 we saw how the CPU at execution time converts addressing halfwords into Effective
Addresses. Now we will see how the Assembler derives addressing halfwords from the values of
symbolic expressions at assembly time, and answer the question “How do we help the Assembler
create addressing halfwords?”

This important information is provided in the USING assembler instruction statement.

10.1. The BASR Instruction

The RR-type Branch and Save (Register) instruction with mnemonic BASR is frequently used to
generate a base address that provides addressability.61 For now, we consider what happens when
we write

BASR R1,0

where the second operand register specification digit R2 is zero. This instruction when executed
replaces the contents of the general register specified by R1 by the Instruction Address (IA)
portion of the PSW. This address will necessarily be the address of the instruction following the
BASR, because the IA was incremented by the BASR instruction's length (2 bytes) during the
fetch portion of the instruction cycle.

In this RR-type instruction (unlike many other RR-type instructions), the zero second operand
does not refer to general register zero! Instead, it means that only the described actions will occur
without any “branch”, as the “Branch and Save” name implies. (We'll see in Chapter X that
BASR is often used for branching, usually in subroutine linkages.)

Suppose the following short sequence of statements is part of a program that has been assembled
and placed in memory to be executed. While we are giving the Assembler Language statements in
Figure 35 on page 117, the assembled contents of memory will be hexadecimal machine language
data, as shown in Figure 36 on page 118. Suppose the Program Loader has relocated the
program so that the first instruction (the BASR) was placed at memory address X'5000'.

61 The BASR instruction should be used in place of BALR in most situations; the main difference is that BALR inserts
the ILC, CC, and Program Mask in the high-order 8 bits of the first operand register when executing in 24-bit
addressing mode. BALR and BASR work the same way in 31-bit and 64-bit addressing modes.

116 Assembler Language Programming for IBM System z™ Servers Version 2.00

Address Name Operation Operand Remarks

* Fragment of a simple program
5000 BASR 6,0 Establish base address
5002 BEGIN L 2,N Load contents of N into GR2
5006 A 2,ONE Add contents of ONE
500A ST 2,N Store contents of GR2 into N

--twenty-two (X'16') additional bytes of instructions, data, etc.--
5024 N DC F'8' Word integer 8
5028 ONE DC F'1' Word integer 1

Figure 35. A simple program segment

For this and the following examples, the instructions following the BASR are intended just to
show how the Assembler creates addressing halfwords. Briefly, their actions are:

• L is the mnemonic for the RX-type (4-byte) machine instruction Load. It copies the contents
of a 4-byte (word) area of memory and puts it into a general register.

• A is the mnemonic for the RX-type (4-byte) machine instruction Add. It adds a copy of the
contents of a 4-byte (word) area of memory to the contents of a general register.

• ST is the mnemonic for the RX-type (4-byte) machine instruction STore. It replaces the con-
tents of a 4-byte (word) area in memory with a copy of the contents of a general register.

• DC (Define Constant) is an Assembler instruction used to create constants. The two DC
statements create word binary integers in memory.

The leftmost column in Figure 35 shows the memory address of each instruction and data item.

For now, we'll ignore what the instructions actually do, and focus on how they are assembled.

Exercises

10.1.1.(2) Use the lengths of the instructions and constants in Figure 35 to calculate their
addresses in memory, and determine if the values in the figure are correct.

10.2. Computing Displacements

Now, suppose the program has begun execution. After the BASR has been executed, register 6
will contain X'00005002'. (Remember: BASR places the address of the next instruction into the
register designated by the R1 operand.) We can now use the address in register 6 as a base
address for the instructions following the BASR, so the base register specification digit in subse-
quent addressing halfwords should be 6.

We can determine the proper displacement in the L instruction at X'5002' by using two important
values: the known contents of register 6 (X'00005002') and the address of the word area named N.
Using these values, we can now compute a displacement:

X'00005024' − X'00005002' = X'022'

Then, the assembled machine language instruction (using opcode X'58' for the mnemonic L) will
be X'58206022'. When this instruction is executed, its Effective Address is

X'022' + X'00005002' = X'00005024',

the address of the word named N that we want!

If we continue this way for the rest of the statements, the “assembled” machine language
instructions and data will give the desired results at execution time. That is, after program loading
is complete, we want the memory areas starting at address X'5000' to contain the (hexadecimal)
machine language data shown under “Assembled Contents” in Figure 36 on page 118.

Chapter III: Assembler Language Programs 117

Address Assembled Contents Original Statement

5000 0D60 BASR 6,0
5002 58206022 BEGIN L 2,N
5006 5A206026 A 2,ONE
500A 50206022 ST 2,N

5024 00000008 N DC F'8'
5028 00000001 ONE DC F'1'

Figure 36. Simple program segment with assembled contents

Remember that when the Assembler processes the BASR statement and produces two bytes of
machine language code containing X'0D60', nothing is yet “in” register 6. It is only when this
machine language instruction is finally executed by the processor that the desired base address will
be placed in register 6.

So far, so good: we have constructed a sequence of instructions that will give a desired result if it
is placed in memory at exactly the right place. You might ask “What would happen if the
program is put elsewhere by the Program Loader?” So, let's suppose the same program segment
begins at memory address X'84E8', as in Figure 37.

Address Statement

84E8 BASR 6,0
84EA BEGIN L 2,N
84EE A 2,ONE
84F2 ST 2,N

--- the same 22 bytes of odds and ends ---
850C N DC F'8'
8510 ONE DC F'1'

Figure 37. Same program segment, at different memory addresses

After executing the BASR, register 6 contains X'000084EA'. To address the contents of the word
named N using register 6 as a base register, the necessary displacement is

X'0000850C' − X'000084EA' = X'022'

Similarly, the displacement necessary in the “A” instruction is

X'00008510' − X'000084EA' = X'026'

After completing the three addressing halfwords, the assembled machine language program would
appear in memory as shown in Figure 38.

Address Assembled Contents

84E8 0D60
84EA 58206022
84EE 5A206026
84F2 50206022

850C 00000008
8510 00000001

Figure 38. Same program segment, with assembled contents

The identical machine language program is generated in both Figures 36 and 38. We see that so
long as the same fixed relationship is maintained among the various parts of the program segment
(there are 22 bytes between the ST instruction and the word named N), the program segment
could be placed anywhere in memory and still execute correctly. That is, the program is relocat-
able.

118 Assembler Language Programming for IBM System z™ Servers Version 2.00

Indeed, we could have assumed that the program began at memory address zero (even though an
actual program would not be placed there) because the contents of register 6 after the BASR is
executed would be X'00000002', and the displacements would be calculated exactly as before.

10.3. Explicit Base and Displacement

Knowing what we need for the assembled program (the machine language instructions shown in
Figures 36 and 38), we now write the instruction statements with explicit addresses in their second
operands. Register 6 is the base register, and the displacements are those we just calculated. Then
we can write the program as in Figure 39, using an assumed origin of zero for the LC.
(Remember: we're describing locations at assembly time, not the execution time addresses we saw
in the previous examples.)

Location Name Operation Operand

0000 BASR 6,0
0002 BEGIN L 2,X'022'(0,6)
0006 A 2,X'026'(0,6)
000A ST 2,X'022'(0,6)

--------- 22 bytes ----------
0024 N DC F'8'
0028 ONE DC F'1'

Figure 39. Program segment with pre-calculated explicit base and displacements

This example has two shortcomings. First, calculating displacements in advance is tedious (espe-
cially in large programs), and certainly error-prone. Second, if the relative positions of the parts
of the program change in any way, we will be forced to recalculate some or all of the displace-
ments.

Thus, our first simplification is to find a way to let the Assembler compute the displacements just
as we did. Now, however, we can make good use of the values assigned by the Assembler to the
symbols BEGIN, N, and ONE. (As noted in Section 7.6 on page 93, the values of the symbols are
the values of the LC when the statement is processed.) Referring to Figure 39, the values
assigned to the three symbols will be the value of the assumed origin plus X'0002', X'0024', and
X'0028', respectively.

The key to this example is that when the program is executing, the base register (register 6) con-
tains the address of the instruction named BEGIN. We use this observation to rewrite the program
segment, as shown in Figure 40.

Location Name Operation Operand

0000 BASR 6,0
0002 BEGIN L 2,N-BEGIN(0,6) (N-BEGIN = X'022')
0006 A 2,ONE-BEGIN(0,6) (ONE-BEGIN = X'026')
000A ST 2,N-BEGIN(0,6) (N-BEGIN = X'022')

------- the usual 22 bytes -------
0024 N DC F'8'
0028 ONE DC F'1'

Figure 40. Program segment with explicit base and Assembler-calculated displacements

We have eliminated both of the shortcomings of the program segment in Figure 39: the displace-
ments were not calculated in advance, and adding (say) four more bytes of instructions or data
preceding the DC statements would not require the rest of the program to be rewritten. However,
we have created another nuisance, since every instruction containing a reference to a symbol must
now specify two extra items: the symbol BEGIN and the base register (6).

So, we need a way to make the Assembler do the rest of the work for us, after we have told it (1)
which base register to use, and (2) the value that will be in it when the program is executed.

Chapter III: Assembler Language Programs 119

10.4. The USING Assembler Instruction and Implied Addresses

The USING assembler instruction provides exactly the information we need. It is written

USING base_location,base_register

where “base_location” is almost always a relocatable expression. (The base_location is sometimes
called the “base”, but it easy to mistake this for the “base_register”.) The “base_register” operand
is an absolute expression between 0 and 15, specifying the register to be used as a base register.
(Zero is very rarely used.)

Thus, the statement

USING BEGIN,6

tells the Assembler to assume that register 6 may be used as a base register that at execution time
will contain the relocated address of the instruction named by the symbol BEGIN. The Assembler
can then calculate displacements relative to the location of BEGIN, and then use this assumption to
create addressing halfwords with base register specification digit 6 and the calculated displace-
ments.

We now rewrite the sample program segment of Figure 40 on page 119 to include the USING
statement in Figure 41.

BASR 6,0
USING BEGIN,6

BEGIN L 2,N
A 2,ONE
ST 2,N

N DC F'8'
ONE DC F'1'

Figure 41. Program Segment with USING Instruction

If the initial LC value is zero, the value of the symbol BEGIN will be X'0002', and the values of the
symbols N and ONE will be X'0024' and X'0028' respectively. To complete its derivation of the
addressing halfword of the ST instruction, the Assembler needs only to calculate the difference
between the location of the symbol N and the base_location of BEGIN specified in the USING
instruction:

X'0024' − X'0002' = X'022'
and this is the required displacement.

Similarly, the implied address of the operand ONE of the A instruction has value X'0028'; when
the base_location value is subtracted, we find the displacement is X'026', as before. We say that
the Assembler has resolved the implied addresses of the L, A, and ST instructions into base-
displacement form. Thus, the machine language generated from this set of statements would
appear exactly as in Figures 36 and 38. (Details about how the Assembler computes displace-
ments and assigns base registers is described starting in Section 10.8.)

If the attempted calculation

displacement = (operand value) − (base_location value)
yields a negative result or a value greater than 4095, the location referred to by the symbol is still
not addressable with this base register, and some other solution is needed.62

62 Section 20 describes long-displacement and relative-immediate instructions with a larger range of displacement values.

120 Assembler Language Programming for IBM System z™ Servers Version 2.00

It is clear that the Assembler can make use of the information supplied by the USING statement
only for implied addresses. If you provide an explicit base and displacement, the Assembler
simply converts them to their proper binary form.

Two important features of the program segment in Figure 41 on page 120 should be noted.

1. The USING instruction does absolutely nothing about actually placing an address into a reg-
ister; it merely tells the Assembler what to assume will be there when the program is exe-
cuted.

That is, your USING statement is a promise to the Assembler that if it computes displace-
ments for you, everything will work properly when the program is executed. (It is very easy
to mislead the Assembler, as we'll see in Section 10.11 on page 129.)

2. If the BASR instruction had been omitted, the contents of register 6 at execution time is
probably unknown. There is no guarantee that correct Effective Addresses will be computed
when the program is executed.

 Remember!

A USING statement is your assembly-time promise to the Assembler
that your program will obey that promise at execution time.

10.5. Location Counter Reference

The Assembler provides a convenient way to refer to the current value of the Location Counter,
the Location Counter Reference. The term * in an expression has the current value of the LC,
and is always relocatable.

We can rewrite the first two statements of our sample program as

BASR 6,0
USING *,6

with the same results as before. Remember that after the BASR instruction is assembled, the LC
will have a value corresponding to the location of the next byte to be assembled. Because BASR
will (at execution time) place the address of the following instruction into register 6, we can use a
Location Counter Reference to specify the base_location, and not have to use a symbol (such as
the symbol BEGIN in Figure 41 on page 120). to name the instruction following the BASR
instruction.

A common technique for specifying base registers in a program is to choose a base register, write
the statements

BASR reg,0
USING *,reg

at the beginning of the program, and then carefully avoid modifying that register. For simple pro-
grams, specifying and using base registers is very easy.

It's important to remember that while the value of “*” changes as your program is assembled, the
value used in the first operand of the USING statement does not: it has the value of the LC at
the time the USING is processed by the Assembler.

Exercises

10.5.1.(2)+ A careless programmer inverted the order of his BASR and USING statements as
follows:

USING *,12
BASR 12,0

Why is this wrong? What would you expect to happen?

Chapter III: Assembler Language Programs 121

10.6. Destroying Base Registers

Suppose an error was made in writing the statement with the L instruction, such that it became

BEGIN L 6,N Load contents of N into GR2

The comment in the remarks field is correct; the instruction is wrong, because the first operand
was incorrectly written as 6 instead of 2.

The assembled program would then appear as in Figure 42.

Location Assembled Contents Statement

0000 0D60 BASR 6,0
USING BEGIN,6

0002 58606022 BEGIN L 6,N ← Wrong register!
0006 5A206026 A 2,ONE
000A 50206022 ST 2,N

0024 00000008 N DC F'8'
0028 00000001 ONE DC F'1'

Figure 42. Sample program segment with erroneous statement

This program would assemble correctly, since all quantities are properly specified. However, at
execution time, things go wrong quickly.

Suppose again that the program is placed in memory by the Program Loader starting at address
X'5000', so that when the L instruction is executed, register 6 contains X'00005002'. Now, the L
instruction copies a word from memory at the address given by the second operand into the reg-
ister specified by the first operand. However, the first operand in this case specifies register 6,
instead of register 2 as intended. When the Effective Address of the operand named N is calculated
during instruction decoding, register 6 contains the correct base address; but when the execution of
the L instruction is complete, register register 6 will contain X'00000008' and not X'00005002',
because the number at N was placed in register 6.

Now the fun begins. When the next instruction (A) is executed, the Effective Address calculated is

X'026' + X'00000008' = X'0000002E'

and not X'00005028', where the intended operand is found. In this case the Effective Address is
not anywhere within the program, but is somewhere among the predefined fixed fields at the low
end of memory; strange numbers will be added to register 2's initial (and unknown) contents.
Finally, the ST instruction will attempt to store a word at X'0000002A', which should cause a
storage protection exception. At this point, the program would stop.

This does not mean that if we accidentally destroy the contents of a base register, the CPU will be
able to detect the error. (See Exercise 10.6.1.) It is partly a matter of chance how much damage
such a program error can cause when the program is executed; indeed, when the CPU finally (if
ever) detects an error, all evidence pointing to the offending instruction may have been lost,
making error tracing difficult. (Register 6 may have been changed several times!) You must be
very careful to guarantee the integrity of the contents of base registers.

Remember also that the Assembler makes no checks for instructions that might alter the contents
of registers designated as base registers in USING statements.

Exercises

10.6.1.(3)+ In the erroneous program in Figure 42, consider the possibility that the word at N
contained the decimal integer 20450. If the program began in memory at address X'5000', what
would be in that area of memory after the ST instruction is executed?

122 Assembler Language Programming for IBM System z™ Servers Version 2.00

10.7. Calculating Displacements: the Assembly Process, Pass One

Now, we'll examine more closely how the Assembler computes bases and displacements.

You can visualize assembly as making two passes over the program: that is, the Assembler
“reads” the program twice. On the first pass, the Symbol Table is built; on the second pass, data
in the Symbol Table is used to help generate the desired instructions and data.

First, you will remember that values are assigned to symbols by the Assembler as follows:

1. A statement is read and examined to determine its general character. It is also saved in a
temporary place so it can be read again during the second pass over the program.

2. If the statement will generate instructions or data, the Assembler adjusts the Location
Counter (if necessary) to satisfy alignment requirements, so that instructions begin on
halfword boundaries, words begin on word boundaries, etc.

3. If a symbol appears in the name field of the statement, it is entered into the Assembler's
Symbol Table, and (if it is not an EQU statement) is given the value of the Location
Counter. That is, the symbol is defined, as described in Section 7.6 on page 93. (Of course, it
will be an error if the symbol is already in the table with a value; this is called multiple or
duplicate definition.)

4. The rest of the statement is scanned; if any other symbols are encountered, they are entered
into the Symbol Table (if not there already), but numeric values are not assigned to their
attributes. That is, if the symbol is not yet defined, it remains “undefined”.

5. The length of the instruction or data to be generated from the statement is then added to the
Location Counter. No data or instructions are generated at this time, however.

This process is repeated for each statement, until the end of the program is reached. Because the
Assembler has made a complete scan or “pass” over the program's statements, this is called “Pass
One” of the assembly. At this point the Symbol Table contains all the symbols in the program,
whether or not they are defined.

The first assembly pass is sketched in Figure 43 on page 124, but the sketch is incomplete in
many ways. For example, an EQU statement lets you assign a value to a symbol, and that value
is taken from the expression in the operand field. Figure 43, however, only shows values being
assigned to symbols using the Location Counter. It also omits any description of macro-
instruction statements, and how symbols are treated in erroneous statements.

Chapter III: Assembler Language Programs 123

┌──────────────┐
┌─┤Read statement│
� │ and save it │
│ └──────┬───────┘
│ �
│ ┌─┴────┐yes ┌─────────┐
│ │ END ?├────┤to Pass 2│
│ └─┬────┘ └─────────┘
│ �no
│ yes ┌──┴─────┐
├�─────┤comment?│
� └──┬─────┘
│ �no
│ ┌────┴──────┐ ┌───────────┐ ┌────────┐
│ │Instruction├────┤ symbol in ├───┤is it in│
│ │statement? │yes │name field?│yes │sym─tbl?│
│ └────┬──────┘ └┬──────────┘ └┬────┬──┘
│ │no no│ ┌────────┐ no│ │yes
│ � � │enter it├�──┘ �
│ ┌───┴──────┐ │ └───┬────┘ ┌───┴───┐
│ │Undefined │ │ � no│does it│
├�────┤mnemonic: │ │ ├�────────┤have a │
� │note error│ │ � │value? │
│ └──────────┘ │ ┌────┴────┐ └───┬───┘
│ │ │set value│ yes│
│ ├�─┤ from LC │ �
│ ┌────────┐ � └─────────┘ ┌──────┴───┐
│ │enter in│ ┌──────┴───────┐ │note error│
│ │table, │ Y│symbol(s) in │ └──────┬───┘
│ │no value├�─┤operand field?├�────────────┘
│ └──┬─────┘ └──────┬───────┘
│ � no�
│ ┌──┴───────────────┴───────────────┐
└────┤increment LC by instruction length│

└──────────────────────────────────┘
Figure 43. Sketch of pass one of an assembly

Exercises

10.7.1.(2) In the following program segment, resolve the implied addresses into base-
displacement form, and fill in the four blank fields.

Loc Object Code Statement

 5000 0DA0 BASR 10,0
 5002 USING *,10
 5002 41D0____ LA 13,SAVE
 5006 4110____ LA 1,PARM
 500A 4DE0____ BAS 14,SUB
 500E 50______ ST 0,TBL(15)

- - -
 512C SAVE DS 18F
 5174 PARM DC A(TBL)
5178 TBL DS 10F
51A0 SUB STM 14,12,12(13)

124 Assembler Language Programming for IBM System z™ Servers Version 2.00

10.8. Calculating Displacements: the Assembly Process, Pass Two

The Assembler now begins a second pass over the program by retrieving the statements from their
temporary storage place. The Assembler creates machine language object code, converting
instruction mnemonics to operation codes and using data in the Symbol Table to evaluate all
expressions appearing in the statements.

The overall flow of the second pass of the assembly process is sketched in Figure 44. As noted
following Figure 43 on page 124 describing the first pass of the assembly, this is a very abbrevi-
ated description, so don't attach great significance to the precise sequence of processing actions
implied by the diagram.

┌───────────┐
┌──┤Read, Print├�─┬──────────────────────────────┐
� │ statement │ � �
│ └────┬──────┘ │ │
│ � │ │
│ ┌───┴────┐yes │ │
│ │comment?├────┘ │
│ └───┬────┘ │
│ �no │
│ ┌───┴────┐yes ┌─────────────────────────┐ │
│ │ USING ?├───┤enter data in USING Table├───┤
│ └───┬────┘ └─────────────────────────┘ �
│ �no │
│ ┌───┴───┐yes ┌─────────────────────────────┐ │
│ │ DROP ?├───┤delete entry from USING Table├─┘
│ └───┬───┘ └─────────────────────────────┘
│ �no
│ ┌──┴───┐yes ┌─────────────────────┐
│ │ END ?├───┤Create object module;│
│ └──┬───┘ │return to Supervisor │
│ │no └─────────────────────┘
│ �
│ ┌───┴────────┐yes ┌────────┐yes ┌───────┐
│ │machine ├───┤implied ├───┤compute│
│ │instruction?│ │address?│ │ value │
│ └───┬────────┘ └──────┬─┘ └───┬───┘
│ �no no � �
│ ┌───┴─────┐yes ┌───────┐ │ ┌────────┴────────────┐
│ │define a ├───┤convert│ │ │check USING Table for│
│ │constant?│ │ data │ │ │a valid displacement │
│ └───┬─────┘ └──┬────┘ │ └─┬───────────┬───────┘
│ �no � │ �OK �none
│ ┌─────┴────┐ │ ├───┘ ┌───────┴──────┐
├�─┤note error│ │ � │addressability│
� └──────────┘ │ │ │ error │
│ ┌───────────────────┴──────┴─┐ └───────┬──────┘
└──┤Generate instruction or data├�────────────┘

└────────────────────────────┘
Figure 44. Sketch of pass two of an assembly

When a USING statement is encountered, the Assembler enters the value and relocation attri-
butes of the first operand expression (the base_location), and the value of the second expression
(the base_register number), into a USING Table.

Figure 45 on page 126 shows an example of a USING Table with one entry. The abbreviations
“basereg” and “RA” denote respectively the base_register specified in the second operand of the
USING statement, and the relocation attribute of the base_location expression from the first

Chapter III: Assembler Language Programs 125

operand of the USING statement. For now, the only importance of the relocation attribute is
that it indicates whether the symbol is relocatable (RA=01) or absolute (RA=00).

┌───────┬───────────────┬────┐
│basereg│ base_location │ RA │
├───────┼───────────────┼────┤
│ 6 │ 00000002 │ 01 │
└───────┴───────────────┴────┘

Figure 45. USING Table with one entry

When a subsequent instruction operand contains an implied address, the Assembler compares the
value and relocation attribute of that expression to each entry in the USING Table. If a matching
relocation attribute is found, and a valid displacement can be calculated from

displacement = (implied address value) − (base_location value)
then the Assembler inserts the computed displacement and the corresponding base_register digit
into the addressing halfword of the instruction. The Assembler has resolved the implied address
into base-displacement form, and the implied address is addressable.

For example, consider the second and third statements in Figure 41 on page 120. If the initial
LC value assigned to the program was zero, the USING Table would contain an entry for register
6, with an associated relocatable base_location value of X'00000002', the value of the symbol
BEGIN illustrated in Figure 45.

When the third statement in Figure 41 on page 120 is processed, the value of the implied address
is the value of the symbol N, or X'00000024'. The computed displacement is

X'00000024' − X'00000002' = X'022'
as we saw previously, so the completed addressing halfword is X'6022'.

Here is a way to summarize the description of operand address resolution: at assembly time, the
Assembler computes a displacement:

displacement = (operand_location) − (base_location)
while at execution time, the CPU reverses this computation:

(operand address) = displacement + (base address)

 Assembler-calculated displacements

The Assembler at assembly time does the reverse of what the CPU does at
execution time.

It is important to give correct information in a USING statement because it specifies the intimate
connection between the base_location at assembly time and the base address at execution time.

Remember that the difference between assembly-time locations and execution-time addresses in a
relocatable program is only a single constant value,

Exercises

10.8.1.(2)+ In the blank fields provided in the six instructions below, show the values and
addressing halfwords provided by the Assembler. Assume that the Location Counter values are
as shown in the column headed “LOC”.

126 Assembler Language Programming for IBM System z™ Servers Version 2.00

Loc Object Code Statement

10A20 USING *,11
 10A20 5830____ L 3,X
 10A24 4A30____ AH 3,Y
 10A28 10__ LPR 4,3
 10A2A 9034____ STM 3,4,Z
 10A2E 4240____ STC 4,W
 10A32 4770____ BC 7,*+24
 - - - - - -
 10A76 W DS X
 10A78 Z DS 2F
 10A80 Y DC H'-72'
 10A84 X DC A(Z-W)

10.9. Multiple USING Table Entries

You can create more than one entry in the USING Table, so it is possible to have more than one
valid resolution of an implied address into base-displacement form. Suppose we add another
USING statement to the program, as in Figure 46:

Location Name Operation Operand Remarks

0000 BASR 6,0
USING *,6 Original USING statement

0002 BEGIN L 2,N
USING *,7 Added USING statement

0006 A 2,ONE
000A ST 2,N

0024 N DC F'8'
0028 ONE DC F'1'

Figure 46. Program segment with second USING statement

For now, we ignore the fact that the contents of register 7 are unknown.

When the second USING is processed, the value of the Location Counter is X'00000006', so the
Assembler makes a second entry in the USING Table, as shown in Figure 47.

┌───────┬───────────────┬────┐
│basereg│ base_location │ RA │
├───────┼───────────────┼────┤
│ 6 │ 00000002 │ 01 │
├───────┼───────────────┼────┤
│ 7 │ 00000006 │ 01 │
└───────┴───────────────┴────┘

Figure 47. USING Table with multiple entries

When the next statement

A 2,ONE

is processed, two possible valid resolutions are available for the implied address specified by the
symbol ONE:

• If register 6 is used as a base register, the displacement is

X'00000028' − X'00000002' = X'026'
and the addressing halfword would be X'6026' (as in Figure 42 on page 122).

Chapter III: Assembler Language Programs 127

• If register 7 is used as a base register (again, ignoring the fact that its run-time contents are
unknown), the Assembler determines that the displacement is

X'00000028' − X'00000006' = X'022'
and the addressing halfword would be X'7022'. (Similarly, the ST instruction could have an
addressing halfword X'701E'.)

The Assembler must make a choice: which of the two valid resolutions should be selected for the
completed machine language instruction?

The Assembler uses these resolution rules:

1. Find all USING table entries whose relocation attribute matches that of the implied address
to be resolved.

2. Choose the base register that leads to the smallest displacement.

3. If more than one base register provides the same smallest displacement, choose the corre-
sponding highest-numbered register.

Thus, the assembled program would appear as shown in Figure 48 below:

Location Assembled Contents

00000 0D60
 00002 58206022 Based on register 6
 00006 5A207022 Based on register 7
 0000A 5020701E Based on register 7

 00024 00000008
 00028 00000001
Figure 48. Assembled contents when two USINGs are active

At this point, you could (correctly) observe that this program is seriously flawed, because the con-
tents of GR7 at execution time could be “anything”. When the A and ST instructions are exe-
cuted, their operand addresses are likely to cause errors (whether or not they are detected
immediately!).

The important lesson in this example is that the Assembler has no way of knowing that the infor-
mation supplied in the statement

USING *,7

may not be valid. It can only trust that you have provided correct base_location and base_register
data it can use to resolve implied addresses.

10.10. The DROP Assembler Instruction

It is also possible to delete entries from the USING Table. The DROP instruction tells the
Assembler to remove the information corresponding to a given register. Its general form is

DROP register

where the “register” operand specifies the USING Table entry to be deleted.

For example, if the statement

DROP 6

was inserted after the third statement, the L instruction named BEGIN in Figure 47 on page 127,
the initial USING Table entry for register 6 would be deleted, and the USING Table would
appear as in Figure 49 on page 129:

128 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───────┬───────────────┬────┐
│basereg│ base_location │ RA │
├───────┼───────────────┼────┤
│ │ empty │ │
├───────┼───────────────┼────┤
│ 7 │ 00000006 │ 01 │
└───────┴───────────────┴────┘

Figure 49. USING Table after DROP statement

Another form of the DROP statement is

DROP

with no operand! This will cause all USING Table entries to be deleted. While this might seem
odd, it's useful: if you have reached a part of your program where no valid base registers will be
available at execution time, DROPping all the USINGs will avoid unexpected or unintended
resolution of implied addresses in later parts of your program.

Exercises

10.10.1.(1)+ A frustrated programmer wrote the statements

DEAD EQU 101
DROP DEAD

How would you expect the Assembler to deal with this impertinence?

10.10.2.(3)+ For each statement of the following program segment, show what will appear in
the USING Table following each USING and DROP statement. Then, use that information to
show the assembled machine language object code produced from the program segment.
Assume the program segment begins at location X'4000'.

BASR 9,0
USING *,9
L 4,*+54
BASR 10,0
USING *,10
L 3,*+52
DROP 9
L 2,*+48
DROP 10
L 1,10(0,9)

What would be found in register 1 after the last instruction is executed? How does it depend
on the address where the instructions are loaded into memory?

10.11. Addressability Errors

Addressability errors have many causes. These examples show some of the ways they can arise.

1. An operand value is larger than any USING Table base location value.

BASR 6,0
USING *,6
L 2,*+5000

Suppose the value of the Location Counter after the BASR instruction is X'002468'. This
means that the value of the operand *+5000 is

X'002468' + X'1388' = X'0037E0'
and that the calculated displacement (for register 6) would be

X'0037E0' − X'002468' = X'1388'

Chapter III: Assembler Language Programs 129

which is too large for a 12-bit displacement field. This means the operand is not addressable
with 16-bit addressing halfwords.

2. An operand value is smaller than any USING Table base_location value. Again assuming
the value of the LC after the BASR instruction is X'002468':

BASR 6,0
USING *,6
L 2,*-32

In this case the operand value is X'002448', leading to a negative calculated displacement,
X'FFFFFFE0'. This means the operand is not addressable with 16-bit addressing halfwords.

3. The USING Table is empty. Suppose a second DROP statement is added after the A
instruction in the program shown in Figure 46 on page 127, specifying register 7:

DROP 7

Then, the remaining entry in the USING Table would be deleted, and the USING table
would appear as in Figure 50 below.

┌───────┬───────────────┬────┐
│basereg│ base_location │ RA │
├───────┼───────────────┼────┤
│ │ empty │ │
├───────┼───────────────┼────┤
│ │ empty │ │
└───────┴───────────────┴────┘

Figure 50. USING Table after second DROP statement

Because there are no entries left in the USING Table, there is no way for the Assembler to
resolve the implied addresses of any following instructions, and an addressability error would
be noted for those statements.

Exercises

10.11.1.(3)+ Suppose these instructions are assembled and then executed in a program:

B BASR 6,0
USING *,6
L 2,B

What (if anything) would you expect to appear in GR2?

10.12. Resolutions With Register Zero (*)

Although USING statements specifying absolute base_locations are rare, they are allowed; abso-
lute implied address expressions follow the same resolution rules as relocatable expressions. In
most cases, there is no entry in the USING Table with an absolute base address, so the Assem-
bler proceeds as though a hidden or implied

USING 0,0 Assembler's implicit USING

is always present. You can think of the USING Table appearing like this:

┌───────┬───────────────┬────┐
│basereg│ base_location │ RA │
├───────┼───────────────┼────┤
│ 0 │ 00000000 │ 00 │ Assembler's hidden USING-Table entry
├───────┼───────────────┼────┤
│ ─ │ etc. │ ── │
└───────┴───────────────┴────┘

130 Assembler Language Programming for IBM System z™ Servers Version 2.00

Thus, an implied address such as

LA 3,1000 Implied address = 1000 = X'3E8'

would be resolved to the addressing halfword X'03E8', with base register zero.

In the example in Figure 34 on page 109, we saw an instruction with an absolute implied S2
operand:

43000468 IC 0,1128

The generated object code shows that the second operand was resolved with base register zero.

Now, suppose you wrote a USING statement with an absolute base address:

USING 400,9 Base Address = 400 = X'190'
LA 3,1000 Implied address = 1000 = X'3E8'

so the USING Table would look like this:

┌───────┬───────────────┬────┐
│basereg│ base_location │ RA │
├───────┼───────────────┼────┤
│ 0 │ 00000000 │ 00 │
├───────┼───────────────┼────┤
│ 9 │ 00000190 │ 00 │
├───────┼───────────────┼────┤
│ ─ │ etc. │ ── │
└───────┴───────────────┴────┘

The Assembler follows its usual resolution rules, and finds that there are two valid resolutions
with addressing halfwords X'03E8' and X'9258'. Since the latter provides the smallest displace-
ment, the Assembler chooses the resolution with base register 9! Fortunately, the Assembler will
issue a diagnostic message whenever a USING with an absolute operand appears to overlap with
its implicit USING 0,0 statement.

If the original resolution using base register zero is required no matter what other USINGs are
active, the operand should be written explicitly, as

LA 3,1000(0,0) Explicit displacement=1000, base=index=0

Thus, we add one further resolution rule when absolute implied addresses have not been resolved
according to the three previous rules:

4. If no previous resolution has been completed, and the implied operand is absolute and has
value between 0 and 4095, use General Register 0 as the base register and the value of the
implied address expression as the displacement.

This behavior is used often in Assembler Language programs. If any implied address has absolute
nonnegative value, a valid displacement can always be computed only if that value does not
exceed 4095.63

According to the rules for evaluating expressions, attempting to compute a displacement for a
relocatable symbol using an absolute base_location would require that the displacement be reloc-
atable, which is invalid. That is, a valid displacement cannot be calculated from

 (absolute) displacement = (relocatable operand) − (absolute base_location) (??)

Similarly, an absolute implied address cannot be resolved into base-displacement form using a reg-
ister whose base_location is relocatable, since a valid displacement cannot be computed from

 (absolute) displacement = (absolute base_location) − (relocatable operand) (??)

63 Section 20 shows how to use a much larger range of displacement values with long-displacement instructions.

Chapter III: Assembler Language Programs 131

It is possible (but not recommended!) to specify USING statements with register zero as the base
register,64 but the Assembler will always assign a base address of zero to register zero.

Exercises

10.12.1.(1)+ The Assembler tries to resolve absolute implied addresses into an addressing
halfword containing a zero base digit, and a displacement of the value of the implied address.
Do you think this is desirable? Would you prefer that the Assembler diagnose absolute implied
addresses as an error?

10.13. Summary

In summary, the ordinary USING statement provides two major features:

1. A base_location relative to which the Assembler can calculate displacements.

2. A base_register to be used in addressing halfwords of implied addresses whose displacements
were calculated as being addressable with this register.

The information conveyed in a USING statement is only, and no more than, a promise that you
make to the Assembler. You are asserting that if it uses the base_location and base_register speci-
fied in your USING statement to calculate addressing halfwords at assembly time, then the CPU
will calculate correct Effective Addresses at execution time.

The rules for resolving implied addresses into base-displacement form can be difficult to
remember, and forgetting them can sometimes lead to programming errors that are difficult to
correct.65

USING Resolution Rules

1. The Assembler searches the USING Table for entries with a relo-
cation attribute matching that of the implied address (which will
almost always be simply relocatable, but may be absolute).

2. For all matching entries, the Assembler checks to see if a valid dis-
placement can be derived. If so, it will select as a base register the
register that yields the smallest displacement.

3. If more than one register yields the same smallest displacement, the
Assembler will select the highest-numbered register as a base register.

4. If no resolution has been completed, and the implied address is abso-
lute, try a resolution with register zero and base zero.

A minor addition to these rules will apply when we discuss instructions with long 20-bit signed
displacements in Section 20.

The relocatability attribute of any given symbol almost always has a single value; it won't matter
if we ignore “complex relocatability” situations for now, because they don't affect addressability.
However, it is not unusual for programs to use many different relocatability attributes to correctly
describe its symbols.

In Chapter XI we will see powerful extensions to the USING statement — Labeled and Dependent
USINGs — that give you much greater control over USING resolutions.

64 When we discuss Dummy Control Sections in Section 39, we will see that there can be times when specifying a zero
base register is a reasonable practice.

65 Some programmers note that “USING” is part of “confusing”.

132 Assembler Language Programming for IBM System z™ Servers Version 2.00

10.13.1. How the Assembler Helps

The Assembler simplifies many programming tasks:

1. It automatically resolves addresses into the base-displacement and other forms used by
System z. The Assembler determines the needed base and displacement so that correct Effec-
tive Addresses will be computed at execution time.

2. Rather than remembering that operation code X'43' places a byte from memory into the
right end of a general register, a mnemonic operation code IC (“Insert Character”) gives a
simple indication of what the operation code does.

3. Symbols let you name areas of memory and other objects in your program.

4. Diagnostic messages help you find possible errors and oversights.

5. The Assembler converts data from convenient external representations into internal forms.

6. It creates relocatable object code to be combined with other programs by the linker.

7. It provides lots of other helpful information such as symbol and register cross-references.

8. Using macro-instructions, you can define your own instruction names to supplement existing
instructions, and your macro instructions can make use of previously defined sequences of
statements, including other macros!

9. The High Level Assembler provides an optional summary of all USING Table activity, in
the form of a USING Map. If you specify USING(MAP) as part of the parameter string when
you invoke the High Level Assembler, it will display all USING and DROP activity for the
entire program.

Exercises

10.13.1.(3) Some older assemblers let you redefine symbols in EQU statements. Thus, you
could write

A Equ 6 Define a value for A
- - - Write statements using A's value

A Equ 32 Define a new value for A
- - - Statements using A's new value

How would the assembler's treatment of the Symbol Table be changed? What would happen if
any symbol could be redefined?

Terms and Definitions
addressability

The ability of the Assembler to calculate a displacement and assign a base register to an
implicit addressing expression, using information in the USING Table.

addressability error
The inability of the Assembler to derive an addressing halfword for an implicit operand.

base_location
The first operand of a USING instruction at assembly time.

base_register
The second operand of a USING instruction at assembly time.

DROP assembler instruction
An instruction telling the Assembler to eliminate one or more entries from its USING Table.

Symbol Table
A table used by the Assembler to hold the names, values, and attributes of all symbols in a
program.

USING statement
A promise to the Assembler that addressing halfwords can be derived correctly from the
base_location and base address information provided in the instruction.

Chapter III: Assembler Language Programs 133

USING Table
An internal table used by the Assembler to hold information provided in USING
instructions.

Programming Problems

Problem 10.1.(1) Write and assemble a program segment like the one in Figure 41 on
page 120, with the following additional statements:

1. Following the last DC statement, place an Assembler instruction statement with the mne-
monic END in the operation field.

2. Replace the dotted line that means “twenty-two additional bytes” with an Assembler
instruction statement with DS in the operation field and 22X in the operand field.

3. Preceding the first statement place an Assembler instruction statement with the mnemonic
START in the operation field, and X'5000' in the operand field.

Assemble the program, and save the Assembler's listing. Then, replace the X'5000' operand in
the START statement with the X'84E8', and re-assemble the program, saving the second listing.
Verify that the assembled machine language program is the same in both listings, and that the
same bases and displacements are calculated by the Assembler for all instructions that require
them. If time and budget permit, do the same for the programs in Figures 39 and 40.

134 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter IV: Defining Constants and Storage Areas

IIIIIIIIII VV VV
IIIIIIIIII VV VV

II VV VV
II VV VV
II VV VV
II VV VV
II VV VV
II VV VV
II VV VV
II VV VV

IIIIIIIIII VVVV
IIIIIIIIII VV

The three sections of this chapter treat the DC (Define Constant) and DS (Define Storage) assem-
bler instruction statements, and methods used to define data and storage areas in Assembler Lan-
guage programs.

• Section 11 describes the Assembler's basic data definition instruction, DC.

• Section 12 discusses the most often-used data types, introduces the powerful constant-
referencing mechanism provided by literals, and the LTORG instruction to control their
location in your program.

• Section 13 demonstrates methods for defining and describing data areas in ways that simplify
data manipulation problems, including the very useful DS, EQU, and ORG instructions.

Chapter IV: Defining Constants and Storage Areas 135

11. Defining Constants

11 11
111 111
1111 1111
11 11
11 11
11 11
11 11
11 11
11 11
11 11

1111111111 1111111111
1111111111 1111111111

In the preceding sections we used the DC assembler instruction to create constants in the
program. Now we'll describe basic rules for defining constants of any type.

System z supports a very rich variety of data types, and various lengths and precisions can be
specified for most of them. Among the “native” data types the Assembler supports are:

1. Fixed-point data (two's complement binary), signed and unsigned

• doubleword precision (64 bits)
• word precision (32 bits)
• halfword precision (16 bits)
• byte precision (8 bits)

2. Logical data (binary and hexadecimal)

• doubleword (64 bits)
• word (32 bits)
• one byte (8 bits)
• varying-length (1 to 256 bytes)

3. Address-valued (3, 4, and 8 bytes)

4. Character data (1 to 256 bytes) in EBCDIC, Graphic (Double-Byte), ASCII, and Unicode
formats.66

5. Decimal data (sign-magnitude representation)

• zoned decimal (1 to 16 digits)
• packed decimal data (1 to 31 digits)

6. Floating-point data (sign-magnitude representation in binary, hexadecimal, and decimal
formats)

• short precision (4 bytes)
• long precision (8 bytes)
• extended precision (16 bytes)

66 We'll investigate some non-EBCDIC character data types in Section 27.

136 Assembler Language Programming for IBM System z™ Servers Version 2.00

Data for each of these types is defined using the DC (“Define Constant”) assembler instruction,
with many options for each type.

Be Careful!

The DC instruction doesn't really define an unchangeable constant value,
because you can change it at execution time. (It's only constant if you
don't change it!) The instruction might better be called “Define Data
with Initial Value”. We'll see that literals can help you define what
appear to be “true constants” In Section 13.9 on page 174.

You will usually write values in data definitions in the external representation most convenient for
you. The Assembler then converts the data into the internal form used by your program, the
CPU, and other devices.

As indicated in previous examples, a DC assembler instruction statement may have name, opera-
tion, operand, and remarks field entries; the operation and operand field entries are required.

11.1. Defining Constants

We'll start with the F-type constant we saw in several earlier examples. The assembler instruction
statement

DC F'8'

creates a word binary integer constant (X'00000008'), placed on a word boundary. In this state-
ment, four items were specified or implied:

1. The type of desired conversion from the external form you wrote in the statement, to an
internal representation. For type F, the decimal value is converted to a two's complement
binary integer.

2. The nominal value of the constant, the decimal value 8.

3. The length of the constant, which for type F is implicitly four bytes.

4. The alignment in memory of the constant, implicitly on a word boundary for type F.

Some other types of conversion, and the letters that specify the types, are character (C), binary
(B), hexadecimal (X), halfword binary integer (H), and address constant (A and Y). Here are
examples of some of these types:

DC H'8' halfword binary integer
DC C'/' character constant
DC X'61' hexadecimal constant
DC B'01100001' binary constant

The last three constants are each one byte long, and contain identical bit patterns.

Important to remember

The binary, character, and hexadecimal self-defining terms use the same
notation as constants of those types. It can be easy to forget that a self-
defining term is just a number, while the operand of a DC statement
defines an initial value in storage.

Exercises

11.1.1.(1) Constants of types B, C, and X are written in a form very much like self-defining
terms of the same types, as in

DC B'11010001',C'J',X'C5'

Constants with decimal values are written as (for example) F-type constants, as in

Chapter IV: Defining Constants and Storage Areas 137

DC F'8'

Why do you think the designers of the Assembler Language made this choice, rather than
allowing you to write this constant in the simpler form

DC 8 ? Alternative to F'8' ?

11.2. DC Instruction Statements and Operands

The operand field entry contains one or more operands separated by commas. An operand of a
DC statement has four parts, with no spaces between them:

1. a duplication factor (if omitted, it defaults to 1)

2. a letter (or pair of letters67) specifying the type of representation

3. zero to four modifiers

4. the nominal value of the constant, enclosed in a pair of delimiters. The delimiters are either
apostrophes or parentheses, depending on the type of the constant.

Of these four parts, only the second (the type) and fourth (the nominal value) are required. In the
example above, F'8' specifies type F and nominal value 8.

The three important modifier types are length, scale, and exponent.68 Only length will be discussed
here.

DC Operands

This may help you remember the order of of the fields: duplication factor
(d), type (T), modifiers (m), and nominal value (V), where the required
type and value are specified in capital letters: dTmV

The nominal value part of the operand is specified in different ways for different constant types.
For F-type constants, the value is written as a string of decimal digits, preceded by an optional +
or − sign and followed by an optional decimal exponent. For B-type constants, the value is
expressed as a string of binary digits, so F'110' and B'110' are quite different.

The constant type also determines what conversion from external to internal representation should
be performed: the internal representations of F'110' (binary word), X'110' (hexadecimal con-
stant), E'110' (short floating-point), Z'110' (zoned decimal), and P'110' (packed decimal) are dif-
ferent, even though they all have the same nominal value.

11.2.1. Blanks in Nominal Values

Some constant types delimited by apostrophes (like F'8') let you put blank spaces between the
digits to improve readability. For example, you can write either

DC F'12345678'
or

DC F'12 345 678'

We'll see more examples as we investigate various data types.

67 We'll discuss type extensions in Section 12.8.
68 HLASM supports another constant modifier and attribute, “Program”. It is used almost entirely in conditional

assembly macro-instruction statements.

138 Assembler Language Programming for IBM System z™ Servers Version 2.00

11.3. Boundary Alignment

Many constant types have “natural” boundary alignments. For example, the F-type constant is
naturally word-aligned. Other constant types don't have a natural alignment; Table 32 on
page 153 (Section 12.5) and Table 33 on page 158 (Section 12.8) summarize default alignments
for many common data types.

There is an important relationship between boundary alignment and the presence of a byte-length
modifier, which helps you align constants and data properly.69 This will be discussed shortly, in
Section 11.4.

By default, the Assembler initializes the Location Counter to zero. If you specify an initial LC
value at the start of the program, the Assembler rounds it up (if necessary) to a multiple of eight
to ensure that the program begins on a doubleword boundary.70 Then, if a constant must fall on a
specific boundary, the Assembler only needs to be sure that the Location Counter is divisible by
the proper power of two (such as 2, 4, or 8) at the location of the leftmost byte of the constant.

The Linker and Program Loader respect this assumed alignment for the beginning of the
program. This guarantees that data and instructions will be aligned on the desired boundaries
when the program is loaded into memory for execution.

Suppose that after a sequence of instructions has been processed, the value of the LC is X'00012E'
(on a halfword boundary). If another machine instruction is assembled at this point, it would
begin on this halfword boundary between two word boundaries. But if the next statement is
instead

DC F'8'

the Assembler must place it on a word boundary to force the desired alignment.

Generating the four bytes of this constant beginning at the halfword-aligned location X'00012E'
could be incorrect, because instructions referring to word constants normally expect the address to
be on a word boundary. To avoid alignment errors, the Assembler automatically skips enough
bytes to obtain the desired alignment. The LC would be increased to X'000130' (now word-
aligned) before the word constant is assembled. The LC has value X'000134' after the constant is
processed; it would be X'000132' if automatic alignment was not done.

Automatic alignment is not performed (bytes are not automatically skipped) if:

1. it isn't needed: that is, the LC happens to fall on the desired boundary; or

2. the type of constant specified doesn't require alignment, such as types C, B, or X (among
others); or

3. a length modifier is present.

You can tell the Assembler to do no boundary alignment even if the constant type normally
requires it.71

69 We'll see in Section 17.5 that constants can also have bit-length modifiers, but here we use the term “length modifier”
to mean “byte length modifier”.

70 HLASM provides the SECTALGN option to let you specify even more restrictive boundaries. See the High Level
Assembler Programmer's Guide for details.

71 For details, consult the High Level Assembler Programmer's Guide for the NOALIGN option. However, few pro-
grams use this option.

Chapter IV: Defining Constants and Storage Areas 139

11.4. Length Modifiers

Length modifiers let you specify (within limits) a constant's exact length in bytes.72 When used,
we say that an explicit length was specified.

A length modifier is written immediately following the letter specifying the data type, in the form

Ln or L(expr)

The quantity “n” is an unsigned, nonzero decimal self-defining term, and “expr” is a positive
absolute expression enclosed in parentheses. The length modifier specifies the constant's length.
Any symbols appearing in the length modifier expression must be defined before they are used in
the length modifier expression, so that it can be evaluated immediately.73 For example, the state-
ments

DC FL3'8'
and

DC FL(2*4-5)'8'

both cause the three-byte constant X'000008' to be assembled at the location specified by the
Location Counter; no boundary alignment is performed. In practice, length modifiers are used
mostly with constants of types C and X, and very rarely with type F and other normally-aligned
constants.

Because alignment is automatic only

(1) when the length is implied (that is, when no length modifier is given), and

(2) for constant types for which alignment is the default action,

the two statements

DC F'8'
and

DC FL4'8'

define the same constant, but the first is automatically aligned and the second is not.

When a symbol appears in the name field of a DC assembler instruction statement, boundary
alignment affects the symbol's value. Suppose the value of the LC is X'00012E' when each of the
statements in Figure 51 is encountered.

Explicit DC FL4'8' Explicit length = 4 bytes, not aligned
Implied DC F'8' Implied length = 4 bytes, word aligned
Figure 51. Implied and explicit length specifications

Because no boundary alignment is performed for the first constant, the value of the symbol
Explicit will be X'00012E'. For the second constant, two bytes must be skipped to achieve the
required word alignment. If we refer to the constant using the symbol Implied, the symbol will
have the value of the location of the first byte of the constant, X'000130'.

Symbol definition

When a symbol is defined, it is given its value after bytes are skipped for
boundary alignment.

72 It is also possible to specify a constant's length in bits, using a bit-length modifier. They have specialized uses; we will
describe them in Section 17.5 on page 257.

73 Sometimes the Assembler will let you define symbols after they are used in length modifier expressions, but it's safest
to make sure they're defined before they're used in length modifiers.

140 Assembler Language Programming for IBM System z™ Servers Version 2.00

As a general rule, the Assembler never automatically assigns the location of skipped bytes as the
value of a symbol.74 This includes cases where a byte must be skipped to ensure that an instruc-
tion begins on a halfword boundary. When bytes are skipped to achieve alignment of a following
constant or instruction, the Assembler will insert bytes containing all zero bits into the bytes
skipped.

Proper boundary alignments can be important: some instructions require aligned operands. Also,
operand misalignment can affect the performance of your applications, because the CPU may
need to bring more data from memory than your instruction actually requires.

Exercises

11.4.1.(2) What data is generated by these constants?

(1) DC FL1'-127'
(2) DC FL2'+128'
(3) DC FL3'-99,+99'
(4) DC FL1'+127'

11.4.2.(1)+ For these constants:

(1) DC F'11',FL3'12',FL3'13'
(2) DC F'21',FL2'22',FL2'23'
(3) DC F'31',FL4'32',FL3'33'

on what boundaries are the constants 13, 23, and 33 aligned?

11.5. Duplication Factors and Multiple Operands

A duplication factor (sometimes called a multiplicity, replication, or repetition factor) specifies the
number of times the constant or constants in the operand will be duplicated; it is written imme-
diately preceding the letter specifying the constant type. It may be either an unsigned decimal self-
defining term, or a nonnegative absolute expression enclosed in parentheses. Any symbols
appearing in the duplication factor expression must be defined prior to their use in the duplication
factor.75 For example, both

Three8s DC 3F'8' Duplication factor 3

and

Three8s DC (5/2+1)F'8'

are equivalent to writing the three statements

Three8s DC F'8' Three statements
DC F'8'
DC F'8'

You can write more than one operand in the operand field entry of a DC instruction, so you will
get the same result by writing

Three8s DC F'8',F'8',F'8' Three operands

Duplication factors apply only to operands, not to statements.

For example, if you write

DC F'7',2F'4',3F'9'

74 You can find ways to do it if you like, but there's no real value in doing so. (Why refer to something so uninter-
esting?)

75 Sometimes the Assembler will let you define symbols after they are used in duplication factor expressions, but it's
safest to make sure they're defined before they're used in duplication factors.

Chapter IV: Defining Constants and Storage Areas 141

the Assembler generates six word-length, word-aligned constants: one with value 7, two with
value 4, and three with value 9.

There are occasionally important uses for DC statement operands with a zero duplication factor.
In such a case, the Assembler first skips as many bytes as necessary to properly align the constant
specified by the operand, and then generates no data for that operand. This means that the
Location Counter is not further incremented for that operand, after alignment (if any). Thus we
could generate a word-aligned 4-byte constant with a statement like

DC 0F'0',FL4'-1'

or even

DC 0F,FL4'-1'

Zero duplication factors are discussed further in Section 13.2 on page 160.

11.6. Multiple Nominal Values

For almost all constant types, the nominal value may actually be a sequence of values separated
by commas, as in

Three8s DC F'8,8,8' One operand, 3 nominal values

This is equivalent to

Three8s DC 3F'8' One operand, duplication factor 3

and

Three8s DC F'8',F'8',F'8' Three operands

Which format you use is largely a matter of taste and convenience. For example, you could
specify a table of constants with a statement such as:

TABLE DC F'1,2,3,4,5,6,7,8,9,10'
Figure 52. Multiple constants

Each generated constant is a word integer, aligned on a word boundary.

In cases where multiple constants are specified, any symbol in the name field (in this example,
TABLE) is given the value and Length Attribute associated with the first constant generated.

Exercises

11.6.1.(2) A meticulous programmer determined that 109 is the largest power of ten that will fit
in a word binary integer, and wanted to define a constant of that value. To ensure that he
wrote the constant with the correct number of zeros, he wrote the statement

TEN_to_9 DC F'1,000,000,000'

What would be generated? What would you recommend?

11.6.2.(1) What will be generated by this constant?

DC 2F'1,-1'

142 Assembler Language Programming for IBM System z™ Servers Version 2.00

11.7. Length Attributes

Although its many benefits will become clear later, we noted in Section 7.3 on page 89 that the
Length Attribute of a symbol can be very useful. Its value is determined by the statement in
which the symbol is defined.

1. The Length Attribute of a symbol naming an instruction is the length of the instruction.
Thus, the Length Attribute of the symbol LOAD in

LOAD LR R7,R3 (from Example 8_4_1 on page 100 in Section 8.4.)

is 2, and the Length Attribute of the symbol BEGIN in

BEGIN L 2,N (from Figure 35 on page 117)

is 4.

2. If a symbol is the name of a DC statement, its Length Attribute is the length of the first
generated constant, ignoring duplication factors. Explicit lengths and Length Attributes may
be assigned with a length modifier; otherwise the Length Attribute is the implied length.
Thus, the three symbols in

Implied DC F'8' (from Figure 51 on page 140)
Explicit DC FL4'8'
Three8s DC 3F'8'

all have Length Attribute 4.

3. If the symbol names a DC statement whose first operand contains multiple values, the sym-
bol's Length Attribute is the length of the first generated constant, as noted for the symbol
Three8s above. Similarly, the Length Attribute of the symbol TABLE in

TABLE DC F'1,2,3,4,5,6,7,8,9,10' (from Figure 52 on page 142)

is 4, even though the statement defines constants occupying 40 bytes.

4. If the symbol names a DC statement with more than one operand, the Length Attribute
assigned to the symbol is determined from the first operand only, according to the previous
rules. Thus,

TwoCons DC F'2',FL2'-2'

would assign 4 as the Length Attribute of TwoCons.

5. A symbol defined in an EQU statement to have the value of a self-defining term is assigned a
Length Attribute of 1. Thus, the symbol ZILCH in

ZILCH Equ 7 (from Example 8_4_2 on page 100 in Section 8.4.)

has Length Attribute 1. (The EQU assembler instruction is described further in Section 13.3
on page 162.)

11.8. Decimal Exponents (*)

Some numeric constants can be simplified by using either a decimal exponent or an exponent
modifier. When you want to generate a constant with several trailing zeros, both forms let you
omit the trailing zeros.

11.8.1. Decimal Exponents

A decimal exponent is written as part of the nominal value of the constant. Following the
numeric portion, write the letter E followed by a signed or unsigned integer. For example:

F100A DC F'1E2' Generates X'00000064'
F100B DC F'1000E-1' Generates X'00000064'
F1000 DC F'1E3' Generates X'000003E8'
FBillion DC F'1E9' Generates X'3B9ACA00'

Chapter IV: Defining Constants and Storage Areas 143

11.8.2. Exponent Modifiers

An exponent modifier is written following the constant's type, and following any other modifiers.
For example:

F100A DC FE2'1' Generates X'00000064', aligned
F100B DC FE-1'1000' Generates X'00000064', aligned
F100C DC FL4E2'1' Generates X'00000064', unaligned
F1000A DC FE3'1' Generates X'000003E8', aligned
F1000B DC FL3E3'1' Generates X'0003E8', unaligned
FBillion DC FE9'1' Generates X'3B9ACA00', aligned

You can write constants with both an exponent modifier and a decimal exponent in the nominal
value; the power of 10 applied to the numeric portion of the nominal value is the sum of the two.
For example:

F100A DC FE1'1E1' Generates X'00000064'
F100B DC FE-1'1E3' Generates X'00000064'
F1000A DC FE-7'1E10' Generates X'000003E8'
FBillion DC FE5'1E4' Generates X'3B9ACA00'

We'll see more about scale and exponent modifiers in Section 32.3, on page 574.

Exercises

11.8.1.(2) Show the constants generated by these statements, indicating which are aligned by
default and which are not.

(1) DC FE1'2E3'
(2) DC FE-1'5E5'
(3) DC FL2E2'1E2'
(4) DC FL4'8E1'

11.8.2.(1) Rewrite the intended constant in Exercise 11.6.1 on page 142 using (a) a decimal
exponent and (b) an exponent modifier.

11.8.3.(2)+ In following program segment, determine the values assigned to the Location
Counter in the last four statements. Then complete the “Object Code” column for the four
statements with spaces provided.

Loc Object Code Statement

000000 Ex11_8_3 START 0
000000 05F0 BALR 15,0
000002 USING *,15
000002 __________ L 2,X
000006 __________ A 2,Y
00000A __________ S 2,Z
00000E __________ ST 2,RESULT
000012 PRINTOUT RESULT,*
000038 DUMMY DC 0CL16'GARBAGE'
______ X DC F'2'
______ Y DC F'15'
______ Z DC F'3'
______ RESULT DC F'0'

144 Assembler Language Programming for IBM System z™ Servers Version 2.00

Terms and Definitions
boundary alignment

The Assembler's action in incrementing the Location Counter so that its value is adjusted to
the boundary required by an instruction or by a constant operand.

constant type
A letter specifying the internal data representation for a generated constant.

decimal exponent
A letter E attached at the end of the digits of a numeric constant, followed by a positive or
negative integer giving the power of ten by which the value of the digits is multiplied.

duplication factor
The number of times a constant operand should be assembled.

exponent modifier
A modifier specifying a positive or negative power of ten to be multiplied by the nominal
value of a constant.

length modifier
A modifier specifying the exact length to be used for a constant, rather than its default length.

modifier
A value following the constant type, specifying other information about the constant's
Length, Scale, and Exponent.

nominal value
The value you write between delimiters or value separators to specify the assembled value of
a constant.

Chapter IV: Defining Constants and Storage Areas 145

12. Basic Constants

11 2222222222
111 222222222222
1111 22 22
11 22
11 22
11 22
11 22
11 22
11 22
11 22

1111111111 222222222222
1111111111 222222222222

We now use the general rules of the previous section to describe seven basic constant types used
in many programs — F, H, A, Y, C, B, and X — and the useful form of constants called “literals”.

12.1. F-Type and H-Type Constants

We saw the F-type constant in earlier examples, so we will just summarize its properties here.
The implied length is four, and the default alignment is to a word boundary. If an explicit length
is specified, no alignment is performed and the length may be between 1 and 8 bytes. The
nominal value of the constant is an optionally signed string of decimal digits. Thus, you can write

DC FL1'-10' Generates X'F6', not aligned
DC FL8'-10' Generates X'FFFFFFFFFFFFFFF6', not aligned

The H-type constant is similar to type F, specifying two's complement binary integer conversion
to a 16-bit integer in two bytes aligned on a halfword boundary. Thus

DC H'-10'

places the constant X'FFF6' on the next available halfword boundary. If an explicit length is
given, there is no difference between constants of types F and H, so that FL3'8' and HL3'8'
produce identical results.

As we saw in Section 11.8, a decimal exponent can be specified in the nominal values in F- and
H-type constants. It is written as the letter E followed by an optionally signed decimal integer, as
in

DC F'-43E+6' −43×10**6, generates X'FD6FDF40'

The decimal exponent specifies the power of ten by which the preceding value is multiplied. You
could define a table of the first six powers of ten with either of the following two statements:

Powers10 DC F'1,10,100,1000,10000,100000'
Powers10 DC F'1E0,1E1,1E2,1E3,1E4,1E5'
Figure 53. F-type constant with decimal exponent

146 Assembler Language Programming for IBM System z™ Servers Version 2.00

To improve readability, you can insert blanks among the digits of F-type and H-type constants
(remember: not in decimal self-defining terms!):

Powers10 DC F'1, 10, 100, 1 000, 10 000, 100 000'

In practice, decimal exponents are used mainly in floating-point constants, which we'll discuss in
Chapter IX.

You may sometimes want to create unsigned or logical binary integer constants, as described in
Section 2.6 on page 25. You can define such integers by preceding the nominal value of the
constant with the letter “U”, as in these examples:

DC F'U2147483648' X'80000000' +2**31
DC H'U65535' X'FFFF' +2**16−1
DC F'U4294967295' X'FFFFFFFF' +2**32−1
DC H'1,U2' X'00010002' Mixed signed and unsigned
DC H'-1,U32768' X'FFFF8000' Mixed signed and unsigned

No signs are allowed either before or after the “U”.

Exercises

12.1.1.(1)+ In Exercise 11.6.1 on page 142, our friend wanted to define a word binary integer
constant with value 109. Help him by rewriting the constant with a decimal exponent.

12.1.2.(1)+ Suppose you modified your table of powers of 10 to generate the first six negative
powers, as in

Powers10 DC F'1E-0,1E-1,1E-2,1E-3,1E-4,1E-5'

What values will be generated?

12.1.3.(2) Suppose you need a halfword constant with value 1/2, so you write

Half DC H'5E-1'

What do you think will be generated?

12.1.4.(1) What will be generated if you write

DC F'2147483648' ?

12.1.5.(2) What would happen to the Location Counter values in Figure 35 on page 117 if
there were now 24 bytes (instead of 22 bytes) between the ST instruction and the first DC
instruction?

12.1.6.(2)+ Show the object code generated for these statements:

DC F'-2147483620'
DC H'-32594'
DC F'+2147483260'

12.2. A-Type Address Constants

The type A address constant, sometimes called an “adcon”, has great power and broad applica-
bility in Assembler Language programs. An address constant is written differently from the other
types we have considered because the nominal value is delimited by parentheses, as in A(10),
rather than by apostrophes. Address constants are particularly useful because the nominal value

Chapter IV: Defining Constants and Storage Areas 147

within the parentheses may be any expression, either absolute or relocatable.76 Understanding
relocatable address constants involves considering Linker and Program Loader processing, as we
will see in Section 39.

A special case where the nominal value of an A-type constant contains a Location Counter Refer-
ence is described in Section 13.6 on page 169.

A-type and F-type constants have similarities: a length of four bytes and word boundary align-
ment are implied. An explicit length suppresses alignment; thus A(10) and F'10' are equivalent
operands, as are AL4(10) and FL4'10'. The major difference is that you can write expressions as
the nominal value of constants like A(X'00012E') and A(1+C'.'). In some contexts, these may be
much more natural or convenient than the equivalent F-type constants F'302' and F'76'.

A-type address constants are especially useful when we want to define word-aligned constants
with types not ordinarily aligned by the Assembler. For example, if we need a word containing
1-bits in the rightmost 12 positions and zeros elsewhere, we could write

DispMask DC A(X'FFF') X'00000FFF'

If we had written this DC's operand field as XL4'FFF' instead, we can't guarantee it will be word
aligned, even though the same four bytes are generated. Similarly, a word containing the
EBCDIC representation of the letter A could be written

AConst DC A(C'A') X'000000C1'

This is easier to read than F'193', even though the same constant is generated. A constant like

Word DC A(C'WORD') X'E6D6D9C4'

can be used as a word-aligned “character” constant.

Using such expressions can greatly simplify programming tasks. For example, you can define con-
stants using operands such as

Con425 DC A(ABS425)

where the symbol ABS425 may have been defined in an EQU statement (as in Section 7.6 on page
93) to have a known value. We will see that this technique can provide clarity and simplicity in
your programs.

Address constants let you define an area that will contain the actual address of a byte in memory
when the program is executed. For example, suppose we have written a program that requires
the address of the word integer constant with value 8, in Figure 51 on page 140. We can define
the necessary address constant with the statement

Con8Addr DC A(Implied)

Exercises

12.2.1.(2) Show the generated constant for each of these address constants:

1. A(X'213'+C'*'-B'11')

2. A(92*X'F')

3. A(5*C'0'/C' ')

76 The name “address constant” can be somewhat misleading, because the generated data need not be an address!

148 Assembler Language Programming for IBM System z™ Servers Version 2.00

12.3. Y-Type Address Constants

Y-type address constants bear the same relationship to A-type adcons as H-type constants bear to
F-type constants, except that relocatable Y-type adcons are almost never used. The Y-type adcon
has an implied halfword length and alignment, and is identical to the A-type adcon if an explicit
length is specified. For example, the operands H'10' and Y(10) in DC statements define identical
2-byte constants, and the operands YL1(10), AL1(10), HL1'10', and FL1'10' all generate X'0A'.

If we assume that the symbol Implied is relocatable (as in Figure 51 on page 140), then the
statement

BadCon DC Y(Implied)

would fail at linking time, because 3 or more bytes will be required to hold the execution-time
address of Implied.

The main use of Y-type constants is for symbolically-defined constants such as

DC Y(ABS425)
or

DC Y(C'A')

where the equivalent of a halfword integer is desired. Y-type constants are most often used this
way: to create a halfword value depending on an absolute expression.

Other address constant types are V, S, and Q. V-type constants are very similar to A-type con-
stants, and will be treated when we discuss external subroutines in Chapter X. Q-type constants
will be described when we examine external data structures. The S-type constant generates an
addressing halfword that need not be part of an instruction: the value of the operand expression is
resolved into base-displacement form. We'll defer these types to later sections.

Exercises

12.3.1.(1) What hex data will be generated by these constants?

DC Y(C'A')
DC Y(X'F'*C'B')
DC Y(B'101'*729/C'&&')

12.3.2.(3) An S-type address constant is occasionally useful. It has a length of two bytes, which
may be implied or explicit. It is almost always aligned on a halfword boundary. The unusual
property of this constant is that

S(expression) or S(expression(expression))

is resolved into an addressing halfword. For the first (implied address) format, sufficient USING
information must be available to the Assembler so that it can resolve the expression into base-
displacement form.

Assuming that A is a relocatable symbol and that N is an absolute symbol, determine the
validity of each of the following constants:

(1) S(A+N), (2) S(A(N)), (3) S(N(7)), (4) S(7(N)), (5) S(N).

For which of these constants will the result depend (a) on USING information, and (b) on the
values of the symbols?

Chapter IV: Defining Constants and Storage Areas 149

12.4. Constants of Types C, X, and B

Constant types C, X, and B differ in an important way from types F, H, A, and Y: no defaults
are assumed for either length or alignment. For example, the five bytes required to store the con-
stant generated by the statement

DC C'12345'

will be placed by the Assembler at the next available location given by the current value of the
LC. If a particular boundary alignment is desired, we use a DC or DS statement with zero dupli-
cation factor, as we'll see in Section 13.2 on page 160.

We write these three constant types almost the same way we write character, hexadecimal, and
binary self-defining terms, but the limits on length and value are different. Self-defining terms are
restricted to the range between −231 and +231 −1 while much longer constants can be defined
with the DC instruction.77 For example, you can define constants as shown in Figure 54.

CharCon DC C'This is a long character constant'
Digits DC X'8462AFCB975310'
ManyBits DC B'0010111011100011001111011010001011101001'
Figure 54. Character, hexadecimal, and binary constants

Note that blanks can be used to separate groups of digits in hexadecimal and binary constants
(but not in self-defining terms!) to improve readability. Thus we could write

Digits DC X'84 62AF CB97 5310'
ManyBits DC B'0010 1110 1110 0011 0011 1101 1010 0010 1110 1001'

The data generated for character (type C) constants is converted to 8-bit bytes using the EBCDIC
representation shown in Table 13 on page 87. Blank characters are part of the nominal value, of
course! The special rules concerning the apostrophe and ampersand in character self-defining
terms also apply to character constants: for each ampersand or apostrophe to appear in the gener-
ated constant, a pair of ampersands or apostrophes must appear in the nominal value between the
delimiting apostrophes. For example:

DC C'''' Generates X'7D'
DC C'&&' Generates X'50'
DC C'&&&&&&''' Generates X'5050507D'

In Section 7 we noted that the value of a character self-defining term is determined by right-
adjusting the term in a 32-bit binary field. However, a character constant is generated by starting
at the left end of the character string, and encoding the necessary characters byte by byte. We
sometimes say that each byte of a C-type constant contains a character, but it is more precise to
say that it contains the 8-bit encoding used to represent the character internally.78

Unlike F- and H-type constants, the implied length of C-, X-, or B-type constants is not a fixed
number. Because no length modifier is present, the two constants

Star1 DC C'*' Implied length = 1
and

Star2 DC C'**' Implied length = 2

have implied lengths as shown. The Assembler determines the minimum number of bytes needed
to hold the nominal value of the constant, and assigns that as the implied length of a symbol
naming the constant.

This rule also applies to continued constants. For example, in

77 Remember: decimal self-defining terms are always nonnegative!
78 Character representations have many encodings: some are 8, 16, or 32 bits long, and others vary between 1 and 4

bytes! We'll meet some of them in Section 26.

150 Assembler Language Programming for IBM System z™ Servers Version 2.00

ManyChar DC C'An example of a very long string of characters intende*
d to illustrate the length attribute of a constant that *
extends over many lines.'

the symbol ManyChar has length attribute 134; you certainly don't want to count the characters in
each line manually (and possibly make a mistake). It's much easier to use the Assembler's
Length Attribute, as in L'ManyChar, and know it's correct.

If we write a statement like

CharData DC 0C'Characters'

the zero duplication factor means that no data will be generated. (We'll discuss this in Section
13.2.) However, the symbol CharData will have Length Attribute 10, the length of the nominal
value. This method of assigning a Length Attribute to a symbol without necessarily reserving
space is often useful.

We will see in Section 27 that the Assembler can generate character constants in other representa-
tions such as ASCII and Unicode.

Exercises

12.4.1.(1)+ What are the implied lengths of the constants in Figure 54 on page 150?

12.4.2.(2) How many input lines would be needed to write an Assembler Language statement
that defines a B-type constant with an implied length of 100 bytes?

12.4.3.(1) How can you specify multiple values in a single operand of a C-type constant?

12.4.4.(2) A four-byte area of memory contains the digit pattern X'4040405C'. What is repres-
ented by that pattern? (You should be able to describe two different possibilities.)

12.4.5.(2) Suppose you define the constant

DC 4C' '

What is its value if these 4 bytes are thought to represent a binary integer?

12.4.6.(1)+ What is generated for these constants?

(1) DC B'11110001'
(2) DC B'000011111'
(3) DC X'0123456'

12.4.7.(2) What constants are generated from these statements:

1. DC C'A''B&&C'
2. DC C'''A&&B''''C'
3. DC C'ABCF'''

12.4.8.(1)+ A programmer wanted to generate 16 bytes of EBCDIC characters representing the
16 possible values of a hexadecimal digit, and wrote

EBCHex DC X'F0',X'F1',X'F2',X'F3',X'F4',X'F5',X'F6',X'F7',X'F8',X'*
F9',X'C1',X'C2',X'C3',X'C4',X'C5',X'C6'

Can you save some effort for him, and write this in a simpler way?

12.4.9. What constants are generated by these statements? Explain any differences.

Chapter IV: Defining Constants and Storage Areas 151

A DC 5X'0'
B DC XL5'0'

C DC 5X'7'
D DC XL5'7'

E DC 5C' '
F DC CL5' '

G DC 5C'*'
H DC CL5'*'

12.4.10. For each of the following sets of statements, the value of the Location Counter is
X'000743' when the Assembler encounters the first statement. Give the value and length attri-
butes of all symbols (but not the generated object code).

(1) A DC AL3(A)
B DC A(8)

(2) C DC C'DS C''&&'''
D DC C'D DC C''DC'''

12.4.11.(1)+ The constant

DC CL4'345'

generates which of these constants?

1. X'00000345'
2. X'00000159'
3. X'F3F4F540'
4. X'00F3F4F5'

12.5. Padding and Truncation

The Assembler must decide what to do if

1. a constant is too large to fully occupy the number of bytes allocated for it (whether an
explicit length modifier or the default length is used), so some (possibly significant) bits must
be truncated, or

2. a constant is too small, so the generated value must be padded to fit in the allotted space.

Some examples are given in Table 31, with the generated constants. Most of the padded con-
stants could have been fit into smaller fields, if you needed desperately to save a few bytes.

Table 31. Examples of truncated and padded constants

Truncation Padding

Value too large Assembled Value Value not too large Assembled Value

H'65537' X'0001' (with error!) H'2' X'0002'

FL1'+300' X'2C' (with error!) FL3'-6' X'FFFFFA'

CL3'SMITH' X'E2D4C9' (C'SMI') CL3'S' X'E24040'

XL2'56789' X'6789' X'56789' X'056789'

BL1'100100100' X'24' (B'00100100') B'101' X'05' (B'00000101')

AL2(X'789AB') X'89AB' A(X'789AB') X'000789AB'

YL1(X'124') X'24' Y(X'124') X'0124'

152 Assembler Language Programming for IBM System z™ Servers Version 2.00

For all of the constants on the left, some part of the value must be truncated to make it fit in the
allotted space, since there is an implied or explicit length in each case. For all these constant
types except C, excess information is dropped at the left end of the constant, and the rightmost
portion is assembled. For character constants, the excess is trimmed off the right end, as in the
CL3'SMITH' example above, generating C'SMI'. Truncated F- and H-type constants are considered
errors by the Assembler.

For the constants on the right side of Table 31 on page 152, more space is allotted either explic-
itly or implicitly than is needed to hold the significant bits of the given constants. For types H
and F, the assembled value is simply the rightmost part of the two's complement representation
in which the sign bit has been extended to the left. In the character constant CL3'S', the single
letter “S” has been padded on the right with two EBCDIC blanks (with representation X'40') to
fill out the constant to the required length of three bytes, generating C'S••'.79

As mentioned in Section 12.4 on page 150, no default length is assumed for constants of types C,
X, and B. In the absence of explicit lengths, the Assembler uses just enough bytes for the con-
stant to ensure that no information is lost, and no more. Thus the lengths of the three constants
in Figure 54 on page 150 are 33, 7, and 5 bytes respectively; no information is lost, and no
padding was required.80

Table 32 summarizes some of the rules for writing operands in DC instructions. A complete set
of rules is given in the High Level Assembler Language Reference. (We'll discuss V-type address
constants in Chapter X.)

Table 32. Truncation/padding rules for some DC operands

Section 12.8 on page 157 shows some type extensions that let you write longer constants with
stricter default alignments.

Exercises

12.5.1.(2)+ What will the Assembler generate for these two statements? Will the results be dif-
ferent? If so, why?

DC CL2'ABC'
DC AL2(C'ABC')

12.5.2.(2)+ Show what will be assembled for each of the following DC statement operands:
(1) F'1000', (2) H'1000', (3) B'1000', (4) XL1'1000', (5) CL1'1000', (6) AL1(1000),
(7) YL3(1000). Describe the boundary alignment of each.

12.5.3.(2)+ What will be generated for these constants?

Type H F Y A V B C X

Maximum Length 8 8 2 4 4 256 256 256

Implied Length 2 4 2 4 4 * * *

Implied Alignment 2 4 2 4 4 none none none

Value Specified by dec dec absexpr expr symbol bin char hex

Delimiters Used ' ' ' ' () () () ' ' ' ' ' '
Truncation, Padding left left left left left left right left

Multiple Values yes yes yes yes yes yes no yes

Note: * The implied length is the minimum number of bytes required to contain the data.

79 Remember that we use the • character to represent a blank space.
80 I trust you completed Exercise 12.4.1 before reading this sentence!

Chapter IV: Defining Constants and Storage Areas 153

(1) DC B'011110001'
(2) DC B'111100010'
(3) DC X'01234'
(4) DC XL2'012345'

12.5.4.(2) The statement preceding Table 31 on page 152 says that some of the constants can
be fit into smaller fields. Which ones cannot?

12.6. Literals

We often define data meant to be used only as a constant: it should not be modified during
program execution. In the sample program in Figure 35 on page 117, the two quantities in the
words named N and ONE are defined by DC instructions, but we expect the symbol ONE to mean
that the contents of that word retains the value +1 throughout program execution.81

Literals are a simple and convenient way to simultaneously define constants and refer to them. A
literal is a special kind of symbol: the contents of the storage area named by the literal is defined
by the “symbol” itself.

A literal is written as an equal sign (=) followed by characters conforming to the rules for a single
operand of a DC instruction. These are examples of literals:

=F'1' =C'LongLiteral' =BL2'111101'
=H'1' =CL7'BLANK&&' =X'765432A'
=A(1) =F'1,2,3,4' =AL3(5,X'D7'/C'.')

Literals may be used in most places where symbols are permitted, with the following exceptions:

1. The Assembler indicates an error if an instruction obviously tries to store into or otherwise
modify a constant defined by a literal: thus,

ST 7,=F'1'

is invalid, even though it's easy to modify “constants” created by the DC assembler instruc-
tion statement without any assembly-time indication. (This error detection at assembly time
is what makes literals “more constant” than the “constants” defined by DC statements.)

2. A literal may not be specified in an address constant, so that A(=F'1') is invalid.

3. Multiple operands may not be specified, but multiple values may; thus

LM 1,2,=F'1,2'

is valid, but both

LM 1,2,=F'1',=F'2'
L 1,=H'1',=H'2'

are not, because a literal must be a single operand.

4. The duplication factor may not be zero.

5. The alignment and length of the data described in the literal are implied by the constant type,
so that this L instruction,

L 2,=X'2B'

that copies 4 bytes from memory to GR2, will copy unpredictable data into the rightmost
three bytes of GR2 because we can't know precisely where the Assembler will place the
literal, and what might be in the three bytes following the single byte X'2B'.

81 You can even write statements like

ONE DC F'137'
but this won't make your program easier to understand; and it's even more misleading if your program stores varying
values into the word area named ONE.

154 Assembler Language Programming for IBM System z™ Servers Version 2.00

This statement is entirely equivalent to

L 2,X2B
- - -

X2B DC X'2B' (Not aligned!)
- - - Three more (mystery) bytes

except that the symbol X2B is not needed when the literal =X'2B' is used.

6. A reference to a literal is always a relocatable implied address (as defined in Section 9.5 on
page 109).

7. A literal may be indexed in RX-type instructions, so that

L 0,=F'1,2,3,4,5'(9)

is valid, and is exactly equivalent to

L 0,FiveInts(9)
- - -

FiveInts DC F'1,2,3,4,5'

If the value of the index in GR9 is 8, the L instruction will put the integer 3 in GR0.

8. You may refer to a portion of a literal, as in

IC 0,=F'1'+3

but this is considered a very poor programming practice.

9. In most situations, you can use the Assembler's L' Attribute Reference notation in an
address constant to refer to the Length Attribute of a literal. (Note that this does not violate
rule 2 above!)

LitLen DC A(L'=C'This is a message') Generates X'00000011'

which is equivalent to

Message DC C'This is a message' Named character constant
MsgLen DC A(L'Message) Length attribute of 'Message'
Figure 55. Length attribute reference to two constants, one a literal

The “message” character string is 17 bytes long, but we rarely refer to the Length Attribute of
a literal.

We'll make frequent use of symbol length attribute references in Chapters VII and VIII.

After reading this apparently long list of restrictions, you might think that literals are fairly useless.
We will see that they can be extremely helpful in writing clear and readable programs, and that
these restrictions make good sense.

To illustrate a typical use of a literal, you could rewrite the program segment in Figure 35 on
page 117:

BASR 6,0
USING BEGIN,6

BEGIN L 2,N
A 2,=F'1'
ST 2,N

N DC F'8'

Here, you didn't need to define a constant and create a symbol ONE to refer to it.

As literals are encountered in scanning the source program, the Assembler forms a separate
internal table containing the literals, with duplicates eliminated. Eliminating duplicates saves space
and lets you use literals without generating duplicate constants. The constants from the Assem-
bler's literal table are placed into the program at an appropriate location, and the Assembler then

Chapter IV: Defining Constants and Storage Areas 155

assigns addressing halfwords to instructions that reference the literals, just as it does for references
to symbols.

The area of the program where the Assembler deposits its collection of literal constants into your
program is sometimes called a literal pool.

Though the Assembler eliminates duplicate literals, those containing references to the Location
Counter, as in

L 2,=A(*)
L 3,=A(*)

are not eliminated, because Location Counter values may vary for each occurrence.

For the added ease of referring to constants using literals there is a corresponding loss in your
ability to specify exactly where the constant is located, since this is normally determined by the
Assembler. The LTORG instruction gives you some control.

Exercises

12.6.1.(2) What data is generated by the literal =AL3(5,X'D7'/C'.') ?

12.6.2.(2) What data is generated by the literal =CL7'BLANK&&' ?

12.6.3.(1)+ Write and assemble a short program containing the statements

DC 2A(*)
T DC 2A(*-T)

and examine the generated object code; describe the differences.

12.6.4.(2)+ In Figure 55 on page 155, the constant named Message is followed by the word-
aligned A-type constant named MsgLen. How many bytes might be skipped before the A-type
constant?

12.7. The LTORG Assembler Instruction

The LTORG assembler instruction statement lets you control the placement of constants gener-
ated by literals. It may have a name-field entry, but no operand field entry. The Assembler aligns
the LC at the next doubleword boundary,82 defines the name-field symbol (if any), and then
places its collection of literal-defined constants into the program. The order in which they appear
is determined by the Assembler; don't make any assumptions about ordering.

After dumping the contents of its literal table, the Assembler clears the table. Excessive use of
LTORG instructions in a program with many literals might cause duplicate constants to be
defined. For example,

L 0,=F'1'
LTORG
L 1,=F'1'
LTORG

will cause two identical constants to be generated.

The literals in the literal pool are generated in decreasing order of alignment. Thus, a word literal
like =F'4' will be generated ahead of a halfword literal like =H'2'. This rule applies not only to
literals with implied alignment, but to literals whose length is a power of two. Thus, the literal
=X'00000004' will be generated in the same group as =F'4'.

82 Or quadword boundary, if the value of the SECTALGN option specifies an alignment stricter than doubleword. See
the High Level Assembler Programmer's Guide for further information.

156 Assembler Language Programming for IBM System z™ Servers Version 2.00

This alignment difference can sometimes be surprising. These two constants, though identical, will
be aligned differently:

L 2,=FL4'4' Explicit length 4, word aligned
L 2,FL4Const Explicit length 4, not word aligned
- - -
DS F,X Align LC off a word boundary

FL4Const DC FL4'4' Unaligned constant X'00000004'

Though rarely a problem, it's worth remembering the difference.

In the absence of any LTORG instructions, the Assembler will generate any accumulated literals
at the end of the assembly, so you will need to ensure they are addressable.

We will use literals in many places.

 Remember:

A literal is treated by the Assembler as a special symbol with the addi-
tional effect of causing it to reserve a storage area containing the specified
constant.

While the Assembler tries to diagnose instructions appearing to modify a literal, it's easy for your
program to modify them by writing into the area where they're stored. (In fact, a program can
modify almost anything that's not memory-protected!) You should think of literals as “intended”
constants, not as immutable values.

12.8. Type Extensions

As the System z processors have evolved since System/360 was introduced in the mid-1960s,
many enhancements and additions have been made to the instruction set and the data types they
use.

An important enhancement with z/Architecture was the expansion of the 32-bit general registers
to 64 bits, as illustrated in Figure 9 on page 45. To support 64-bit data types, the Assembler
extended several existing data types to provide 64-bit constants. Among these are the F-, A-, V-,
and Q-type constants. This is done by adding a type extension letter following the constant type.

With a “D” type extension, these constants may be up to 8 bytes long, and by default are aligned
on doubleword boundaries. For example:

DC FD'-1' X'FFFFFFFFFFFFFFFF'
DC AD(C'ABC') X'0000000000C1C2C3'
DC FD'U1E15' X'00038D7EA4C68000'

We will see many examples of these doubleword constants when we describe instructions using
the 64-bit general registers.

Other type extensions are used for character constants. Many other character representations are
now widely used, including ASCII and Unicode. Like EBCDIC, ASCII characters (defined with
type extension “A”) are one byte long, while the Unicode characters (with type extension “U”)
generated by HLASM are two bytes long. For example:

DC C'ABC' X'C1C2C3' EBCDIC by default
DC CE'ABC' X'C1C2C3' EBCDIC always
DC CA'ABC' X'414243' ASCII always
DC CU'ABC' X'004100420043' Unicode

Chapter IV: Defining Constants and Storage Areas 157

The “E” type extension means that the generated constant must use the EBCDIC representation
even if the Assembler's TRANSLATE option83 requests translation of C-type constants to a dif-
ferent encoding. We'll see more about specialized character sets in Section 27.

Other type extensions are used for floating-point data; we'll learn more about them in Chapter
IX.

Table 33 summarizes some rules for writing operands in DC instructions with operand type
extensions. A complete set of rules is given in the High Level Assembler Language Reference.

Table 33. Truncation and padding rules for some DC operands with extended types

Terms and Definitions
address constant

A field into which a value is inserted by the Assembler, the Linker, or the Program Loader.
Typically, an address.

adcon
Abbreviation for “address constant”.

literal
A special symbol with the side effect of defining a constant referenced by that symbol.

literal pool
A set of literal-generated constants grouped together by the Assembler. A program may
contain multiple literal pools.

padding
Adding extra bits or bytes to a constant so that it will fill the space allotted to it.

truncation
Removing bits or bytes from a constant so that it will fit in the space allotted to it.

type extension
A second letter following the constant type, providing additional information about the con-
stant's length or representation.

Type FD AD VD QD CA CE CU

Maximum length 8 8 8 8 256 256 256

Implied length 8 8 8 8 * * *

Implied alignment 8 8 8 8 none none none

Value specified by dec expr symbol symbol char char char

Delimiters used ' ' () () () ' ' ' ' ' '
Truncation, padding left left left left right right right

Multiple Values yes yes yes yes no no no

Note: * The implied length is the minimum number of bytes required to contain the data.

83 See the High Level Assembler Programmer's Guide for details.

158 Assembler Language Programming for IBM System z™ Servers Version 2.00

13. Data Storage Definition

11 3333333333
111 333333333333
1111 33 33
11 33
11 33
11 3333
11 3333
11 33
11 33
11 33 33

1111111111 333333333333
1111111111 3333333333

In this section we examine methods for defining data areas and data structures that simplify pro-
grams manipulating the data, and describe the useful assembler instruction statements DS, EQU,
and ORG.

13.1. Storage Areas: The DS Assembler Instruction

A storage area is often needed in a program that need not be initialized to contain a value, as
done by the DC instruction. This can be done with the DS (“Define Storage”) assembler instruc-
tion; it is almost identical to the DC instruction, except that no data is generated: space in the
program is allocated, but not initialized. The rules for writing the operand field entry are the same
for DC and DS, except that a nominal value (and its enclosing delimiters) is optional for DS.
Thus the statements

DS F Define word storage
and

DS F'8' Define word storage

both cause the Assembler to reserve a four-byte area on a word boundary, but no constant is
assembled, even though a nominal value is specified in the second statement. Specifying a value
in a DS statement is useful in statements such as

DS C'Message' Define storage for characters

because it will reserve an area whose length is determined from the length of the nominal value (7
bytes, in this case). Large blocks of storage may be reserved:

FW100 DS 100F Define storage for 100 words

This reserves 100 words and assigns the symbol FW100 to the location of the first. The statements

AREA1 DS 80C
AREA2 DS CL80

both define storage areas 80 bytes long, but the Length Attributes of the symbols AREA1 and
AREA2 are 1 and 80 respectively, which may be very useful in a program. The length attribute of
the symbol AREA1 is 1 byte; the length of the area it names is the product of the duplication factor
(80) and the length attribute (1).

In the absence of either a constant or an explicit length for types B, C, and X,

Chapter IV: Defining Constants and Storage Areas 159

DS B and DS C and DS X

each assigns an implied length of one byte and reserves a single byte.

Exercises

13.1.1.(2) Suppose the value of the Location Counter is X'012345' when the following three
statements are read by the Assembler:

X DS AL(4)
Y DS A(4)
Z DS AL4

What is generated by these statements? What are the value and Length Attributes of the
symbols X, Y, and Z?

13.2. Zero Duplication Factor

A zero duplication factor may be specified for operands of DS and DC instructions. First,
boundary alignment implied by the storage type is performed if necessary. If a name field symbol
is present, the aligned value of the LC is assigned as its value; the symbol's Length Attribute is
determined from the operand. No space is reserved. Thus a DS or DC instruction with a zero
duplication factor can be used to force boundary alignment.

For example, the two sets of statements

WORD DS 0F
DC C'WORD'

and
DS 0F

WORD DC CL4'WORD'

both serve to define a four-byte character constant on a word boundary named by the symbol
WORD which would not in general have been the case if

WORD DC C'WORD'
or

WORD DC CL4'WORD'

had been specified.

If a zero duplication factor is used in a DC instruction, it behaves just as would the corresponding
DS instruction. However, when bytes are skipped to perform alignments required by DS state-
ments, the Assembler does not put zeros into the skipped bytes, while skipped bytes are zeroed
when aligning DC instructions if the preceding statement generated instructions or data.

Because constants with zero duplication factors do not advance the Location Counter (except for
possible boundary alignment), they have many uses. For example, suppose we must define a
storage area to hold a (U.S.) ten-digit telephone number:

PhoneNum DS 0CL10 Define 10-byte area for full number
AreaCode DS CL3 Space for area code
Prefix DS CL3 Space for prefix
Local_No DS CL4 Space for local number
Figure 56. Describing fields of a (U.S.) telephone number

This way we can refer to the entire field using the symbol PhoneNum, or to each component by its
name.

Suppose we are writing a program that scans Assembler Language statements, and we want to
give names to the fields of the statement. We'll assume that

1. name-field symbols begin in column 1,

160 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. mnemonics start in column 10 and are 5 or fewer characters long,84

3. operands start in column 16 and are less than 20 characters long,

4. remarks lie within columns 36 and 71,

5. column 72 is the continuation column, and

6. columns 73-80 contain sequencing data.

Then, we can name each of the fields of an 80-byte area named Statemnt that contains the state-
ment and assign appropriate Length Attributes, as shown in Figure 57.

Statemnt DS 0CL80 Define 80-column record area
Name DS 0CL8 Define name-field symbol

DS CL9 Reserve space for name-field symbol + blank
Mnemonic DS 0CL5 Define 5-character mnemonic field
Mnemopnd DS 0CL25 Define both mnemonic and operands

DS CL6 Reserve space for mnemonic + blank
Operand DS 0CL19 Define 19-character operand field

DS CL20 Reserve space for operand field + blank
Comment DS CL36 Allocate 36 columns for comments
Continue DS C Define continuation-indicator column
Sequence DS CL8 Define sequencing columns
Figure 57. Describing fields of an Assembler Language statement

• The first DS statement defines Statemnt to be 80 characters long, but reserves no space.

• Similarly, the second DS defines an 8-byte Name field beginning at the same location.

• The third DS then causes the Location Counter to be incremented by 9 bytes, so that the
symbol Mnemonic has a value corresponding to “column 10” of the record.

• Because we might refer to the mnemonic and the operands together, the symbol Mnemopnd has
the same location, but its length of 25 bytes includes both fields.

The rest of the definitions are similar.

We make this (apparently additional) effort because a program containing these declarations can
now refer to the desired fields by name. For example, we can use the symbol Operand instead of
the expression Statemnt+15 to refer to the start of the operand field. While this may not seem an
important difference, consider what modifications would have to be made to the program if the
Mnemonic field is changed to be six characters long: every statement in the program containing a
reference to expressions like Statemnt+15 would have to be found and changed.

By using this technique, only the DS statements need changing before the program is reassem-
bled; the statements referring to the various fields in our Assembler Language “statement” need
not be changed. Another big advantage of this style of definition is that the symbols have useful
Length Attributes; we will see in Chapters VII and VIII how instructions can make good use of
that information.

As another example, suppose we wish to reserve space for three words that are also regarded as a
single group of twelve bytes named FWGroup. We can do this with these statements:

DS 0F Align to word boundary
FWGroup DS 0XL(3*4) Define start of 3-word group

DS 3F Reserve space for the three words
Figure 58. Define a group of words

84 But: many newer mnemonics can be as many as 8 (or more!) characters long, so you may want to adjust your
column positions appropriately. Similarly, the names of some macro instructions we use (like PRINTOUT) are at most 8
characters long.

Chapter IV: Defining Constants and Storage Areas 161

Exercises

13.2.1.(2) Assemble the statement in Figure 57 on page 161 to verify the locations and lengths
of each field. (Remember to add an END statement.)

13.2.2.(3)+ Assume the Assembler's Location Counter is X'345' when it reads each of the fol-
lowing sets of statements. For each symbol, give its value and Length Attribute.

• J DS 3H
K DS 1X
L DS 0F

• P DC C'A''B'
Q DC 2C'ABA'
R DC 2A(C'.')

• T DS XL2'234567'
V DC 4Y(37)
W DC 0F'1,2'

13.2.3.(2)+ For each of the following, assume that the Location Counter value is X'345' when
the initial statement is processed by the Assembler. Give the value and Length Attributes of the
symbol A.

1. A DC F'2'

2. DS 0H
DC C'*'

A DC C'Asterisk'

3. DC 0F'1'
A DC 0XL27'0'

4. A DC A(A)

5. DS 19H
A DC X'12345'

6. DC 3CL4'ABCDE'
A DC C'A&&B'

7. DS CL400
A DC F'12,34,56'

13.3. The EQU Assembler Instruction

Two other assembler instruction statements are often useful in defining and describing data areas,
EQU and ORG. When we write

symbol Equ expression

the Assembler assigns the attributes of the expression in the operand field (including value, reloc-
atability, and length) to the symbol in the name field.

The EQU instruction reserves no storage and generates no data or machine language; it only
defines a symbol by assigning it an assembly-time value. EQU is a powerful tool for simplifying
and understanding programs.

Suppose a program needs a storage area of 75 words, and a word integer constant whose value
gives the number of words reserved. The two statements

NItems DC F'75' Number of words
Table DS 75F Table of words

162 Assembler Language Programming for IBM System z™ Servers Version 2.00

define the necessary items. However, if we decide to change the table size, both statements must
be changed before re-assembling the program. If we had written instead

TblSiz Equ 75 Define table size
NItems DC A(TblSiz) Number of words
Table DS (TblSiz)F Table of words.

then only the EQU statement would have to be modified before re-assembling. If we also want to
refer to the word in the “middle” of the table, we can write

MidTbl Equ Table+(TblSiz/2)*4

where the factor 4 is the length of each table entry. This illustrates using EQU to define a relocat-
able symbol.

A better programming practice is to use the length attribute of Table as in L'Table, instead of 4.
Here is why: Suppose we can save space in the program by defining halfword table entries
instead of words. If we define the symbol Table as

Table DS (TblSiz)H Table of halfwords.

the position of the new table's middle item will still be determined correctly, because the length
attribute of Table is now 2 instead of 4.

You cannot use EQU instructions to assign more than one value to a symbol.85 For example, the
second statement in this example is invalid:

X Equ 5 Define X
- - -

X Equ 10 Invalid duplicate definition

Exercises

13.3.1.(1)+ Why is the Length Attribute of the symbol MidTbl equal to 4?

13.3.2.(2) A programmer wished to conserve space in his program. He needed both a halfword
and a fullword binary constant of value +8. He wrote the statements

FW8 DC F'8'
HW8 Equ FW8+2

and referred to the halfword value with the symbol HW8. Can you think of any circumstances in
which this might be unsafe?

13.3.3.(2) Suppose the definition of the symbol Midtbl had been written in the following forms:

MidTbl Equ Table+TblSiz*4/2
MidTbl Equ Table+4*TblSiz/2
MidTbl Equ Table+TblSiz/2*4
MidTbl Equ Table+(TblSiz/2)*4

Are these equivalent? Why and why not? Why would you choose one in preference to the
others?

13.3.4.(2) Describe the differences among the following statements. (It may help to assemble
them!) (See Exercise 11.7.1 also.)

85 Some very early assemblers let you use multiple EQU statements to change the value assigned to a symbol. For
System z assemblers, the values of ordinary symbols are not changed at assembly time. Symbols whose values may
be re-assigned at assembly time are called variable symbols; they are used in conditional assembly and macros.

Chapter IV: Defining Constants and Storage Areas 163

A1 Equ 5
A2 DC F'5'
A3 Equ A2
A4 Equ =F'5'
A5 Equ A1

13.3.5.(2) An EQU statement like

NFS Equ 135

is sometimes described by saying (a) it assigns a constant to NFS, (b) it assigns an assembly-time
constant to NFS, or (c) it assigns the name NFS to a constant. Which of these descriptions is
preferable, and why? What would be a better one?

13.3.6.(3) What would you expect to happen when the Assembler encounters the following
three statements?

A Equ B
B Equ C
C Equ A

13.3.7.(2) What would you expect to happen when the Assembler processes each of the fol-
lowing pairs of statements?

ABLE Equ 2
BAKER Equ ABLE+2

BAKER Equ ABLE+2
ABLE Equ 2

13.3.8.(2)+ For each of the following two sets of statements, assume that the Location Counter
value is X'01DBC5' when the first statement is encountered. Determine the value, relocatability,
and Length Attributes of all symbols.

1. ST DS 0CL8
W DS 2F
X DS 2F

2. P DS 0F
Q DS 0H
R DC 4X'0'
S Equ *

13.3.9.(5) Suppose the symbols A and B have absolute values, and were defined by complicated
expressions whose values are not immediately evident. Write a set of EQU statements that will
set the value of the symbol MaxOfA_B to the greater of A and B, or to either if they are equal.

13.3.10.(2) Suppose the symbol A has value X'291B' in each of these sequences of statements.
Give the value and Length Attribute of the symbol B.

1. A Equ *
X DS 3H
B DS 0F

2. A Equ *
B DC CL3'Okay'

3. A Equ *
F DC F'11,22'
X DC X'123'
B Equ X-A

164 Assembler Language Programming for IBM System z™ Servers Version 2.00

13.3.11.(3)+ In each of the following sets of statements, give the value and Length Attribute of
each symbol, assuming that the Location Counter value is X'12345' when the first statement of
each set is read by the Assembler.

1. A DS F
B DS 2H
C DS 2CL2

2. F DC A(F)
G DC 3AL3(F,G,H)
H DC Y(*-F,275)

3. P DC 2C'3&&'
Q DC 2A(C'3&&')
R DS 3XL3'FEDCBA93'

4. X DC 0FL5'5,10,20'
Y DC FL3'5,10,20'
Z DC 2C'5,10,20'

13.3.12.(3) Assuming the same statements as in the previous exercise, show the hex data values
assembled for the constants having these names: F, G, H, P, Q, and Y.

13.3.13.(2)+ In each of the following sets of statements, give the value and Length Attribute of
each symbol, assuming that the Location Counter value is X'01DBC5' when the first statement
of each set is read by the Assembler.

1. STR DS 0CL8
W DS 2F
X DS 2F

2. P DS 0F
Q DS 0H
R DC 4X'40'
S EQU *-P

13.3.14.(3)+ For each of the following sequences of statements, assume that the value of the
LC is X'125' when the first statement is encountered. For each sequence, give the value and
Length Attributes of all symbols, the assembled machine language constants (in hex) and their
locations, and the LC value after the last statement in the sequence.

1. A DC F'-17'
B DC H'33'

2. D DC FL4'+17'
C DC H'-33'

3. E DC C'ABCDEFGH'
F DC F'1000'

4. G DS 2H
H DC A(X'129E')

5. J DS 0H
K DS 0X
L DS 0F
M DC 0FL6'15'
N DC F'-1000'

6. P DC 3C'A''B'
Q DC 2A(C'A''B')

7. R DS 100F
S DS 10CL80

8. AB DC F'900',HL5'2147483650',H'1'

Chapter IV: Defining Constants and Storage Areas 165

9. BC DC 3XL2'7',0CL3'ABCD',B'1'
CD DC H'16383',H'-16383'

10. DE DS 2F,0D,2CL6
EF Equ *,L'DE

11. T DC X'CAB'
V DC 2B'101011100'
W DC (V-T)CL(W-T+2)'CAB'

12. Y DS H
X DC (X-Y)AL(X-Y)(X-Y)

13. Z DC CL2'ZZ'
ZZ DC (ZZ-Z)A(ZZ-Z)

13.3.15.(2)+ You are given a number N in the range 0 ≤ N ≤ 14 and you must use it to
assign a pair of symbols REven and ROdd to an even-odd pair of 32-bit general registers, respec-
tively. Write EQU statements to assign the symbols.

13.3.16.(3) In Exercise 13.3.14, some expressions may be difficult for an Assembler to resolve.
Which do you think they are, and why?

13.3.17.(2)+ Suppose a symbol A can take values 0 or 1. Write an EQU statement to define a
symbol E whose value is 1 if A is zero, and 0 if A is 1.

13.3.18.(3)+ Syppose a symbol A can take any value. Write an EQU statement to define a
symbol E whose value is 0 if A is zero, and 1 if A has any other value.

13.4. EQU Instruction Extended Syntax (*)

HLASM supports an Extended EQU Syntax, allowing you to specify up to five operands.

symbol Equ expression1,expression2,expression3,expression4,keyword

which we understand to mean

symbol Equ value,length,type,program-attribute,assembler-attribute

We have been using only the first operand, expression1. The second and third operands let you
override default values for the length and type attributes.

length (expression2)
Assigns a new Length Attribute to symbol, overriding the Length Attribute assigned from
expression1.

type (expression3)
Assigns a type attribute to symbol. If no type operand is present, the Assembler assigns
type U (“Unknown”)

program-attribute (expression4)
Assigns a programmer-defined “Program Attribute” to symbol.

assembler-attribute (keyword)
A four-character Assembler-defined keyword providing additional information about the
expected behavior of symbol.

The High Level Assembler Language Reference describes the operands in detail. (The last three
operands are used mainly for conditional assembly, so we won't discuss them further here.)

The most common use of the Extended EQU statement is to assign specific Length Attributes to
symbols. For example, you could write

InRec DS XL80
OutRec Equ *,L'InRec Length attribute = 80

166 Assembler Language Programming for IBM System z™ Servers Version 2.00

that defines the location of OutRec and its Length Attribute. Note that even though the Length
Attribute of the Location Counter Reference * would otherwise default to 1 in an EQU state-
ment.

Exercises

13.4.1.(2)+ Assuming that the symbol Result is at location X'2000', give the value and Length
Attributes of each symbol.

Result DS XL133
Pfx Equ Result,24
Prod Equ Pfx+L'Pfx,12
Cost Equ Prod+L'Prod,8
Desc Equ Cost+L'Cost,60
Fill Equ Desc+L'Desc,(L'Result-L'Pfx-L'Prod-L'Cost-L'Desc)
LFill Equ L'Fill

13.5. The ORG Assembler Instruction

The ORG instruction lets you modify the Location Counter. Like EQU, it generates no
instructions or data. The statement

ORG expression

sets the LC to the value of the expression in the operand field of the statement. The relocatability
attribute of the expression must match that of the LC.

We can use the ORG statement to rewrite the data area described in Figure 57 on page 161, as in
Figure 59. Note that none of the DS statements uses a zero duplication factor.

Statemnt DS CL80 Define 80-column record area
ORG Statemnt Reset to start

Name DS CL8 Define name-field symbol
ORG Name+9 Move to 'column 10'

Mnemonic DS CL5 Define 5-character mnemonic field
ORG Mnemonic Back up the LC

Mnemopnd DS CL25 Define both mnemonic and operands
ORG Mnemonic+6 Move back to 'column 16'

Operand DS CL19 Define 19-character operand field
ORG Statemnt+35 Move forward to 'column 36'

Comment DS CL36 Allocate 36 columns for comments
Continue DS C Define continuation column
Sequence DS CL8 Define sequencing columns
Figure 59. Describing fields of an Assembler Language statement using ORG instructions

After these statements have been processed, the LC will have the value of the expression
Statemnt+80, and we can continue assembling as though the LC had never been adjusted by the
ORG statements.

Now, suppose we want to check for possible comment statements by defining Column1 as a new
field, so we add the statements

ORG Statemnt Back to 'column 1'
Column1 DS CL1 To check for asterisks

at the end of Figure 59. Any statements following the last statement in the figure would begin
assembling at Statemnt+1, which is undoubtedly not what you intended.

To rectify such a mistake, you can do either of two things. First, you could place the statement

ORG Statemnt+80 Move LC to end of Statement field

Chapter IV: Defining Constants and Storage Areas 167

after all the other statements. A second way is to write

ORG , Set LC to its highest value

The Assembler interprets the missing, or null, operand (indicated by the comma) to mean that the
LC should be set to the highest value it has attained so far in the assembly.

This example assumes that Statemnt+80 is the highest location at this point in the assembly; if
not, other instructions and data might be assembled in the wrong places. This possible error is
one reason why the technique shown in Figure 57 on page 161 is generally preferred.

The ORG instruction also supports an extended form:

ORG expression,boundary,offset

The Assembler first sets the LC to the location given by “expression”, then rounds it up to the
next higher “boundary” (it must be a power of two between 2 and 4096), and then adds the value
of “offset” to determine the final LC setting. For example, suppose the current value of the LC is
X'12345'. If we write

ORG *+4,8,-3

the Assembler first adjusts the LC to X'12349', then rounds it up to the next doubleword
boundary X'12350', and finally subtracts 3, setting the LC value to X'1234D'.

In practice, ORG statements are used infrequently. Their usual applications are to construct data
areas that share storage or “overlay” one another, as in Figure 59 on page 167.86

Exercises

13.5.1.(2) The programmer mentioned in Exercise 13.3.2 wanted to be as cautious as possible,
and changed his constant definitions to

FW8 DC F'8'
ORG FW8+2

HW8 DS H

Is this better than the technique used in Exercise 13.3.2? Why or why not?

13.5.2.(2) A programmer didn't know about using a null operand in an ORG statement to reset
the LC to its highest value. In trying to do this, he observed that * represents the value of the
LC, and therefore wrote

Here Equ *
ORG AnyWhere Assemble somewhere elsewhere
- - -

* Equ Here Set LC back to 'Here'

What is wrong with this technique? Solve his problem without using an ORG statement with a
null operand.

13.5.3.(3)+ In each of the three following code segments, the symbol A has value X'982E'.
Determine the value and Length Attributes of the symbol B.

A DS 29H
B Equ A+L'A

A DS 7CL5
ORG A+10

B DS 2D

86 In higher-level languages, the overlaying of one data definition on another is sometimes called a “union” or a
“redefinition”.

168 Assembler Language Programming for IBM System z™ Servers Version 2.00

A DC 0CL40'*'
DS 5CL8,3CL3

B DS 3F

13.5.4.(3) With the same assumptions as in Exercise 13.5.3, determine the value, length, and
relocatability attributes of the symbol B.

A DC FL7'8'
ORG A+2
DC HL7'8'
ORG

B DC HL5'-8'

A Equ *
ORG A+4*L'A
DS (C'*')CL(C'*')'*'

B Equ *

13.5.5.(3) Using suitable DC and ORG statements, find a way to cause the Assembler to assign
the location of some skipped bytes as the value of a symbol SKIP3. For example, three bytes
are skipped in

DC F'1',X'2',F'3'

13.5.6.(2) Suppose a programmer wrote the statement

ORG Set LC to its highest value

without a comma to separate the operation and comment fields. What do you expect will
happen? Why?

13.5.7.(3) In the instruction sequences illustrated in Figure 57 on page 161 and Figure 59 on
page 167, suppose you placed the statement

StmtLen Equ *-Statemnt

following the last statement (with name-field symbol Sequence). What value is assigned to the
symbol StmtLen? What value should be assigned to StmtLen?

A bonus question: how could you induce the Assembler to detect the difference between the
actual and desired values assigned to StmtLen?

13.6. Parameterization

We have seen how we use EQU statements to define quantities such as table sizes, string lengths,
and duplication factors; these quantities are assembly-time constants, so they are not part of the
data whose values may be changed at execution time. The following examples illustrate this.

1. EQU is often used to set a value for defining several storage areas. For example, if you need
to process multiple records having the same length, you could define

RecLen Equ 80 Define record length
InRec DS CL(RecLen) Space for input record

- - -
OutRec DS CL(RecLen) Space for output record

- - -
WorkRec DS CL(RecLen) Space for record work area

Then, if the length of the record areas must be changed, you need to modify only the EQU
statement and reassemble the program.

2. Suppose a table of five words is stored starting at FTable, and we need to copy the last word
of the table into general register 5. We could do this by writing

L 5,FTable+16 Get last word of FTable

Chapter IV: Defining Constants and Storage Areas 169

but we have mixed the data definition (the fact that the word at FTable+16 is indeed the last
in the table!) with the processing of the data by the L instruction. The “+16” term is a
hidden data description.

This program fragment will be easier to understand and modify if we write something like the
following:

NWords Equ 5 Number of words in Table
L 5,LastWord Get last word of Table
- - -

FTable DS (NWords)F Define name and space for Table
LastWord Equ FTable+(NWords-1)*4 Define last word

We can now change the length of the table by modifying the EQU statement, without
changing the instructions that reference the data. There was nothing in the expression
FTable+16 clearly relating it to the number of words in the table. Indeed, if the number of
words in the table is less than five, FTable+16 refers to data beyond the end of the table!

3. In Figure 58 on page 161, we might need to change the number of words in the group
named FGroup. By defining a symbol NWords giving the number of words, we can rewrite the
example:

NWords Equ 5 Five-word group this time
DS 0F Align to word

FGroup DS 0XL(4*NWords) Length of group
Words DS (NWords)F Reserve space for Words

4. Suppose we want to define a table containing a number of character strings, all of the same
length. Suppose also that our program processes these strings, without knowing in advance
either how many there will be or how long they will be. Let NST and STL be symbols whose
values specify respectively the number of strings and the length of each. Then we can reserve
storage space for the data with the statement

Strgs DS (NST)CL(STL) NST strings each of length STL

Then, if we need the addresses of the first and last strings in the block of data, we can define
the constants

AFirst DC A(Strgs) Address of first string
ALast DC A(Strgs+STL*(NST-1)) Address of last string

Similarly, if we need halfword integer constants containing the length of each string and the
number of strings, we can define these Y-type address constants:

HWStL DC Y(STL) Length of a string
HWNSt DC Y(NST) Number of character strings

Having written the program to make all its references to the data counts and lengths through
these constants, we can finally assign values to the symbols NST and STL by defining two
EQU statements:

NST Equ 219 Number of data strings
STL Equ 43 Length of a data string

As a final example of symbolically-defined data areas, suppose we have written our own Assem-
bler, and have a routine which prints symbol-table information at the end of an assembly. Each
line to be printed contains (1) a single carriage-control character to control vertical printer
spacing, (2) a symbol up to 8 characters long, (3) a 4-character field for the symbol's length attri-
bute, (4) a 2-character relocatability attribute field, (5) a 4 or 5-character field for the number of
the statement in which the symbol was defined, and (6) the rest of the line contains 4 or
5-character fields giving the numbers of the statements whose operand fields refer to the symbol.
The fields are to be separated by spaces. In addition, we are to write the definition of the print
line so it will work with printers that accept 121 or 133 characters (both are common print-line
lengths).

First, we will define the symbols LineLen to give the line length (121 or 133), and StNoLen to give
the number of characters needed to print a statement number (4 or 5). Then, space is reserved for

170 Assembler Language Programming for IBM System z™ Servers Version 2.00

the “fixed” parts of the line. Finally, we divide the amount of space remaining in the line by the
width needed for each reference entry, to determine the number of entries that will fit.

LineLen EQU 133 Assume 133-character print line
StNoLen EQU 4 Assume 4-character statement numbers
*
StLine DS 0CL(LineLen) Start of line
StCC DS C Carriage control character
StSymb DS CL8,C Symbol and trailing space
StLenAt DS CL4,C Length attribute and a space
StRA DS CL2,C Relocatability attribute and a space
StDefn DS CL(StNoLen),C Space for defining statement number
* Number of entries that will fit on rest of line
NXrefs EQU ((StLine+LineLen-*)/(StNoLen+1))
* Define space for references on rest of line
StRefs DS (NXrefs)CL(StNoLen+1) That's all
Figure 60. Describing an Assembler symbol cross-reference listing line

The program that uses this print line definition will probably need a constant containing the
number of cross-reference entries in the line, so we should also define a constant like

MaxRefs DS Y(NXrefs) Maximum number of references

to be used while the line is being formatted by the program.

This symbolic technique is important for several reasons.

1. The dependence of individual instructions and constants on the number and length of the
data items is more evident when we examine them.

2. If any change must be made to such EQU-dependent quantities, only one statement — the
defining EQU statement — needs to be changed, and the Assembler will re-calculate all the
other quantities depending on it.

3. Statements using the EQU-defined symbols will appear in the Assembler's symbol cross-
reference listing.

Experience shows that

Programs are simpler when the definition of data objects is cleanly sepa-
rated from the instructions that manipulate those objects.

Exercises

13.6.1.(2) Suppose the example above that defines the group of words named FGroup was
written

NWords Equ 5 Five-word group this time
FGroup DS (NWords-1)F Space for group
LastWord DS F Reserve space for LastWord

Determine if this definition gives the same or different results.

13.7. Constants Depending on the Location Counter

We often define address constants with the name of a data item, particularly when we need to
provide that address to another program, as in

DC A(MyData) Address of “MyData”

While it's rare to need the address of a position in a program, as in

DC A(*) This address

Chapter IV: Defining Constants and Storage Areas 171

we often need the offset of one part of a program relative to another. For example, sometimes it
is useful to define constants whose values depend on one another in some regular way. For
example, suppose we need a table of 32 bytes containing the binary values 31, 30, 29, ..., 2, 1, 0.
We can define the table with an A-type constant:

DownTbl DC 32AL1(DownTbl+31-*)

When the first byte is to be generated, * has the same value as the symbol DownTbl, so the
expression in the constant has value 31. The Assembler does not generate 32 copies of this con-
stant: when a Location Counter Reference appears in an expression in the nominal value of
A-type and Y-type constants, the expression is re-evaluated before generating each constant.

As each byte is generated, the value of * increases by 1 because the explicit length modifier speci-
fies length 1. Thus the last (32nd) byte will be at DownTbl+31, and the expression will evaluate to
0 as desired.

As another example, suppose we want to build a table of halfword binary integers containing the
squares of the integers from 1 to 40. We can write

Sqrs DC 40Y((*-Sqrs+2)*(*-Sqrs+2)/4)

where the division by 4 is needed because halfword constants are being generated, so each
Location Counter Reference * increases by 2 for each constant generated.

We will find other uses for LC-dependent constants when we discuss data structures in Chapter
XI.

Exercises

13.7.1.(3) The Assembler lets you specify an Exponent Modifier for some types of constant, as
described in Section 11.8. It is written with the letter E and the value of the modifier imme-
diately preceding the delimiter before the nominal value of the constant. It specifies a power of
ten multiplying the nominal value of the constant.

Suppose you want to generate a table of the first ten powers of 10 (starting at 100) and you
write the statements

POWERS DS 0F
DC 10FE((*-POWERS)/4)'1'

What do you think will happen? Can the Assembler generate the desired constants? If not,
what would have to be done to make the Assembler do what you want?

13.7.2.(3)+ Assume the Assembler's Location Counter is X'12345' when it reads each of the
following sets of statements. For each of the five symbols, give its value and Length Attribute,
and show the generated constants (omitting any initial zero bytes inserted by the Assembler for
alignment).

• A DC C'U&&I'
• B DC A(*)
• DS 0XL7C

C DC H'137'
• D DC (B'10')AL(B'10')(B'10')
• E DC C'A()',A(C' ')
• F Equ *

DC 2Y(*-F)

13.7.3.(2) Analyze the DC statement named Sqrs above to determine how it correctly generates
a table of squares. Then, write a short program to assemble the statement.

13.7.4.(3) Suppose you want to create a table of 256 bytes in which each byte contains the
number of 1-bits in the number representing the byte's offset from the start of the table. For
example, the byte at offset 19 should contain 3, the number of 1-bits in B'10011'. Consider the
following:

172 Assembler Language Programming for IBM System z™ Servers Version 2.00

T DC 256AL1(*-T-(*-T)/2-(*-T)/4-(*-T)/8-(*-T)/16-(*-T)/32-(*-X
T)/64-(*-T)/128)

Assemble the statement and verify that it generates the correct values. Then, explain why they
are correct.

13.8. Assembly Time and Execution Time, Revisited (*)

We will soon investigate many System z instructions that manipulate data, so it is worth
reviewing some concepts relating assembly and execution times. Suppose we have an area of a
program

area of program
┌────────────────┐
│ │
└────────────────┘

that will eventually contain some data. At assembly time, we give the area a name,

area of program name of area
┌────────────────┐ ┌───────┐
│ │�─────┤ FDATA │
└────────────────┘ └───────┘

and the Assembler assigns a location.

area of program name of area
┌────────────────┐ ┌───────┐

assembly- │ │�─────┤ FDATA │
time └────────────────┘ └───────┘

location �
┌───────┐ │
│ 12468 ├───────────┘
└───────┘

We might also specify a bit pattern for the initial contents of the area.

area of program name of area
┌────────────────┐ ┌───────┐
│ │�─────┤ FDATA │

assembly- └────────────────┘ └───────┘
time � �

location │ │ contents
┌───────┐ │ │ ┌──────────┐
│ 12468 ├───────────┘ └───│ DC F'12' │
└───────┘ └──────────┘

The name of the area has attributes such as value, length, and relocatability, all of which are dis-
tinct from the value we assign to the bit pattern that is the contents of the area.

area of program name of area
┌────────────────┐ ┌───────┐
│ │�─────┤ FDATA │

assembly- └────────────────┘ └───────┘
time � � �

location │ │ contents │ attributes of name
┌───────┐ │ │ ┌──────────┐ │ ┌────────────────────┐
│ 12468 ├───────────┘ └───┤ DC F'12' │ └───┤ length, val, reloc │
└───────┘ └──────────┘ └────────────────────┘

When the program is executed, this assembly-time information is gone. During loading by the
Program Loader, the area of the program is assigned an address in memory. Its contents may
have changed as the program is executed.

Chapter IV: Defining Constants and Storage Areas 173

execution-
time execution-time

 address contents of memory
┌────────┐ ┌─────────────────┐
│ 9470A0 │────────│ X'4040405C' │
└────────┘ └─────────────────┘

The “value” of the contents of the area now depends on the context in which it is used. The
contents might be treated as instructions, as data of various types, or as commands to be obeyed
by an input-output device. The interpretation of the bit pattern depends only on how those bits
are used, and is not inherent in the bits themselves, nor in any characteristics you assigned to
them at assembly time. In this example, the contents of the area of memory may be validly inter-
preted as (1) an instruction, (2) a word binary integer, (3) a floating-point number, (4) a 9-digit
packed decimal number, (5) a character string, and (6) a four-byte bit pattern, among others!

Ideally, the execution-time interpretation of the bit pattern will be the same as the assembly-time
interpretation. Instructions will be interpreted only as instructions and not as data, character
strings will be used as character strings and not as floating-point numbers, and so on. Assembler
Language programming does not always achieve this ideal in practice; but it also gives you much
more flexibility.87

13.9. Summary Observations

As mentioned in the footnote on page 137, the name of the assembler instruction “Define
Constant” can be misleading, because the generated machine language data may not be constant
during the execution of your program. And even if you intended the data to remain constant,
your program may accidentally change its value. (Review the example in Figure 42 on page 122!)

In fact, you can define a “constant” that is actually a machine instruction. For example, if the
data generated by the statement

DC X'1A22'

is executed as an instruction, it will add the contents of GR2 to itself.

Another source of confusion may be the fact that you can specify a nominal value in a DS state-
ment, as in

NoData DS C'This won''t generate any machine language data'

There are other contexts where DC statements generate no machine language data, such as
Dummy Control Sections (“DSECTs”) and Common (“COM”) sections that we'll discuss in
Chapter XI.

There are also potentially misleading names for machine instructions. For example the MVC
instruction's name is “Move Characters”, but its operation actually copies bytes that may or not
be character data.

In summary: don't take the names of assembler and machine instructions too literally. Follow the
old advice to “Watch what they do, not what they say”.

Terms and Definitions
EQU Extended Syntax

Additional operands on EQU instructions that provide additional information about the
attributes of the symbol defined by the EQU statement.

87 Some say Assembler Language gives you more “rope you can use to hang yourself”, but that's part of what makes
Assembler Language programming fun.

174 Assembler Language Programming for IBM System z™ Servers Version 2.00

ORG Extended Syntax
Additional operands on ORG statements that allow LC alignment to a specific power-of-two
boundary, and an offset from that position.

parameterization
A valuable technique for adding flexibility and generality to program definitions, typically by
defining assembly-time constants in EQU statements.

zero duplication factor
A duplication factor that causes LC alignment without generating a constant. Skipped bytes
are zeroed for DC instructions if the immediately preceding byte contains object code.

Programming Problems

Problem 13.1.(2)+ Write a program to assemble the DC statements in Section 13.7 on page
171, and verify that the expected constants are generated.

Problem 13.2.(1)+ Write a program in which you define this set of four four-byte binary inte-
gers:

Ints DC F'-1046306171,-1803381883,-1723823710,1082565781'

Then, define a 16-byte character string named Chars occupying the same storage as the four
integers. Then, display the 16 bytes of the character string as EBCDIC characters.

Chapter IV: Defining Constants and Storage Areas 175

176 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter V: Basic Instructions

VV VV
VV VV
VV VV
VV VV
VV VV
VV VV
VV VV
VV VV
VV VV
VV VV

 VVVV
 VV

The six sections of this chapter treat instructions basic to almost all Assembler Language pro-
grams.

• Section 14 discusses typical instructions that move data between memory and the general regis-
ters, and among the general registers. (We'll explore instructions that use data in the Floating-
Point Registers in Chapter IX.)

• Section 15 describes the important “Branch on Condition” instructions that let you make deci-
sions about alternate execution paths in your program.

• Section 16 introduces the instructions that perform binary addition, subtraction, and compar-
ison using signed and unsigned binary integer operands.

• Section 17 examines instructions that shift binary numbers in the general registers.

• Section 18 continues our investigation of binary arithmetic operations, examining instructions
that multiply and divide numbers in the general registers.

• Section 19 describes instructions performing the logical operations AND, OR, and Exclusive
OR on bits in the general registers.

The instructions in this chapter operate on binary data in the general registers, except those in
Section 15, which do not involve data.

A comment on terminology: we have used terms like “halfword” and “word” (or “fullword”) to
mean data items 2 bytes or 4 bytes long. This has been common usage for many years. However,
the z/Architecture Principles of Operation uses these terms much more precisely: a halfword must
be aligned on a 2-byte boundary, and a word must be aligned on a 4-byte boundary, and similarly
for doublewords and quadwords. Please understand that we may use terms like “word” and
“halfword” inexactly.88 Very few instructions require strict alignment of their operands; we will
point out those instructions that do require operand alignment.

88 Correct alignment is always a recommended practice, so our less-than-precise usage isn't usually harmful.

Chapter V: Basic Instructions 177

14. General Register Data Transmission

11 44
111 444
1111 4444
11 44 44
11 44 44
11 44 44
11 44444444444
11 444444444444
11 44
11 44

1111111111 44
1111111111 44

This section introduces instructions that transmit data among the general registers, and between
the registers and memory. We will see instructions that handle data in the 32-bit portion of a
64-bit register, and in the full length of a 64-bit register. (You will remember from Figure 9 on
page 45 in Section 3.3 that data items in general registers are frequently manipulated in 32-bit or
64-bit lengths.)

The instructions described here transfer data:

• between the rightmost 32 bits of general registers and memory

• among the rightmost 32 bits of general registers89

• between 64-bit general registers and memory

• among the 64-bit general registers.

We'll sample some typical instructions here; there are others we'll see later. The first two groups
of instructions leave the high-order half of a 64-bit register unchanged, as illustrated in Figure 61.

�───────────────────────────── 64 bits ─────────────────────────────
�─────────── 32 bits ──────────── �─────────── 32 bits ────────────
┌─────────────────────────────────┬─────────────────────────────────┐
│�─── untouched by 32─bit ops ───│ active │
└─────────────────────────────────┴─────────────────────────────────┘
 0 31 32 63

Figure 61. 32-bit portion of a 64-bit general register

The high-order half is “invisible” to the first groups of instructions described here. The System z
architects wanted to ensure compatibility with programs that use only 32-bit registers, so that the
presence of the high-order bits of the 64-bit register would have no effect on existing programs.

Note: The terms and notations used for various portions of a general register can sometimes be
confusing. The z/Architecture Principles of Operation uses “High” and “Low” to refer to the

89 We will occasionally use the older term “32-bit general register” to mean “the rightmost 32 bits of a 64-bit general
register.” In System z, all general registers are 64 bits long; before z/Architecture was introduced, general registers
were 32 bits long, so the older terminology is still useful for instructions introduced prior to z/Architecture.

178 Assembler Language Programming for IBM System z™ Servers Version 2.00

left/top/upper and right/bottom/lower portions respectively; but the letters H and L are also used
in other contexts with (sometimes) different meanings.

We will use “GR R1” to mean the general register referenced by the “R1” operand of a machine
instruction statement, and “GRn” to mean “general register n”.

The next several sections will describe instructions that affect only the rightmost 32 bits of a
64-bit general register. We'll examine instructions that affect all 64 bits of a register starting in
Section 14.7 on page 189.

14.1. Load and Store Instructions

We first examine instructions that transmit data between general registers and memory. The most
important are L (Load) and ST (Store), shown in Table 34.

Table 34. Load/Store instructions for 32-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

58 L RX Load 50 ST RX Store

We saw these two instructions in several earlier examples; the operand's Effective Address should
be divisible by 4, indicating a word operand.90 Neither instruction changes the Condition Code.

As a reminder, an RX-type instruction has the form shown in Table 35.

Table 35. Format of an RX-type instruction

• The Load instruction L copies 4 bytes of data from memory, starting at the Effective Address,
to bits 32-63 of a general register. When executed,

L R1,D2(X2,B2)

places a copy of the word at the Effective Address of the assembler instruction statement's
second operand from memory into GR R1. The original contents of GR R1 are lost, and the
word in memory is unchanged. (Remember, “operand” here means both (1) the assembly
time operand field in the assembler instruction statement, and (2) the data referenced at exe-
cution time by the instruction.)

For example, to set the contents of GR9 to zero, we could write

L 9,=F'0'

(this is definitely not the best way to zero a register, as we will see). To set it to the maximum
negative number, we could write

L 9,=F'-2147483648'

• The Store instruction ST copies data from a general register to memory. It is written explicitly
as

ST R1,D2(X2,B2)

When executed, it causes a copy of the contents of bits 32-63 of GR R1 to replace the word in
memory at the Effective Address of the second operand. The contents of the register are
unchanged, and the original contents of the word area are lost.

opcode R1 X2 B2 D2

90 In the original System/360 systems, correct boundary alignment was required. This requirement was annoying or
inconvenient to many programmers, so IBM introduced the “Byte-Oriented Operand Facility” (or “BOOF”) to relax
the stringent alignment requirement. Correct alignment is still recommended because misaligned operands can some-
times cause programs to run much slower.

Chapter V: Basic Instructions 179

For example, to put a copy of the contents of the word at A into the word at B, we could write

L 0,A
ST 0,B

and to exchange the contents of the words at A and B, we could write

L 1,B L 0,A L 0,A L 0,A
L 0,A or L 1,B or L 1,B but ST 0,B
ST 0,B ST 0,B ST 1,A not L 0,B
ST 1,A ST 1,A ST 0,B ST 0,A

assuming that GR1 is not being used as the program's base register!

L and ST, like other instructions referencing addresses in memory, are subject to interruptions due
to addressing and memory protection, which provides some control over the areas of memory
accessible to a program.

Exercises

14.1.1.(1) What is the difference at assembly and execution times between

L 5,BBB
BBB EQU 8

and

L 5,BBB
BBB DC F'8' ?

14.2. Multiple Loads and Stores

We sometimes want to transmit groups of 32-bit words between memory and the right halves of
several registers. This can be done with a sequence of L or ST instructions, as in

L 1,A ST 1,B
L 2,A+4 and ST 2,B+4
L 3,A+8 ST 3,B+8

If we use more than a very few registers, this is cumbersome and slow. Instead, we use the LM
(Load Multiple) and STM (Store Multiple) instructions shown in Table 36. Neither instruction
changes the Condition Code.

Table 36. Multiple load/store instructions for 32-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

98 LM RS Load Multiple 90 STM RS Store Multiple

Each is RS-type, for which three operands must be specified in the operand field of the assembler
instruction statement, as follows:

LM (or STM) R1,R3,D2(B2) (explicit address)
LM (or STM) R1,R3,S2 (implied address)

The components of the assembled instruction are pictured in Table 37.

Table 37. RS-type instruction format

As usual, the assembler instruction statement's R1 and R3 operands must be absolute expressions
between 0 and 15. The base and displacement may be given explicitly, or derived by the Assem-
bler from an implied address.

opcode R1 R3 B2 D2

180 Assembler Language Programming for IBM System z™ Servers Version 2.00

Beginning with GR R1, the CPU stores the contents of registers (for STM) or loads the contents
of registers (for LM) in order of increasing register number into or from successive words in
memory starting at the Effective Address of the second operand, until GR R3 has been stored or
loaded. If R3 is less than R1, then registers GR R1 through GR15 will be stored/loaded followed
by registers GR0 through GR R3. Thus, register 0 may be considered to “follow after” register
15, so that the general registers “wrap around” from highest to lowest numbered.

Thus, STM 15,0,X will store c(GR15) at X and c(GR0) at X+4, and LM 15,0,X will load GR15
from c(X) and GR0 from c(X+4).

For example,

LM 2,6,=5F'0'

will cause the contents of general registers 2, 3, 4, 5, and 6 to be set to zero. Similarly,

STM 0,15,SAVE

will cause the contents of all sixteen registers to be stored beginning at SAVE. The symbol SAVE
could have been defined in a statement such as

SAVE DS 16F

This DS instruction ensures correct boundary alignment for the second operand address of the
STM instruction. If we assume that GR1 contains the address of a list of four words, we can load
them into registers 7 through 10 by executing

LM 7,10,0(1)

Similarly, if we assume that register 13 contains the address of a block of 18 contiguous words,
then

STM 14,12,12(13)

will store registers 14, 15, 0, ..., 12 in successive words, beginning with the fourth word of the
given area. While these last two examples may seem contrived, they illustrate parts of common
conventions for communicating with subprograms.

As a final example of LM and STM, suppose we wish to exchange the contents of GR0 through
GR7, as a group, with the contents of GR8 through GR15. We could write

STM 0,15,SAVE STM 8,7,SAVE
LM 8,7,SAVE or LM 0,15,SAVE
- - - - - -

SAVE DS 16F SAVE DS 16F

This ignores one important detail: one of the general registers must have been specified as a base
register so that the symbol SAVE can be addressed. The STM and LM instructions will work cor-
rectly, because the CPU calculates the Effective Address before the execute phase of the LM
instruction cycle begins. When execution is completed, however, the base register has probably
been changed, so either we must inform the Assembler that the base register is changed (with a
DROP statement, or a new USING statement), or the correct value must somehow be put back
in the original base register.

Exercises

14.2.1.(1)+ Describe the differences between these two instructions:

STM 0,0,XXX
ST 0,XXX

14.2.2.(2) In describing the STM instruction, we said that

STM 14,12,12(13)

stores registers 14 through 12 beginning with the fourth word of the save area. Explain why it
isn't the third, as the displacement value 12=3*4 might imply.

Chapter V: Basic Instructions 181

14.2.3.(1) What is the maximum number of general registers whose contents can be modified by
a single instruction?

14.2.4.(1) Describe the effect of each of the following instructions:

(1) LM 15,15,X
(2) STM 0,0,X
(3) LM 0,0,X

14.2.5.(5) Suppose two symbols have been defined with the statements

A EQU 4
B EQU 9

Then, the instruction STM A,B,X stores registers GR4 through GR9 starting at X, and we can
compute the number of registers stored with the statement

NREGS EQU B-A+1

On the other hand, if we had defined A and B with

A EQU 9
B EQU 4

then the instruction STM A,B,X would store registers GR9 through GR15 and GR0 through
GR4. We can then compute the number of registers stored with the statement

NREGS EQU B-A+17

Thus, the value assigned to NREGS depends on what values are assigned to the symbols A and B.
Write an expression in the operand field of the EQU statement that defines NREGS such that its
value will always tell how many registers were stored by the STM, no matter what values
(between 0 and 15) are assigned to the symbols A and B.

14.3. Halfword Data

Table 38 shows the two instructions described in this section; neither instruction changes the
Condition Code.

Table 38. Halfword load/store instructions for 32-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

48 LH RX Load Halfword 40 STH RX Store Halfword

Transmitting halfword data between memory and registers is somewhat more complicated,
because a 16-bit halfword requires only half of a 32-bit general register. This may seem obvious,
but we need to know (1) which half of the register, and (2) what happens to the other half.

The instructions LH (Load Halfword) and STH (Store Halfword) are similar to L and ST; both
are RX-type instructions, and the operand field entry is exactly the same.

STH is simpler: the rightmost 16 bits of GR R1 replace the halfword in memory at the Effective
Address of the second operand, and GR R1 remains unchanged. If the 32-bit contents of the
register is an integer too large to be correctly represented as a 16-bit two's complement integer,
the high-order 16 bits are truncated, and significance is lost. No indication is made that the
halfword in memory may not have the desired value!

182 Assembler Language Programming for IBM System z™ Servers Version 2.00

When LH transmits data from memory to a general register, the CPU assumes you want to
perform arithmetic operations on it, so the result should occupy the entire 32-bit register with the
least significant bit at the right-hand end. To give a correct representation in the 32-bit register,
copies of the sign bit of the 16-bit halfword are sign-extended to the left to occupy the left half of
the first-operand general register.91 This is illustrated in Figure 62.

┌───────────────────┬───────────────────┐
│�─ sign─extended �─┼s │ GR R1
└───────────────────┴───────────────────┘
32 48 � 63

┌─────────┴─────────┐
│s │ Halfword in memory
└───────────────────┘
0 15

Figure 62. Sign extension by LH instruction

For example, the two statements

LH 0,=H'1' (=H'1' = X'0001'), c(GR0) = X'00000001'

and

LH 0,=H'-1' (=H'-1' = X'FFFF'), c(GR0) = X'FFFFFFFF'

set the contents of GR0 to X'00000001' and X'FFFFFFFF', as indicated. So long as the value of a
halfword operand X from memory satisfies

-215 ≤ c(X) < 215

it can be represented correctly in 16 bits, it will be correctly transmitted by LH and STH
instructions. Otherwise, the problems illustrated in the next two examples can occur.

Suppose we execute the instructions in Figure 63. The contents of the registers is given in the
remarks fields of the instruction statements.

L 0,=F'65537' c(GR0)=X'00010001' +65537 = 216+1
STH 0,A c(A) = X'0001' Lost high-order bit!
LH 1,A c(GR1)=X'00000001' Lost significance!
- - -

A DS H
Figure 63. Loss of significant digits using STH/LH

The contents of GR0 and GR1 will be different because the quantity in GR0 stored by the
second instruction is too large.

A more awkward result is illustrated in Figure 64.

L 0,=F'65535' c(GR0)=X'0000FFFF' +65535
STH 0,A c(A) = X'FFFF' No lost bits, but wrong sign
LH 1,A c(GR1)=X'FFFFFFFF' (−1!) Lost significance!
- - -

A DS H
Figure 64. Loss of significant digits using STH/LH

In this case, the result in GR1 has sign and magnitude different from the original operand.

You can see that when you use halfword data, you must be careful to understand what might
happen when storing, loading, or doing (implicitly word) arithmetic with such quantities.

91 We will see many uses of sign extension — copying the sign bit into the higher-order bit positions of a general register
— so it's important to understand its behavior.

Chapter V: Basic Instructions 183

Exercises

14.3.1.(3) Suppose the STH instruction was modified so that it stored the sign bit and the right-
most 15 bits of the 32-bit R1 register, so the result contains bits 0 and 17-31 of the original
operand. By considering operands like those in Figures 63 and 64, determine whether this form
of the instruction will solve some of the problems in using halfword data we've discussed here.

14.3.2.(2) Suppose GR1 contains X'12345678'. What will be in GR2 after executing these
instructions?

ST 1,A
LH 2,A+2

Now, suppose GR1 contains X'FEDCBA98'; what will be in GR2 after executing the same
instructions?

14.3.3.(2)+ Suppose an area of memory contains X'4040405C'. Is it an instruction or data?
Explain.

14.3.4.(1) What similarities can you find among the opcodes assigned to L, LH, and LM com-
pared to those of ST, STH, and STM?

14.3.5.(3)+ The inequality following Figure 62 on page 183 says that values ≥ 215 or
< − 215 −1 can cause problems when used as operands of LH and STH instructions. Write and
execute program segments like that in Figure 63 on page 183 to test this assertion.

14.4. Insert and Store Character

The IC (Insert Character) and STC (Store Character) instructions shown in Table 39 transmit a
single byte between a general register and memory.

Table 39. Character insert/store instructions for 32-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

43 IC RS Insert Character 42 STC RS Store Character

The operand field entry is written as for L and ST, but you need not worry about boundary align-
ment for the address of the second operand, since only a single byte of data is being moved.

The instruction

STC R1,D2(X2,B2)

stores the rightmost byte of GR R1 in memory at the Effective Address of the second operand.
The contents of GR R1 and the Condition Code are both unaffected.

The reverse operation, IC, is called “Insert Character” rather than “Load Character”, because the
byte from memory is inserted into the rightmost byte of the register without disturbing the other
bytes. No sign extension is done.

Figure 65 on page 185 illustrates the actions of IC and STC.

184 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌─────────────────────────────┬─────────┐
│�──────── unchanged ────────│ │ GR R1
└─────────────────────────────┴─────────┘
32 56 � 63

�
┌─────────┐
│ │ Byte in memory
└─────────┘
0 7

Figure 65. Action of IC and STC instructions

As an example, the instructions in Figure 66 can be used to copy the two characters in the char-
acter constant at X, and store them in reverse order at Y.

IC 0,X Get 1st byte of constant
STC 0,Y+1 Store at 2nd byte of Y
IC 0,X+1 Get 2nd byte of constant
STC 0,Y Store byte at Y
- - -

X DC C'AB'
Y DS CL2 Becomes C'BA'
Figure 66. Interchanging two bytes with IC and STC

If memory space is at a premium, you can use a single byte to contain a small integer constant. It
can be placed in a register using these instructions:

L 1,=F'0' Clear GR1
IC 1,LitlCon Insert character
- - -

LitlCon DC FL1'53' Explicit length, no alignment
Figure 67. Inserting a small number into a register

but for small constants it is much better to use other available instructions.

Exercises

14.4.1.(3) Write an instruction sequence that will replace the byte at XX with a byte that con-
tains in binary the number of one-bits that were present in the original byte. For example, if
the initial contents of XX was X'48', the final contents should be X'02'. (Hint: define a
carefully-constructed 256-byte constant, and use an indexed IC instruction. Show only enough
of the constant to clarify how you constructed it.)

14.5. ICM and STCM Instructions

ICM and STCM are very flexible RS-type instructions. They are generalizations of the normal
load/store and insert/store character instructions, because you can specify exactly which bytes of a
register participate in the “insert” or “store” operation. Table 40 lists the two instructions:

Table 40. Insert/Store characters under mask instructions for 32-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

BF ICM RS Insert Characters Under
Mask

BE STCM RS Store Characters Under
Mask

The final “M” character on these two mnemonics does not mean “Multiple” as in LM and STM,
but “Mask” instead.

Chapter V: Basic Instructions 185

The instruction format of ICM and STCM is very similar to that of LM and STM, as shown in
Table 37 on page 180, but the R3 digit is now interpreted as a mask digit M3, as illustrated in
Table 41. The M3 operand is a bit pattern, not a register number.

Table 41. RS-type instruction format for ICM and STCM

The machine instruction statement operand formats for ICM and STCM are like those of LM
and STM:

ICM (or STCM) R1,M3,D2(B2) (explicit address)
ICM (or STCM) R1,M3,S2 (implied address)

The four bits in the mask digit correspond to the four bytes of the rightmost 32 bits of the general
register designated by GR R1. The leftmost bit of the mask M3 (bit 12 of the instruction) corre-
sponds to the leftmost byte of the 32-bit register, the next bit corresponds to the second byte, and
so forth. If all mask bits are zero, nothing is inserted or stored.

The CPU executes the STCM instruction by first calculating the Effective Address. Then, where
one-bits in the mask appear, the corresponding bytes in GR R1 are stored into memory in contig-
uous bytes, starting at the Effective Address. Even though separate bytes in GR R1 may be
stored, they are not separated in memory. STCM does not change the Condition Code, and no
boundary alignment is required for the second operand.

Suppose the four-byte area of memory named AA contains X'01020304', GR12 contains
X'FFD0A061', and we execute this STCM instruction:

STCM 12,B'0101',AA Store bytes 2 and 4 at AA, AA+1
- - -

AA DC X'01020304'

The M3 mask specifies that the second and fourth bytes of GR12 are to be stored into the first
two bytes starting at AA, so the contents of memory will become X'D0610304'.

STCM can be considered a generalization of the STC, STH, and ST instructions: the three
instructions

STC 12,AA Store rightmost byte at AA
STH 12,BB Store 2 rightmost bytes at BB
ST 12,CC Store all 4 bytes at CC

behave just like these three STCM instructions:

STCM 12,B'0001',AA Store rightmost byte at AA
STCM 12,B'0011',BB Store 2 rightmost bytes at BB
STCM 12,B'1111',CC Store all 4 bytes at CC

except that now the data areas named by the symbols BB and CC are not expected to be halfword
and word aligned, as recommended for STH and ST. A possible disadvantage of STCM is that it
cannot be indexed, since it is not an RX-type instruction.

The ICM instruction performs the inverse operation to STCM, and also does not expect the
second operand to be aligned; however, ICM does set the Condition Code. As above, suppose the
contents of the four bytes in memory in an area named AA contain X'01020304', and GR12 ini-
tially contains X'FFD0A061'. Then if we execute the instruction

ICM 12,B'0101',AA Insert into bytes 2 and 4 of GR12
- - -

AA DC X'01020304'

the contents of GR12 will become X'FF01A002'.

opcode R1 M3 B2 D2

186 Assembler Language Programming for IBM System z™ Servers Version 2.00

If all the mask bits are zero, or if all the inserted bytes are zero, the CC is set to zero. Otherwise,
the leftmost bit of the first byte inserted anywhere into GR R1 is inspected: if the leftmost bit is a
one-bit, the CC is set to 1; otherwise the CC is set to 2. The settings are summarized in
Table 42.

Table 42. CC settings after ICM instruction

This method of setting the CC is easier to understand if we consider the case when the mask digit
is all one-bits, meaning that four bytes are brought from memory and placed into GR R1. If we
execute these three instructions, the CC settings are as indicated.

ICM 1,15,=F'0' CC set to 0, c(GR1) is zero
ICM 2,15,=F'-1' CC set to 1, c(GR2) is negative
ICM 3,15,=F'+1' CC set to 2, c(GR3) is positive

Exercises

14.5.1.(2) Write a sequence of two instructions (using ICM and STCM) that will set the CC to
zero if the middle two bytes of GR1 are zero. For example, if c(GR1) = X'A2000064', the CC
should be set to zero.

CC Meaning

0 M3 = 0, or all inserted bytes are zero

1 Leftmost bit of first inserted byte = 1

2 Leftmost bit of first inserted byte = 0

14.6. RR-Type Data Transmission Instructions

We now examine RR-type instructions that transmit data among the 32-bit right halves of the
general registers; four of them set CC. The instructions are LR (Load Register), LTR (Load and
Test Register), LCR (Load Complement Register), LNR (Load Negative Register), and LPR
(Load Positive Register). We saw the LR instruction in the machine instruction statement in
Figure 30 on page 78; it is the only one of the five that does not set the CC.

Table 43. Register/register instructions for 32-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

18 LR R R Load Register 10 LPR R R Load Positive Register

11 LNR R R Load Negative Register 12 LTR R R Load and Test Register

13 LCR R R Load Complement Register

The operand field entry of the instructions is written

R1,R2
where R2 need not differ from R1. For example,

LCR 0,0 Complement c(GR0)

forms the two's complement of the contents of GR0 without affecting any other register.

The action of the first five instructions is summarized in Table 44 on page 188, where the arrow
means “replaces” and the vertical bars |...| mean “absolute value”. As noted above, only the
rightmost 32 bits of the registers are involved.

Chapter V: Basic Instructions 187

Table 44. Action of five RR-type general register instructions

The CC is set to indicate the status of the result in GR R1, as shown in Table 45.

Table 45. Condition Code settings

You can see in Table 44 that the actions of LR and LTR are identical except that LTR sets the
CC. We often test the contents of a register by writing instructions like

LTR 4,4

that has no effect other than setting the CC. We test the CC with the important “Branch on
Condition” instructions we'll see in Section 15.

For LCR, LPR, and LNR, the arithmetic operations use 32-bit two's complement representation.
Overflow can occur during execution of LCR or LPR only if c(GR R2) is the maximum negative
number −231. (It may help to review the discussion of overflow in Section 2.8 on page 27.)

If the overflow condition causes a program interruption, the Interruption Code is set to 8, indi-
cating a Fixed-Point Overflow.92 No overflow can occur executing LNR because all representable
positive values have valid two's complement representations of their negative values.

This example illustrates possible uses of these instructions.

Mnemonic Action CC Values

LR c(GR R1) �── c(GR R2) Not changed

LTR c(GR R1) �── c(GR R2) 0,1,2

LCR c(GR R1) �── ─c(GR R2) 0,1,2,3

LPR c(GR R1) �── │c(GR R2)│ 0,2,3

LNR c(GR R1) �── ─│c(GR R2)│ 0,1

CC Meaning

0 Result is zero

1 Result is negative

2 Result is positive

3 Result has overflowed

* First, initialize GR2 and GR3
LM 2,3,=F'1,0' c(GR2)=1, c(GR3)=0, CC not set
LR 7,3 c(GR7)=0, CC not set
LTR 2,2 c(GR2)=1, CC=2
LNR 1,3 c(GR1)=0, CC=0
LCR 4,2 c(GR4)=-1, CC=1
LPR 0,4 c(GR0)=+1, CC=2
LNR 5,2 c(GR5)=-1, CC=1

Figure 68. Examples of some RR-type instructions

We saw in Section 14.5 on page 185 that these three ICM instructions set the Condition Code as
indicated in the comment fields:

ICM 1,15,=F'0' CC set to 0, c(GR1) is zero
ICM 2,15,=F'-1' CC set to 1, c(GR2) is negative
ICM 3,15,=F'+1' CC set to 2, c(GR3) is positive

92 This condition is called “fixed-point overflow”, to distinguish it from floating-point and decimal overflow. It is one of
four program interruptions you can allow or disallow by setting bits in the Program Mask sketched in Figure 12 on
page 47. We sometimes say that such disallowed interruption conditions are “masked” or “disabled”, and when
allowed they are “unmasked” or “enabled”. We'll see in Section 16.2.1 how the SPM instruction lets you control
these four program interruptions.

188 Assembler Language Programming for IBM System z™ Servers Version 2.00

These CC settings are exactly what we would have obtained if we had written the six instructions

L 1,=F'0' CC unchanged
LTR 1,1 CC set to 0, c(GR1) is zero
L 2,=F'-1' CC unchanged
LTR 2,2 CC set to 1, c(GR2) is negative
L 3,=F'+1' CC unchanged
LTR 3,3 CC set to 2, c(GR3) is positive

That is, an ICM instruction whose mask is all one-bits is equivalent to a L instruction followed
by an LTR instruction,.

Unfortunately, this parallel is invalid for the LH instruction, because ICM does not extend the
sign bit to the left to fill the register as does LH. The ICM instruction in

L 1,=F'0' Set GR1 to zero, CC unchanged
ICM 1,B'0011',=H'-1' Sets GR1 to X'0000FFFF', CC = 1

sets the CC to 1 (indicating a one-bit at the left end of the first inserted byte), but the leftmost
two bytes of GR1 are still zero. Conversely, the instruction

LH 1,=H'-1' Set GR1 to X'FFFFFFFF'

does not affect the CC, but GR1 will contain all one-bits.

Exercises

14.6.1.(2) What changes to the Assembler would be needed to let you use a (nonexistent)
“STR” opcode (that is, “Store Register”, in the same sense as “Load Register”)?

14.6.2.(2) For each instruction in Table 43 on page 187, what operands in GR R2 can result
in the CC being set to 3?

14.7. Load, Store, and Insert for 64-bit General Registers

We'll now look at instructions that manage data using the full 64 bits of a general register. Con-
trast Figure 69 below with the 32-bits-only view in Figure 61 on page 178.

�─────────────────────────────────── 64 bits ──────────────────────────────────�
┌──┐
│ │
└──┘
 0 63

Figure 69. 64-bit general register

The instructions are shown in Table 46:

Table 46. Register/storage instructions for 64-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

E304 LG RXY Load E324 STG RXY Store

E315 LGH RXY Load Halfword (64←16)

EB04 LMG RSY Load Multiple EB24 STMG RSY Store Multiple

EB96 LMH RSY Load Multiple High EB26 STMH RSY Store Multiple High

EB80 ICMH RSY Insert Characters Under
Mask (High)

EB2C STCMH RSY Store Characters Under Mask
(High)

Chapter V: Basic Instructions 189

The letter “G” is used in almost all the instructions involving 64-bit registers. For example, LG
and STG are the 64-bit equivalents of L and ST.93

Here, we introduce two variations on the RX and RS formats. RXY-type instructions behave
just like RX-type instructions, except that they provide a longer, and signed, displacement field, as
shown in Table 47.

Table 47. RXY-type instruction format

Another instruction type is RSY. Its format and behavior are very similar to RS-type
instructions, and it shares the “long-displacement” format with RXY-type instructions.

Table 48. RSY-type instruction format.

For now, we'll treat both RXY-type and RSY-type instructions as though they are identical to
RX-type and RS-type instructions, because they do very similar things. Also note that the first
four bytes of RX-type and RS-type instructions have the same format as the first four bytes of
RXY-type and RSY-type instructions, respectively.

We'll investigate the added usefulness of the “long-displacement” instructions and their “DL2”
and “DH2” fields (and how the Assembler handles them) in Section 20.1 on page 302.

We've seen instructions that manipulate data only in the low-order 32 bits of a general register,
while others deal with all 64 bits. To help us distinguish these two views of a general register, we
introduce another notation, GR Gn. Thus, GG R1 will mean the 64-bit general register refer-
enced by an R1 operand, while GR R1 will continue to mean the 32-bit general register referenced
by an R1 operand. Similarly, GGn will mean the specific 64-bit register referenced by GR Gn,
and GRn will mean the specific 32-bit register referenced by GR Rn.

The LG, STG, LMG, and STMG instructions do for 64-bit registers exactly the same actions as
their 32-bit equivalents L, ST, LM, and STM.

1. To illustrate STMG, suppose we save 64-bit general registers GG0 through GG3 at Save0123:

STMG 0,3,Save0123 Save 64-bit GG0 through GG3
- - -

Save0123 DS 4D Reserve 4 doublewords

In memory, these would appear like this:

┌───┐
Save0123+0 │ c(GG0) │

├───┤
Save0123+8 │ c(GG1) │

├───┤
Save0123+16│ c(GG2) │

├───┤
Save0123+24│ c(GG3) │

└───┘

opcode R1 X2 B2 DL2 DH2 opcode

opcode R1 R3 B2 DL2 DH2 opcode

93 In my opinion, “G” was chosen for two reasons. First, it was the least-used letter among the nearly 500 instruction
mnemonics supported by Enterprise System/390 architecture, the predecessor of System z. Second (and anecdotally),
the largest size latte sold at a coffee shop near IBM in Poughkeepsie, New York was called a “Grande”, so it seemed
natural to say the new large registers were similarly “Grande”. Other more descriptive letters like “L” (meaning
“Long”) were already used in many other mnemonics, where “L” can mean “Logical”, or “Long”, or “Low”.

190 Assembler Language Programming for IBM System z™ Servers Version 2.00

Then, to restore the contents of the registers, we execute

LMG 0,3,Save0123 Restore GG0 through GG3

2. The other two LM/STM instructions in tref refid=s14s8t1. end in “H”, referring to the
32-bit high-order half of a 64-bit general register.94 They do the same actions for the high-
order halves of 64-bit general registers that LM and STM do for the low-order halves. LMH
and STMH might seem unnecessary, since LMG and STMG manage both halves of a 64-bit
register in one operation. The reason they exist is “history”.95

For example, to store and load only the high-order halves of general registers 5 and 6, we can
write

STMH 5,6,High56 Save high-order half of GG5 and GG6
- - -
LMH 5,6,High56 Restore high-order half of GG5 and GG6
- - -

High56 DS 2F Save area for two 32-bit words

3. LGH is the 64-bit equivalent of LH: it sign-extends the 16-bit integer at the Effective Address
in memory to 64 bits, and places the result into GG R1.

┌──┬───────────────────┐
│�─────────── sign─extended �──────────────────────────────┼s │ GG R1
└──┴───────────────────┘
0 48 � 63

┌───────────────────┐
Halfword in memory │s │

└───────────────────┘
0 15

Figure 70. Sign extension by L G H instruction

4. The remaining two instructions in Table 46 on page 189 are ICMH and STCMH. They
behave exactly like ICM and STCM, except that the four M3 mask bits now refer to the four
bytes in the high-order or left half of GG R1. The Condition Code settings are the same as
in Table 42 on page 187.

To illustrate, suppose you want to swap the first and fourth bytes of GG0 — that is, the
high-order and low-order bytes of the high-order half of the register.

┌───┬───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ Bytes in GG0
└───┴───┴───┴───┴───┴───┴───┴───┘
� �
└─── swap ──┘

These three instructions show one way to do this:

STCMH 0,B'1001',Temp Save bytes 1 and 4 of 64-bit GG0
ICMH 0,B'1000',Temp+1 Insert original byte 4 at left end
ICMH 0,B'0001',Temp Insert original byte 1 into 4th byte
- - -

Temp DS XL2 Two-byte temporary storage

94 The letter “H” is used in mnemonics with many meanings, such as “High”, “Halfword”, etc.
95 Because 64-bit general registers were introduced after many years of program development using only 32-bit general

registers, conventions for saving and restoring the 32-bit registers are embedded in many programs. To minimize the
changes needed, programs can save the low-order register halves using existing conventions, and then save the high-
order halves elsewhere using STMH. The LMD instruction, as we will see, lets you restore both halves of 64-bit
registers from two separate save areas in one operation.

Chapter V: Basic Instructions 191

Exercises

14.7.1.(1)+ There is a LGH instruction, but no STGH instruction. Why not?

14.7.2.(2) Write a sequence of instructions to exchange the high-order and low-order halves of
GG0.

14.8. RRE-Type Data Transmission Instructions for 64-bit General Registers

As the original System/360 architecture evolved, there were not enough one-byte RR-type
opcodes available for new register-to-register instructions, so new two-byte opcodes were assigned
using a new instruction type, RRE. RRE-type instructions are four bytes long (while
“traditional” RR-type instructions are two bytes long). The 8-bit “unused” field in Table 49 is
set to zero by the Assembler.

Table 49. RRE-type instruction format

The instructions in Table 50 are RRE-type.

opcode unused R1 R2

Table 50. Register/register instructions for 64-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

B904 LGR RRE Load Register (64) B900 LPGR RRE Load Positive Register (64)

B901 LNGR RRE Load Negative Register (64) B902 LTGR RRE Load and Test Register (64)

B903 LCGR RRE Load Complement Register (64)

B927 LHR RRE Load Halfword B907 LGHR RRE Load Halfword (64←16)

The actions of the instructions in Table 51 are the same as for their 32-bit equivalents in
Table 44 on page 188.

Table 51. Action of five RR-type 64-bit general register instructions

The instructions in Figure 68 on page 188 dealt with data in 32-bit registers; their equivalents for
64-bit registers are shown in Figure 71.

Mnemonic Action CC Values

LGR c(GG R1) �── c(GG R2) Not changed

LTGR c(GG R1) �── c(GG R2) 0,1,2

LCGR c(GG R1) �── ─c(GG R2) 0,1,2,3

LPGR c(GG R1) �── │c(GG R2)│ 0,2,3

LNGR c(GG R1) �── ─│c(GG R2)│ 0,1

* First, initialize GG2 and GG3 (all 64 bits)
LMG 2,3,=FD'1,0' c(GG2)=1, c(GG3)=0, CC not set
LGR 7,3 c(GG7)=0, CC not set
LTGR 2,2 c(GG2)=1, CC=2
LNGR 1,3 c(GG1)=0, CC=0
LCGR 4,2 c(GG4)=-1, CC=1
LPGR 0,4 c(GG0)=+1, CC=2
LNGR 5,2 c(GG5)=-1, CC=1

Figure 71. Examples of some RR-type instructions for 64-bit operands

If we compare Figures 71 and 68, we see that these equivalent instructions behave similarly and
produce identical CC settings.

192 Assembler Language Programming for IBM System z™ Servers Version 2.00

LHR is similar to LR, and their operand field entries are the same. LHR takes the rightmost 16
bits of the R2 register, extends the sign bit to the left to form a 32-bit result, and places it in the
R1 register. This is illustrated in Figure 72; note its similarity to Figure 62 on page 183. The R1
and R2 registers need not be distinct.

┌───────────────────┬───────────────────┐
│�─ sign─extended �─┼s │ GR R1
└───────────────────┴───────────────────┘
32 48 � 63

┌─────────┴─────────┐
│s │ Rightmost 16 bits of GR R2
└───────────────────┘
0 15

Figure 72. Sign extension by LHR instruction

For example:

L 1,=X'456789AB'
LHR 2,1 c(GR2)='X'FFFF89AB'

We saw in Figure 63 on page 183 that large fullword values can yield incorrect values if truncated
to halfwords. The same problem can occur with LHR:

L 0,=F'65537' c(GR0)=X'00010001'
LHR 1,0 c(GR1)=X'00000001' Lost significance!

LGHR uses the rightmost 16 bits of the second operand register. Sign extension is indicated by
the notation (64←16) in tref refid=s14s8t1.. Figure 70 on page 191 shows its resemblance to
LH seen in Figure 62 on page 183.

Exercises

14.8.1.(2) Can you think of a reason why an LHR instruction would be used with identical
register operands?

14.8.2.(2)+ Suppose GR1 contains X'12345678'. What will be in GR2 after executing this
instruction?

LHR 2,1

Now, suppose GR1 contains X'FEDCBA98'; what will be in GR2 after executing the same
instruction?

14.9. The Load and Test Instructions

In Section 14.6 on page 187, we saw two ways to transfer a data item from memory to a general
register and set the CC depending on its sign:

ICM R1,B'1111',dataname
and

L R1,dataname
LTR R1,reg

ICM cannot be indexed nor can it be used for 64-bit operands, because ICM and ICMH set the
CC separately for the low-order and high-order halves of GG R1, respectively. The L/LTR and
LG/LTGR instruction pairs can be indexed, but two instructions are needed.

To eliminate these inconveniences, System z provides the LT and LTG instructions, as shown in
Table 52 on page 194:

Chapter V: Basic Instructions 193

Table 52. Load and Test instructions

Op Mnem Type Instruction Op Mnem Type Instruction

E312 LT RXY Load and Test (32) E302 LTG RXY Load and Test (64)

Their behavior is identical to the instruction pairs L/LTR and LG/LGTR, respectively.

Exercises

14.9.1.(1) How can the L/LTR and LG/LTGR instruction pairs be “indexed”?

14.9.2.(1) What operand values can cause LT or LTG to set CC=3?

14.10. Mixed 32- and 64-bit Operands

To make it easy to use 32-bit binary operands in 64-bit operations, System z provides a set of
instructions that automatically sign-extend a 32-bit operand to 64 bits. In Table 53, The LGF
instruction is RXY-type and the others are RRE-type. The notation (64←32) indicates the
extension of the 32-bit second operand to a 64-bit first operand.

Table 53. Register/register instructions for 64-bit general registers

Op Mnem Type Instruction Op Mnem Type Instruction

E314 LGF RXY Load (64←32) B914 LGFR RRE Load Register (64←32)

B912 LTGFR RRE Load and Test Register
(64←32)

B913 LCGFR RRE Load Complement Register
(64←32)

B910 LPGFR RRE Load Positive Register
(64←32)

B911 LNGFR RRE Load Negative Register
(64←32)

The actions of these instructions are almost the same as their 64-bit equivalents that we saw in
Table 51 on page 192, except that no instruction sets the CC to 3.

Table 54. Action of 32-bit-to-64-bit general register instructions

In each case, the 32-bit second operand is first sign-extended internally, and then treated as a
64-bit operand. For example, the single instruction

LCGFR 0,1 Sign extend, complement GR1 to GG0

is equivalent to the two instructions

LGFR 0,1 Sign extend GR1 to GG0
LCGR 0,0 Two's complement of GG0

(See Exercise 14.10.2!)

Mnemonic Action CC Values

LGF c(GG R1) �── c(Word in memory) Not changed

LGFR c(GG R1) �── c(GR R2) Not changed

LTGFR c(GG R1) �── c(GR R2) 0,1,2

LCGFR c(GG R1) �── ─c(GR R2) 0,1,2

LPGFR c(GG R1) �── │c(GR R2)│ 0,2

LNGFR c(GG R1) �── ─│c(GR R2)│ 0,1

194 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───────────────────────────────────────┬──┐
│�──────────── sign─extended �──────────┼s │ GG R1
└───────────────────────────────────────┴──┘
 0 � 63

┌──┐
32─bit second operand │s │ GR R2

└──┘
0 31

Figure 73. Sign extension for instructions with mixed 32- and 64-bit signed operands

The instructions in Table 53 on page 194 all have the letter “F” in their mnemonics, to indicate
that the second operand is a 32-bit, 4-byte “Fullword”. The first operand (designated by R1) is
the 64-bit general register that receives the sign-extended (and possibly complemented) second
operand.

Exercises

14.10.1.(1) Compare the opcodes of the five RRE-type instructions in Table 53 on page 194 to
those in Table 50 on page 192. What similarities and differences do you see?

14.10.2.(2)+ What would happen in the (64←32) instructions in Table 53 on page 194 if
complementation is done before sign extension?

14.10.3.(2)+ The Condition Code values shown in 51 are not the same as those shown in
Table 54 on page 194. How and why are they different?

14.10.4.(2) Consider the 32-bit maximum negative number X'80000000'. Show the contents of
general register 0 and the CC setting after each of these instruction sequences:

(1) L 0,=X'80000000'
LPR 0,0

(2) L 0,=X'80000000'
LGFR 0,0

(3) L 0,=X'80000000'
LPGFR 0,0

(4) L 0,=X'80000000'
LNGFR 0,0

14.10.5.(2)+ Why can none of the instructions in Table 53 on page 194 set the CC to 3?

14.11. Other General Register Load Instructions (*)

The previous sections examined the most frequently used load instructions; System z supports
many others. For example, many programs need to insert a byte into the rightmost 8 bits of a
general register; a common instruction pattern is

L 1,=F'0' Clear GR1 to zero
IC 1,Byte c(GR1) = X'000000xx'

or
SR 1,1 Set c(GR1) to zero (subtract from itself)
IC 1,Byte c(GR1) = X'000000xx'

An extra instruction is needed to set GR1 to zeros before the IC instruction. (The SR instruction
subtracts c(GR1) from itself; we'll review it in more detail in Section 16.2.)

The LLC instruction (“Load Logical Character”) does both operations: the byte is loaded into
the last 8 bits of the GR1 operand, and the rest of GR1 is cleared to zero:

Chapter V: Basic Instructions 195

LLC 1,Byte c(GR1) = X'000000xx'

Table 55 gives a summary of the instructions we'll review. We'll see that they are arranged in
simple groups with repeating patterns.

Table 55. Other general register load instructions

Op Mnem Type Instruction Op Mnem Type Instruction

E376 LB RXY Load Byte (32←8) B924 LBR RRE Load Byte (32←8)

E377 LGB RXY Load Byte (64←8) B906 LGBR RRE Load Byte (64←8)

E394 LLC RXY Load Logical Character
(32←8)

B994 LLCR RRE Load Logical Character
(32←8)

E390 LLGC RXY Load Logical Character
(64←8)

B984 LLGCR RRE Load Logical Character
(64←8)

E395 LLH RXY Load Logical Halfword
(32←16)

B995 LLHR RRE Load Logical Halfword
(32←16)

E391 LLGH RXY Load Logical Halfword
(64←16)

B985 LLGHR RRE Load Logical Halfword
(64←16)

E317 LLGT RXY Load Logical Thirty One Bits
(64←31)

B917 LLGTR RRE Load Logical Thirty One
Bits (64←31)

E316 LLGF RXY Load Logical (64←32) B916 LLGFR RRE Load Logical (64←32)

For example, the four instructions in the first two rows are arithmetic loads: the high-order bit of
the second operand is sign-extended to the length of the first operand (as illustrated in Figure 62
on page 183 and Figure 70 on page 191); the others are logical load instructions that zero-extend
the second operand to the length of the first.

None of the instructions in Table 55 change the Condition Code.

14.11.1. Load Byte Instructions

The LB, LBR, LGB, and LGBR instructions treat the second operand as a signed 8-bit number,
and sign-extend it to the 32- or 64-bit length of the R1 general register operand. For the LGB and
LGBR instructions, this is illustrated in Figure 74.

┌──────────────────────────────────────┬─────────────────────────────┬─────────┐
│�──────────────── LGB ────────────────│�─────────── LB ─────────────┼s │ GG R1
└──────────────────────────────────────┴─────────────────────────────┴─────────┘
 0 (unchanged by LB) 31 32 � 63

┌─────────┐
Byte in memory or register │s │

└─────────┘
0 7

Figure 74. Sign extension by Load Byte instructions

For the LB and LBR instructions, the R1 first operand is a 32-bit general register, and the high-
order 32 bits of the 64-bit register are unchanged. For example:

LB 3,=FL1'-7' c(GR3)=X'FFFFFFF9'
LGB 5,=FL1'-7' c(GG5)=X'FFFFFFFF FFFFFFF9'

14.11.2. Load Logical Character Instructions

The second operand of these instructions is called an unsigned “character” to distinguish it from
the (signed) “byte” operand of the Load Byte instructions. Each of LLC, LLCR, LLGC, and
LLGCR does the same as the “Byte” instructions above, except that the rest of the R1 first
operand register is set to zeros. To illustrate LLGC and LLGCR:

196 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌──────────────────────────────────────┬─────────────────────────────┬─────────┐
│�────── (zeroed by LLGC, LLGCR) ───── �────────── zeros ──────────│ │ GG R1
└──────────────────────────────────────┴─────────────────────────────┴─────────┘
0 (unchanged by LLC, LLCR) � 63

┌─────────┐
Character in memory or register │ │

└─────────┘
0 7

Figure 75. Zero extension by Load Logical Character instructions

LLC and LLCR affect only the 32 low-order bits of the 64-bit R1 register; the high-order 32-bits
are unaffected.

These four instructions can eliminate the need to clear a register before inserting a character for
processing.

14.11.3. Load Logical Halfword Instructions

The four instructions LLH, LLHR, LLGH, and LLGHR all load the 16-bit halfword operand
into the low-order 16 bits of the R1 register, and clear the preceding 16 bits of the 32-bit register
(for LLH and LLHR) or the preceding 48 bits of the 64-bit register (for LLGH and LLGHR).

┌──────────────────────────────────────┬───────────────────┬───────────────────┐
│�────── (zeroed by LLGH, LLGR) ────── �───── zeros ─────│ │ GG R1
└──────────────────────────────────────┴───────────────────┴───────────────────┘
 0 (unchanged by LLH, LLHR) � 63

┌───────────────────┐
Halfword in memory or register │ │

└───────────────────┘
0 15

Figure 76. Operation of Load Logical Halfword instructions

These four Load Logical Halfword are closely related to the arithmetic “Load Halfword”
instructions, except that the logical loads fill the rest of the 32- or 64-bit R1 register with zeros,
rather than sign-extending the high-order bit of the loaded halfword.

14.11.4. Load Logical (Word) Instructions

The LLGF and LLGFR instructions load the 32-bit second operand from memory or from
G R R2 into the low-order 32 bits of the 64-bit GG R1 register, as illustrated in Figure 77:

┌──────────────────────────────────────┬───────────────────────────────────────┐
│�────────────── zeros ───────────────│ │ GG R1
└──────────────────────────────────────┴───────────────────────────────────────┘
 0 � 63

┌───────────────────────────────────────┐
Word in memory or register │ │

└───────────────────────────────────────┘
0 31

Figure 77. Operation of Load Logical word instructions

In effect, LLGF and LLGFR are like L and LR, followed by setting the high-order half of the
GG R1 register to zero. The R1 operand is always a 64-bit register.

14.11.5. Load Logical Thirty One Bit Instructions

The LLGT and LLGTR are unusual: the second operand is 32 bits long, but its high-order bit is
ignored! This is illustrated in Figure 78 on page 198:

Chapter V: Basic Instructions 197

┌──────────────────────────────────────┬───────────────────────────────────────┐
│�────────────── zeros ───────────────│0bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb│ GG R1
└──────────────────────────────────────┴───────────────────────────────────────┘
 0 � 63

┌───────────────────────────────────────┐
Word in memory or register │xbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb│

└───────────────────────────────────────┘
0 31

Figure 78. Operation of Load Logical Thirty One Bits instructions

The R1 operand is always a 64-bit register.

Why ignore the high-order bit of the 32-bit second operand? When we discuss “addressing
modes” and instructions that both change and depend on addressing mode in Section 20, we'll see
that the high-order bit of a 32-bit address was often used to indicate which mode was desired; it
can be important to set that bit to zero.96

Exercises

14.11.1.(1) How would you simulate the action of the Load Logical Character instructions with
other instructions already described?

14.11.2.(1) How would you simulate the action of the Load Logical (Word) instructions with
other instructions already described?

14.12. Misunderstandings to Avoid

Two common errors made by beginning programmers are

1. confusing the LR and L instructions, and

2. trying to use a “Store Register” or “STR” instruction to “store” one register into another.

First: by substituting L for LR, you can occasionally create an error that can't be detected by the
Assembler, and sometimes is difficult to find. For example, suppose you intended to load GR5
from GR8 with a LR instruction. If the symbols R5 and R8 have values 5 and 8, then both

L 5,8 Load GR5 with value 8 (??)
and

L R5,R8 Load GR5 from GR8 (??)

are valid instructions referring to memory at address 8. This is probably not what was intended
for the second instruction, even though it looks like it is “loading” GR5 from GR8. This can be
seen by checking the machine language object code generated for the two instructions:

 000000 5850 0008 L 5,8 Load GR5 with value 8 (??)
 000004 5850 0008 L R5,R8 Load GR5 from GR8 (??)

Exactly the same instruction will be executed.

 Warning

Symbols like R8 — an “R” followed by a number — might not refer to a
register!

96 This unusual behavior is difficult to justify now, but we'll see in Section 37 that there are good reasons to have these
instructions.

198 Assembler Language Programming for IBM System z™ Servers Version 2.00

To help you remember the difference between related instructions of different types, note that
almost all RR-type instruction mnemonics end in the letter “R”, while the RX-, SI-, and RS-type
instruction mnemonics end in other letters.

Second: there is no “STR” instruction. To “store” data from one general register to another, you
must use a LR-like instruction. (See Exercise 14.6.1.)

14.13. Summary

You can think of load-type instruction statements as moving data from right to left: that is, the
second operand replaces the first operand. For example, consider this assembler instruction state-
ment:

L 0,X c(GR0) �── c(X) Right to left

This way of visualizing actions applies to most instructions. The primary exceptions are the
store-type instructions, where you can visualize data moving from the first operand to the second,
or from left to right in the assembler instruction statement. For example:

ST 0,X c(GR0) ── c(X) Left to right

It also helps to remember how short operands are extended to the length of the target operand.

Operand Extension

When a source operand in a register or in memory is moved to a target
register longer than the operand, the operand is extended to the length of
the target register. Arithmetic loads extend the sign bit, and logical loads
extend with zero bits.

Examples of arithmetic load instructions are LH, LGH, and LGFR; examples of logical load
instructions are LLH, LLGH, and LLGFR.

We've seen a lot of new instructions in this section, and keeping track of them can be difficult.
The following table provides a compact summary to help you understand how they are grouped
and related.

Don't try to memorize!

The System z processors are very complex, and you'll learn the instruc-
tion mnemonics a few at a time. The tables at the end of each section
summarizing the mnemonics and their opcodes are primarily for reference
(and to help you in solving some of the Exercises).

Chapter V: Basic Instructions 199

Table 56. Summary of instructions discussed in this section

Func-
tion

Oprnd1 8 bits 32 bits 64 bits

Oprnd2 8 bits 8 bits 16 bits 32 bits 8 bits 16 bits 31 bits 32 bits 64 bits

Load Arithmetic
(from memory)

LB LH L
LT
LM

LGB LGH LGF
LMH

LG
LTG
LMG

Load Arithmetic
(from register)

LBR LHR LR
LTR
LPR
LNR
LCR

LGBR LGHR LGFR
LTGFR
LPGFR
LNGFR
LCGFR

LGR
LTGR
LPGR
LNGR
LCGR

Load Logical
(from memory)

LLC LLH LLGC LLGH LLGT LLGF

Load Logical
(from register)

LLCR LLHR LLGCR LLGHR LLGTR LLGFR

Store
STC STH ST

STM
STCM

STMH
STCMH

STG
STMG

Insert IC ICM
ICMH

We'll use tables like this to summarize other instructions as they are introduced. (This one is
more complex than most!)

In Table 56 you might say that the ICM/ICMH and STCM/STCMH instructions deal with one
byte at a time; but because they might move up to 4 bytes, they are shown in the column with
32-bit second operands.

It is difficult to remember all these mnemonics, but they will become more familiar with regular
use. You might ask why the System z architects didn't choose more descriptive mnemonics like
LoadRegister and InsertCharactersUnderMask. Here are two reasons why not.

1. When you write Assembler Language programs, long mnemonics would require a lot of extra
work that is saved by using short abbreviations.

2. In the early years of System/360, programs were prepared on 80-column punched cards, of
which only 71 columns were available for Assembler Language statements. This meant that
shorter mnemonics provided more space for name-field symbols, operands, and comments.

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

200 Assembler Language Programming for IBM System z™ Servers Version 2.00

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

IC 43 LLC E394 LPGR B900

ICM BF LLCR B994 LPR 10

ICMH EB80 LLGC E390 LR 18

L 58 LLGCR B984 LT E312

LB E376 LLGF E316 LTG E302

LBR B926 LLGFR B916 LTGFR B912

LCGFR B913 LLGH E391 LTGR B902

LCGR B903 LLGHR B985 LTR 12

LCR 13 LLGT E317 ST 50

LG E304 LLGTR B917 STC 42

LGB E377 LLH E395 STCM BC

LGBR B906 LLHR B995 STCMH EB2C

LGF E314 LM 98 STG E324

LGFR B914 LMG EB04 STH 40

LGH E315 LMH EB96 STM 90

LGHR B907 LNGFR B911 STMG EB24

LGR B904 LNGR B901 STMH EB26

LH 48 LNR 11

LHR B927 LPGFR B910

Chapter V: Basic Instructions 201

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

10 LPR B907 LGHR E314 LGF

11 LNR B910 LPGFR E315 LGH

12 LTR B911 LNGFR E316 LLGF

13 LCR B912 LTGFR E317 LLGT

18 LR B913 LCGFR E324 STG

40 STH B914 LGFR E376 LB

42 STC B916 LLGFR E377 LGB

43 IC B917 LLGTR E390 LLGC

48 LH B926 LBR E391 LLGH

50 ST B927 LHR E394 LLC

58 L B984 LLGCR E395 LLH

90 STM B985 LLGHR EB04 LMG

98 LM B994 LLCR EB24 STMG

B900 LPGR B995 LLHR EB26 STMH

B901 LNGR BC STCM EB2C STCMH

B902 LTGR BF ICM EB80 ICMH

B903 LCGR E302 LTG EB96 LMH

B904 LGR E304 LG

B906 LGBR E312 LT

We will use tables like these to summarize instruction mnemonics and their operation codes as
they are introduced.

Terms and Definitions
GR Rn

A notation referring to the rightmost 32 bits of the general register specified by Rn.

GR Gn
A notation referring to the full 64 bits of the general register specified by Rn.

GRn
A notation referring to the rightmost 32 bits of general register “n”.

GGn
A notation referring to 64-bit general register “n”.

insert
Place one or more bytes into a register without changing other bytes.

load operation
Replace the contents of a register with a copy of data from a memory address or from
another register. Other parts of the register may contain sign-extended bits (for arithmetic
loads), or zero-extended bits (for logical loads). The original contents of the target register
are not preserved.

Mn
The field of a machine instruction designating a mask.

202 Assembler Language Programming for IBM System z™ Servers Version 2.00

Rn
The field of a machine instruction designating the number of a general register.

sign extension
The process of making copies of the sign bit of a shorter operand and extending it to the left,
to the length of a target field.

store operation
Place a copy of part or all of a register's contents into memory.

zero extension
The process of adding zero bits to the left of a shorter operand, to extend it to the length of a
target field.

Chapter V: Basic Instructions 203

15. Testing the Condition Code: Conditional Branching

11 55555555555
111 55555555555
1111 55
11 55
11 555555555
11 55555555555
11 555
11 55
11 55
11 555

1111111111 55555555555
1111111111 555555555

Branch instructions let you choose alternative actions in your program, depending on tests or
computed results whose status was indicated in the Condition Code.

The Condition Code is a two-bit field in the PSW (see Figure 12 on page 47), so its value is 0, 1,
2, or 3. To test the CC value we use a “Branch on Condition” instruction. The most common
are the RX-type instruction BC and the RR-type instruction BCR. The result of testing the value
of the CC determines whether or not the branch condition is met.

We'll start with the basic forms of conditional branch instructions; newer forms are discussed in
Section 22. Other instructions whose actions depend on the value of the Condition Code are
described later.

15.1. The Branch Address

If the condition for branching is not met (we'll see how to determine this in a moment), no action
is taken and execution proceeds normally to the next sequential instruction following the Branch
on Condition instruction.

If the branch condition is met, the branch address is determined:

1. For the BC instruction, the branch address is the Effective Address, determined from the dis-
placement, base, and index fields of the instruction.

2. For the BCR instruction, the branch address is contained in the general register specified by
the R2 digit of the instruction. However, if the R2 digit is zero, no branch ever occurs: that
is, if R2=0, the branch condition is never met.

To complete execution of a branch instruction, the IA portion of the PSW is replaced by the
branch address. The next instruction to be fetched then comes from the address specified by the
branch address. Branch instructions are also called “transfer” instructions, in the sense that
control is transferred to the instruction at the branch address.

A successful branch instruction alters the normal sequencing of instruction fetching. If the IA is
not changed by the branch instruction, the next instruction fetched follows the branch instruction,
and we say that the branch was “not taken”.

204 Assembler Language Programming for IBM System z™ Servers Version 2.00

15.2. The Branch Mask and Branch Condition

The branch condition is determined by examining a single bit of the third hex digit of the instruc-
tion denoted “R1” in Table 17 on page 107 and in Table 19 on page 108. For the BCR and BC
instructions this digit does not refer to GR R1, but is treated as a bit pattern called a mask, M1,
as we saw in Section 14.5 for the ICM and STCM instructions. The instructions have these
formats:

Table 57. BCR instruction

Table 58. BC instruction

For both the RR and RX instructions, M1 is the mask digit. Thus, we could write

07 M1 R2

47 M1 X2 B2 D2

BCR 9,4 M1 = B'1001'
and

BC 7,4(8,2) M1 = B'0111'
Figure 79. Examples of conditional branch instructions

where the mask fields are B'1001' and B'0111' respectively.

The CPU matches the value of the CC to one of the mask bits, as shown in Table 59. If a 1-bit
in the mask field position corresponds to the value of the CC, the branch condition is met; if the
CC value matches a 0-bit in the mask, the branch condition is not met and no branch occurs.

Table 59. Mask bits and corresponding CC values

Thus in Figure 79, the BCR 9,4 instruction would branch if the CC had values of 0 or 3, and the
BC 7,4(8,2) instruction would not branch if the CC had value 0.

Exercises

15.2.1.(2) Show how the value of the CC can be used as a bit index in determining which bit of
the mask digit to test.

15.2.2.(1)+ Why does a mask value of 15 imply an unconditional branch?

15.2.3.(1)+ What happens when BC 15,0 is executed?

15.2.4.(3) If 0 ≤ n ≤ 15, what will be the result of executing this instruction?

BC n,n(n,n)

15.2.5.(1)+ Using the information in Table 59, create a table with four rows of Condition Code
values (0, 1, 2, and 3) and columns of 16 BC mask values that show at each intersection
whether or not a branch will occur. (Feel free to transpose rows and columns if necessary.)

CC value
tested

Instruc-
tion bit
position

Mask bit
position

Mask bit
value

0 8 0 8

1 9 1 4

2 10 2 2

3 11 3 1

Chapter V: Basic Instructions 205

15.3. Examples of Conditional Branch Instructions

Here are some examples of conditional branching:

1. Branch to XX if the CC is zero.

BC 8,XX M1 = B'1000'

The BC instruction mask field has value B'1000', so the branch condition will be met only if
the CC is zero.

2. Branch to XX if the CC is not 0.

BC 7,XX M1 = B'0111'

The mask has value B'0111', so the branch condition will be met if the CC is 1, 2, or 3.

3. Branch to the instruction whose address is contained in GR14.

BCR 15,14 M1 = B'1111'
or

BC 15,0(0,14) M1 = B'1111'

When all mask bits are one, the CC value must match a one-bit in the mask, so a branch
always occurs: this is called an unconditional branch. We could also have written the BCR
instruction as

BCR X'F',14
or

BCR B'1111',14 M1 is very clear here!

4. Branch to XX if the CC is 1 or 3.

BC 5,XX M1 = B'0101'

15.4. No-Operation Instructions

We noted in example 3 above that a mask of all 1-bits means the branch is unconditional,
because the branch condition is always met. Sometimes it is useful to execute an instruction that
has no effect, so we usually use a conditional branch instruction with a zero mask field. Thus,

BC 0,x
and

BCR 0,any

have no effect, because the branch condition can never be met. They are sometimes called “no-
operation” or “no-op” instructions, and the Assembler provides special “extended mnemonics” for
them. The instructions

NOP S2
and

NOPR R2
are treated by the Assembler as being the same as

BC 0,S2
and

BCR 0,R2
respectively. Only a single operand is specified for each NOP or NOPR instruction, and the
Assembler automatically provides the zero mask digit.

15.4.1. Special No-Operation Instructions (*)

One special type of no-operation instruction has an unusual side-effect. It has the form

BCR 15,0 M1 is B'1111'

206 Assembler Language Programming for IBM System z™ Servers Version 2.00

Modern processors are highly “pipelined”. That is, the fetch, decode, and execute phases are proc-
essed internally in many smaller steps called “stages”.

Pipelining allows one instruction to begin its execution phase while the next is being decoded, and
the instruction after that is being fetched.97 Occasionally, it may be necessary to prevent this over-
lapped type of execution; this form of BCR instruction blocks execution of the following instruc-
tion until all preceding instructions have completed execution. This is sometimes called
“draining” or “flushing” the pipeline, and it can cause programs to execute more slowly.

BCR operands can be interpreted this way:98

BCR 0,0 Branch never nowhere
BCR 15,0 Branch always nowhere (pipeline synchronization)
BCR 0,x Branch never somewhere (when x > 0)
BCR x,0 Branch sometimes nowhere (when 0 < x < X'F')
BCR x,y Branch sometimes somewhere (when 0 < x,y < X'F')

Exercises

15.4.1.(2)+ In trying to ensure that a BASR instruction was followed immediately by a word
address constant, a programmer wrote the following instructions as part of his program:

DS 0F Align to fullword boundary
NOPR 0 2-byte No-op
BASR 8,11 2-byte BASR instruction
DC A(Anywhere) Properly aligned fullword constant

Explain why this might create an unexpected problem.

15.4.2.(2) What other instructions could be used in place of NOPR and NOP?

15.4.3.(1) Suppose you execute the instruction

BCR 15,0

Will an unconditional branch occur? If so, from what address will the next instruction be
fetched?

15.4.4.(2) Explain the execution-time differences between these two pairs of instructions:

L 1,=F'0' L 0,=F'0'
BCR 15,1 BCR 15,0

15.5. Conditional No-Operation

An important use of “no-operation” instructions is to ensure a desired boundary alignment for a
particular instruction in a stream of other executable instructions. (We have already seen how to
obtain boundary alignments for data.) For example, we may require that an RR-type instruction
such as

BASR 8,11

97 The CPU is designed so that exception conditions at any stage are correctly recognized and handled as though each
instruction is completely processed (or prevented from executing) before the next is fetched. Early pipelined
processors couldn't always do this, and were subject to what were called “imprecise” interruptions. The CPU set the
Instruction Length Code (ILC) to zero, meaning that both it (and you) weren't certain which instruction caused the
interruption.

98 This is not an official description.

Chapter V: Basic Instructions 207

be followed immediately (with no wasted space) by an aligned word constant such as an address
constant. While it is best not to mix instructions and data this way, there are times where such a
technique is useful.99

Since BASR is an RR-type instruction, we need to ensure that its location lies on a halfword
boundary between two word boundaries. In a small program, it may be easy to determine the
location of the BASR by counting LC values: if the BASR falls on a word boundary, insert a

NOPR 0

instruction just before it. But if the program is large or if changes must be made somewhere pre-
ceding the BASR, it is difficult to know whether the NOPR should be inserted or not.

To do this automatically, the Assembler provides the CNOP (Conditional No-Operation) assem-
bler instruction. If the LC is already on the desired boundary, nothing is inserted. Otherwise,
CNOP inserts as many “NOPR 0” and “NOP 0” instructions as are needed to give the desired
alignment.

The operand field entry of a CNOP instruction is written

CNOP boundary,width

where “boundary” and “width” are absolute expressions. The “boundary” operand may have any
multiple-of-two value between 0 and 14, and its value must be less than the value of “width”,
which is 4, 8, or 16. A name field symbol is allowed, and its Length Attribute is always 1.

The “width” operand specifies the boundary relative to which alignment is performed, and
“boundary” specifies the desired halfword relative to that boundary, as shown in Table 60.100

Table 60. CNOP operands

To achieve the alignment desired for the BASR in our example, we would write

Instruction Location Counter Alignment

CNOP 0,4 beginning of a word

CNOP 2,4 middle of a word

CNOP 0,8 beginning of a doubleword

CNOP 2,8 second halfword of a doubleword

CNOP 4,8 middle of a doubleword

CNOP 6,8 fourth halfword of a doubleword

CNOP 0,16 beginning of a quadword

CNOP 2,16 second halfword of a quadword

CNOP 4,16 second word of a quadword

CNOP 6,16 fourth halfword of a quadword

CNOP 8,16 second doubleword of a quadword

CNOP 10,16 sixth halfword of a quadword

CNOP 12,16 third word of a quadword

CNOP 14,16 eighth halfword of a quadword

99 Modern CPUs maintain high-speed buffers known as “caches”, one for fast access to instructions and another for
fast access to data items. If data items appear in the instruction cache, the CPU must stop pre-processing
instructions, load the data into the data cache (probably displacing useful data already there), and resume processing.
This can cause significantly slower execution, so you should avoid “close” mixing of instructions and data.

100 More precisely,

CNOP boundary,width
causes the Assembler to insert enough “NOPR 0” or “NOP 0” instructions as may be needed to increment the LC (if
necessary) so that the new value of the LC satisfies boundary = LC (modulo width).

208 Assembler Language Programming for IBM System z™ Servers Version 2.00

CNOP 2,4 Align to middle of a word
BASR 8,11 Two-byte instruction
DC A(AnyWhere) No intervening bytes

Note that we should not write

DS 0H
BASR 8,11
DC A(AnyWhere) No (??) intervening bytes

because alignment to a halfword boundary is automatically performed by the Assembler for
instructions. Thus, the BASR could still fall on a word boundary, and the Assembler would then
zero-fill the two bytes between the BASR and the address constant (because A-type constants
have an implied word alignment). Similarly, we could not write

BASR 8,11
DS 0F
DC A(AnyWhere)

since the BASR could again fall on a word boundary, leaving two bytes between it and the con-
stant that would be skipped by the Assembler. The contents of the two skipped bytes at execution
time are arbitrary, since the Supervisor does not always clear or otherwise initialize the area into
which a program is about to be loaded.

Name field symbols on CNOP instructions are rarely used, because branch-target symbols typi-
cally are given to instructions immediately preceding or following the CNOP. Thus, you could
write a symbol that is the name of “nothing”:

DS 0F Align on word boundary
CNopName CNOP 0,4 Align on word boundary (again?)
CallSub BASR 14,15 Go to a subroutine

- - -

The two symbols CNopName and CallSub will have the same LC value even though CNopName
doesn't name anything different; it will have length attribute 1.

Figure 80 illustrates the alignment action of CNOP.

─┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
─┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─

│ halfword1 │ halfword2 │ halfword3 │ halfword4 │ halfword5 │ halfword6 │ halfword7 │ halfword8 │
│�────────word1────────�│�────────word2────────�│�────────word3────────�│�────────word4────────�│
│�─────────────────doubleword1─────────────────�│�─────────────────doubleword2─────────────────�│
│�──quadword───�│
0,4 2,4 0,4 2,4 0,4 2,4 0,4 2,4 0,4
0,8 2,8 4,8 6,8 0,8 2,8 4,8 6,8 0,8
0,16 2,16 4,16 6,16 8,16 10,16 12,16 14,16 0,16

Figure 80. CNOP alignments and operands

Exercises

15.5.1.(2)+ Suppose the Location Counter value is X'0246' when each of these CNOP
instructions is processed by the Assembler. Determine the value of the LC after each CNOP is
processed.

(1) CNOP 2,4
(2) CNOP 0,4
(3) CNOP 6,8
(4) CNOP 10,16
(5) CNOP 4,16
(6) CNOP 2,8

Chapter V: Basic Instructions 209

15.5.2.(3)+ For each of these sets of statements the value of the Location Counter is X'000743'
when the first statement is read by the Assembler. Give the length and value attributes of all
symbols.

1. A DC AL3(A)
CNOP 2,4

B DC A(B)

2. C DC C'DS C''&&'''
CNOP 0,4

D DC C'D DC D''DC'''

 3. CNOP 2,8
E DC 2F'100'
F DC (X'F')X'F'

15.5.3.(1) In Exercise 15.5.2, what machine language data is generated by the statement named
D?

15.5.4.(2)+ For each of the following, assume that the Location Counter value is X'345' when
the initial statement is processed by the Assembler. Give the value and length attributes of the
symbol A.

1. CNOP 2,4
A LM 2,6,0(1)

2. CNOP 2,8
A BC 10,Smith

15.5.5.(2)+What will be generated by a CNOP 6,8 statement?

15.6. Extended Mnemonics

Conditional branch instructions are used frequently. It can be difficult to remember the Condi-
tion Code values and mask bit values associated with possible branch conditions, so the Assem-
bler provides extended mnemonics for conditional branch instructions. They let you imply the
value of the mask field M1 of a BC or BCR instruction by using an extended mnemonic. For
example, an unconditional branch to an instruction named XX can be written

B XX

which is easier and clearer than writing

BC 15,XX

Table 61 gives the extended mnemonics associated with the BC and BCR instructions. The
notations “(A)”, “(C)”, and “(T)” refer to the contexts in which each extended mnemonic is most
often used. The “A” mnemonics are typically used after Arithmetic instructions, “C” after Com-
parisons, and “T” after Tests.

Table 61 (Page 1 of 2). Extended branch mnemonics and their branch mask values

RX Mnemonic RR Mnemonic Mask Meaning

B BR 15 Unconditional Branch

BNO BNOR 14 Branch if Not Ones (T)
Branch if No Overflow (A)

BNH BNHR 13 Branch if Not High (C)

BNP BNPR 13 Branch if Not Plus (A)

BNL BNLR 11 Branch if Not Low (C)

BNM BNMR 11 Branch if Not Minus (A)
Branch if Not Mixed (T)

210 Assembler Language Programming for IBM System z™ Servers Version 2.00

As this table indicates, the RR forms of the extended mnemonics are formed by adding the letter
“R” to the equivalent RX mnemonic.

Each of these instructions needs only a single operand field entry. Because the mask digit is
implied by the extended mnemonic, the operand may take any of the forms allowed for the
second operand of an RX- or RR-type instruction.

For example, we could write example 1 of Section 15.3 on page 206 as

BZ XX

and example 2 could be written

BNZ XX

There is no extended mnemonic corresponding to a mask value of 5, so there is no convenient
way to rewrite example 4.

Exercises

15.6.1.(2)+ Programmers sometime write programs that contain instruction sequences like this:

Loop - - - Do something in the loop
- - - Now make a test, set the CC
BNZ Finish Exit the loop if something's nonzero
B Loop Otherwise repeat the loop

Finish - - - Rest of program

Why is this wasteful? How can it be made shorter, simpler, and (very probably) faster?

15.6.2.(1) Sometimes the conditional branch instructions are described as follows: “The opera-
tion code for an unconditional branch is X'47F', for a branch-on-zero is X'478', etc.” Is this an
accurate description?

15.6.3.(2) The word at VAL contains a 32-bit binary integer. Write an instruction sequence that
will branch to POS if c(VAL) is greater than zero, to NEG if c(VAL) is less than zero, and to
ZERO if c(VAL) is zero.

15.6.4.(2) A programmer accidentally wrote the operand of a branch instruction so that the
branch target was a constant containing a string of space characters:

Table 61 (Page 2 of 2). Extended branch mnemonics and their branch mask values

RX Mnemonic RR Mnemonic Mask Meaning

BE BER 8 Branch if Equal (C)

BZ BZR 8 Branch if Zero(s) (A,T)

BNE BNER 7 Branch if Not Equal (C)

BNZ BNZR 7 Branch if Not Zero (A,T)

BL BLR 4 Branch if Low (C)

BM BMR 4 Branch if Minus (A)
Branch if Mixed (T)

BH BHR 2 Branch if High (C)

BP BPR 2 Branch if Plus (A)

BO BOR 1 Branch if Ones (T)
Branch if Overflow (A)

NOP NOPR 0 No Operation

Chapter V: Basic Instructions 211

B Target He meant to go elsewhere...
- - -

Target DC CL132' ' 132 bytes containing X'40'

What would you expect to happen?

15.7. A Comment on Programming Style

For short instruction sequences, it is sometimes tempting to avoid the effort of writing the name
of a target symbol. For example, sometimes a programmer may write

LTR 0,0 LTR 0,0
BZ *+6 instead of BZ Next
LR 0,5 LR 0,5
- - - Next - - -

The operand *+6 means the programmer knows that the lengths of BZ and LR are 4 and 2 bytes
respectively, and this has saved him the “task” of writing the symbol Next in two places.
However: suppose the logic of these statements needs to be updated, and extra instructions must
be added following the BZ instruction. If the operand of BZ (which was not the cause of the
change) isn't updated, it will branch into the added instructions and not to the intended target.101

A Programming Practice to Avoid

Do NOT write operands of branch instructions using the Location
Counter value *± number.

Exercises

15.7.1.(2)+ A programmer wanted to be sure that the target of his branch instruction was at the
correct location, so he wrote

BZ *+18 Branch to known target location
- - - More instructions

*+18 EQU * Define the target location.

Can he now be sure his BZ instruction will branch to the intended target?

15.8. A Design Oversight and a Modern “Correction” (*)

Due to a peculiarity in the original design of System/360 and System/370, invalid branch addresses
were not detected during the execute phase of the instruction cycle at the time the CPU finds the
branch condition is met. (Odd addresses produce specification errors, and excessively large
addresses can produce addressing exceptions.) The error is found only when the bad address is
presented, as the IA portion of the PSW, at the next instruction's fetch cycle. The error is duly
detected and an interruption results, but the IA then contains the invalid address rather than the
address of the instruction that attempted the improper branch. This means that looking at the
“Old” PSW can't tell you where the error was caused, so such errors in a program are often very
difficult to correct. You must specify branch addresses accurately to avoid this particular error.

The “Breaking Event Address Register” (sometimes called the “BEAR”) was added to
z/Architecture. Whenever an instruction causes a break in normal sequential execution (such as a
successful branch), the address of the instruction causing the “break” or discontinuity is placed in
the BEAR. If the “break” causes a program interruption, the contents of the BEAR are stored in
a fixed address where error detection and diagnosis routines can use the break address to help you
find the instruction that caused the interruption.

Unfortunately, although the BEAR is accessible to ordinary problem-state programs, its contents
aren't of much use unless its contents are captured at the moment an interruption occurs. So, to

101 A clever programmer knew instruction lengths so well that he avoided writing name-field symbols on statements by
coding instructions like B *+24 and BNZ *-20. Fixing errors in his code was very tedious.

212 Assembler Language Programming for IBM System z™ Servers Version 2.00

answer questions like “How did my program start executing instructions here?”, we must depend
on the operating system's Supervisor to save the BEAR's contents so the information can be used
for problem diagnosis.

Exercises

15.8.1.(1)+ Explain why an odd branch address is invalid.

15.9. Summary

This section described the BC and BCR instructions and their forms as extended mnemonics.
There are many other types of branch instructions, but their most important features are based on
the concepts we've seen here; the others can be thought of as “variations” on the theme of this
section. Newer forms of conditional branch instructions will be described in Section 22.1.

Exercises

15.9.1.(1) How could you design a CPU without a Condition Code or similar indicators?

15.9.2.(1)+ Can an instruction generate multiple CC values in a single execution?

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode
BC 47 BCR 07

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic
07 BCR 47 BC

Terms and Definitions
branch address

The address from which the next instruction will be fetched if the branch condition is met.

branch condition
The CPU's decision whether to alter the normal sequential execution of instructions by
fetching instructions at the branch address.

branch mask
A 4-bit field in a Branch on Condition instruction used to test the value of the Condition
Code. If a 1-bit in the branch mask matches the CC value, the branch condition is met.

conditional no-operation
An Assembler CNOP instruction that may generate NOP and NOPR instructions, causing
the Location Counter to be aligned on a specified even boundary.

extended mnemonic
An instruction mnemonic provided by the Assembler allowing you to specify a branch mask
implicitly.

Chapter V: Basic Instructions 213

no-operation instruction
An executable instruction having no effect other than to occupy space, to align a following
instruction on a desired even boundary.

pipeline
A technique used in modern CPUs to speed instruction execution by dividing the fetch.
decode, and execute phases into smaller stages that can be occupied by more than one
instruction.

214 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter V: Basic Instructions 215

16. Fixed-Point Binary Addition, Subtraction, and Comparison

11 6666666666
111 666666666666
1111 66 66
11 66
11 66
11 66666666666
11 666666666666
11 66 66
11 66 66
11 66 66

1111111111 666666666666
1111111111 6666666666

This section describes instructions for fixed-point two's complement binary addition, subtraction,
and comparison in the general registers, and between the general registers and memory. Because
the instructions occur in very regular groups and patterns, understanding their basic behavior
makes it easier to understand related instructions.

16.1. Signed-Arithmetic Add and Subtract Instructions

As we noted in Section 2.14 on page 37, logical addition and subtraction produce exactly the
same bit patterns as arithmetic addition and subtraction, but the resulting CC settings have dif-
ferent meanings. We'll investigate logical-arithmetic instructions in Section 16.5 on page 224.

The instructions are shown in Table 62. The first six generate 32-bit results, and the others
produce 64-bit results.

Table 62. Frequently used add and subtract instructions

Op Mnem Type Instruction Op Mnem Type Instruction

5A A RX Add (32) 1A AR R R Add Register (32)

5B S RX Subtract (32) 1B SR R R Subtract Register (32)

4A AH RX Add Halfword (32←16) 4B SH RX Subtract Halfword (32←16)

E308 AG RXY Add (64) B308 AGR RRE Add Register (64)

E309 SG RXY Subtract (64) B309 SGR RRE Subtract Register (64)

216 Assembler Language Programming for IBM System z™ Servers Version 2.00

16.2. Signed-Arithmetic Operations Using 32-Bit Registers

All the instructions in Table 62 on page 216 set the Condition Code as indicated in Table 63.

Table 63. CC settings for arithmetic add and subtract instructions

Table 63 shows that these add and subtract instructions (like the LCR and LPR instructions in
Table 44 on page 188) can cause a fixed-point overflow exception. We'll see in Section 16.9 on
page 234 how to set the Program Mask to enable or disable an interruption.

We begin with the six add/subtract instructions A/AR, S/SR, and AH/SH. In each case, the
second operand is added to or subtracted from the first operand, and the result replaces the first
operand.

For the halfword operations AH and SH, the 16-bit second operand is brought from memory to
an internal register, extended to a word in length, and then used for the indicated operation (as we
saw in the description of LH in Section 14.3 on page 182). The notation (32←16) in Table 62
on page 216 means that the 16-bit operand is extended to 32 bits.

To illustrate arithmetic addition and subtraction, suppose we must store at ANS the sum of c(X)
and c(Y), unless the sum is negative, in which case we must also add c(Z) and subtract 17. If we
assume that X, Y, and Z name word areas of the program, then the following instructions will
calculate the required value (assuming no overflows occur).

Operation CC Setting and Meaning

 c(GR R1) = c(GR R1) ± c(GR R2)

 c(GR R1) = c(GR R1) ± c(Word in memory)

0: Result is zero; no overflow
1: Result is < zero; no overflow
2: Result is > zero; no overflow
3: Result has overflowed

L 6,X Copy c(X) into GR6
A 6,Y c(GR6) = c(X) + c(Y)
BNM ST Branch if sum is not negative
A 6,Z It was negative; add c(Z)
SH 6,=H'17' Subtract 17

ST ST 6,ANS Store answer at ANS
- - -

X DC F'71'
Y DC F'-220'
Z DC F'284'
ANS DS F Computed answer
Figure 81. Calculate a sum with an intermediate test

All the machine instructions are RX-type, and all but BNM refer to data operands in memory.

The characters “ST” are used both as a symbol and as an instruction mnemonic. No confusion is
possible, since the Assembler identifies a mnemonic only by its appearance as an operation field
entry.

Now, suppose we want to store the sum of the first N odd numbers at the word named Sum
where the positive integer N is stored in the halfword integer at NN.

Chapter V: Basic Instructions 217

LH 3,NN Get the value of N from c(NN)
LM 6,9,=F'0,2,1,1' Load GR6-GR9 with 0,2,1,1

AddUp AR 6,8 Add odd integer to sum in GR6
AR 8,7 Next odd integer in GR8
SR 3,9 Decrease N by 1

BNZ AddUp Branch back (N-1) times
ST 6,Sum Store result in GR6 at SUM
- - -

NN DC H'6' Number of odd numbers to add
Sum DS F Sum of the first c(NN) odd numbers
Figure 82. Calculate the sum of the first N odd integers

In this example, the calculations inside the “loop”102 (the AR and SR instructions beginning at
Addup) are RR-type instructions; no memory references are needed. This technique is useful in
programs where processing speed is important, and enough registers are available to allow fre-
quently referenced operands to be carried in registers instead of in memory.103

To give another simple example of using some of these instructions, suppose we wish to compute
the quantity NewStock from the formula

NewStock = OldStock + Received - Sold

where all quantities are word integers small enough in value to guarantee that no overflows will
occur. These statements will compute the desired result.

L 2,OldStock Get c(OldStock) in GR2
A 2,Received Add number of items received
S 2,Sold Subtract number of items sold
ST 2,NewStock Store result at NewStock

Figure 83. Example of arithmetic addition and subtraction

Although we assumed that no overflows can occur, it may be possible that values calculated else-
where in the program could cause an overflow here. Thus, to be careful, the above code sequence
might continue with the instructions

- - - (As above)
ST 2,NewStock (As above)
BZ ReOrder None left, must order more!
BM OverSold Reorder now! Sold more than stock!
BO Disaster Error! More than 2**31 items??

Figure 84. Testing the result of arithmetic instructions

The instructions at ReOrder and OverSold will probably do similar things, except that at OverSold
the order for new items would likely be given higher priority so our customers can receive their
previously ordered products more promptly.

16.2.1. Condition Code Settings After Arithmetic

There is an important property of Condition Code settings after a binary addition and subtraction
operation that causes an overflow: it is possible that the CPU could choose one of two CC set-
tings. For example, adding X'80000000' to itself generates an overflow (the carry out of the sign
bit isn't matched by a carry into the sign bit), and the arithmetic result is X'00000000'. The CPU
follows this rule:

102 A loop is a sequence of instructions executed repeatedly until some condition is satisfied. We'll see in Section 22 how
other instructions help us write efficient loops.

103 Don't be too impressed, however: the example is mathematically futile, because we have expended all this effort to
calculate the square of N, when a single multiply instruction would have worked just as well. (See Exercise 16.2.2 for
some mathematical background.)

218 Assembler Language Programming for IBM System z™ Servers Version 2.00

Condition Code After Overflow

If a binary arithmetic operation causes fixed-point ovreflow, CC=3 is
given preference to indicating any other property of the result.

That is, overflow indication is given priority.

See Exercise 16.2.16 and Programming Problem 16.12.

Exercises

16.2.1.(2) In Figure 81 on page 217, what will be stored at ANS if overflow occurs?

16.2.2.(3) Show that the sum of the first N odd integers is the same as N2.

16.2.3.(2)+ In Figure 82 on page 218, we assumed that the positive integer N in c(NN) is 2 or
greater. Rewrite the instructions to handle the possibility that N may be as small as 1.

16.2.4.(2)+ In a large program, a programmer wanted to decrement the value of an integer vari-
able at VARBL by 1, so he wrote the instructions

Load L 2,VARBL
S 2,ONE
ST 2,ONE (Error! Meant to use 'VARBL'!)
- - -
B Load Try again
- - -

VARBL DC F'4'
ONE DC F'1'

Unfortunately, the ST instruction stores the result in the wrong place! The program went into
an infinite loop that included the three instructions above. What sequence of values appeared
in the word named ONE?

16.2.5.(3)+ Given a word integer stored at Data, write an instruction sequence that will count
the number of 1-bits in the word, and store the result in the halfword named NBits.

16.2.6.(3)+ Given a word integer stored at Data, write an instruction sequence that will deter-
mine the maximum power of 2 in the word, and store the result in the halfword named MaxPow.
For example, the largest power of 2 in 9=B'1001' is 3. If c(Data) is zero, store −1, and if
c(Data) is negative, store −31.

16.2.7.(2) In Figure 82 on page 218, what would happen if we had written

NN DC F'6' ?

16.2.8.(3)+ Complete the “assembly” of this program segment by showing the generated object
code and its locations.

 Loc Object Code Assembler Language Statements
Ex16_2_8 Start X'5000'

 5000 0D40_________ BASR 4,0
 ____ _____________ Using *,4
 ____ _____________ SR 2,2
 ____ _____________ IC 2,XX+3
 ____ _____________ LTR 0,2
 ____ 47___________ BZ Looper
 ____ _____________ STH 0,XX
 ____ _____________ Looper B * Loop forever here
 ____ _____________ YY DC CL4'Ugh'
 ____ _____________ XX DC F'-10'

Chapter V: Basic Instructions 219

16.2.9.(4) When the “program” in Exercise 16.2.8 is stopped (because it is in an unending
loop), what will be the hexadecimal contents of the word at XX?

16.2.10.(2)+ Can an arithmetic operation using AH or SH cause fixed-point overflow? Explain.

16.2.11.(3)+ Suppose two constants are defined as follows:

X DC FL3'1234567'
Y DC FL3'7654321'

Write a sequence of instructions that will add the two numbers and store their sum as a 24-bit
two's complement number in the three-byte field starting at W. If the sum overflows (it can't
be represented correctly in 24 bits), branch to Over.

16.2.12.(2) In Exercise 16.2.11, what data is generated for the constant named Y?

16.2.13.(2) Explain the differences between these instruction pairs:

SR 1,1 and SR 0,0
BCR 15,1 BCR 15,0

Compare your answers to those you created for Exercise 15.4.4.

16.2.14.(3)+ Complete the “assembly” of this (nonsensical) program segment by showing the
generated object code and its locations.

 Loc Object Code Assembler Language Statements
 8000 Ex16_2_E Start X'8000'
 ____ _____________ BASR 4,0
 ____ _____________ Using *,4
 ____ _____________ LM 1,2,Value
 ____ _____________ STCM 2,B'111',First
 ____ _____________ LCR 0,1
 ____ _____________ BC 10,*+8
 ____ _____________ STH 0,Last(1)
 ____ _____________ BCR 15,14
____ _____________ Value DC F'4'
____ _____________ DC F'-6'
____ _____________ First DS F
____ _____________ Last DS H'-10'

16.2.15.(2)+ Show the contents of GR2 and the Condition Code setting after executing each of
the following instruction sequences:

1. L 2,=A(X'89ABCDEF')
AR 2,2

2. L 2,=F'2'
A 2,=A(X'7FFFFFFF')

3. L 2,=F'2'
A 2,=A(X'123345')
ICM 2,2,=X'12345'

16.2.16.(2)+ For each of these arithmetic operations, show the result and the CC setting.

1. L 1,=X'80000000'
S 1,=X'80000000'

2. L 2,=X'00000000'
S 2,=X'80000000'

3. L 3,=X'FEDCBA98'
A 3,=X'FEDCBA98'

220 Assembler Language Programming for IBM System z™ Servers Version 2.00

4. L 4,=X'FEDCBA98'
S 4,=X'87654321'

16.3. Signed-Arithmetic Operations Using 64-Bit Registers

We now investigate the instructions in the second group pictured in Table 62 on page 216. The
AG/AGR and SG/SGR instructions are 64-bit analogs of the 32-bit instructions A/AR and S/SR
illustrated above. Condition Code settings are as shown in Table 63 on page 217. To illustrate,
suppose we revise the example In Figure 81 on page 217 to use 64-bit operands:

LG 6,XX
AG 6,YY c(GG6) = c(XX) + c(YY)
BNM ST Branch if sum is not negative
AG 6,ZZ It was negative; add c(ZZ)
SG 6,=FD'17' Subtract 17 (doubleword literal)

ST STG 6,DAnswer Store result
- - -

XX DC FD'7569241038'
YY DC FD'-94226701151'
ZZ DC FD'137'
DAnswer DS FD Computed result
Figure 85. Calculate a 64-bit sum with an intermediate test

In this example, we cannot use the literal =H'17' because the System z instruction set does not
(now) provide the AGH and SGH instructions.104 (See Exercises 16.3.1 and 16.3.2.)

Suppose we add these two large numbers:

LG 0,A Get c(A)
AG 0,B ... and c(B)
STG 0,C Store sum at C
- - -

A DC FD'9223372036854775807' = 2**63-1
B DC FD'9223372036854775807'
C DS FD Result =X'FFFFFFFFFFFFFFFE' = -2, CC=3
Figure 86. Adding two 64-bit numbers

Because a fixed-point overflow has occurred, the result is arithmetically invalid.

Exercises

16.3.1.(2) Suppose you need to add a halfword value stored in memory at HW to a 64-bit value
in GG0, and the CPU has no AGH instruction. What alternative instruction sequences could
you use?

16.3.2.(2) Do the same as in Exercise 16.3.1, but now consider subtracting the HW operand from
the 64-bit operand in GG0.

104 At the time of this writing. But new instructions like AGHI (that we'll see in Section 21) are added regularly to the
System z architecture, so check the Principles of Operation.

Chapter V: Basic Instructions 221

16.4. Signed-Arithmetic Compare Instructions

Table 64 lists the arithmetic compare instructions we'll examine:

Table 64. Arithmetic compare instructions

Op Mnem Type Instruction Op Mnem Type Instruction

49 CH RX Compare Halfword (32←16) E379 CHY RXY Compare Halfword (32←16)

59 C RX Compare (32) 19 CR R R Compare (32)

E359 CY RXY Compare (32)

E320 CG RXY Compare (64) B920 CGR RRE Compare (64)

These instructions compare the magnitudes of two arithmetic operands. Thus, all positive
numbers are greater than all negative numbers, and −2 is greater than −4. (We will see that
logical comparisons behave differently.) The results of an arithmetic comparison are indicated in
the CC setting, as shown in Table 65.

Table 65. CC settings after arithmetic comparisons

The CC cannot be set to 3 as a result of a compare instruction.

For the CR, C, and CH instructions, the CC setting is the same as would result from performing
SR, S, and SH instructions with the same operands, assuming that no overflow occurs. In fact,
this is how the comparison is done by the CPU: a subtraction is performed internally, and the
CC is set to reflect the sign and magnitude of the difference (that would then have been placed
back in GR R1 or GG R1 for a subtract instruction). Further analysis of the original operands is
required by the CPU if the internal result overflows. (See Exercise 16.4.2.)

To illustrate arithmetic comparisons, consider these instructions and their comment fields:

CC Meaning

0 Operand 1 = Operand 2

1 Operand 1 < Operand 2

2 Operand 1 > Operand 2

LM 0,3,=F'1,0,-1,-2147483647' Initialize registers GR0-GR3
* c(GR0) = -1, c(GR1) = 0, c(GR2) = +1, c(GR3) = X'80000001'

CR 1,3 CC = 2 0 > -2147483647
CR 0,2 CC = 2 1 > -1
CR 2,3 CC = 2 -1 > -2147483647
LPR 4,3 CC = 2 +2147483647 > 0
CR 4,3 CC = 2 +2147483647 > -2147483647
CR 1,0 CC = 1 0 < 1
C 0,=F'1' CC = 0 1 = 1
CH 1,=H'5' CC = 1 0 < 5

Figure 87. Examples of arithmetic comparisons

As an example of the use of a compare instruction, let us recalculate the sum of the first N odd
integers, using a different scheme from the one in Figure 82 on page 218.

222 Assembler Language Programming for IBM System z™ Servers Version 2.00

LH 4,=H'1' c(GR4) = accumulated sum
LR 7,4 c(GR7) = count of additions

Test CH 7,NN Compare count to c(NN)
BE Store Branch if equal, N terms added
LR 0,7 Compute next odd integer
AR 0,0 Counter + counter = 2N
AH 0,=H'1' Add 1, giving next odd term
AR 4,0 Add term to sum
AH 7,=H'1' Increment count by 1

B Test Branch back to see if finished
Store ST 4,Sum Store result
Figure 88. Calculate the sum of N odd integers

This example is cumbersome but yields the desired result.105

The arithmetic comparison instructions for 64-bit registers do exactly the same operations as the
equivalent instructions do for 32-bit registers. If the second operand is shorter than the R1 reg-
ister, it is sign-extended internally to the length of the first operand before doing the comparison.

Exercises

16.4.1.(1)+ Why can the CC not be set to 3 in a comparison operation?

16.4.2.(3) In executing arithmetic compare instructions, the CPU performs an internal sub-
traction. By examining the possible combinations of signs and magnitudes for the two oper-
ands, determine (1) when an internal overflow might occur as a result of the internal
subtraction, and (2) what the CPU must do to set the CC correctly in such cases.

16.4.3.(2) Suppose a programmer had written the last instruction in Figure 87 on page 222 as

CH 1,=F'5' (Rather than =H'5')

What would the CC setting be?

16.4.4.(2)+ In the following program, some pieces of data are missing, as indicated by the ____
spaces. Using the available information, fill in those spaces.

 Loc Object Code Assembler Language Statements
Ex16_4_4 Start X'4800'

 4800 _____________ BASR 10,0
 4802 _____________ Using *,10
4802 _________A056 Loop L 0,________
4806 _____________ A 0,One
480A 5000_________ ST 0,Number
480E <other ops> PrintOut Number
4824 59___________ C 0,Ten
4828 47___________ BL Loop
482C <other ops> PrintOut *
4854 00000000 Number DC F'0'
4858 00000001 One DC F'1'
485C _____________ Ten DC F'10'

End Ex16_4_4

105 There are often many ways to perform the same computation. Programming is as much an art as a science, since
you can write many different programs of varying degrees of efficiency, effectiveness, or elegance to achieve a given
objective. A key consideration is that your program be understandable by others who may have to enhance (or fix) it
in the future.

Chapter V: Basic Instructions 223

16.5. Logical-Arithmetic Add and Subtract Instructions

Logical-arithmetic instructions are used less often than signed-arithmetic instructions. They are
typically used for extended-length or multiple-precision arithmetic (we'll see some examples), and
on occasions when a sum or difference must be found without any possibility of a fixed-point
overflow interruption. (The CPU calculates Effective Addresses using logical arithmetic, but does
not set the Condition Code.)

Table 66 lists the logical arithmetic instructions we examine here:

Table 66. Logical arithmetic instructions

Op Mnem Type Instruction Op Mnem Type Instruction

5E AL RX Add Logical (32) 1E ALR R R Add Logical (32)

5F SL RX Subtract Logical (32) 1F SLR R R Subtract Logical (32)

E30A ALG RXY Add Logical (64) B90A ALGR RRE Add Logical (64)

E30B SLG RXY Subtract Logical (64) B90B SLGR RRE Subtract Logical (64)

The CC settings we saw in Table 62 on page 216 for signed arithmetic are different for logical
arithmetic. The Condition Code settings shown in Table 67 apply to all logical arithmetic
instructions, so that references to c(GR R1) also apply to c(GG R1).

Table 67. CC settings for logical add and subtract instructions

In Table 67, the CC settings for the logical arithmetic instructions depend only on whether a
carry occurs out of the leftmost position of the R1 register, and whether the result is zero. (Note
that CC3 does not mean an overflow has occurred!) By referring to the examples in Sections 2.6
and 2.14, we see that the following rules hold:

1. A CC zero setting is possible for AL and ALR, and for ALG and ALGR, only if the first
and second operands are both zero.

2. It is not possible to have a CC setting of zero for SL and SLR, or for SLG and SLGR. After
the ones' complement of the second operand and a low-order 1-bit are added to the first
operand, a carry must have occurred if the result is zero.

To illustrate the differences between arithmetic and logical addition and subtraction, consider
examples 1 and 2 of Section 2.11 on page 32.

• Example 1. For unsigned operands, the result of 5 −3=2 is representable.

5-3: 0000 0101
-0000 0011

becomes
0000 0101
+1111 1101

(carry lost) 0000 0010 = 2

When we logically subtract unsigned operands, the presence of a carry means that the result
was valid, and that there was no need to “borrow” from any higher-order digit positions.

• Example 2. For unsigned operands, the result of 3 −5 cannot be correctly represented without
“borrowing” from higher-order digit positions (negative values don't exist in this 8-bit repre-
sentation).

Operation CC Setting and Meaning

 c(GR R1) = c(GR R1) ± c(GR R2)

 c(GR R1) = c(GR R1) ± c(Word in memory)

0: Zero result, no carry
1: Nonzero result, no carry
2: Zero result, carry
3: Nonzero result, carry

Note: CC0 cannot occur for logical subtraction

224 Assembler Language Programming for IBM System z™ Servers Version 2.00

3-5: 0000 0011
-0000 0101

becomes
0000 0011
+1111 1011

(no carry) 1111 1110 = -2 (arithmetically, not logically!)

Thus, when logically subtracting unsigned operands, the absence of a carry means that we need
to “borrow” from a higher-order digit position.

Table 68 summarizes these observations:

Table 68. CC indications for logical addition and subtraction

As in Figure 86 on page 221, we can use logical arithmetic to add the same two numbers:

Operation Carry No Carry

Logical
Addition Carry to higher-order position No carry to higher-order position

Logical
Subtraction No borrow from higher-order position Borrow from higher-order position

LG 0,A Get c(A)
ALG 0,B ... and c(B)
STG 0,C Store sum at C
- - -

A DC FD'9223372036854775807'
B DC FD'9223372036854775807'
C DS FD Result =X'FFFFFFFFFFFFFFFE', CC=3
Figure 89. Adding two 64-bit numbers logically

The result at C is the same as before, but now there is no fixed-point overflow.

In the next section we will see how the presence or absence of a carry condition is used when we
add and subtract “long” or “multiple-precision” numbers.

To illustrate a typical use of logical arithmetic, suppose we must add and subtract 64-bit integers
represented by pairs of 32-bit integers: that is, double-length integers two words long. (Double-
length integers are also encountered as products and dividends.) That is, we must do integer
arithmetic with operands longer than a single general register.

First, consider how we find the two's complement (the negative) of such a 64-bit number. Since
we know that the two's complement is found by adding a low-order 1-bit to the ones' comple-
ment of the number, we might proceed as follows. The number to be complemented is stored in a
doubleword at ARG, and c(GR0,GR1) means the contents of the double-length register pair
formed by GR0 and GR1.

L 0,=F'-1' All one bits in GR0
LR 1,0 c(GR0,GR1) is now all 1-bits
SL 0,ARG Ones' complement of high-order part
SL 1,ARG+4 Ones' complement of low-order part
AL 1,=F'1' Now add the low-order 1 bit
BC B'1100',NoCarry Branch if no carry out of GR1 occurs
AL 0,=F'1' Propagate the carry bit to GR0

NoCarry STM 0,1,ARG Store final result back at ARG
- - -

ARG DC FD'123456787654321' 64-bit integer
Figure 90. Double-length complementation

Chapter V: Basic Instructions 225

The first AL instruction must be used rather than an A instruction because the high-order bit of
GR1 is not a sign bit, but an arithmetically significant bit with weight 231. If a carry out of GR1
occurs, it must be detected and propagated into the low-order bit of GR0.

The same complementation is performed by the following code sequence, but more directly (and
less obviously).

LM 0,1,ARG Get double-length operand
LCR 0,0 Complement high-order half
LCR 1,1 Complement low-order half
BZ XXX Jump if c(GR1) was 0
SL 0,=F'1' Subtract 1 from GR0

XXX STM 0,1,ARG Store result at ARG
- - -

ARG DC FD'123456787654321' 64-bit integer
Figure 91. Double-length complementation, a simpler way

The first LCR instruction forms the two's complement of the high-order 32 bits in c(GR0); that
is, we have already added a low-order 1-bit to the ones' complement of c(GR0). The following
LCR complements the low-order 32 bits, and sets the CC. If c(GR1) had been zero, its ones'
complement would have been all 1-bits, and adding a low-order one would cause a carry out the
left end of R1; the first LCR has already “propagated” a carry into GR0. For any other bit
pattern, no such carry would have occurred, so we must correct c(GR0) by subtracting off the
low-order bit that was automatically added during the execution of the first LCR.106

Adding the two double-length integers at A and B is straightforward: the instructions are explained
in the comments.

LM 0,1,A Load A into c(GR0,GR1)
AL 1,B+4 Add low-order part of B
BC B'1100',NoCarry Branch if no carry
AL 0,=F'1' Propagate carry to high-order word

NoCarry AL 0,B Add high-order part of B
STM 0,1,Sum Store the double-length sum
- - -

Sum DS FD 8 bytes, aligned
A DC FD'888777666555'
B DC FD'222333444555'
Figure 92. Double-length addition

Subtracting 64-bit operands is done the same way, except that the condition code setting after the
first logical subtraction requires explanation.

LM 0,1,A Get first operand as c(GR0,GR1)
SL 1,B+4 Subtract low-order parts
BC B'0011',NoBorrow Branch if there's a carry
SL 0,=F'1' Reduce c(GR0) by 1 (i.e., borrow 1)

NoBorrow SL 0,B Subtract high-order parts
STM 0,1,Diff Store 64-bit difference
- - -

Diff DS FD
A DC FD'234567898765432'
B DC FD'123456787654321'
Figure 93. Double-length subtraction

106 This instruction sequence has a minor defect: if either of the LCR instructions complements the maximum negative
number X'80000000', a fixed-point overflow exception could occur. (See Exercise 16.6.5.)

226 Assembler Language Programming for IBM System z™ Servers Version 2.00

In performing a subtraction, the ones' complement of the second operand and a low-order 1-bit
are added to the first operand. If a carry occurs out of the high-order bit position of the low-order
register, then the result is correctly represented. If a carry does not occur the result is not correctly
represented, in the sense that we have tried to generate a “negative” integer in the logical represen-
tation. Hence we must “borrow” a 1-bit from the next higher bit position, so we subtract =F'1'
if the branch condition is not met.

It might help to review the examples in Section 2.11 on page 32 to clarify the relationship
between carries and overflow in the arithmetic and logical representations. The instructions in
Section 16.6 greatly simplify these operations.

Using 32-bit registers to calculate 64-bit results is unnecessary if you need only 64-bit results,
because you can use 64-bit operations instead. But if you need to calculate the 128-bit sum of two
64-bit operands, these techniques are useful. (See Exercise 16.7.4.)

To see how logical arithmetic can provide possibly misleading arithmetic results, consider the
example in Figure 83 on page 218, revised to use logical add and subtract instructions:

L 2,OldStock Get c(OldStock) in GR2
AL 2,Received Add number of items received
SL 2,Sold Subtract number of items sold
ST 2,NewStock Store result at NewStock

Figure 94. Example of logical addition and subtraction

These instructions (using logical add and subtract) are not recommended, for two reasons. First,
although the result stored at NewStock is the same in both cases, the CC setting is not; if we
follow the ST instruction by conditional branch instructions that depend on the arithmetic sign of
the result (as in Figure 84 on page 218), the branch instructions may not go to the intended
targets.

Exercises

16.5.1.(2) Suppose the instruction sequence in Figure 94 is followed by the three branch
instructions in Figure 84 on page 218. What results will cause branching to each of the three
target symbols?

16.5.2.(2)+ In the complementation instructions shown in Figures 90 and 91, what additional
instructions would be needed to cause a branch to OverFlow if the 64-bit result of the
complementation overflowed?

16.5.3.(3)+ In the addition instructions shown in Figure 92 on page 226, what additional
instructions would be needed to cause a branch to OverFlow if the 64-bit result of the addition
overflowed?

16.5.4.(2)+ In the subtraction instructions shown in Figure 93 on page 226, what additional
instructions would be needed to cause a branch to OverFlow if the 64-bit result of the sub-
traction overflowed?

16.5.5.(2) In Figure 91 on page 226, if either 32-bit operand is the maximum negative number,
complementation by the LCR instructions will cause a fixed-point overflow condition. Revise
the instructions to produce the 64-bit two's complement without any overflow condition.

16.5.6.(3) Examine the instructions in Figures 92 and 93. Make a short table indicating all the
possible CC settings, and the operands that produce them.

16.5.7.(3) Examine the instructions in Figures 92 and 93. Revise them to set the contents of the
word at CCode to contain the correct CC setting after addition and subtraction. If you can
make the actual CC setting correct, so much the better.

16.5.8.(3) Write a sequence of instructions that form the two's complement of a 64-bit integer
represented as a pair of 32-bit words, that also set the CC to the same value as LCGR does for
the same 64-bit integer.

Chapter V: Basic Instructions 227

16.5.9.(3) In the examples of the addition and subtraction of double-length numbers in Figures
92 and 93, make modifications to the code such that if the final double-length result overflows,
control will be transferred to OVER. The register contents need not be correct if such a transfer
is made.

16.5.10.(4) Do the same as for Exercise 16.5.9, but after the addition or subtraction, the word
named CCode should reflect the condition of the double-length result, which should also be cor-
rectly represented to 64 bits. That is, using 32-bit registers, compute the 64-bit sum as though
a 64-bit addition is performed. Extra credit: make the actual CC setting correct,

16.5.11.(2)+ For the logical add and subtract instructions, each bit of the CC has a particular
meaning. Make a table with two rows and two columns summarizing the meanings of the four
possible CC values as a function of the values of its two bits.

16.5.12.(1) If a logical subtraction is performed with two operands that are identically zero, why
is the resulting CC setting not zero?

16.6. Add With Carry, Subtract With Borrow (*)

Referring to Table 67 on page 224, we can represent the Condition Code settings for logical
addition in a different way, as shown in Table 69.

Table 69. CC settings after logical addition

Thus, the leftmost bit of the CC can be thought of as the “carry bit”. Similarly, referring to
Table 68 on page 225, another way to represent the CC settings for logical subtraction is pro-
vided in Table 70.

Table 70. CC settings after logical subtraction

The instructions in Table 71 take advantage of the leftmost CC bit to minimize the number of
instructions needed to do double-length (or multiple-length) arithmetic107 by using the CC bit to
propagate a carry or borrow to the next higher-order operand.

CC bit 0 1

Left No carry Carry

Right Zero result Nonzero result

CC bit 0 1

Left Borrow (no carry) No borrow (carry)

Right Zero result Nonzero result

Table 71. Logical arithmetic instructions with carry/borrow

Op Mnem Type Instruction Op Mnem Type Instruction

E398 ALC RXY Add Logical with Carry (32) B998 ALCR RRE Add Logical with Carry (32)

E388 ALCG RXY Add Logical with Carry (64) B988 ALCGR RRE Add Logical with Carry (64)

E399 SLB RXY Subtract Logical with Borrow
(32)

B999 SLBR RRE Subtract Logical with
Borrow (32)

E389 SLBG RXY Subtract Logical with Borrow
(64)

B989 SLBGR RRE Subtract Logical with
Borrow (64)

107 Multiple-precision arithmetic is used intensively in cryptographic applications for data security.

228 Assembler Language Programming for IBM System z™ Servers Version 2.00

Now, we can use these instructions to improve the examples of double-length addition and sub-
traction shown in Figures 92 and 93 on page 226. First, consider addition: now, the intermediate
branch and addition of a low-order 1 are unneeded.

LM 0,1,A Load A in register pair
AL 1,B+4 Add low-order part of B
ALC 0,B Add high-order part of B with carry
STM 0,1,Sum Store the double-length sum
- - -

Sum DS FD 8 bytes, aligned
A DC FD'888777666555'
B DC FD'222333444555'
Figure 95. Double-length addition with carry

Similarly, the double-length subtraction can be rewritten:

LM 0,1,A Get first operand
SL 1,B+4 Subtract low-order parts
SLB 0,B Subtract high-order parts with borrow
STM 0,1,Diff Store 64-bit difference
- - -

Diff DS FD
A DC FD'234567898765432'
B DC FD'123456787654321'
Figure 96. Double-length subtraction with borrow

Exercises

16.6.1.(2)+ Repeat Exercise 16.5.9, using Add Logical With Carry and Subtract Logical With
Borrow instructions as appropriate.

16.6.2.(3) Repeat Exercise 16.5.9, using Add Logical With Carry and Subtract Logical With
Borrow instructions as appropriate, this time storing the proper Condition Code value at CCode.

16.6.3.(3)+ Suppose two 256-bit integers are stored as eight consecutive words (or four consec-
utive doublewords) in memory starting at A256 and B256 respectively. Using Add Logical With
Carry and Subtract Logical With Borrow instructions, write instructions to store their sum and
difference at Sum256 and Diff256 respectively.

16.6.4.(3) In Exercise 16.6.3, the add and subtract instructions do logical arithmetic. How
would you detect an arithmetic overflow?

16.6.5.(2)+ Write an instruction sequence using ALC to add two 128-bit numbers represented
as two groups of four fullwords each.

16.7. Operations With Mixed 64-Bit and 32-Bit Operands

The instructions in Table 72 on page 230 all involve a 64-bit first operand and a 32-bit second
operand.

Chapter V: Basic Instructions 229

Table 72. Instructions for mixed-length operands

Op Mnem Type Instruction Op Mnem Type Instruction

B318 AGF RXY Add (64←32) B318 AGFR RRE Add Register (64←32)

B309 SGF RXY Subtract (64←32) B319 SGFR RRE Subtract Register (64←32)

E31A ALGF RXY Add Logical (64←32) B91A ALGFR RRE Add Logical (64←32)

E31B SLGF RXY Subtract Logical (64←32) B91B SLGFR RRE Subtract Logical (64←32)

E330 CGF RXY Compare (64←32) B930 CGFR RRE Compare (64←32)

The AGF and SGF instructions are similar to AH and SH, except that instead of sign-extending a
16-bit memory operand to 32 bits, a 32-bit memory operand is extended to 64 bits before partic-
ipating in the 64-bit operation, as illustrated in Figure 97.

┌───────────────────────────────────────┬──┐
│ �───────── sign extended ─────────────┼s │ GG R1
└───────────────────────────────────────┴──┘
 0 32 � 63

┌──┐
32─bit second operand │s │

└──┘
0 31

Figure 97. Sign extension for instructions with mixed 32- and 64-bit signed operands

Using SGF, we can modify the example in Figure 85 on page 221 to use a word literal:

LG 6,XX
AG 6,YY c(GG6) = c(XX) + c(YY)
BNM ST Branch if sum is not negative
AG 6,ZZ It was negative; add c(ZZ)
SGF 6,=F'17' Subtract 17 (word literal)

ST STG 6,DAnswer Store result
- - - etc.

Figure 98. Calculate a 64-bit sum with an intermediate test

The AGFR and SGFR instructions use the same sign-extension process for 32-bit second oper-
ands in general registers as AGF and SGF do for 32-bit second operands in memory. For
example, if we must use only a halfword operand such as =H'17', we can rewrite Figure 98 as
follows:

LG 6,XX
AG 6,YY c(GG6) = c(XX) + c(YY)
BNM ST Branch if sum is not negative
AG 6,ZZ It was negative; add c(ZZ)
LH 0,=H'17' Load 17 into GR0 (32 bits)
SGFR 6,0 Extend; then subtract GR0 from GG6

ST STG 6,DAnswer Store result
- - - etc.

Figure 99. Calculate a 64-bit sum with an intermediate test

This approach requires an additional register (GR0) as a “temporary” register, which may be
inconvenient. Figure 99 is also one instruction and two bytes longer (counting the literal) than
Figure 98, so we could have used a word operand such as =F'17'.

Because logical arithmetic uses unsigned nonnegative operands, all bits have positive weight.
Thus, when an instruction requires unsigned operands with mixed lengths, the shorter operand is
always “sign-extended” with zero bits, as shown in Figure 100 on page 231.

230 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───────────────────────────────────────┬──┐
│ �───── zeros ───── │ │ GG R1
└───────────────────────────────────────┴──┘
0 32 � 63

┌──┐
32─bit second operand │ │

└──┘
0 31

Figure 100. Sign extension for instructions with mixed 32- and 64-bit unsigned operands

For example:

(1) LG 0,=AD(X'0123456789ABCDEF')
ALG 0,=AD(X'123456789ABCDEF0') c(GG0)=X'13579BE02468ACDF', CC=1

Adding the two operands causes no overflow and the result is nonzero, so CC=1.

(2) LG 0,=AD(X'0123456789ABCDEF')
ALGF 0,=A(X'87654321') c(GG0)=X'0123456811111110', CC=1

As in (1), but the second operand is first extended with zeros.

(3) LG 0,=AD(X'0123456789ABCDEF')
SLGF 0,=A(X'87654321') c(GG0)=X'0123456702468ACE', CC=3

Subtracting the second operand causes a carry and the result is nonzero, so CC=3.

(4) SR 1,1 c(GR1)=0
SGR 0,0 c(GG0)=0
SLGFR 0,1 c(GG0)=X'0000000000000000', CC=2

Subtracting the second operand causes a carry and the result is zero, so CC=2.

Exercises

16.7.1.(2) Revise the instructions shown in Figure 91 on page 226 to complement a pair of
64-bit integers, giving a 128-bit result.

16.7.2.(2) Revise the instructions shown in Figure 92 on page 226 to add a pair of 64-bit inte-
gers, giving a 128-bit sum.

16.7.3.(2) Revise the instructions shown in Figure 93 on page 226 to subtract a pair of 64-bit
integers, giving a 128-bit difference.

16.7.4.(3) Write instructions to form the 128-bit sum and difference of the pair of 64-bit integers
stored starting at Two64s. Store the sum at Sum128 and the difference at Diff128.

16.7.5.(1) Show the CC values after executing

SLR 0,0
and

SLGR 0,0

and after executing

SR 0,0
and

SGR 0,0

Chapter V: Basic Instructions 231

16.8. Logical-Arithmetic Compare Instructions

The logical compare instructions are shown in Table 73.

Table 73. Arithmetic compare instructions

Op Mnem Type Instruction Op Mnem Type Instruction

55 CL RX Compare Logical (32) 15 CLR R R Compare Logical (32)

E321 CLG RXY Compare Logical (64) B921 CLGR RRE Compare Logical (64)

E331 CLGF RXY Compare Logical (64←32) B931 CLGFR RRE Compare Logical (64←32)

BD CLM RS Compare Logical Characters
under Mask (32)

EB20 CLMH RSY Compare Logical Charac-
ters under Mask (32)

EB21 CLMY RSY Compare Logical Characters
under Mask (32)

As we saw in Section 14.7 on page 189, RXY- and RSY-type instructions behave the same way
as RX- and RS-type instructions.

The logical compare instructions test the relative magnitudes of two operands, using an unsigned
comparison instead of the signed-arithmetic comparison used for arithmetic comparisons. The
results of all logical comparisons are indicated in the CC setting, as shown in Table 74 (you'll
note that it's identical to Table 65 on page 222).

Table 74. CC settings after logical comparisons

Logical comparisons do not give the same results as arithmetic comparisons, since numbers in the
logical representation are always nonnegative. The following instruction sequence may help to
show the differences. (Following the LM instruction, the contents of R3 will be X'80000001'.)

The 64-bit logical comparison instructions behave the same way as their 32-bit equivalents. Care-
fully compare the CC settings in Figure 101 with those in Figure 87 on page 222.

CC Meaning

0 Operand 1 = Operand 2

1 Operand 1 < Operand 2

2 Operand 1 > Operand 2

LM 0,3,=F'1,0,-1,-2147483647' Initialize registers GR0-GR3
CLR 1,3 CC = 1 X'00000000' < X'80000001'
CLR 0,2 CC = 1 X'00000001' < X'FFFFFFFF'
CLR 2,3 CC = 2 X'FFFFFFFF' > X'80000001'
LPR 4,3 CC = 2; (now, c(GR4) = X'7FFFFFFF')
CLR 4,3 CC = 1 X'7FFFFFFF' < X'80000000'
CL 2,=F'+2' CC = 2 X'FFFFFFFF' > X'00000002'
CH 1,=H'5' CC = 1 X'00000000' < X'00000005'

Figure 101. Examples of logical comparisons

The CLM and CLMH instructions are unlike the other compare instructions, because the entire
first operand might not be used. Instead, they operate on selected bytes in the register, as deter-
mined by 1-bits in the M3 mask field of the instruction (just as we saw for the ICM/ICMH
instructions in Section 14.5 on page 185). The selected bytes in the register are compared to the
string of bytes in memory beginning at the second operand address. The comparison is performed
by considering the two strings to be unsigned logical numbers of length 8, 16, 24, or 32 bits. If the
mask digit M3 is zero, the CC is set to zero and no comparison is performed.

• CLM and CLMY compare selected bytes in the first operand register (either in a 32-bit register
or in the rightmost 32 bits of a 64-bit register) to the storage operand. For example:

232 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 0,=A(X'00010203') Initialize GR0
CLM 0,B'0000',=X'0123' CC = 0, because mask is 0
CLM 0,B'0001',=X'0123' CC = 2, because X'03' > X'01'
CLM 0,B'0100',=X'0123' CC = 0, because X'01' = X'01'
CLM 0,B'0110',=X'0123' CC = 1, because X'0102' < X'0123'

• CLMH does exactly the same as CLM, except that it compares bytes in the high-order half of
a 64-bit register to bytes in memory. For example:

LG 0,=AD(X'0001020304050607') Initialize GG0
CLMH 0,B'0000',=X'0123' CC = 0, because mask is 0
CLMH 0,B'0001',=X'0123' CC = 2, because X'03' > X'01'
CLMH 0,B'0100',=X'0123' CC = 0, because X'01' = X'01'
CLMH 0,B'0110',=X'0123' CC = 1, because X'0102' < X'0123'

The bytes in the low-order half of the 64-bit register are ignored.

Sometimes the logical compare instructions are used to test the ordering of values that are regu-
larly incremented. For example, if Value has been saved at different times, we could find that

Oldest DC X'789ABCDE' Oldest value
Later DC X'89ABCDEF' A later value
Newest DC X'9ABCDEF0' Most recent value

and we can use logical comparisons to determine their ordering, as in

L 0,Oldest
L 1,Later
L 2,Newest
- - -
CLR 1,0 Compare Later to Oldest
CLR 2,1 Compare Newest to Later

Figure 102. Comparing logically ordered values

then both CLR instructions will give the correct ordering of the three values.

But if the values can “wrap around” from X'FFFFFFFF' to zero, we must be more careful. For
example, suppose the three values are

Oldest DC X'FFFFFFFE' Oldest value
Later DC X'FFFFFFFF' A later value
Newest DC X'00000001' Most recent value

Then if we compare them as previously, the second comparison will fail, because the value at
Newest will be logically less than the value at Later.

To avoid this problem, we can write instead

LR 3,1 Copy Later value to GR3
SLR 3,0 Subtract Oldest value
LTR 3,3 Test result

and the Condition Code will indicate that c(Later) is indeed greater than c(Oldest). Similarly, if
we write

LR 3,2 Copy Newest value to GR3
SLR 3,1 Subtract Later value
LTR 3,3 Test result

the CC will again indicate the correct ordering.

Exercises

16.8.1.(2) Show how the CC settings after SL and SLR are related to those after CL and CLR.

Chapter V: Basic Instructions 233

16.8.2.(2) Suppose GG0 contains X'1122334455667788', and you must compare bytes 2 through
5 (containing X'33445566') to a 4-byte memory operand named StgOp. Write an instruction or
sequence of instructions to do this.

16.8.3.(2)+ Suppose c(GR0) is X'87654321' and c(GR1) is X'01234567'. What is the CC setting
and the apparent ordering of the operands after executing each of these two instructions?

CR 0,1 Compare c(GR0) to c(GR1)
CLR 0,1 Compare c(GR0) to c(GR1)

Now, suppose the sign bit of each operand has been inverted, so that c(GR0)=X'07654321'
and c(GR1)=X'81234567'. What is the CC setting and the apparent ordering of the operands
after executing each of the two instructions? Why might this sign-bit inversion be useful?

16.8.4.(2) Make a table showing the first and second comparison operands in Figures 87 and
101, and the CC settings from their arithmetic and logical comparisons. For which operands are
they the same, and why?

16.8.5.(2) What differences will occur if two binary numbers are compared using arithmetic and
then logical compare instructions?

16.8.6.(2)+ Write and execute a small program to verify the assertions about correctly-ordered
logical comparisons in the examples starting with Figure 102 on page 233.

16.9. Retrieving and Setting the Program Mask (*)

The IPM and SPM instructions in Table 75 let you retrieve and set the value of the Condition
Code and the Program Mask (PM).

Table 75. IPM and SPM instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B222 IPM RRE Insert Program Mask 04 SPM R R Set Program Mask

Both instructions have a single operand:

IPM R1 Insert CC and Program Mask into GR R1
SPM R1 Set CC and Program Mask from GR R1

IPM inserts the Condition Code and Program Mask into bits 34-39 of register R1, in the posi-
tions shown in Figure 103; the remaining bits of the R1 register are unchanged. Conversely, SPM
sets the Condition Code (CC) and Program Mask from the same bit positions, and ignores the
rest of the R1 register.

�─────────────unchanged──────────────────� �─────────unchanged────────────�
┌───────────────────────────────────────┬──┐
│///////////////////////////////////////│//CCFDUS////////////////////////////////│ R1
└───────────────────────────────────────┴──┘
0 63

Figure 103. Bit positions used by IPM and SPM instructions (System/360 PSW sketch)

The four mask bits in the Program Mask (“FDUS” in Figure 103) control the behavior of the four
exceptions described in Section 4.6 on page 55. These four mask bits correspond to the bit posi-
tions shown in Table 76 on page 235:

234 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 76. Program Mask bits

Setting a mask bit to 1 enables the corresponding interruption. If the mask bit is 0, the CPU takes
a default action without an interruption.

In practice, many programmers choose to set the Program Mask to zero initially, and trust to
luck that nothing goes wrong. For example:

SR 0,0 Set c(GR0) to zero
SPM 0 Set CC and Program Mask bits to zero

Careful placement of tests for overflow can help justify such faith, but it is generally better to test
in advance for possible errors, and let a program interruption catch the unexpected and truly
exceptional cases.

For now, we are concerned only with fixed-point overflow. The result of an instruction causing a
fixed-point overflow is the same whether or not an interruption occurs; the Condition Code is set
to 3.

Exercises

16.9.1.(4) For each of the conditions controlled by a bit in the Program Mask, determine what
actions are taken by the CPU (including CC settings) when the PM bit is zero or one. (You
may need to consult the z/Architecture Principles of Operation.)

16.9.2.(2)+ Write instructions that will turn off the Lost-Significance mask bit in the Program
Mask, without affecting the settings of the other mask bits.

16.9.3.(2) Assume you are executing in 24-bit addressing mode. The fullword integer at CCode
has a value of 0, 1, 2, or 3. Set the Condition Code to that value, without affecting the setting
of the Program Mask.

16.9.4.(2) Assume you are executing in 24-bit addressing mode. Store the current value of the
program mask in the rightmost four bits of the byte at PMask. The remaining 4 bits of the byte
should be zero.

16.9.5.(2) Assume you are executing in 24-bit addressing mode. Store the current value of the
Condition Code in the word at CCode without changing the Condition Code.

Bit Exception Condition Controlled Int. Code

36 (F) Fixed-point overflow 8

37 (D) Decimal overflow A
38 (U) Hexadecimal floating-point underflow D
39 (S) Hexadecimal floating-point lost significance E

16.10. Summary

Operands used in arithmetic and logical operations may be extended, as we noted in Sections
14.10 and 16.7.

Operand Extension

When a source operand in a register or in memory is used as an operand
in an arithmetic instruction whose target register is longer than the
operand, the operand is extended internally to the length of the target
register:

• arithmetic operands are sign-extended
• logical operands are extended with zeros.

Examples of arithmetic instructions doing sign extension are AH, AGH, CGFR, and SGFR;
examples of logical instructions that extend with zeros are ALGF, CLGF, and CLGFR.

Chapter V: Basic Instructions 235

In this section we examined some frequently-used instructions for addition, subtraction, and com-
parison; they are summarized in Table 77 on page 236.

Table 77. Summary of instructions discussed in this section

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Function
Operand1 4 bytes 8 bytes

Operand2 2 bytes 4 bytes 4 bytes 8 bytes

Arithmetic Add and Subtract
(from memory)

AH
SH

A
S

AGF
SGF

AG
SG

Arithmetic Add and Subtract
(from register)

AR
SR

AGFR
SGFR

AGR
SGR

Logical Add and Subtract
(from memory)

AL
SL
ALC
SLB

ALGF
SLGF

ALG
SLG
ALCG
SLBG

Logical Add and Subtract
(from register)

ALR
SLR
ALCR
SLBR

ALGFR
SLGFR

ALGR
SLGR
ALCGR
SLBGR

Arithmetic Compare
(to memory)

CH C CGF CG

Arithmetic Compare
(to register)

CR CGFR CGR

Logical Compare
(to memory)

CL
CLM

CLGF
CLMH

CLG

Logical Compare
(to register)

CLR CLGFR CLGR

236 Assembler Language Programming for IBM System z™ Servers Version 2.00

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

A 5A C 59 SGF E319

AG E308 CG E320 SGFR B919

AGF E318 CGF E330 SGR B909

AGFR B918 CGFR B930 SH 4B

AGR B908 CGR B920 SL 5F

AH 4A CH 49 SLB E399

AL 5E CL 55 SLBG E389

ALC E398 CLG E321 SLBGR B989

ALCG E388 CLGF E331 SLBR B999

ALCGR B988 CLGFR B931 SLG E30B

ALCR B998 CLGR B921 SLGF E31B

ALG E30A CLM BD SLGFR B91B

ALGF E31A CLMH EB20 SLGR B90B

ALGFR B91A CLR 15 SLR 1F

ALGR B90A CR 19 SR 1B

ALR 1E S 5B

AR 1A SG E309

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

15 CLR B90A ALGR E30A ALG

19 CR B90B SLGR E30B SLG

1A AR B918 AGFR E318 AGF

1B SR B919 SGFR E319 SGF

1E ALR B91A ALGFR E31A ALGF

1F SLR B91B SLGFR E31B SLGF

49 CH B920 CGR E320 CG

4A AH B921 CLGR E321 CLG

4B SH B930 CGFR E330 CGF

55 CL B931 CLGFR E331 CLGF

59 C B988 ALCGR E388 ALCG

5A A B989 SLBGR E389 SLBG

5B S B998 ALCR E398 ALC

5E AL B999 SLBR E399 SLB

5F SL BD CLM EB20 CLMH

B908 AGR E308 AG

B909 SGR E309 SG

Chapter V: Basic Instructions 237

Terms and Definitions
addend

see augend

augend
When two numbers are added, the number being augmented (the first operand) is the
augend, to which the addend (the second operand) is added.

logical arithmetic
Binary arithmetic and comparison operations with unsigned operands.

minuend
see subtrahend

subtrahend
When one number is subtracted from another, the number being diminished (the first
operand) is the minuend, and the number being subtracted (the second operand) is the
subtrahend.

Programming Problems

Problem 16.1. Write a program that computes three word quantities X, Y, and Z that occupy
successive words in memory. Also define a 12-byte character string to occupy the same storage.
Compute the contents of the three words as follows:

 c(X) = B'100000000000000' + X'C7A98' - 231471192,
 c(Y) = X'C0FFEE' - C'@#$' - 694895668, and
 c(Z) = 1073741823 + X'F194F6' + X'ABCD'.

Treat all the quantities as words whose values are self-defining terms. A hint: this means that
the simplest way to create them is as A-type constants.

Print the hexadecimal and character forms of the 12-byte result (using the PRINTOUT macro, for
example).

Problem 16.2. Write a program that computes four values stored in successive words at W, X,
Y, and Z. The values are to be computed according to the relations

c(W) = c(WA) + c(WB) - 929065920, where
c(WA) = B'100000000000000' and
c(WB) = X'1230000'.

c(X) = c(XA) + 50344169 + c(XB), where
c(XA) = X'5CF17' and
c(XB) = C'000'.

c(Y) = c(YA) + c(YB) + c(YC), where
c(YA) = B'11111111',
c(YB) = X'1261F02', and
c(YC) = C'ABCD'.

c(Z) = c(ZA) + c(ZB) - c(ZC), where
c(ZA) = X'CAF75A',
c(ZB) = B'1000011', and
c(ZC) = 511686493.

All the quantities used in the calculations are four-byte word-aligned constants in memory.
Define symbols having length attribute 16 and types C and X to name the same 16 bytes of
memory. Calculate W, X, Y, and Z, and print the results of your calculation in character and
hexadecimal form (using the PRINTOUT macro, for example).

Problem 16.3. Do as in Problem 16.2, but the four quantities W, X, Y, and Z are defined this
time by

238 Assembler Language Programming for IBM System z™ Servers Version 2.00

c(W) = c(WA) + c(WB) - 759375551, where
c(WA) = B'100000000000000',
c(WB) = X'CBA98'.

c(X) = c(XA) - c(XB) + 1386388536, where
c(XA) = X'C0FFEE',
c(XB) = C'@#$'.

c(Y) = c(YA) + c(YB) + c(YC), where
c(YA) = B'11111111',
c(YB) = X'1F7C05',
c(YC) = C'ABCD'.

c(Z) = c(ZA) + c(ZB) - 975583924, where
c(ZA) = X'FFFF',
c(ZB) = -65536.

As before, print the 16 bytes of the result as a character string and as a string of 32 hexadecimal
digits.

Problem 16.4. Consider the sequence of integers starting

0, 1, 2, 3, 6, 11, 20, 37, ...,

where (after starting with 0, 1, and 2) each successive term is generated by adding the previous
three terms together.

Write a program that will compute and print the first 25 terms of this sequence. (A hint: an
appropriate choice of starting values will make it unnecessary to take special actions to print the
first few terms.)

Problem 16.5. Suppose you are given three integers A, B, and C, and you are told that they are
three successive terms in a sequence. Each term of the sequence was generated by adding the
previous three terms together.

Write a program that will generate the previous 25 terms of the sequence, for various values of
A, B, and C. As a check, you might start with values you found in solving Problem 16.4.

Problem 16.6. Write a program to do the calculations in Figures 92 through 96 for various
values of the operands. Use the PRINTOUT macro to display the values of the 64-bit results. For
example,

PRINTOUT 17,18

displays c(GG1) and c(GG2) in both hex and decimal.

Problem 16.7.(2)+ The Fibonacci108 series is defined by the relation

F(n+1) = F(n) + F(n-1) with F(0)=0 and F(1)=1

Write a program to calculate and display the numbers in the Fibonacci series starting with F(1)
up to the largest value that does not exceed one million.

Problem 16.8.(2)+ Do the same as in Problem 16.7, but now calculate and display the
Fibonacci series up to the largest positive value representable in a signed 32-bit binary fullword.

Problem 16.9.(3)+ Do the same as in Problem 16.8, but format and print the results using the
CONVERTO and PRINTLIN macros.

Problem 16.10.(3) Calculate the numbers in the Fibonacci series (described in Problem 16.7) up
to the maximum positive value representable using 64-bit binary arithmetic, and format and
print the results using the CONVERTO and PRINTLIN macros.

Problem 16.11.(2)+ Assemble the following program:

108 Named after Leonardo of Pisa, known as Fibonacci.

Chapter V: Basic Instructions 239

P16_11 CSect ,
Using *,12
LR 12,15
A 15,X
BASR 12,15

X DC F'18'
DC F'4'

Exit BR 14
L 10,X-4
B X-4(10)
End P16_11

Study the object code carefully, and explain what each instruction does and how it does it.

Problem 16.12.(2)+ Write and execute a program to test the results of Exercise 16.2.16 above.
(Remember that the PRINTOUT macro will display both register contents and CC settings.)

240 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter V: Basic Instructions 241

17. Binary Shifting

11 777777777777
111 777777777777
1111 77 77
11 77
11 77
11 77
11 77
11 77
11 77
11 77

1111111111 77
1111111111 77

The multiplication and division instructions in Section 18 are often combined with shift oper-
ations, so we'll start with instructions that shift data within a single general register or pair of
general registers.

The general register shift instructions are summarized in Table 78. Nine operate on data in 32-bit
registers, and five operate on 64-bit registers. The notation “(32+32)” means that 64 bits are
shifted in an even-odd pair of 32-bit general registers. There are no double-length shifts of 128-bit
operands “(64 +64)” in an even-odd pair of 64-bit general registers.109

We say that single-length shifts operate on bits in a single 32- or 64- bit register, and double-
length shifts operate on bits in an even-odd pair of registers.

Table 78. General register shift instructions

Op Mnem Type Instruction Op Mnem Type Instruction

88 SRL RS Shift Right Logical (32) 89 SLL RS Shift Left Logical (32)

8A SRA RS Shift Right Arithmetic
(32)

8B SLA RS Shift Left Arithmetic (32)

8C SRDL RS Shift Right Double
Logical (32+32)

8D SLDL RS Shift Left Double Logical
(32+32)

8E SRDA RS Shift Right Double
Arithmetic (32+32)

8F SLDA RS Shift Left Double
Arithmetic (32+32)

EB0C SRLG RSY Shift Right Logical (64) EB0D SLLG RSY Shift Left Logical (64)

EB0A SRAG RSY Shift Right Arithmetic
(64)

EB0B SLAG RSY Shift Left Arithmetic (64)

EB1C RLLG RSY Rotate Left Logical (64) EB1D RLL RSY Rotate Left Logical (32)

These RS-type instructions differ from other RS-type instructions: the shaded portion of the
instruction (where the R3 register specification digit would be) in Table 79 on page 243 is ignored
when the instructions are executed.

109 At the time of this writing. But new instructions are added regularly to the System z architecture, so check the Princi-
ples of Operation.

242 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 79. RS-type shift instruction

Thus, the Assembler makes no provision for specifying a value in that field, and sets it to zero.
The operand field entry for shift instructions is written in either of the two forms

R1,D2(B2) (explicit address)
R1,S2 (implied address)

and no R3 operand is specified.

The RSY-type shift instructions do have an R3 operand, as shown in Table 80. For these
instructions, the source operand is in the R3 register and the result goes into the R1 register. We'll
see examples using the R3 operand when we discuss these instructions.

Table 80. RSY-type instruction format

When executed, none of the logical shift instructions change the CC setting, while all of the arith-
metic shifts treat the shifted data as signed, and set the CC to indicate the status of the result.

For all shift instructions, the number of bit positions to be shifted is determined from the low-
order six bits of the Effective Address; this allows actual shift amounts only between 0 and 63.
That is, the shift count is the remainder obtained when the Effective Address is divided by 64:

shift count = Effective Address (modulo 64).

This means, for example, that a shift amount specified by an Effective Address of 66 actually
shifts only 2 positions when executed.

Shift Amounts

Shift instructions can specify at most 63 shifts.

First, we'll describe the unit shift, and then look at the eight RS-type instructions, all of which
involve 32-bit registers.

opcode R1 B2 D2

opcode R1 R3 B2 DL2 DH2 opcode

17.1. Unit Shifts

To illustrate the behavior of various shift instructions, we'll assume that the source register starts
with the contents illustrated in Figure 104.

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
│ a │ b │ c │ d │ │ w │ x │ y │ z │ Before
└─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘

0 1 2 3 n-4 n-3 n-2 n-1
Figure 104. Register contents before shifting

The bit positions are numbered from 0 to n−1, where n is the number of bits participating in the
shift.

The basic shift operation is the unit shift, in which each bit moves right or left by one bit posi-
tion. The digit position at the right (low-order) end of the register behaves identically for logical
and arithmetic left and right shifts, but the bit at the left (high-order) end of the register is treated
differently.

For logical shifts, the vacated bit position at either end of a register is always set to zero, and the
bit shifted off the opposite end is lost and ignored. This is illustrated in Figures 105 and 106.

Chapter V: Basic Instructions 243

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
┌─�─┼ b │ c │ d │ e │ �── │ x │ y │ z │ 0 �┼─0 After

 � └─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘
 │ a │
 └───┘ bit bucket
Figure 105. Logical unit shift left

The “bit bucket” doesn't really exist; it just means that the lost bit vanishes.110

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
0─┼ 0 │ a │ b │ c │ ── │ v │ w │ x │ y ┼──┐ After
└─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘ �

│ z │
└───┘ bit bucket

Figure 106. Logical unit shift right

For arithmetic right shifts, the rightmost bit is lost and ignored, and the sign bit is duplicated to
preserve the arithmetic integrity of the operand. This is illustrated in Figure 107.

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
┌──┼ s ─┼ s │ b │ c │ ── │ v │ w │ x │ y ┼──┐ After
│ └──┼──┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘ �
│ � │ z │
└─────┘ └───┘ bit bucket

Figure 107. Arithmetic unit shift right

For arithmetic left shifts, the vacated bit position at the right end is set to zero, and the sign bit is
not shifted; it doesn't move. However, the bit immediately to the right of the sign bit is lost. This
is illustrated in Figure 108.

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
│ s │ c │ d │ e │ �── │ x │ y │ z │ 0 �┼─0 After
└─────┴──┬──┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘

�
│ b │
└───┘ bit bucket

Figure 108. Arithmetic unit shift left

Again, the sign of the operand is preserved. Because arithmetic left shifts may lose a significant
bit, an overflow condition can occur; we'll see how this happens when we look at the arithmetic
shift instructions in Section 17.4.

To illustrate unit shifts, suppose c(GR8) is X'87654321', or

1000 0111 0110 0101 0100 0011 0010 0001

in binary, and a unit logical left shift in GR8 is executed. Each of the bits moves one position to
the left, and the result in GR8 will be

0000 1110 1100 1010 1000 0110 0100 0010

in binary, or X'0ECA8642'. The leftmost one-bit was lost, and a zero-bit was introduced at the
right. Similarly, if we again start with X'87654321' and execute a unit logical right shift in GR8,
each bit moves one position to the right, and the result will be

0100 0011 1011 0010 1010 0001 1001 0000

110 When I took my first programming class, we were all taken to see the computer; its operation was slowed so we
could watch it shift, add, etc. After showing the shifts the instructor paused, because a student always asked “What
happens to the bits shifted off the end?” An engineer would then open a door on the end of the machine and hold up
a small silver bucket, saying gravely that the bits had to be emptied after every 8 hours of operation. Some of us
never realized it was a joke.

244 Assembler Language Programming for IBM System z™ Servers Version 2.00

in binary, or X'43B2A190'.

The execution of a shift instruction is simple: it simply performs the number of unit shifts speci-
fied by the low-order 6 bits of its Effective Address.

Exercises

17.1.1.(1) What shift amounts are represented by each of the following Effective Addresses?

1. X'EDCBA987'
2. X'12345678'
3. X'87654321'
4. X'00000FED'
5. X'FFFFFFFF'
6. X'27A49FC1'
7. X'6789ABC0'

17.2. Single-Length Logical Shifts

The simplest shifting instructions are SRL (Shift Right Logical) and SLL (Shift Left Logical). In
most of the following examples, bit patterns will be represented in hexadecimal.

To perform a unit logical left shift of the contents of R8, we can execute the instruction

SLL 8,1(0) Shift GR8 left 1 bit position

Suppose GR8 again contains X'87654321' and GR3 contains X'82F3A2B5', executing the logical
right-shift instruction

SRL 8,16(3)

first causes the Effective Address to be computed as

X'82F3A2B5' + X'010' = X'82F3A2C5'

of which the rightmost six bits are B'000101'. Thus it shifts right five bit positions, leaving

0000 0100 0011 1011 0010 1010 0001 1001

in binary, or X'043B2A19' as the result in GR8.

In these examples, we saw that the original contents of GR8 were not preserved: that is, the shifts
can be thought of as “destructive”. All the RS-type shifts use the same register (or register pair) as
the source and target of the operation. The RSY-type shifts let you preserve the original source
operand if you like.

The SLL instruction is the most commonly used logical shift. It is often used to multiply index
values by a power of two (such as the length of an operand in memory) prior to executing an
RX-type instruction for which the shifted register is the index register. We will see many such
uses in discussing looping and indexing in Section 22.

• Suppose the word at Index contains a small positive integer N that is to be used to index into
a table of words starting at the word named Tab. To load the N-th of those words into GR0,
we could write a sequence of instructions like the following:

L 1,Index Get index word
SLL 1,2 Shift left 2 bits (multiply by 4)
L 0,Tab-4(1) Load N-th word into GR0

The shift left by two bit positions is needed so that we access the N-th word (not the N-th
byte) in the table; and we must address the table at Tab-4 because if the integer at Index is 1,
we should access the first word at Tab. If N is 1, indexing will add 4 to Tab-4, giving the
address of Tab as desired.

• Suppose we want to set the leftmost seven bits of register 8 to zero, leaving the other bits
unchanged. Then we could execute the two instructions

Chapter V: Basic Instructions 245

SLL 8,7 Shift left 7 places, drop off bits
SRL 8,7 Shift right 7 places, bring in zeros

and the leftmost 7 bits are replaced by zeros.

• As another example, suppose we need to align the address in GR6 to a doubleword boundary.
That is, we will force the value in GR6 to be a multiple of 8 in such a way that if it is not
already so, the next higher multiple of 8 will be chosen.

This can be done very simply:

AL 6,=F'7' Force carry if possible
SRL 6,3 Drop off three bits
SLL 6,3 Multiply by 8

Figure 109. Rounding an integer to the next higher multiple of 8

The presence of any 1-bit in the three rightmost bits of the original number in GR6 will cause
a carry into the 23 bit position (bit number 28 of GR6).

• Suppose we have a large table of six-byte data items containing a mix of integer and character
data. Each table entry is aligned on a halfword boundary. Suppose also that the data is
arranged so that the first three bytes contain a signed 24-bit two's complement integer, and the
remaining three bytes contain the character data (see Figure 110).

�──────── 3 bytes ──────── �──────── 3 bytes ────────
─ ─ ─┬─────────┬─────────┬─────────┬─────────┬─────────┬─────────┬─ ─ ─

│ │ │
│ integer data │ character data │
│ │ xx yy zz │

─ ─ ─┴─────────┴─────────┴─────────┴─────────┴─────────┴─────────┴─ ─ ─

Figure 110. A 6-byte data entry

Space for typical table entry might have been reserved with DS statements such as

Entry DS 0XL6 Define name of 6-byte data entry
IntPart DS FL3 Give name to integer part
CharPart DS CL3 And to the character part
Figure 111. Storage definitions for a 6-byte data entry

We want to retrieve the integer value from a data entry and place it into GR5 where it will be
used for some purpose in the program, and then store it from GR5 back into memory in the
format illustrated in Figure 110. We can see that L and ST instructions cannot be used,
because the operands are neither 4 bytes long nor correctly aligned in memory; similarly, LH
and STH handle only two of the three bytes.

Now, suppose GR12 contains the address of the first byte of a data entry. The instructions
needed to load the integer value into GR5 are shown in Figure 112. (Assume for the moment
that the data entry contains X'F01234xxyyzz'; for now, we'll ignore the three characters repres-
ented by “xxyyzz”.)

LH 5,0(0,12) c(GR5) = X'FFFFF012', leftmost 16 bits
SLL 5,8 c(GR5) = X'FFF01200', move left 8 bits
IC 5,2(0,12) c(GR5) = X'FFF01234', insert last 8 bits
- - - - - do some calculations with the value
STC 5,2(,12) Store rightmost 8 bits
SRL 5,8 Position remaining 16 Bits
STH 5,0(0,12) Store high-order part

Figure 112. Using shift instructions for a 6-byte data item

The arrangement of data in memory usually depends on the requirements of the application,
as well as on considerations of ease of programming or speed of execution.

246 Assembler Language Programming for IBM System z™ Servers Version 2.00

This example might tempt you to manipulate characters by inserting and shifting them in the
general registers. Resist that that temptation until after we have examined instructions designed
specifically for managing character data in Section 25.

17.2.1. Three-Operand Shift Instructions

SRLG and SLLG are the 64-bit equivalents of SRL and SLL. They behave exactly as the 32-bit
shifts, with a useful extension: rather than specifying only a single operand register (as in Table 79
on page 243), these two RSY-type instructions specify separate source and target registers. The
source operand is taken from GG R3, shifted by the specified amount, and placed into the target
operand, GG R1. The operand field is is written

R1,R3,D2(B2) (explicit address)
R1,R3,S2 (implied address)

Table 80 on page 243 shows the format of an RSY-type instruction.

If you specify different register numbers for R3 and R1, the shift is “nondestructive” because the
source operand in GG R3 is unchanged. If you specify the same register number for both R3 and
R1, the shift is “destructive”, just like the shifts in 32-bit general registers.

To illustrate, consider these instructions:

L 0,=A(X'12345678') c(GR0) initialized
SLL 0,9 c(GR0) = X'68ACF000'

and the contents of GR0 is changed. For these instructions:

LG 1,=XL8'123456789ABCDEF0' c(GG1) initialized
SLLG 0,1,9 c(GG0) = X'68ACF135 79BDE000'

LG 1,=XL8'123456789ABCDEF0' c(GG1) initialized
SRLG 0,1,9 c(GG0) = X'00091A2B 3C4D5E6F'

in both cases, the contents of the GG1 source register is unchanged. Otherwise, the instructions
for shifting operands in 64-bit registers behave the same way as their equivalents for 32-bit regis-
ters.

Exercises

17.2.1.(2)+ Suppose the string of bytes beginning at BStrg is to be considered as a string of bits.
Given an integer K stored in the word at KK, write a code sequence to place in GR0 the value
of bit K of the string. (Remember to start numbering the bits at zero.)

17.2.2.(2) A word integer at K has value between 0 and 7. Write a code sequence using shifts
that will store at KthBit a byte containing a single 1-bit at a position determined by the integer
at K. That is, if c(K)=6, then c(KthBit) = X'02'. (Remember that bits in a byte are numbered
from 0 to 7!)

17.2.3.(2) Rewrite Exercise 17.2.2 to use no shifts, but define an appropriate 8-byte table.
Which code sequence is shorter? Simpler?

17.2.4.(1)+ The SLL instruction shifts data in a 32-bit general register. How many bit posi-
tions will be shifted if you specify

SLL 0,33 ?

17.2.5.(2) The word at DPG contains 4 bytes; write instructions to put those four bytes into GR1
in reverse order. Thus, if c(DPG) is X'12345678', c(GR1) will be X'78563412'.

17.2.6.(2)+ GR0 contains a positive, nonzero number. Write a set of instructions that will shift
the number to the left until there is a 1-bit in bit position 1 of GR0 (the bit immediately to the
right of the sign bit). In GR1, put the number of positions shifted. Remember that the number
in GR0 must be positive when the instruction sequence terminates.

Chapter V: Basic Instructions 247

17.2.7.(2)+ Given these two constants at X and Y:

X DC FL3'1234567'
Y DC FL3'7654321'

Write instructions to add the two numbers and store their sum as a 24-bit number at W. If the
sum overflows and cannot be represented correctly, branch to OverFlo.

What are the hexadecimal representations of the constants at X and Y? What is the represen-
tation of the result stored at W, and does the sum overflow?

17.2.8.(2) What will be the result of executing this instruction?

SLL n,n(n)

17.2.9.(2)+ In the example following Figure 109 on page 246, does it matter if the 3-byte
integer data is signed or unsigned? Explain.

17.3. Double-Length Logical Shifts

The double-length logical shift instructions SLDL (Shift Left Double Logical) and SRDL (Shift
Right Double Logical) work in exactly the same way as SLL and SRL, except they shift the 64
bits in a pair of even-odd 32-bit registers. The register specified by the first operand (R1) must be
an even-numbered register; otherwise a specification exception will occur. The next higher-
numbered register is the low-order half of the double-length register pair. Bits right-shifted out of
the right end of GR R1 enter the left end of GR R1+1, and vice versa for left shifts. (Figure 10
on page 46 shows paired general registers.)

Revisiting the example in Figure 109 on page 246, here is another way to round an integer to the
next higher multiple of 8 if it is not already a multiple of 8.

SR 7,7 Clear GR7 to zero
SRDL 6,3 Shift three bits into GR7 from GR6
LTR 7,7 Test whether the bits are zero
BZ A Branch if yes
A 6,=F'1' If not, add 1 to GR6

A SLL 6,3 Finally, multiply GR6 by 8

First, we clear GR7 by subtracting it from itself, a fast and simple way to do this. Then, we use a
shift instruction to divide by 8. The double-length shift moves the three “remainder” bits into the
three high-order bit positions of GR7. The BZ instruction branches only if the remainder bits are
all zero: that is, if the number in GR6 was already a multiple of 8. If any remainder bit is
nonzero, 1 is added to GR6. Finally, GR6 is shifted left 3 bit positions to give the correct mul-
tiple of 8.

As another example, suppose a positive nonzero integer word at N is to be shifted right as many
places as necessary to ensure that its rightmost bit is nonzero. Here are two ways we might do
this:

1. Shift left from GR5 into GR4, until only zero-bits remain in GR5. That is, if two right shifts
of the integer at N were actually needed, we will do 30 double-length left shifts.

L 5,N Get integer from N
L 4,=F'0' Clear GR4

ShiftL SLDL 4,1 Shift left one bit position
LTR 5,5 Test remaining bits in GR5
BNZ ShiftL Repeat if not zero
ST 4,N Store result

Figure 113. Shifting to make the low-order bit one (1)

248 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. This time, we shift right, testing “lost” bits:

L 4,N Get integer from N
ShiftR SRDL 4,1 Shift right once

LTR 5,5 Test sign bit of GR5
BNM ShiftR Branch if not minus
SLDL 4,1 Move the bit back
ST 4,N Store result

Figure 114. Shifting to make the low-order bit one (2)

This second example will also work for negative integers if arithmetic shift instructions are
used.

These examples illustrate simple loops, instructions that are repeated as many times as necessary
to obtain a desired result or condition. Loops are an important aspect of programming; special
System z branch instructions simplify coding of loops.111

Suppose that in a certain application we need to store some integer data in a very compact
format. The integer values are unsigned and are small enough that we can squeeze four integers
into a 32-bit word as shown in Figure 115. (Section 17.6 will describe how you can define these
four values in a word.)

9 bits 4 bits 13 bits 6 bits
┌───────────┬──────┬───────────────┬────────┐
│ aaaaaaaaa │ bbbb │ ccccccccccccc │ dddddd │
└───────────┴──────┴───────────────┴────────┘
 �────A──── �──B─ �──────C────── �──D───

Figure 115. Four integers packed in a 32-bit word

Suppose the four packed integers are stored at DataWord and we want to extract the second integer
(the four bbbb bits) and store their value in the word at BVal. We can do this with the
instructions in Figure 116:

L 0,DataWord Load 32 bits
SLL 0,9 c(GR0)=bbbbcccccccccccccdddddd000000000
SRL 0,28 c(GR0)=0000000000000000000000000000bbbb
ST 0,BVal Store value of b-bits

Figure 116. Extracting one packed integer from a 32-bit word

The SLL instruction shifts all the a bits off the left end of GR0, and the SRL instruction shifts all
but the four b bits off the right end of GR0, leaving only the four bbbb bits right-adjusted in
GR0.

To illustrate a more general technique, we will write instructions that extract the integers from
their compacted word format in a memory area named DataWord, separating them into individual
words named First, Second, Third, and Fourth. In Figure 117 on page 250, the comment state-
ments show the binary contents of registers GR0 and GR1; the integers to be unpacked are
named A, B, C, and D as shown in Figure 115. In Figure 117 on page 250, a letter “x” repres-
ents a bit whose value is unknown, and 0 is a zero bit. We will shift each integer from the right
end of GR0 into GR1, where it will be right-justified in GR1 and stored. This example uses only
right shifts.

As mentioned in Section 13.3 on page 162, the EQU instruction assigns the value of the operand
to the name-field symbol. This symbolic technique is very useful if the sizes of the fields must be
changed, because the shift instruction operands will be adjusted automatically by the Assembler.

111 These special “Branch on Index” and “Branch on Count” instructions neither examine nor change the CC. We will
investigate them in Section 22.

Chapter V: Basic Instructions 249

LA EQU 9 Define bit length of integer A
LB EQU 4 Length of B
LC EQU 13 Length of C
LD EQU 6 Length of D

L 0,DataWord Load data fullword into GR0
* c(GR0) = B'aaaaaaaaabbbbcccccccccccccdddddd'
* c(GR1) = B'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

SRDL 0,LD Shift 6 bits in both registers
* c(GR0) = B'000000aaaaaaaaabbbbccccccccccccc'
* c(GR1) = B'ddddddxxxxxxxxxxxxxxxxxxxxxxxxxx'

SRL 1,32-LD Move D to right end of GR1
* c(GR1) = B'00000000000000000000000000dddddd'

ST 1,Fourth Store fourth integer D at FOURTH
SRDL 0,LC Shift 13 bits in both registers

* c(GR0) = B'0000000000000000000aaaaaaaaabbbb'
* c(GR1) = B'ccccccccccccc0000000000000000000'

SRL 1,32-LC Move C to right end of GR1
* c(GR1) = B'0000000000000000000ccccccccccccc'

ST 1,Third Store third integer C at THIRD
SRDL 0,LB Shift 4 bits in both registers

* c(GR0) = B'00000000000000000000000aaaaaaaaa'
* c(GR1) = B'bbbb0000000000000000000ccccccccc'

ST 0,First Store first integer A from GR0
SRL 1,32-LB Position second integer B in GR1

* c(GR1) = B'0000000000000000000000000000bbbb'
ST 1,Second Store second integer B at Second

Figure 117. Unpacking four unsigned integers using right shifts

We can also shift the integers left, from the left end of GR1 into the right end of GR0, but we
must clear GR0 each time before shifting.

SR 2,2 Constant zero for clearing GR0
L 1,DataWord Get data fullword in GR1
LR 0,2 Clear GR0
SLDL 0,LA Shift 9 bits into GR0 from GR1
ST 0,First Store first integer
LR 0,2 Clear GR0
SLDL 0,LB Shift 4 bits into GR0
ST 0,Second Store second integer
LR 0,2 Clear GR0
SLDL 0,LC shift 13 bits into GR1 into GR0
ST 0,Third store third integer
SRL 1,LA+LB+LC Reposition fourth integer in GR1
ST 1,Fourth Store fourth integer

Figure 118. Unpacking four unsigned integers using left shifts

We have used LR instructions to clear GR0, rather than subtracting it from itself. Similarly, in
this example the final “SRL 1,LA+LB+LC” shift replaces the LR and SLDL used in the first three
steps, because it results in less code and faster execution. The overall saving is quite small, but this
illustrates a small economy that could result in significant savings if this sequence is frequently
executed.

Exercises

17.3.1.(2)+ Suppose your CPU has only single-length logical shift instructions (SLL, SRL). A
word at DataWord is to be shifted logically to the left, as though it was the high-order word of a
pair of general registers. Write an instruction sequence that simulates a double-length left shift
of N bit positions, where N is a halfword integer at NShifts. Assume 0≤ N <32, and that the
simulated low-order “register” contains zero. Store the result at a doubleword named DWord.

250 Assembler Language Programming for IBM System z™ Servers Version 2.00

17.3.2.(2) Do the same as in Exercise 17.3.1, and again assume you must do a double-length
logical left shift of a 32-bit word in the high-order half. This time, assume 0≤ N <64.

17.3.3.(2)+ Do the same as in Exercise 17.3.1, but simulate a double-length logical right shift of
N places, where 0≤ N <32, again assuming that the low-order half of the original 64-bit operand
is zero.

17.3.4.(2) Do the same as in Exercise 17.3.3, but now assume 0≤ N <64.

17.3.5.(3)+ Do the same as in Exercise 17.3.1, but now assume the initial data is in a
doubleword at DWData, and store the left-shifted result at DWord.

17.3.6.(3)+ Do the same as in Exercise 17.3.5, but now assume the initial data is in a
doubleword at DWData, and store the right-shifted result at DWord. (Remember that 0≤ N <32.)

17.3.7.(2) Do the same as in Exercise 17.3.5, but now assume 0≤ N <64.

17.3.8.(2) Do the same as in Exercise 17.3.6, but now assume 0≤ N <64.

17.3.9.(3) There is a word at OLD into which four positive integers have been packed as illus-
trated in Figure 115 on page 249. Write a code sequence to rearrange the four unsigned inte-
gers into a new word format, in which the first integer occupies the first seven bits, the second
integer occupies the next two, the third is expanded to occupy the next fifteen bits, and the
fourth integer occupies the last eight bits. Store the result at NEW.

17.3.10.(3)+ Suppose four unsigned integers are stored in the words named FIRST, SECOND,
THIRD, and FOURTH. Write a code sequence that will pack the integers from those words into a
word at NEW in the format illustrated in Figure 115 on page 249.

17.3.11.(3) As in Exercise 17.3.10, assume we wish to pack the four integers at FIRST, SECOND,
THIRD, and FOURTH into a word at NEW. The number of bits to be allocated to each integer in its
packed form is given as the value of the four positive halfword integers stored at L1, L2, L3,
and L4 respectively. We know that

c(L1) + c(L2) + c(L3) + c(L4) = 32.

The integers to be packed are stored in the logical representation.

17.3.12.(3) Rewrite Exercise 17.3.11 assuming that the values are to be stored in the arithmetic
representation.

17.3.13.(2) What will happen in Figures 113 and 114 if c(N)=0?

17.3.14.(3)+ A common mathematical notation is the “ceiling” function. If a number x has
integer part p and fraction part q, we write “p.q” to represent x. The “ceiling” function is
defined as:

if q = 0, Ceiling(x) = p,
if q > 0, Ceiling(x) = p+1.

Suppose there is a nonnegative integer N stored in the word at NN. Write a code sequence that
will leave Ceiling(N+N/2) in GR1.

17.3.15.(4)+ Rewrite Exercise 17.3.10 to repack the four unsigned integers into a new word, but
include tests to check that the values will fit into the fields provided for them in the packed
word. To indicate whether or not each of the integers fits into its allotted field, set the bytes at
FLAG1, FLAG2, FLAG3, and FLAG4 zero if the value will fit, and to nonzero if the value will not fit.

17.3.16.(2) GR0 contains a 32-bit number considered as a bit pattern. Write a code sequence
that will place the same bit pattern into GR1, but reversed from right to left within the register.

17.3.17.(2)+ The word at Data contains information to be shifted circularly: that is, bits shifted
off one end of the register should reappear at the other end. For example, a circular left shift of
the operand X'12345678' by 12 bit positions would produce X'45678123'. Write instructions

Chapter V: Basic Instructions 251

(not using RLL!) to shift c(Data) circularly to the left by N places, where N is a nonnegative
word integer stored at NShifts. Can you do this using only single-length shifts?

17.3.18.(2)+ Modify the coding of Exercise 17.3.17 so that if N is negative, the shift is a circular
right shift instead.

17.3.19.(3)+ A programmer wanted to display the hex digits in a byte string starting at Hex as a
string of EBCDIC characters starting at Chars, with each EBCDIC character representing a
single hexadecimal digit. The length of the byte string with the hex digits is stored as a halfword
binary integer stored at Len. He wrote:

LH 0,Len Get length of source string in GR0
L 2,=A(Hex) Addr of start of hex string in GR2
L 3,=A(Chars) Addr of start of char string in GR3

GetAByte SR 4,4 Clear GR4 for a work register
IC 4,0(,2) Get a byte from hex string
SRDL 4,4 Move high-order hex digit in GR4
SRL 5,28 And low-order hex digit in GR5
IC 4,EBCDIC(4) Get character form of high digit
IC 5,EBCDIC(5) Get character form of low digit
SLL 4,8 Make room in GR4 for second byte
ALR 4,5 Now have both characters in GR4
STCM 4,B'0011',0(3) Store both chars in output string
AH 2,=H'1' Increment input pointer
AH 3,=H'2' Increment output pointer
SH 0,=H'1' Reduce input byte count by 1

BP GetAByte If count > 0, do another byte
- - -

EBCDIC DC C'0123456789ABCDEF' EBCDIC form of hex digits

Does this work? Explain.

17.4. Arithmetic Shift Instructions

The arithmetic shift instructions are similar to the logical shift instructions, except for the setting
of the CC and the treatment of the sign bit. The instructions are SLA (Shift Left Arithmetic),
SRA (Shift Right Arithmetic), SLDA (Shift Left Double Arithmetic), and SRDA (Shift Right
Double Arithmetic). The CC settings after arithmetic shift instructions are similar to those for the
arithmetic add and subtract instructions:

Table 81. CC settings for arithmetic shift instructions

As we saw in Figure 107 on page 244, for right shifts the sign bit is duplicated (or extended) in
the vacated sign position after each unit shift, to preserve the arithmetic integrity of the shifted
operand.

To illustrate the difference between logical and arithmetic shifts, suppose a right shift of two bits
is performed on a register containing X'FFFFFFF8':

Operation CC Setting and Meaning

Left shift

0: Result is zero
1: Result is < zero
2: Result is > zero
3: Result has overflowed

Right shift

0: Result is zero
1: Result is < zero
2: Result is > zero
3: Cannot occur

252 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 0,=F'-8' L 0,=F'-8'
SRL 0,2 SRA 0,2

After the SRL logical shift, c(GR0)=X'3FFFFFFE', because two zero bits were inserted at the left;
after the SRA arithmetic shift, c(GR0)=X'FFFFFFFE', because the sign bit has been duplicated.
For positive operands, the SRL and SRA instructions will leave identical results in the register;
SRA will set the CC as shown in Table 81 on page 252, but SRL will leave the CC unchanged.
The SRDA instruction is similar to SRA, except that an even-odd register pair is shifted as a
single 64-bit entity.

A typical use of SRDA is to create a correctly-signed 64-bit dividend for a fixed-point divide
instruction, as we will see in Section 18:

L 0,Dividend 32-bit number in GR0
SRDA 0,32 Sign-extend to 64-bit length in (GR0,GR1)
D 0,Divisor Divide by 32-bit number

The sign bit of the word at Dividend has been extended by the SRDA instruction to fill GR0.

For arithmetic left shifts, the situation is a little more complicated, as we saw in Figure 108 on
page 244. When an operand is shifted left one or more significant bits may be lost; though lost,
they are not ignored! An arithmetic left shift (1) always retains the original sign bit, and (2) indi-
cates an overflow if any bit shifted out of the position just to the right of the sign is different from
the sign bit. This is a fixed-point overflow, and may cause a program interruption with the Inter-
ruption Code set to 8.

The following instructions will produce the results indicated in the remarks fields:

L 0,=F'-8' c(GR0)=FFFFFFF8, CC unchanged
SRL 0,2 c(GR0)=3FFFFFFE, CC unchanged
SLA 0,4 c(GR0)=7FFFFFE0, CC set to 3 (Overflow)

When executing the SLA instruction, one 0-bit and three 1-bits are shifted out of the bit position
immediately to the right of the sign bit. Because the sign bit is zero after the SRL instruction, the
first one-bit to be shifted out of the bit position just to the right of the sign signals the overflow
condition, since it differs from the sign.

We can use the ICM, STCM, and SRA instructions to simplify the example in Figure 112 on
page 246:

ICM 5,B'1110',0(12) c(GR5) = X'F01234??'
SRA 5,8 c(GR5) = X'FFF01234'
- - - Compute something
STCM 5,B'0111',0(12) Store result back

As indicated in Table 81 on page 252, a CC value of 3 is not possible after the SRA and SRDA
instructions, because there can be no overflow. For SLDA and SRDA, the result tested is a
double-length operand, so these instructions provide a simple way to test whether both registers
contain zero. Both SRDA 0,0 and SLDA 0,0 will set the CC to zero if the register pair
(GR0,GR1) both contain zeros.

An important use of the arithmetic shift operations is to multiply by positive and negative powers
of two. Since the bits of an operand shifted left by a unit shift appear with a weight (in the sum
forming the value of the operand) that has increased by two, so long as no significant bits are lost
and no overflow occurs, an arithmetic left shift of n places corresponds to multiplication by 2n.

Similarly, for a unit right shift, each bit has a weight that has decreased by two, so that an arith-
metic right shift of n places corresponds to division by 2n. Because such a “division” might seem
to produce fractional results, we must check what happens when bits are lost. Consider these
sequences:

Chapter V: Basic Instructions 253

L 3,=F'5' c(GR3) = 00000005 = +5
SRA 3,1 c(GR3) = 00000002 = +2 (1-bit lost)

L 3,=F'-5' c(GR3) = FFFFFFFB = -5
SRA 3,1 c(GR3) = FFFFFFFD = -3 (1-bit lost)

As we expect, the lost bit in the first case results in the fractional part of (5/2) being discarded, so
the result is simply 2. In the second case the result is −3, not −2; this is because the truncation
of the fraction part of a number in the two's complement representation has the effect of always
forcing the result to the next algebraically lower integer value. (See Exercises 17.4.9 and 17.4.14.)

As a simple example, suppose we wish to truncate the integer in GR9 to the next algebraically
lower multiple of 16, unless it is already a multiple of 16. Both of the following achieve the
desired result.

SRA 9,4 SRL 9,4
SLA 9,4 SLL 9,4

Either the logical or arithmetic shifts can be used, because whatever bit is shifted out of the sign
position by the SRL instruction will be put back by the SLL. If a CC setting is desired to indicate
the status of the result, arithmetic shifts must be used.

To conclude our discussion of shifting, we revisit the problem of retrieving the data packed in the
word pictured in Figure 115 on page 249, but now assuming that each of the four integers is
signed rather than logical. The following code segment separates and stores the four signed inte-
gers as required; we again use the symbols LA, LB, LC, and LD to represent the bit lengths of
the fields, as in Figure 117 on page 250.

L 0,DataWord Get data word into GR0
SRDA 0,LD Shift 6 bits into GR1
SRA 1,32-LD Sign-extend to right
ST 1,Fourth Store fullword result D
SRDA 0,LC Shift off 13 more bits into GR1
SRA 1,32-LC Shift with sign extension
ST 1,Third Store signed result of C
SRDA 0,LB Shift off next 4 bits for B
SRA 1,32-LB Sign-extend second integer
ST 1,Second Store final result of B
ST 0,First Store correct first integer A

Figure 119. Unpacking four signed integers

As noted in Section 17.2, the instructions for shifting operands in 64-bit registers behave just like
the equivalent instructions for shifting operands in 32-bit registers. To illustrate, consider these
right shift instructions:

L 0,=A(X'12345678') c(GR0) initialized
SRA 0,9 c(GR0) = X'00091A2B'

The contents of GR0 is changed. For these instructions,

LG 1,=AD(X'123456789ABCDEF0') c(GG1) initialized
SRAG 0,1,9 c(GG0) = X'00091A2B 3C4D5E6F'

the contents of the source register, GG1, is unchanged. If we initialize the source register with a
negative number, the sign bit is propagated:

L 0,=A(X'87654321') c(GR0) initialized
SRA 0,9 c(GR0) = X'FFC3B2A1'

and the contents of GR0 is changed. For these instructions,

LG 1,=XL8'FEDCBA9876543210' c(GG1) initialized
SRAG 0,1,9 c(GG0) = X'FFFF6E5D 4C3B2A19'

GG1 is again unchanged.

254 Assembler Language Programming for IBM System z™ Servers Version 2.00

Left arithmetic shifts may cause overflow:

L 0,=A(X'87654321') c(GR0) initialized
SLA 0,9 c(GR0) = X'CA864200', CC=3

LG 1,=XL8'FEDCBA9876543210' c(GG1) initialized
SLAG 0,1,9 c(GG0) = X'B97530EC A8642000', CC=3

 Double-Length Shifts

The double-length shift instructions (SRDA, SLDA, SRDL, SLDL)
always require an even-odd pair of general registers.

Exercises

17.4.1.(2) Suppose your CPU has only single-length arithmetic shift instructions (SLA, SRA).
There is a word at DataWord that is to be shifted arithmetically to the left, as though it was the
high-order word of a pair of general registers. Write an instruction sequence that simulates a
double-length arithmetic left shift of N bit positions, where N is a halfword integer at NShifts.
Assume 0≤ N <32, and that the simulated low-order “register” contains zero. Store the result at
a doubleword named DWord. If you can, show whether or not the CC setting is correct at the
end of your instruction sequence.

17.4.2.(3) Do the same as in Exercise 17.4.1, and again assume you must do a double-length
arithmetic left shift of a 32-bit word in the high-order half. This time, assume 0≤ N <64.

17.4.3.(3)+ Do the same as in Exercise 17.4.1, but simulate a double-length arithmetic right
shift of N places, where 0≤ N <32, and still assuming that the low-order half of the original
operand is zero.

17.4.4.(3) Do the same as in Exercise 17.4.3, but now assume 0≤ N <64.

17.4.5.(3)+ Do the same as in Exercise 17.4.1, but now assume the initial data is in a
doubleword at DWData, and store the left-shifted result at DWord.

17.4.6.(3)+ Do the same as in Exercise 17.4.5, but now assume the initial data is in a
doubleword at DWData, and store the right-shifted result at DWord. (Remember that 0≤ N <32.)

17.4.7.(3) Do the same as in Exercise 17.4.5, but now assume 0≤ N <64.

17.4.8.(3) Do the same as in Exercise 17.4.6, but now assume 0≤ N <64.

17.4.9.(3) In mathematics it is occasionally useful to define the “integer-part-of” or “floor”
function, that yields the largest integer not exceeding its argument. It is usually written with
square brackets like this:

[X] is the largest integer ≤ X.
Show that in the two's complement binary representation, the result of arithmetically right-
shifting a number Z by n bit positions gives the result [Z/(2n)].

17.4.10.(3) Rewrite the code sequence of Exercise 17.3.9 assuming that the integers may be pos-
itive or negative (that is, they are stored in the arithmetic representation rather than the logical
representation).

17.4.11.(2)+ Suppose there is a positive nonzero word integer stored at the word at NUM. Write
an instruction sequence that leaves a number in GR0 that is the largest power of two less than
or equal to the given number. That is, compute 2**N such that 2**N ≤ c(NUM). (For
example, if c(NUM)=9, c(GR0) will be 8.)

17.4.12.(3) In Exercise 17.4.11, you wrote instructions to leave a number in GR0 that was the
largest power of two less than or equal to the nonzero positive number at NUM. Write another
instruction sequence, assuming that the number at NUM may be positive or negative. Leave a

Chapter V: Basic Instructions 255

number in GR0 that is either zero (if c(NUM) is), or is the largest power of two less than or
equal to the magnitude of c(NUM).

17.4.13.(3) In Exercise 17.4.11, you wrote instructions to leave a number in GR0 that was the
largest power of two less than or equal to the nonzero positive number in the word at NUM.
Write another code sequence that will leave the exponent of that power of two in GR0. (That
is, if the number left in GR0 in Exercise 17.4.11 is 2**N, c(GR0) is N.)

17.4.14.(3)+ In describing the shift instructions on page 253, it was stated that a right shift of N
places was equivalent to a division by 2**N. This is sometimes true, and sometimes not true.
When is it true, and when not?

17.4.15.(2) Repeat Exercise 17.3.15, assuming that the values are to be stored in the arithmetic
representation.

17.4.16.(2) Write a sequence of instructions that will count the number of 1-bits in the byte at
XX and replace the byte with its bit count.

17.4.17.(2) Suppose the initial contents of GG0 is X'FEDCBA9876543210' before executing each of
these instructions:

(1) SRAG 0,0,20
(2) SLAG 0,0,28
(3) SRA 0,18
(4) SRLG 0,0,18

What result will be in GG0 after executing each instruction, and what will be the resulting CC
setting?

17.4.18.(2)+ Suppose GR0 contains X'87654321' before executing each of these instructions.
What will be in GR0 after it is executed, and what will be the CC setting?

1. SRA 0,20
2. LPR 0,0
3. SLA 0,28

17.4.19.(2) Suppose you want to display the individual bits in a byte at Byte in character form.
Write a program segment that will “spread out” the bits into eight EBCDIC characters starting
at Char so that the eight characters faithfully represent the bits in the byte.

17.4.20.(3)+ Suppose your CPU supports logical but not arithmetic shifts. Write instructions
using logical shift instructions to perform the functions of SRDA, including setting the Condi-
tion Code correctly. The double-length operand to be shifted is in (GR0,GR1) and the shift
amount is in GR2. Other registers may be used as needed.

17.4.21.(2)+ You can use SRA to divide a number by 2. But if the number is negative, the
result isn't always what you expect. For example:

L 0,=F'+5' c(GR0) = X'00000005' = +5
SRA 0,1 C(GR0) = X'00000002' = +2
L 0,=F'-5' c(GR0) = X'FFFFFFFB' = -5
SRA 0,1 C(GR0) = X'FFFFFFFD' = -3

In both cases the result is “rounded” downward, toward − infinity. What should you do to be
sure right-shifting a negative number will give the same result (except for sign) when you divide
by 2 as for positive numbers?

17.4.22.(1)+ Show how you can use a shift instruction to test the sign of the contents of a
general register without affecting its value.

17.4.23.(2)+ An arithmetic right shift of a binary number makes it smaller in magnitude, except
for two values. What are they?

256 Assembler Language Programming for IBM System z™ Servers Version 2.00

17.5. Rotating Shifts

Unlike the shift instructions we've seen, the rotating shift instructions RLL and RLLG neither
lose nor introduce bits. A rotate unit shift takes the leftmost bit of the register, shifts all the other
bits left one position, and inserts the previous leftmost bit at the right end of the register, as illus-
trated in Figure 120.

┌─────┬─────┬─────┬─────┬─ ─ ─ ─┬─────┬─────┬─────┬─────┐
┌─�─┼ b │ c │ d │ e │ �── │ x │ y │ z │ a �┼─┐ After

 │ └─────┴─────┴─────┴─────┴─ ─ ─ ─┴─────┴─────┴─────┴─────┘ │
 └───┘
Figure 120. Logical rotate unit shift

As shown in Table 80 on page 243, the source operand in R3 and the target operand in R1 can
be the same or different registers. If they are the same, the shift does not preserve the original
operand.

The rotating shift instructions are sometimes used in data compression algorithms. In applications
where speed of rotation is not important, their functions can be “emulated” using logical shifts.
(See Exercises 17.5.1 and 17.5.2.)

To illustrate a rotating shift, suppose we rotate the 32-bit operand X'56789ABC' left by 10 bit posi-
tions:

L 0,=A(X'56789ABC') Load initial data into GR0
RLL 1,0,10 Rotate 10 bits, result in GR1

Then c(GR1) will be X'E26AF159'. Similarly, if we rotate the 64-bit operand X'56789ABCDEF01234'
left by 10 bit positions:

LG 0,=AD(X'56789ABCDEF01234') Initialize GG0
RLLG 1,0,10 Rotate 10 bits, result in GG1

Then c(GG1) will be X'E26AF37BC048D159'.

Exercises

17.5.1.(2)+ Suppose your CPU has only single-length logical shift instructions (SLL, SRL). A
32-bit word at DataWord is to be rotated. Write an instruction sequence that simulates the RLL
instruction by doing a logical rotation of N bit positions, where N is any nonnegative number
stored in a halfword at NN. Store the result at RotateWd.

17.5.2.(3) Do the same as in Exercise 17.5.1, but now simulate the RLLG instruction using
SLDL and SRDL to do a double-length rotating shift of N places. Assume the initial data is in
a doubleword at DWData, and store the rotated double-length result at RotatDWd.

17.5.3.(1) Show how you can use a rotating shift to exchange the halves of a 64-bit general
register.

17.6. Calculated Shift Amounts

As we saw in Section 17.2, the number of bit positions shifted can be specified during program
execution, because the number of shifts in any shift instruction is determined from its Effective
Address. For example,

SLL 9,0(4)

will shift GR9 by an amount determined by the rightmost six bits of the contents of GR4.

Suppose GR1 contains a nonnegative integer less than 31; call it “n”. Then, to leave 2n in GR0,
we could write

Chapter V: Basic Instructions 257

L 0,=F'1' Put 2**0 = 1 in GR0
SLL 0,0(1) Shift left 'n' places to form 2**n

The shift amount in GR1 could have been previously calculated or loaded into GR1 from
memory.

We can use shifts to illustrate an amusing (but not recommended!) application of the USING
statement. As with relocatable implied addresses, the Assembler computes displacements and
assigns base registers for absolute implied addresses. If we write the statements below, the
instructions would be assembled as indicated in the remarks fields of the last three statements.

USING 6,2 Absolute expression for base in GR2
A EQU 10 Symbol with absolute value
* Assembled instructions:

SLL 9,12 8990 2006 (implied address) 12 shifts
SLL 9,12(0) 8990 000C (explicit address) 12 shifts
SLL 9,A 8990 2004 (implied address) 10 shifts

Thus we can vary the number of shifts at execution time by placing appropriate values in the
“base” register, GR2. This is a very poor programming technique; it's far better to use an instruc-
tion like

SLL 9,0(2)

There are very few occasions where an absolute expression is used as the first operand in a
USING instruction. The need for caution is apparent when you consider what would happen to
a program with the implied-address shift instructions above, and then someone changed the con-
tents of GR2.

Exercises

17.6.1.(2)+ What will happen at both assembly and execution times if the following sequence of
three statements appears in a program:

USING *,2
A EQU *

SLL 9,A

17.6.2.(2)+ What number of shifts is specified by

SLL 9,* ?

Is that number fixed within any one program?

17.6.3.(2)+ What number of shifts is specified by these instructions?

SLL 9,AAA
- - -

AAA DC F'12'

17.6.4.(2) Describe and evaluate the usefulness of each of the following methods for clearing a
32-bit general register x to zero: (1) SLL x,32 (2) L x,=F'0' (3) LH x,=H'0' (4)
SLDL x,32 (5) SRL x,32 (6) SRDL x,32 (7) SRDA x,32 (8) SLDA x,32.

17.6.5.(1)+ In the mnemonics for the 32-bit (single-length) shift instructions, a consistent con-
vention is used to indicate (1) the type, (2) the direction, and (3) the length of the shift. Make
a table that displays this convention.

17.6.6.(1) Can you think of any reason to perform a logical shift of more than 31 bit positions
in a single register? An arithmetic shift?

17.6.7.(2)+ We wish to generate a pair of bytes containing the EBCDIC characters corre-
sponding to the 2 hex digits in the byte at DATA. That is, if c(DATA) = X'4A', the generated
pair of bytes will contain X'F4C1'. Write a code sequence that will store the two characters at CH

258 Assembler Language Programming for IBM System z™ Servers Version 2.00

and CH+1, for any values in the byte at DATA. (Hint: construct a 16-byte character table, and
access it with an indexed IC instruction.)

17.6.8.(2)+ Most System z instructions expect that their operands will be found in memory at
addresses satisfying a specific boundary alignment. This usually means that the Effective
Address of an instruction should be divisible by some number. For each of the following
instructions, show the number by which the Effective Address should be divisible.

1. L
2. BC
3. LH
4. ICM
5. LR
6. SRDA
7. STM
8. STC

17.6.9.(1) How many bit positions are shifted by this instruction?

SRL 7,=F'15'

17.7. Bit-Length Constants (*)

In Figures 117, 118, and 119 we saw examples of using shift instructions to extract and insert
small binary constants in various fields within a 32-bit word. You can define constants with such
lengths using bit-length constants.

We first encountered length modifiers for binary constants in Section 11.4 on page 140, where we
defined constants like

DC FL3'8'

Such length modifiers determine the byte length of the constant.

You can also define the bit length of a constant by writing a length modifier specifying the
number of bits allotted to its assembled value; follow the modifier letter L with a period and the
number of bits. For example:

DC FL3'8' can also be written
DC FL.24'8'

The same constant will be generated in both cases, aligned on the current location counter
boundary (not necessarily a word boundary).

The general form of a length modifier is either

LByteLength as in L3
or

L(ByteLengthExpr) as in L(2+1)

or

L.BitLength as in L.24
or

 L.(BitLengthExpr) as in L.(16+8)

but unfortunately you cannot combine the two by writing

LByteLength.BitLength as in L2.5

The length modifier must be either byte or bit length, not both.

For both byte- and bit-length modifiers, the length value may be written either as a positive
decimal constant or as a positive absolute expression in parentheses.

Chapter V: Basic Instructions 259

A nominal value can be any length (subject to normal truncation and padding rules):

DC FL.12'2047',FL.8'64',XL.4'D' generates X'7FF40D'

Incomplete bytes are padded with zero bits:

DC FL.12'2047' generates X'7FF0'

Now we can see how to generate the “packed” unsigned binary integers in Figure 115 on
page 249. Suppose the four integers A, B, C, and D have values 432, 12, 5001, and 47 respec-
tively. We can define a word containing these values as shown in Figure 121.

UnsdVals DC 0F,FL.9'U432',FL.4'U12',FL.13'U5001',FL.6'U47'
Figure 121. Packing four unsigned bit-length constants in a 32-bit word

Similarly, if the four values could be signed, with values −232, −8, −4001, and −31 respectively,
we could define a word containing their values as shown in Figure 122.

SgndVals DC 0F,FL.9'-232',FL.4'-8',FL.13'-4001',FL.6'-31'
Figure 122. Packing four signed bit-length constants in a 32-bit word

Exercises

17.7.1.(1) What differences might you find for these constants?

A DC F'-97'
B DC FL4'-97'
C DC FL.32'-97'

17.7.2.(2)+ In Figure 121, what constant is generated? What constant would be generated if the
letter “U” is omitted?

17.7.3.(2)+ In Figure 122, what constant is generated?

17.7.4.(3)+ Rewrite the constant definitions in Figures 121 and 122 to use the symbolic defi-
nitions of the four field lengths named LA, LB, LC, and LD respectively, as shown in
Figure 117 on page 250.

17.7.5.(2)+ If you can't write a bit-length constant with a length modifier of the form LA.B
(where A is the byte length and B is the bit length), how can you write it to achieve equivalent
results?

17.8. Summary

Table 82 summarizes the shift instructions discussed in this section. As mentioned above, the
notation “32+32” means that the shift is in a pair of 32-bit general registers.

Table 82. Summary of shift instructions discussed in this section

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Function Operand length (bits) 32 32 + 32 64

Arithmetic shift SLA
SRA

SLDA
SRDA

SLAG
SRAG

Logical shift SLL
SRL

SLDL
SRDL

SLLG
SRLG

Rotating shift RLL RLLG

260 Assembler Language Programming for IBM System z™ Servers Version 2.00

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

RLL EB1D SLDL 8D SRDA 8E

RLLG EB1C SLL 89 SRDL 8C

SLA 8B SLLG EB0D SRL 88

SLAG EB0B SRA 8A SRLG EB0C

SLDA 8F SRAG EB0A

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

88 SRL 8D SLDL EB0C SRLG

89 SLL 8E SRDA EB0D SLLG

8A SRA 8F SLDA EB1C RLLG

8B SLA EB0A SRAG EB1D RLL

8C SRDL EB0B SLAG

Terms and Definitions
arithmetic shift

A movement of bits in a general register to the left or right, preserving the arithmetic sign of
the operand.

logical shift
A movement of bits in a general register to the left or right, inserting zero bits into any
vacated bit positions.

rotating shift
A movement of bits in a general register to the left in such a way that bits moved out of the
high-order bit position are inserted into the low-order bit position. (Also called a
“circulating” shift.)

Programming Problems

Problem 17.1.(2) Write a program that takes a positive word integer from the memory area
named Data and shifts it left until its next-to-highest-order bit (that is, bit number 1) is nonzero.
Store the result in a word area named Norm, and store at the halfword area Count the number of
shifts required. Print the contents of Data, Norm, and Count. Run the program with several
different values at Data such as 1, 999, 2147483647, and others.

Problem 17.2.(2) A programmer suggested using these instructions to convert the eight bits in a
byte to eight EBCDIC characters representing their value.

Chapter V: Basic Instructions 261

ICM 1,B'1000',DataByte Put the byte at the left end of GR1
LH 2,=H'8' Set the bit count to 8

Loop SLLG 3,3,8 Make room in GG3 for the character
SR 0,0 Clear GR0
SLDL 0,1 Shift a low-order bit into GR0
A 0,=A(X'F0') Add X'F0' to make a character
ALR 3,0 Insert the character into GG3

SH 2,=H'1' Count down by 1
BP Loop Repeat for all 8 bits
STG 3,BitChars Store the 8 characters
- - -

BitChars DS D 8 EBCDIC 0 and 1 characters

Write a program with several data values to test her assertion.

Problem 17.3.(1) Using the instructions in Figure 119 on page 254, write a program to unpack
the four signed integers of Figure 122 on page 260 at the word named SgndVals and display
the unpacked values at First, Second, Third, and Fourth as fullword integers.

262 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter V: Basic Instructions 263

18. Binary Multiplication and Division

11 8888888888
111 888888888888
1111 88 88
11 88 88
11 88888888
11 88888888
11 88 88
11 88 88
11 88 88

1111111111 888888888888
1111111111 8888888888

When we multiply two numbers, the product can be as long as the sum of their lengths. For
example, multiplying the three-digit decimal number 999 by itself, 999×999 gives 998001: six digits
long. Thus, we will need double-length registers if our products of single-length numbers can be
longer than a single register.

The terminology used for the operands is from mathematics:

multiplicand (first operand)
× multiplier (second operand)

product

18.1. Overview of Multiplication Instructions

The instructions we'll examine are summarized in Table 83. The notation “32×32” means the
product of two 32-bit integers, and similarly for “32×16”, “64×64”, and “64×32”.

Table 83. Binary integer multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

5C M RX Multiply (32+32←32×32) 1C M R R R Multiply Register
(32+32←32×32)

4C MH RX Multiply Halfword
(32←32×16)

71 MS RX Multiply Single
(32←32×32)

B252 MSR RRE Multiply Single Register
(32←32×32)

E351 MSY RXY Multiply Single
(32←32×32)

E30C MSG RXY Multiply Single
(64←64×64)

B90C MSGR RRE Multiply Single Register
(64←64×64)

E31C MSGF RXY Multiply Single
(64←64×32)

B91C MSGFR RRE Multiply Single Register
(64←64×32)

E396 ML RXY Multiply Logical
(32+32←32×32)

B996 MLR RRE Multiply Logical Register
(32+32←32×32)

E386 MLG RXY Multiply Logical
(64+64←64×64)

B986 MLGR RRE Multiply Logical Register
(64+64←64×64)

264 Assembler Language Programming for IBM System z™ Servers Version 2.00

The result of each multiply instruction is a 32-bit, 64-bit, or 128-bit product, as indicated by
“32←...” (for a single 32-bit register), “32+32←...” (for a 64-bit product in a pair of 32-bit regis-
ters), “64←...” (for a single 64-bit register), and “64+64←...” (for a 128-bit product in a pair of
64-bit registers). As we saw for signed and logical addition and subtraction, signed multiplications
sign-extend short operands, and logical multiplications zero-extend short operands.

As Table 83 on page 264 indicates, there are no instructions giving a 128-bit arithmetic product
of two signed 64-bit operands.112

None of these instructions change the CC setting.

Condition Code

Binary multiplication and division do not change the CC setting.

Signed multiply instructions are the most frequently used, so we'll discuss them first.

18.2. Arithmetic (Signed) Multiplication Instructions

The two types of arithmetic multiplication instructions give either single-length or double-length
products. Because double-length products are more often used, we'll start with those.

18.2.1. Double-Length Arithmetic Products

The instructions yielding arithmetic 64-bit double-length products are:

Table 84. Double-length arithmetic multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

5C M RX Multiply (32+32←32×32) 1C M R R R Multiply Register
(32+32←32×32)

M and MR form the 64-bit product of two 32-bit operands. The first operand, the multiplicand,
is in the odd-numbered register of an even-odd register pair. The second operand, the multiplier,
is either in a register or a word in memory, as illustrated in Figure 123. Note that the initial
contents of the even-numbered register, GR R1, are ignored (unless GR R1 contains the second
operand).

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│//////////////////////││ Multiplicand │
└──────────────────────┘└──────────────────────┘
32 63 32 63

┌──────────────────────┐
│ Multiplier │ R2 or D2(X2,B2)
└──────────────────────┘ (in register or memory)

Figure 123. General layout of multiplication operands

After the operation completes, the 64-bit product is in the register pair, as shown in Figure 124
on page 266.

112 At the time of this writing. But new instructions are added regularly to the System z architecture, so check the Princi-
ples of Operation. However, you can generate signed products using the unsigned multiply instructions; see Exercises
18.3.2 and 18.3.3.

Chapter V: Basic Instructions 265

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ ││ │
└──────────────────────┘└──────────────────────┘
�────────────────── Product ─────────────────

Figure 124. Double-length product of multiply operations

For M and MR, no fixed-point overflow is possible. As with the double-length shift instructions,
the even-numbered register is the high-order half of an even-odd register pair, and the next higher
odd-numbered register is the low-order half. The CPU takes the multiplicand from the odd-
numbered register and the multiplier from the address or register specified by the second operand.
The product replaces the original contents of the pair of registers, and the high-order bit of the
odd-numbered register is a part of the product, not necessarily a sign bit. The following
instructions produce the indicated results.

MR 2,7 c(GR2,GR3) = c(GR3) * c(GR7)
* Square the number in GR1

MR 0,1 c(GR0,GR1) = c(GR1) * c(GR1)
MR 8,8 c(GR8,GR9) = c(GR9) * c(GR8)
M 4,XX c(GR4,GR5) = c(GR5) * c(XX)
M 12,=F'932' c(GR12,GR13) = c(GR13) * 932

* Square the number in GR4
LR 5,4 Move multiplicand to GR5
MR 4,4 c(GR4,GR5) = c(GR5) * c(GR4)

The last two instructions show how to square the integer in GR4: the LR instruction copies the
multiplier to the odd-numbered register. The presence of the multiplier in the even-numbered
register does not cause it to be lost when that register is cleared at the beginning of the multiply
sequence; the multiplication takes place after the CPU has saved a copy of the multiplier. After
the LR we could also have used “MR 4,5”, giving c(GR5)×c(GR5).

The product generated by the M and MR instructions is 64 bits long. If we perform these
instructions:

L 1,=A(X'10000') c(GR1) = 65536 = 2**16
MR 0,1 Square it to get 2**32
ST 1,Product Store low-order half
- - -

Product DS F

we would find that the word stored at Product was zero, and that c(GR0) = 1. Similarly, if we
execute these instructions (where 32768 = 215):

L 1,=A(X'10000') c(GR1) = 65536
M 0,=A(X'8000') Multiply by 32768; result = +2**31
ST 1,Product Store +2**31 (??)

we would find that c(GR0)=0, and c(Product) = −231!

There are two situations needing caution. First, the product may be so long that significant bits
occupy more than the low-order register. Second, whether or not the high-order register contains
significant bits, the leftmost bit of the low-order register can be interpreted as a sign bit only if the
product lies in the range

-231 ≤ product < +231

Otherwise, the low-order sign bit contains an arithmetically significant digit with positive weight.

As an example using a multiply instruction, suppose we want to evaluate A = B + G * D, a typical
expression in a high-level language. All quantities are word integers, and we assume all results are
small enough so that no overflows occur.

266 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 7,G c(GR7) = c(G)
M 6,D c(GR6,GR7) = G * D
A 7,B c(GR7) = B + (G*D)
ST 7,A Store result at A

We have used the symbols A, B, G, and D to denote both the names of word areas of memory and
the values of the contents of those areas (that is, as “variables”). This usage is typical of high-level
languages, where little distinction is made among the name associated with an area of memory,
the contents of that area, the value associated with the contents, and the name of the value.113

Suppose we wish to compute the sum of the cubes of the first N integers, where N is stored in the
word at NBR. We assume that N is a small enough positive integer that the sum of the cubes is
representable in a single word. The quantity called “K” is a counter that runs from 1 to N in
steps of 1.

SR 5,5 Sum carried in GR5
L 4,=F'1' Initialize K in GR4

Repeat LR 1,4 c(GR1) = K
MR 0,1 c(GR0,GR1) = K * K
MR 0,4 c(GR0,GR1) = K cubed
AR 5,1 Accumulate sum
A 4,=F'1' Increment K
C 4,NBR Compare to upper limit at NBR

BNH Repeat Repeat if K is not bigger
ST 5,Sum Store sum of first N cubes
- - -

NBR DC F'10' N

Figure 125 shows a slightly different version of this example; it counts from N down to 1:

SR 5,5 initialize sum to zero
L 4,NBR Initialize K from c(NBR) = N

Repeat LR 1,4 c(GR1) = K
MR 0,4 c(GR0,GR1) = K * K
MR 0,4 c(GR0,GR1) = K cubed
AR 5,1 Add to sum
S 4,=F'1' Decrement K by 1

BP Repeat Repeat if K is still positive
ST 5,SUM Store sum of first N cubes

Figure 125. Calculate the sum of the first 10 cubed integers

18.2.2. Single-Length Arithmetic Products

The instructions generating single-length arithmetic products are shown in Table 85 on page 268.

When you know a product will be small enough to fit correctly in a single-length register, or if
you don't care that some high-order bits may be lost, these instructions avoid needing an
even-odd register pair, and may also execute faster than the instructions generating double-length
products.

113 These distinctions are very important in Assembler Language, and can be very confusing to people whose first pro-
gramming experiences were with high-level languages.

Chapter V: Basic Instructions 267

Table 85. Single-length arithmetic multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

4C MH RS Multiply Halfword
(32←32×16)

71 MS RX Multiply Single
(32←32×32)

B252 MSR RRE Multiply Single Register
(32←32×32)

E351 MSY RXY Multiply Single
(32←32×32)

E30C MSG RXY Multiply Single
(64←64×64)

B90C MSGR RRE Multiply Single Register
(64←64×64)

E31C MSGF RXY Multiply Single
(64←64×32)

B91C MSGFR RRE Multiply Single Register
(64←64×32)

The MH instruction produces a single-length (word) result, the low-order 32 bits of the product of
c(GR R1) and the halfword second operand. Because only a word result is retained, R1 need not
be even. For example,

MH 5,=H'100' Multiply c(GR5) by 100

is a simple way to multiply the contents of GR5 by 100 without affecting the contents of the
lower even-numbered register, GR4. If X and Y are both halfword operands, their product may be
found by writing

LH 8,X Multiplicand in GR8 (even register!)
MH 8,Y Multiply by c(Y), product in GR8

and GR9 remains undisturbed. To square the halfword integer at N, we could write

LH 1,N c(N) in GR1
MH 1,N N squared in GR1

Because both operands are halfwords with at most 15 significant bits, the product will always fit
in a single register. The only halfword whose magnitude requires 16 bits (−215) when squared
yields 230, requiring only 31 bits.

As we've seen for MH, all the “Multiply Single” instructions place the product in a single-length
register. The register may be either even- or odd-numbered; the other register of the pair is not
changed. Other instructions generating a product in a 32-bit register are MS and MSR. For
example:

L 1,=F'12345' c(GR1) = 12345
MS 1,=F'12347' c(GR1) = 152423715

L 1,=F'12345' c(GR1) = 12345
L 7,=F'12347' c(GR7) = 12347
MSR 1,7 c(GR1) = 152423715

and the product is small enough to be held correctly in GR1.

MSG and MSGR, and MSGF and MSGFR produce a 64-bit product in a single 64-bit register.
MSG and MSGR are exact analogs of MS and MSR:

LG 1,=FD'12345678' c(GG1) = 12345678
MSG 1,=FD'23456789' c(GG1) = 289589963907942

LG 1,=FD'12345678' c(GG1) = 12345678
LG 7,=FD'23456789' c(GG7) = 23456789
MSGR 1,7 c(GG1) = 289589963907942

MSGF and MSGFR generate a 64-bit product of a 64-bit first operand and a 32-bit second
operand by first internally sign-extending the 32-bit second operand to 64 bits:

268 Assembler Language Programming for IBM System z™ Servers Version 2.00

LG 1,=FD'12345678' c(GG1) = 12345678
MSGF 1,=F'23456789' c(GG1) = 289589963907942

LG 1,=FD'12345678' c(GG1) = 12345678
L 5,=F'23456789' c(GR5) = 23456789 (32 bits!)
MSGFR 1,5 c(GG1) = 289589963907942

Exercises

18.2.1.(1)+ What is the value of the largest 64-bit product that can be generated by signed mul-
tiplication of 32-bit operands?

18.2.2.(4) Given two unsigned 32-bit integers stored in the words at X and Y, show first how
you can generate their unsigned 64-bit product using the arithmetic multiplication instructions
M and MR. Then, write a sequence of instructions that will store the product in the
doubleword at LogProd.

Let X be the logical (unsigned) representation corresponding to the arithmetic representation x
of some integer, and similarly for Y and y. To form the logical product of the operands X and
Y, we must modify the product xy given by the processor operation of multiplication, which
assumes that the operands are in the arithmetic representation. It will help to remember (from
Section 2.7) that

XY = (232+x)(232+y) = 264 + 232(x+y) + xy (modulo 264)

18.2.3.(2)+ What is the value of the largest 48-bit product that can be generated by signed mul-
tiplication of 32-bit and 16-bit operands? The largest 96-bit value generated by signed multipli-
cation of 32-bit and 64-bit operands?

18.2.4.(3)+ Write a sequence of instructions that forms the product of the positive word inte-
gers at A and B, leaves the result in (GR0,GR1), and transfers to Overflow if the result is too
large to be represented in a word.

18.2.5.(4)+ Do the same as in Exercise 18.2.4, but make no restrictions on the signs of the
operands.

18.2.6.(4)+ Rewrite your solution to Exercise 18.2.5 to branch to OverPos if the result is too
large and positive, and to OverNeg if the result is too large and negative.

18.2.7.(3) Suppose GR11 and GR12 contain the addresses of the first items in two tables of ten
consecutive halfword integers each. Write a code sequence that computes the “inner product”
of the two tables; that is, compute the product of the first elements from each table, add to it
the product of the second items, etc. Store the final sum as a double-length integer beginning at
the word named DwSum. The addresses in R11 and R12 may be modified. Since there are ten
products, the accumulated sum could overflow the capacity of a single register. Be sure to
handle negative products correctly.

18.2.8.(3) Simplify the coding of Exercise 18.2.2 assuming that the arithmetic representation
corresponding to x is known to be positive at all times.

18.2.9.(2) When we use the M and MR instructions, the first operand specifies an even-
numbered register. However, the multiplicand is actually in the next higher odd-numbered reg-
ister. Can you think of any reasons why the designers of System z did not require that the
actual (odd) multiplicand register be specified?

18.2.10.(2)+ Write a simple sequence of instructions that will determine whether the 64-bit
product in (GR0,GR1) is too large to be carried in a single register.

18.2.11.(2)+ If all values are positive, what is the value of the largest 48-bit product that can be
generated by multiplication of 32-bit and 16-bit operands? The largest 96-bit value generated by
multiplication of 32-bit and 64-bit operands?

Chapter V: Basic Instructions 269

18.2.12.(3) Given a signed 32-bit operand A and an unsigned 32-bit operand B, write
instructions that will generate their signed 64-bit product.

18.2.13.(2)+ A programmer wanted to test whether the product of two positive 32-bit binary
integers was too large to fit in a 32-bit register. Will these instructions do what he wants?

L 1,X Load first operand
M 0,Y Multiply by second operand
LTR 0,0 Check high-order 32 bits
BZ ProdOK If they're zero, product fits
- - - Not OK

X DC F'...'
Y DC F'...'

18.2.14.(3)+ You have created a signed binary product in (GR0,GR1) using instructions like

L 1,X
M 0,Y

and you want to determine whether its value can be stored correctly in the 32-bit field Prod32
or (to be stored correctly) must be stored in the 64-bit field Prod64. Write instructions to make
that determination and store the result.

18.2.15.(2) What would be stored at Z by these instructions?

L 3,X
M 2,Y
SR 2,3
ST 2,Z
- - -

X DC F'9'
Y DC F'-7'
Z DS F

18.2.16.(1)+ Suppose these two instructions are executed:

LH 1,N Get halfword from N
MSR 1,1 Square it

Show the value that will be in GR1 if the number at N is (1) X'8000' and (2) X'FFFF'.

18.3. Logical (Unsigned) Multiplication Instructions

Table 86 lists the logical multiplication instructions:

Table 86. Logical multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

E396 ML RXY Multiply Logical
(32+32←32×32)

B996 MLR RRE Multiply Logical Register
(32+32←32×32)

E386 MLG RXY Multiply Logical
(64+64←64×64)

B986 MLGR RRE Multiply Logical Register
(64+64←64×64)

Logical multiply instructions are similar to arithmetic multiply instructions, except that the oper-
ands and results are unsigned. All four instructions generate a double-length product in an
even-odd register pair. Logical multiplication is frequently used when high- or multiple-precision
calculations are required114. Although you can use arithmetic multiplication instructions to gen-
erate logical products, and logical multiplication instructions to generate arithmetic products, extra

114 Some encryption and decryption algorithms use multiple-precision arithmetic extensively.

270 Assembler Language Programming for IBM System z™ Servers Version 2.00

instructions and time are needed.115 It's simplest to use whichever instruction is best suited to the
type of operand.

For example, suppose you multiply the maximum negative 32-bit number by itself using arith-
metic and logical multiply instructions:

* Arithmetic multiplication
L 1,=X'80000000' c(GR1) = -2147483648
MR 0,1 c(GR0,GR1) = X'40000000 00000000'

* Logical multiplication
L 1,=X'80000000' c(GR1) = +2147483648
MLR 0,1 c(GR0,GR1) = X'40000000 00000000'

The result is the same in both cases. Arithmetically, the maximum negative number has value
−231, and the same bit pattern as an unsigned number has value +231. Thus, the product in both
cases is +262. Now, let's try squaring a different operand, −1:

* Arithmetic multiplication: (-1)*(-1) = +1
L 1,=F'-1' c(GR1) = X'FFFFFFFF'
MR 0,1 c(GR0,GR1) = X'00000000 00000001'

* Logical multiplication: (2**32-1)*(2**32-1) = 18446744065119617025
L 1,=F'-1' c(GR1) = X'FFFFFFFF'
MLR 0,1 c(GR0,GR1) = X'FFFFFFFE 00000001'

These results are very different! The bit pattern X'FFFFFFFF' represents −1 arithmetically, but
232 −1 logically.

The MLG and MLGR instructions generate 128-bit products in an even-odd pair of 64-bit regis-
ters:

LG 1,=FD'74296604373' c(GG1) = 74296604373
MLG 0,=FD'9876543210' c(GG0,GG1) = 733793623446209457330

LG 1,=FD'74296604373' c(GG1) = 74296604373
LG 3,=FD'9876543210' c(GG3) = 9876543210
MLGR 0,3 c(GG0,GG1) = 733793623446209457330

These instructions can generate very large products!

Exercises

18.3.1.(1) What is the value of the largest 64-bit product that can be generated by logical multi-
plication of 32-bit operands?

18.3.2.(3) Given two signed 32-bit integers stored in the words at P and Q, show first how you
can generate their signed 64-bit product using the logical multiplication instructions ML and
MLR. Then, write a sequence of instructions that will store the product in the doubleword at
ArProd.

18.3.3.(4) Do the same as in Exercise 18.3.2, but this time form the 128-bit signed product of
two 64-bit signed operands at DP and DQ using the logical multiplication instructions MLG and
MLGR. Store the result in the pair of doublewords at ArProd2.

18.3.4.(4) As in Exercise 16.6.3 on page 229, form the product of the two 256-bit integers at
A256 and B256 to form a 512-bit product stored at Prod256.

115 Try Exercises 18.2.2 and 18.3.2.

Chapter V: Basic Instructions 271

18.4. How Multiplication Is Done (*)

To illustrate the method used in multiplication, we'll first use an example in decimal arithmetic.
Suppose we have a “processor” with registers that hold 3-digit decimal numbers that we assume
are positive, and we multiply 213 and 126. Since we are multiplying two 3-digit numbers, the
product can be 6 digits long. Thus, we assume there is a double-length 6-digit register whose right
and left halves hold a 3-digit number.

When working with pencil and paper, we form the product of the multiplier and each of the mul-
tiplicand digits in succession, and generate a series of partial products that must be properly
aligned and then added:

Multiplicand 213
Multiplier × 126
partial 1278
products 426

213
Product 26838

We'll now see how this manual process can be broken down into steps that are more like the
method used in a computer.

1. We place the multiplicand in the right half of the double-length register, and clear the left half
to zero.

 Initial register contents 000 213

2. By examining the rightmost digit of the multiplicand we know how many times to add the
multiplier to the left half of the double-length register. As an aid in counting how many times
to add the multiplier, we decrement the rightmost multiplicand digit by 1 for each addition.
When the rightmost digit has been counted down to zero, the partial product of that digit
and the multiplier has been added to the accumulating result.

 Initial register contents 000 213
 Add multiplier to upper end +126

that's 1 time 126 212, count down at right
 Add multiplier +126

that's 2 times 252 211, count down at right
 Add multiplier +126

that's 3 times 378 210, count down at right

3. The entire double-length register is shifted right one digit position, at which time the (now)
zero digit at the right-hand end is lost, and a zero digit is inserted in the vacated position at
the left.

 Shift right one place 037 821
 Add multiplier +126

that's 1 time 163 820, count down at right

4. After the second shift, the final multiplicand digit is 2:

 Shift right one place 016 382
 Add multiplier +126

that's 1 time 142 381, count down at right
 Add multiplier +126

that's 2 times 268 380, count down at right
 Shift right one place 026 838

This process of adding the multiplier and counting down on the multiplicand digit continues until
the proper partial product has been added to the accumulated result. This process is repeated for
as many steps as there are multiplicand digits. When completed, the product is in the double-
length register, and all multiplicand digits have been shifted off the right-hand end.

The main points are:

• the multiplicand is initially placed in the right half of the double-length register;

272 Assembler Language Programming for IBM System z™ Servers Version 2.00

• the left half is initially cleared to zero (after saving the multiplier if it was in the left half);

• the multiplier is added to the left end a number of times determined by the multiplicand digit
at the far right; and

• the least significant digit of the result is at the right-hand end of the double-length register,
because the number of right shifts was the same as the number of positions in a single-length
register.

When used for multiplying binary numbers, the above scheme is very easy to implement, because
testing the rightmost bit determines whether or not the multiplier is to be added, and no counting
is required. Suppose we have 5-digit binary numbers and registers, and wish to multiply B'00110'
(=6) by B'01001' (=9) to obtain a 10-bit product in a double-length register. The sequence of
steps in Figure 126 shows how this is done.

Initialize 00000 01001 Multiplicand, in right half of
double-length register

00110 Multiplier, in separate register

Step 1: Rightmost bit = 1,
Add multiplier 00110 01001
Shift right 1 place 00011 00100 (The 1-bit is lost)

Step 2: Rightmost bit = 0,
Shift right 1 place 00001 10010

Step 3: Rightmost bit = 0,
Shift right 1 place 00000 11001

Step 4: Rightmost bit = 1,
Add multiplier 00110 11001
Shift right 1 place 00011 01100 (The 1-bit is lost)

Step 5: rightmost bit = 0,
Shift right 1 place 00001 10110 Final product (=54)

Figure 126. Illustration of binary multiplication

It is important to observe that the product really is a double-length number, and not just two
single-length numbers joined end to end. If we consider the contents of the left and right halves of
the double-length register as ordinary single-length two's complement operands, we might believe
the result in the right, or low-order half, was negative! Since a product of two positive numbers
must be positive, a double-length register means that no special significance can be attached to the
sign bit of the low-order half of the result, unless we know in advance that the product is correctly
representable in a single register.116 The leftmost bit of the right-hand register is therefore not a
sign bit; it has positive weight in the double-length result, and the product's sign bit is the left-
most bit of the high-order register.

Modern processors gain speed by considering not just the rightmost bit of the multiplicand, but
groups of two, three, or even four bits. In cases where the arithmetic can be considered to be base
4, 8, or 16, the “proper multiple” is not found by counting down by ones on the multiplicand
bits, but by having internal shifting or table look-up circuits generate the proper factor of the mul-
tiplier in many fewer steps. This increases the speed of multiplication, since a separate addition is
not required for each 1 bit in the multiplicand.

116 Because many multiplications involve small numbers not needing a double-length product, the various “Multiply
Single” instructions were created. They can be faster than instructions generating double-length products.

Chapter V: Basic Instructions 273

18.5. Division Instructions

As with multiplication, the terminology is taken from mathematics:

Quotient
Divisor) Dividend

 - - - -
Remainder

While multiplying two n-digit numbers usually gives a 2n-digit product, dividing a 2n-digit divi-
dend by an n-digit divisor does not necessarily produce an n-digit quotient. If for example we use
3-digit decimal numbers, 999×999=998001; but 998001÷ 100 gives quotient 9980 and remainder 1,
with a 4-digit quotient.

If the divisor is zero, or if the quotient is too large to fit in a single-length register, a Fixed-Point
Divide interruption will occur, with Interruption Code 9. This condition cannot be suppressed (as
can Fixed-Point Overflow). It is important to be careful when preparing for division!

The divide instructions we'll consider are shown in Table 87.

Table 87. Binary divide instructions

Op Mnem Type Instruction Op Mnem Type Instruction

5D D RX Divide
(32,32←32+32÷ 32)

1D D R R R Divide Register
(32,32←32+32÷ 32)

E30D DSG RXY Divide Single
(64,64←64÷ 64)

B90D DSGR RRE Divide Single Register
(64,64←64÷ 64)

E31D DSGF RXY Divide Single
(64,64←64÷ 32)

B91D DSGFR RRE Divide Single Register
(64,64←64÷ 32)

E397 DL RXY Divide Logical
(32,32←32+32÷ 32)

B997 DLR RRE Divide Logical Register
(32,32←32+32÷ 32)

E387 DLG RXY Divide Logical
(64,64←64+64÷ 64)

B987 DLGR RRE Divide Logical Register
(64,64←64+64÷ 64)

The notation describing the operands and results of these instructions shows the general register
results to the left of the “←” character, and the dividend and divisor to the right. For example,
for the D instruction, (32,32←32+32÷ 32) means that the quotient and remainder 32,32 are both
32-bit words; the dividend 32+32 is a pair of 32-bit registers, and the divisor is a 32-bit integer.
Similarly, for DSGF, (64,64←64÷ 32) means that the quotient, remainder, and dividend are 64-bit
integers, and the divisor is a 32-bit sign-extended integer.

As Table 87 indicates, there are no instructions (like DG, DGR) for dividing 128-bit arithmetic
operands by a signed 64-bit divisor of the form (64,64←128÷ 64), nor instructions (like DS, DSR)
for dividing 32-bit signed operands by 32-bit divisors.117

When any division instruction completes without interruption, the quotient is found in the odd-
numbered register of the pair, and the remainder in the even-numbered register, as illustrated in
Figure 127.

R1 R1+1
┌──────────────────────┐┌──────────────────────┐
│ Remainder ││ Quotient │
└──────────────────────┘└──────────────────────┘

Figure 127. General result of divide operation

117 At the time of this writing. But new instructions are added regularly to the System z architecture, so check the Princi-
ples of Operation.

274 Assembler Language Programming for IBM System z™ Servers Version 2.00

None of the divide instructions changes the CC setting, and an even-odd register pair is always
required, even for the “Divide Single” instructions.

Register Pairs for Division

All System z binary integer divide instructions require an even-odd reg-
ister pair.

Exercises

18.5.1.(2)+ If you divide an ND-digit dividend (numerator) by a DD-digit divisor (denomi-
nator), what are the minimum and maximum numbers of digits QD in the quotient and RD in
the remainder? Assume a valid division, and that zero is a valid result.

18.6. Arithmetic (Signed) Division Instructions

Table 88 summarizes the arithmetic division instructions:

Table 88. Arithmetic divide instructions

Op Mnem Type Instruction Op Mnem Type Instruction

5D D RX Divide
(32,32←32+32÷ 32)

1D D R R R Divide Register
(32,32←32+32÷ 32)

E30D DSG RXY Divide Single
(64,64←64÷ 64)

B90D DSGR RRE Divide Single Register
(64,64←64÷ 64)

E31D DSGF RXY Divide Single
(64,64←64÷ 32)

B91D DSGFR RRE Divide Single Register
(64,64←64÷ 32)

The Divide Single instructions (DSG, DSGR, DSGF, and DSGFR) have only a single-length
dividend; we'll examine them shortly.

18.6.1. Double-Length Division

The most commonly used divide instructions are D and DR. The 64-bit double-length dividend
(the first operand) is placed in an even-odd pair of 32-bit registers, and the second operand (the
divisor) is in another register or a word in memory. This is illustrated in Figure 128.

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ ││ │
└──────────────────────┘└──────────────────────┘
�───────────────── Dividend ─────────────────

┌──────────────────────┐
│ Divisor │ R2 or D2(X2,B2)
└──────────────────────┘ (in register or memory)

Figure 128. Operands of double-length division

This type of division uses a double-length dividend and a single-length divisor, yielding single-
length quotient and remainder. The sign of the quotient is determined from the usual rules of
algebra; the sign of the remainder is the same as the sign of the original dividend, except that a
zero quotient or remainder always has a zero sign bit.

As with the double-length multiply instructions, the R1 digit is always even, and specifies the reg-
ister pair containing the double-length dividend. The quotient replaces the low-order half of the
dividend in the odd-numbered register, and the remainder replaces the high-order part of the divi-
dend in the even-numbered register. If a valid quotient cannot be computed, a Fixed-Point
Divide interruption occurs. (An improper division is shown in Figure 133 on page 277.)

Chapter V: Basic Instructions 275

To illustrate, we divide the double-length number in (GR8,GR9) by the number in GR13.

DR 8,13 Divide c(GR8,GR9) by c(GR13)

To divide the same number by 10 we could write

D 8,=F'10' Divide c(GR8,GR9) by 10

The most common use of division occurs when dividing a 32-bit word operand by another. For
double-length dividends that must be 64 bits long, you can't just load the dividend operand into
an odd-numbered register and immediately divide, because the even-numbered register is treated
by the CPU as containing the most significant bits of the dividend. We must first extend the sign
bit of the single-length dividend to form its correct double-length representation.

There are two ways to do this:

1. Multiply the 32-bit dividend (in the odd-numbered register) by 1:

L 7,NN Load 32-bit dividend in GR7
M 6,=F'1' Times 1 gives 64-bit signed dividend

While easy to understand, this method may be slower than the next.

2. The most common method is to load the 32-bit dividend into the even-numbered register,
and then use an SRDA instruction:

L 6,NN c(GR6) = c(NN)
SRDA 6,32 c(GR6,GR7) = 64-bit signed dividend

Suppose we want to divide the positive or negative word integer at G by three, and store the
quotient at G_Over_3.

L 8,G Put numerator into even register
SRDA 8,32 Sign-extend to double length
D 8,=F'3' Divide by three
ST 9,G_Over_3 Store quotient

Figure 129. Example of division by 3

Suppose we want to compute the product of the integers in the words named A and B and force
the result to the next larger multiple of 29 if it is not already an exact multiple. (We assume that
the product is small enough that a fixed-point divide interruption will not occur when dividing by
29, and that the final result fits in a single word.)

L 3,A c(GR3) = c(A)
M 2,B c(GR2,GR3) = c(A) * c(B)
D 2,=F'29' Quotient in GR3
LTR 2,2 Test remainder in GR2
BZ Mult Branch if c(GR2) is zero
A 3,=F'1' increase quotient by 1

Mult M 2,=F'29' Form correct multiple of 29
ST 3,Result Store proper result

This example assumes the final product is correctly represented in the 32 bits of GR3.

Here are two examples of division with rounding.

1. Suppose we want to divide the positive integer at NN by 10, and store the rounded quotient at
QQ. This means that if the remainder is 5 or larger, the quotient must be increased by 1.

L 7,NN Low-order part of positive dividend in GR7
SR 6,6 Set high-order part to zero
D 6,=F'10' Divide by 10
C 6,=F'5' Compare remainder to 5
BL NoRound Branch if smaller than 5
A 7,=F'1' Otherwise round up

NoRound ST 7,QQ Store rounded result
Figure 130. Example of rounded integer division

276 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. Now, suppose the integer at NN can be either positive or negative. The above instruction
sequence will not work, for two reasons. First, the initial value of the dividend would not
have a correctly extended sign bit for negative arguments (because we used SR to set the
high-order register to zero). Second, because the sign of the remainder is always the same as
the sign of the original dividend, if c(NN) is negative the compare instruction will always
cause the following branch instruction to transfer control to NoRound, independent of the
magnitude of the remainder.

Here's an example of rounding the quotient of a signed dividend:

L 1,=F'1' Set up rounding increment
L 6,NN c(GR6) = c(NN)
SRDA 6,32 c(GR6,GR7) = 64-bit signed dividend
BNM Divide Jump if nonnegative dividend
LCR 1,1 Otherwise set roundoff to -1

Divide D 6,=F'10' Divide by 10
LPR 6,6 Take magnitude of remainder
C 6,=F'5' Compare to 5
BL NoRound Branch if smaller than 5
AR 7,1 Add correctly-signed roundoff

NoRound ST 7,QQ Store rounded quotient
Figure 131. Example of rounded integer division with signed dividend

See Exercise 18.6.13 for a more general technique for calculating a rounded quotient.

A simple check can be made to ensure that a fixed-point divide interruption does not occur: if the
inequality

|dividend| < |divisor| * 231

Figure 132. Ensuring a valid arithmetic division

is satisfied, then the quotient will be computed correctly. If an equality occurs in comparing these
two quantities, we must also check for the possibility that the quotient might be exactly equal to
−231.

To illustrate this relationship, suppose we want to divide the double-length dividend

X'0000000100000000' = 232

by two. Comparing dividend and divisor, the dividend might appear to be small enough to
produce a valid quotient:

X'0000000100000000' = 232 (dividend)
X'00000002' = 2 (divisor; high-order part of dividend is smaller?)

The divisor 2 multiplied by 231 is actually equal to the dividend, so that the inequality in
Figure 132 is not satisfied. Since both dividend and divisor are positive, the quotient must also
be positive; but the quotient is actually X'80000000', which is not representable as a positive
number for signed division.

Thus, a fixed-point divide interruption can be thought of as indicating a “quotient overflow”. To
show how this might occur in a program, consider the segment below.

L 1,=A(X'40000') c(GR1) = 2**18
MR 0,1 Square it, to generate 2**36
D 0,=F'10' Try to divide by 10

Figure 133. Causing a fixed-point divide interruption

Because 236 is not less than 10×231, a fixed-point divide interruption will occur.

Chapter V: Basic Instructions 277

18.6.2. Single-Length Division

The arithmetic division instructions using a single-length dividend in a 64-bit register are DSG,
DSGR, DSGF, and DSGFR. Even though the dividend occupies a single 64-bit register (unlike
double-length dividends that require a register pair), a single-length dividend is always placed in
the odd-numbered register. (It's easiest to think of it as being extended internally to double length
before division begins.)

Even though the dividend is in the odd-numbered register, the instruction must specify the even-
numbered register as the R1 operand. This is illustrated in Figure 134 on page 278.

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ //////////////////// ││ Dividend │
└──────────────────────┘└──────────────────────┘

┌──────────────────────┐
│ Divisor │ R2 or D2(X2,B2)
└──────────────────────┘ (in register or memory)

Figure 134. Operands of single-length division before division

After division, the results appear as in Figure 135.

R1 (even) R1+1 (odd)
┌──────────────────────┐┌──────────────────────┐
│ Remainder ││ Quotient │
└──────────────────────┘└──────────────────────┘

Figure 135. Operands of single-length division after division

For example, suppose you want to divide 12345678901 by 777:

LG 5,=FD'12345678901' c(GG1) = 12345678901
DSG 4,=FD'777' Divide by 777 (64-bit divisor)

* c(GG4) = 493 (remainder), c(GG5) = 15888904 (quotient)

LG 5,=FD'12345678901' c(GG1) = 12345678901
LG 9,=FD'777' c(GG9) = 777 (64 bits)
DSGR 4,9 Divide by 777

The same divisions using DSGF and DSGFR with 32-bit divisors are very similar:

LG 5,=FD'12345678901' c(GG1) = 12345678901
DSGF 4,=F'777' Divide by 777 (32-bit divisor)

LG 5,=FD'12345678901' c(GG1) = 12345678901
L 9,=F'777' c(GR9) = 777 (32 bits)
DSGFR 4,9 Divide by 777

and the 32-bit second operands are internally sign-extended to 64 bits.

Note that for single-length division, there is no need to initialize the even-numbered register R1.

Exercises

18.6.1.(2) In the inequality in Figure 132 on page 277 that assures that a division will be
correct, explain the factor of 231. Why isn't it a factor of 232?

18.6.2.(4) Suppose n is the number of some register. Under what circumstances will DR n,n not
cause a program interruption?

278 Assembler Language Programming for IBM System z™ Servers Version 2.00

18.6.3.(2)+ Write a sequence of instructions to simulate a “Divide Halfword” operation. That
is, given a word dividend at WDividen and a halfword divisor at HDivisor, store the halfword
quotient and remainder at HQuotent and HRemaind respectively.

18.6.4.(2)+ Suppose the dividend in a signed fixed-point division can be correctly represented in
a word. Can division by a nonzero word divisor cause a fixed-point divide interruption?

18.6.5.(2) Under what circumstances can a fixed-point divide interruption occur in Figure 129
on page 276?

18.6.6.(2) Rewrite the example in Figure 130 on page 276 to round the result by adding 5
before dividing by 10. Determine carefully whether or not there might be a carry from the addi-
tion into the high-order register.

18.6.7.(2) Rewrite the example in Figure 131 on page 277 to round the dividend before
dividing by adding or subtracting 5. Determine carefully how to handle a possible carry or
borrow from the low-order to the high-order register.

18.6.8.(4) Consider the problem of simulating logical division by using arithmetic divide
instructions. Sketch a code sequence that will do this.

18.6.9.(2) Suppose the SRDA instruction is not available, and you want to divide the word
integer in GR1 by another in GR2. Show how you can set up the double-length dividend
without multiplying by 1.

18.6.10.(2)+ Figure 131 on page 277 illustrates a rounded division with positive divisor and
signed dividend. Show what changes are needed if the divisor can also be negative.

18.6.11.(3)+ Figure 130 on page 276 shows a way to compute a rounded quotient. The
rounding factor 5 is half the divisor, 10. Write a sequence of instructions to generalize this by
computing

quotient = (dividend / divisor) + 1/2

18.6.12.(1)+ A programmer wanted to divide the positive number in GR5 by 2, and wrote

SR 4,4 Clear high-order word
D 4,=F'2' Divide c(GR5) by 2

Find a simpler way to do this.

18.6.13.(3)+ Write an instruction sequence showing how to calculate a rounded integer quotient
using 32-bit operands, without knowing the magnitude of the divisor.

18.6.14.(2)+ A table of 15 reasonably small halfword grades is stored starting at Grades. Write
instructions to compute their average value and store it at AvgGrade.

18.7. Logical (Unsigned) Division Instructions

The logical division instructions are shown in Table 89:

Table 89. Binary divide instructions

Op Mnem Type Instruction Op Mnem Type Instruction

E397 DL RXY Divide Logical
(32,32←32+32÷ 32)

B997 DLR RRE Divide Logical Register
(32,32←32+32÷ 32)

E387 DLG RXY Divide Logical
(64,64←64+64÷ 64)

B987 DLGR RRE Divide Logical Register
(64,64←64+64÷ 64)

Chapter V: Basic Instructions 279

These four instructions divide a double-length unsigned dividend by a single-length unsigned
divisor, giving a single-length unsigned quotient in the odd-numbered register and the unsigned
single-length remainder in the even-numbered register.

If both dividend and divisor are positive, logical and arithmetic division generate the same results.
For example, dividing X'00000000 FFFFFFFF' by 3 generates quotient X'55555555' and remainder 0
for both types of division.

As you might expect, negative signed operands can produce very different results when used as
logical operands in unsigned division. For example, an arithmetic division of the maximum nega-
tive number (X'80000000') by −1 (X'FFFFFFFF') is invalid; but a logical division using the same
operands gives quotient zero and remainder X'80000000' (because 231 is smaller than 232 −1).

Here is a case that succeeds for arithmetic division but fails for logical division:

L 0,=X'80000001' Set GR1 to -2**31+1
SRDA 0,32 Extend to 64 bits in (GR0,GR1)
D 0,=F'-1' Arithmetic division

The remainder is 0 and the quotient is +231 −1, as you would expect. For a logical division, the
dividend is (264 −231 +1) and the divisor is 232 −1, which leads to a fixed-point divide interruption
because the quotient is greater than 232 −1. As another example, consider

L 0,=F'-2' Set GR0 to X'FFFFFFFE'
SR 1,1 Set GR1 to X'00000000'
DL 0,=F'-1' Divide logically by X'FFFFFFFF'

Figure 136. Example of logical division

This time, both quotient and remainder are X'FFFFFFFE'!

As a final example:

L 0,=X'FFFFFFF8' Initialize GR0
LR 1,0 And GR1, with the same bits
DL 0,=X'FFFFFFFF' Divide by 2**32-1

The quotient is X'FFFFFFF9' and the remainder is X'FFFFFFF1'.

Exercises

18.7.1.(4) Show how you can use logical division instructions to generate the results that would
be obtained by using arithmetic division instructions with the same operands.

18.7.2.(2) By evaluating the expression quotient×divisor+ remainder=dividend, show that the
results of the division in Figure 136 are valid.

18.8. How Division Is Done (*)

Division works much like multiplication, only in reverse. Instead of adding onto the high-order
half of the accumulating product, we subtract; instead of counting down in the rightmost digit
position, we count up; instead of shifting right, we shift left. As before, an example using decimal
arithmetic illustrates the process.

Since we start with a dividend and divisor and wish to find a quotient and remainder that satisfy
the equation

dividend = quotient × divisor + remainder
The dividend must be a double-length number.

Supposing again that our basic register length is three decimal digits, a requirement on the divi-
dend is clear: because (a) the quotient, to fit in a register, can be at most three digits long (that is,
not exceeding 999) and (b) the remainder must be less than the divisor, we must not have a divi-
dend larger than

280 Assembler Language Programming for IBM System z™ Servers Version 2.00

999 × divisor + (divisor-1) = 103 × divisor - 1.

The factor of 103 is the base (10) raised to the power of the number of available digits (3). Since
multiplication by 103 in this example is equivalent to shifting left three places, the above relation
means that if the division is to produce a valid quotient, the high-order half of the dividend must
be less than the divisor. To illustrate: if the divisor is 456, then any dividend not smaller than
456000 = 103 × 456 would produce a 4-digit quotient; if the dividend is less than or equal to
455999 = 103 × 456 − 1, the quotient can be held in three digits. Note that the three high-
order digits, 455, are now less than the divisor.

Suppose we want to divide 162843 by 762. In ordinary long division, at each step we determine
how many multiples of the divisor can be subtracted from the leftmost part of the dividend, and
enter that number as the quotient digit. When the subtraction process has been completed, the
remainder, from which no further subtractions can be made, is 537, and the quotient is 213.

 + 213
762)162843

1524
1044
762
2823
2286
537

Just as a check, we find that 762×213+537=162843. Using decimal registers, the division works
like this:

162 843 High-order part of dividend less than divisor,
762 division may proceed.

1 628 430 Shift dividend left; save leftmost digit in an
- 762 “overflow digit” position.

Since dividend ≥ divisor,
0 866 431 Subtract, and count up at right end.
- 762 Dividend ≥ divisor; subtract again, count up
0 104 432 Dividend < divisor, no subtraction
1 044 320 Shift dividend left again
- 762 Dividend ≥ divisor; subtract and count up
0 282 321 Dividend < divisor; no subtraction
2 823 210 Shift left for the third and last time
- 762 Dividend ≥ divisor; subtract and count up
2 061 211 Subtract and count up by 1 at right end
- 762 Dividend ≥ divisor; subtract
1 299 212 and count up by 1
- 762 Dividend ≥ divisor; subtract and count up
537 213 Dividend now < divisor; stop.

As the successive digits of the quotient were developed, they appeared at the right end of the
double-length register, and were shifted left as the division progressed. Thus at the completion of
the division, the quotient is found in the right half of the register pair, and the remainder, from
which no further subtractions could be made, is in the left half.

As in multiplication, binary division is simplified by the fact that at most one subtraction need be
made for each quotient digit generated. To illustrate, consider an example using a five-bit divisor
and a ten-bit dividend. Let the dividend be B'00001 11011' (=59), and let the divisor be B'00110'
(=6) . (Remember, the two halves of the double-length dividend are not two signed five-bit
numbers joined end to end: the leftmost bit of the right half of the dividend is not a sign bit but
an ordinary arithmetic digit.) If we make allowance for the sign bits of the quotient and
remainder, we actually need an extra shift at the beginning, to align the dividend correctly. This
leads to the following division scheme.

1. Shift the dividend left once. If the high-order (left) part of the dividend is not smaller than the
divisor, an illegal division is being attempted.

Chapter V: Basic Instructions 281

2. Shift left one bit position. If the high-order part of the dividend is greater than or equal to the
divisor, subtract the divisor from the dividend, and insert a 1 bit in the rightmost digit posi-
tion. Otherwise, do nothing.

3. Return to step 2 until a total of 5 shifts has been done, including the shift of step 1.

We now illustrate the binary division of 59 by 6 in Figure 137, with less detail than in the multi-
plication example.

 00011 10110 Shift left once and compare
(00110) Dividend < divisor, okay to continue

 00111 01100 Shift left once (second shift)
 00001 01101 Subtract divisor, insert 1
 00010 11010 Shift left once (third shift)

Dividend < divisor; no subtraction
 00101 10100 Shift left once (fourth shift)

Dividend < divisor; no subtraction
 01011 01000 Shift left once (fifth and last shift)
 00101 01001 Subtract divisor, insert 1.

Figure 137. Illustration of binary division

Thus the remainder B'00101' (=5) is in the left half, and the quotient B'01001' (=9) is in the
right half, as expected.

This example of binary division is meant to illustrate the general process. Many improvements
involving multiple dividend and divisor bits make division faster on modern processors than
testing single bits.

Division in System z involves a double-length register, either a pair of general registers or an
internal double-length register holding the extended single-length dividend. Since the high-order
register of the pair must be even-numbered, the quotient is found in the odd-numbered register,
and the remainder is found in the even-numbered register.

Exercises

18.8.1.(4) The results of a division operation must satisfy the relation

dividend = (quotient * divisor) + remainder.

However, this relation does not uniquely determine the quotient and remainder obtained from a
given divisor and dividend. Even requiring the magnitude of the remainder to be smaller than
the magnitude of the divisor,

|remainder| < |divisor|

does not lead to uniqueness! Consider the following choices:

1. sign(remainder) = sign(dividend) (System z)

2. remainder ≥ 0 (“modulo”)

3. − | divisor/2 | ≤ remainder < |divisor/2 | (“rounding”)

For cases (2) and (3), show how the System z rules concerning signs and magnitudes would
have to be modified.

18.8.2.(4)+ Suppose n is the number of a general register. For each of these instructions, answer
the questions (1) Under what circumstances will this instruction cause an interruption? and (2)
What kind or kinds of interruption?

1. AR n,n

2. MR n,n

3. DR n,n

282 Assembler Language Programming for IBM System z™ Servers Version 2.00

18.9. Summary

Table 90 summarizes the multiply instructions we've discussed here.

Table 90. Summary of multiply instructions discussed in this section

The divide instructions discussed in this section are shown in Table 91.

Table 91. Summary of divide instructions discussed in this section

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Func-
tion

Product length
(bits) 32 32 + 32 64 64 + 64

Operand 1 length 32 32 64 64

Operand 2 length 16 32 32 32 64 64

Arithmetic × MH MS
MSR

M
MR

MSGF
MSGFR

MSG
MSGR

Logical × ML
MLR

MLG
MLGR

Function

Dividend length (bits) 32 + 32 64 64 + 64

Divisor length 32 64 64

Quotient & remainder
length 32 64 64 64

Arithmetic ÷ D
DR

DSG
DSGR

Logical ÷ DL
DLR

DSGF
DSGFR

DLG
DLGR

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

D 5D DSGFR B91D MR 1C

DL E397 DSGR B90D MS 71

DLG E387 M 5C MSG E30C

DLGR B987 MH 4C MSGF E31C

DLR B997 ML E396 MSGFR B91C

DR 1D MLG E386 MSGR B90C

DSG E30D MLGR B986 MSR B252

DSGF E31D MLR B996

The instruction opcodes and mnemonics are shown in the following table:

Chapter V: Basic Instructions 283

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

1C MR B90D DSGR E30D DSG

1D DR B91C MSGFR E31C MSGF

4C MH B91D DSGFR E31D DSGF

5C M B986 MLGR E386 MLG

5D D B987 DLGR E387 DLG

71 MS B996 MLR E396 ML

B252 MSR B997 DLR E397 DL

B90C MSGR E30C MSG

Terms and Definitions
arithmetic division

Division of two signed operands, generating a signed quotient and signed remainder.

arithmetic multiplication
Multiplication of two signed operands, generating a signed product.

dividend
A number to be divided by a divisor; the first operand; the numerator.

divisor
A number to be divided into the dividend; the second operand; the denominator.

logical division
Division of two unsigned operands, generating an unsigned quotient and unsigned remainder.

logical multiplication
Multiplication of two unsigned operands, generating an unsigned product.

multiplicand
In a multiplication, the number that is to be multiplied (the first operand) by another, the
multiplier (the second operand)

multiplier
See multiplicand

quotient
The primary result of a division operation.

remainder
The residual portion of a division left over when a dividend cannot be evenly divided by a
divisor. Smaller in magnitude than the divisor.

Programming Problems

Problem 18.1.(2) Write an Assembler Language program that finds the largest integer divisor x
of the integer function

f(n) = n3 - 1,

for values of n running from 2 to 8 in steps of 1, and such that “x” is less than f(n). Your
program should search for the divisor, and not compute it from the known factors of f(n).

Problem 18.2.(3) Write an Assembler Language program to compute and print the values of Xn
and the quotient and remainder of the fraction

(Xn)**2 + 10727*Xn - 14
2*Xn - 5

where Xn is given by Xn = 2**(3*n), for n = 1, 2, ..., 10.

284 Assembler Language Programming for IBM System z™ Servers Version 2.00

Problem 18.3.(4) In the early 17th century, Mersenne conjectured that the number

M(p) = (2**p) - 1

is prime for a particular sequence of prime values of p. Though the conjecture is now known to
be false, several efficient tests for the primality of M(p) have been devised; we will use one (due
to the French mathematician Lucas) for testing a set of such “Mersenne Numbers”, as follows:

1. Compute M(p), and set S(1) (the initial term of a series) to the value 4. (Note that M(p)
can be calculated very simply by shifting.)

2. Compute the next term S(n+1) of the series as the remainder of the division of
(S(n)*S(n) − 2) by M(p).

3. Stop when S(p −1) has been calculated, and print the values of p, M(p), and S(p −1). If
S(p −1) is zero, M(p) is prime.

Write a program that tests M(p) for values of p = 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31.

Problem 18.4.(3) For values of the integer variable X running from 0 to 12 in steps of 1,
compute and print the quotient and remainder of the quantity

(X4 + 7X2 - 11) / (X3 - 21X2 + 131X - 231)

If you find that the denominator is zero for any value of X, print the largest negative magnitude
for both quotient and remainder (that is, the word integer with hex representation X'80000000').

Problem 18.5.(2) Write a program to compute a table of factorials. (Remember that we use the
notation N! for the factorial of N; define 0! = 1, and N! = N*(N −1)!.) Print the values of N
and N! until N! will not fit into a word; print a value of −1 for that factorial, and stop.

Problem 18.6.(4) Write a program to calculate the day and month of Easter for the year Y,
using these steps:118

1. Divide Y by 19; keep remainder A
2. Divide Y by 100; keep quotient B and remainder C
3. Divide B by 4; keep quotient D and remainder E
4. Divide 8B+13 by 25; keep quotient G
5. Divide 19A+B-D-G+15 by 30; keep the remainder H
6. Divide A+11H by 319; keep quotient M
7. Divide C by 4; keep quotient J and remainder K
8. Divide 2E+2J-K-H+M+32 by 7; keep remainder L
9. Divide H-M+L+90 by 25; keep quotient N

10. Divide H-M+L+N+19 by 32; keep remainder P

Then, Easter Sunday is the P-th day of the N-th month of year Y. (Note that this applies to
the Gregorian calendar, for years after 1582.)

Problem 18.7.(2) Write a program to print a hexadecimal addition table, like the one you
created in your solution to Exercise 2.2.4.

Problem 18.8.(2) Write a program to print a hexadecimal multiplication table, like the one you
created in your solution to Exercise 2.2.4.

Problem 18.9.(4) The constant “e” (2.718...) is the base of natural logarithms. Its value is
defined by

e = Sum (k=0,∞) (1/k!)

Evaluating e by calculating the terms of this sequence is very slow (and difficult to do with
fixed-point binary arithmetic, because the third and following terms are less than one). If you
rewrite the value as

118 From Scientific American, March 2001, page 82.

Chapter V: Basic Instructions 285

 e-2 = (1/2)*(1+(1/3)*(1+(1/4)*(1+(1/5)*(1+(1/6)*(1+...(1/k))))...)))

there's an easy way to generate successive digits:

1. Multiply the rightmost (k-th) numerator term (initially 1) by 10 and divide by k.
2. Retain the remainder as the numerator for generating the next digit.
3. Multiply the next higher-order numerator by 10, add the quotient from the previous term,

and divide by (k-1).
4. Repeat until k=2. At this point, the final quotient is a digit of e.
5. Repeat from the first step to generate successive digits of e.

As a general rule, the number of digits to be generated is the same as the number of terms you
evaluate.

Write a program to generate the first 50 fraction digits of e, and print the value of the constant.

Problem 18.10.(2)+ Write a program that searches for and prints the 25 prime numbers less
than 100.

Problem 18.11.(2) Write a program that creates a base-seven multiplication table like the one
you made for Exercise 2.4.6.

286 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter V: Basic Instructions 287

19. Logical Operations

11 9999999999
111 999999999999
1111 99 99
11 99 99
11 99 99
11 999999999999
11 999999999999
11 99
11 99
11 99 99

1111111111 999999999999
1111111111 9999999999

In this section we'll examine instructions that perform logical operations, and give examples of
their use. These operations are very different from logical (unsigned) arithmetic. Here, “logical”
is used in the sense of the symbolic logic of truth and falsehood; the operations are often called
“Boolean” operations.119

The basic capabilities of a computer are derived from interconnections of basic circuits performing
logical functions. Some of the same logical functions are also performed by the CPU on oper-
ands in memory and in the general registers using “logical” instructions. The instructions in this
section are shown in Table 92.

Table 92. Logical operations involving general registers

Op Mnem Type Instruction Op Mnem Type Instruction

44 N RX AND (32) 14 N R R R AND Register (32)

E380 NG RXY AND (64) B980 N G R RRE AND Register (64)

46 O RX OR (32) 16 OR R R OR Register (32)

E381 OG RXY OR (64) B981 OGR RRE OR Register (64)

57 X RX Exclusive OR (32) 17 XR R R Exclusive OR Register (32)

E382 XG RXY Exclusive OR (64) B982 XGR RRE Exclusive OR Register (64)

There is no difference between operations involving 32- and 64-bit registers, so we'll describe only
the 32-bit forms. You can easily extend the 32-bit operations to their 64-bit equivalents.

119 George Boole (1815-1864) was a British mathematician and philosopher who wrote extensively on logic, especially in
his book An Investigation of the Laws of Thought (1854).

288 Assembler Language Programming for IBM System z™ Servers Version 2.00

19.1. Logical Operations

Unlike logical arithmetic, in which carries and borrows may propagate from a bit position to one
or more of its higher-order neighbors, boolean logical operations always operate on pairs of bits,
with no interactions among neighboring bits.

The three logical operations provided by System z are AND, OR, and Exclusive OR, abbreviated
“XOR”. These operations between pairs of bits produce a result depending only on the values of
the two bits participating in the operation. The effect of the three operations is given in
Figure 138. In each box, the two bits participating in the operation are given in the left column
and the top row; the result bit is at the intersection of the corresponding row and column.

┌─────┬─────┐ ┌─────┬─────┐ ┌─────┬─────┐
 AND │ 0 │ 1 │ OR │ 0 │ 1 │ XOR │ 0 │ 1 │
┌─────┼─────┼─────┤ ┌─────┼─────┼─────┤ ┌─────┼─────┼─────┤
│ 0 │ 0 │ 0 │ │ 0 │ 0 │ 1 │ │ 0 │ 0 │ 1 │
├─────┼─────┼─────┤ ├─────┼─────┼─────┤ ├─────┼─────┼─────┤
│ 1 │ 0 │ 1 │ │ 1 │ 1 │ 1 │ │ 1 │ 1 │ 0 │
└─────┴─────┴─────┘ └─────┴─────┴─────┘ └─────┴─────┴─────┘

Figure 138. Logical operations AND, OR, and XOR

• In the first case, the result bit is 1 only if the first AND the second operand bits are 1.

• In the second case, the result bit is 1 if either the first OR the second operand bit is 1.

• In the last case, the result bit is 1 if either the first OR second operand bits is 1, Exclusive of
the case where both are 1 (that is, one but not both bits are 1).120

The AND operation is often used to set bits to zero; OR is used to set them to one; and XOR is
used to change bits from zero to one and vice versa.

Sometimes the notation for logical operators is shorter, and text descriptions and formulas may
use other symbols: AND is represented by “∧” (or “×” or “.”), OR is represented by “∨” (or
“ +”), and XOR is represented by “⊕ ”. In high-level languages, there are many different repres-
entations for each operation. We will use the more readable forms in Figure 138.

Exercises

19.1.1.(1) Taking 1 to represent true and 0 to represent false, rewrite the three diagrams in
Figure 138 as truth tables.

19.2. Register-Based Logical Instructions

In practice, the RR and RX forms of the logical operations are not used frequently. Logical oper-
ations are often used to examine and manipulate individual bits in memory, typically using the
SI-type instructions that we'll see in Section 24.

For the operations in Table 93, the CC is always set.

Table 93. CC settings by logical instructions

Operation CC setting

AND
OR

XOR

0: all result bits are zero
1: result bits are not all zero

120 The distinction between OR and XOR often causes problems in English, where the word “or” is often interpreted one
way when the other was intended. “Question: “Are you tired or hungry?” Answer: “Yes”, usually implying “both”.

Chapter V: Basic Instructions 289

Unlike logical arithmetic, the result of each of these logical operations is obtained by matching the
corresponding bits of each operand, without interactions between neighboring bits. For example,
suppose c(GR4) = X'01234567', and c(GR9) = X'EDA96521'. Then if each of the following
instructions is executed, the final contents of GR4 will be as shown.

Operation AND OR XOR
Instruction NR 4,9 OR 4,9 XR 4,9

c(GR4) X'01234567' X'01234567' X'01234567'
c(GR9) X'EDA96521' X'EDA96521' X'EDA96521'
Result X'01214521' X'EDAB6567' X'EC8A2046'

To see in more detail how these results are obtained, examine the fourth hexadecimal digit (3 and
9) for each case:

AND OR XOR
3 0011 3 0011 3 0011
9 1001 9 1001 9 1001
1 0001 B 1011 A 1010

Figure 139. Examples of logical operations

Exercises

19.2.1.(1) The CC settings after the logical operations indicate whether or not the result is or is
not completely zero. Can you think of any reason why a CC setting to indicate a result of all
1-bits was not provided in the design of System/360?

19.3. Logical AND

The most important use of the N and NR instructions is for “masking” operations where we need
to isolate or extract portions of a word. For example, suppose we want only the third of the four
positive integers packed in the data word illustrated in Figure 115 on page 249. As we saw in
Section 17, we can extract it by shifting in an even-odd register pair:

L 0,DataWord Get data word with integers
SRL 0,6 Drop off fourth one
SRDL 0,13 Move third one into GR1
SRL 1,19 Position for storing
ST 1,Third Store

Or, we can use a only single register:

L 0,DataWord Get data word
SLL 0,13 Drop off first and second
SRL 0,19 Drop off fourth, and reposition
ST 0,Third Store

If the integers could have negative values, the SRL instructions would be replaced by SRA.

The following instruction sequences use Logical AND, and may be faster. (The bits of the four
integers are represented by “a”, “b”, “c”, and “d”, respectively.)

L 1,DataWord B'aaaaaaaaabbbbcccccccccccccdddddd'
N 1,Mask1 B'0000000000000ccccccccccccc000000'
SRL 1,6 B'0000000000000000000ccccccccccccc'
ST 1,Third Store desired third integer
- - -

Mask1 DC 0F,BL4'1111111111111000000' Mask: 13 0's 13 1's, 6 0's

290 Assembler Language Programming for IBM System z™ Servers Version 2.00

The 0F operand in the DC statement ensures that the bit pattern at Mask1 falls on a word
boundary; type B constants have no implied alignment, and are padded on the left with zero bits.

We can do the same extraction by shifting first and then ANDing:

L 1,DataWord B'aaaaaaaaabbbbcccccccccccccdddddd'
SRL 1,6 B'000000aaaaaaaaabbbbccccccccccccc'
N 1,MASK2 B'0000000000000000000ccccccccccccc'
ST 1,Third Store Result
- - -

Mask2 DC A(X'1FFF') 13 1-bits at right end of word

Both masks have 1-bits only in positions corresponding to the bits of the third integer of the data
word (named “c”). When the N instruction is executed, all of the bit positions where a mask bit
is zero are set to zero, since a 0-bit ANDed to any other bit gives a zero result. In all of the
mask's 1-bit positions, the result is the same as the original bit from the data word, because a
1-bit ANDed to any other bit gives a result identical to the other bit, as we saw in Figure 138 on
page 289.

Exercises

19.3.1.(1)+ In the second example in Section 15.2 on page 205, shifts were used to set the left-
most 7 bits of GR8 to zero. Show how to do this with a logical AND operation.

19.4. Logical OR

In Figure 115 on page 249, we wanted to insert a new value for the third integer into the proper
part of the data word. We could do this by shifting the various pieces into place:

L 0,DataWord Get 4 packed integers
SRDL 0,6 Move fourth into GR1
L 0,NewThird Get new value of third integer
SRDL 0,13 Move it in with fourth
L 0,DataWord Get integers again
SRL 0,19 Drop old third and fourth
SRDL 0,13 Move full word into GR1
ST 1,DataWord Store updated result

Using the AND and OR instructions, we can use logical operations:

L 0,DataWord Get 4 packed integers
N 0,MaskC Clear a space for third (C's)
L 1,NewThird Get new value of third integer
SLL 1,6 Shift into proper position
OR 0,1 'OR' into place in GR0
ST 0,DataWord Store new dataword
- - -
DS 0F Align

MaskC DC X'FFF8003F' 13 0-bits in third-integer position
Figure 140. Inserting a new integer value using AND and OR

The N instruction zeros all the bit positions into which the third integer will be placed. The OR
instruction then forms the logical OR of all the bits of GR0 and GR1. Since the only bits in
GR1 that might be ones are in the 13 positions corresponding to the space provided in the word
in GR0, and because the result of ORing a zero bit to any other bit is the value of the other bit,
the effect is to insert the new value of the third integer in its proper position in GR0. This of
course assumes that the contents of NewThird is a positive integer of at most 13 significant bits; if
not, an

N 1,Mask1

instruction should be inserted before the OR instruction to ensure that no extraneous bits are
ORed into GR0.

Chapter V: Basic Instructions 291

Exercises

19.4.1.(2)+ The word at Data contains information to be shifted circularly: that is, bits shifted
off one end of the register should reappear at the other end. For example, a circular left shift of
the operand X'12345678' by 12 bit positions would produce X'45678123'. Without using a
rotating shift, write a code sequence using logical operations to shift c(Data) circularly to the
left by N places, where N is a nonnegative word integer stored at NShifts. Compare your
solution to the solution you found for Exercise 17.3.17.

19.4.2.(2)+ Modify the coding of exercise 19.4.1 so that if N is negative, the shift is a circular
right shift instead. Again, don't use a rotating shift. Compare your solution to the solution
you found for Exercise 17.3.18.

19.4.3.(2)+ What will happen if the instructions OR 3,3 and NR 3,3 are executed? what is the
difference between these two and LTR 3,3 ?

19.4.4.(2) Write a code sequence using logical instructions to unpack each of the four integers
illustrated in Figure 115 on page 249.

19.4.5.(2) Now that you have completed Exercise 19.4.4, rewrite your solution to Exercise
17.3.10 to pack the four integers into the word illustrated in Figure 115 on page 249, but now
use logical instructions.

19.5. Logical Exclusive OR

The X and XR instructions are used to invert bits. We saw in Figure 138 on page 289 that the
effect of XORing a 0-bit to any other bit is to leave it undisturbed, and the effect of XORing a
1-bit is to invert it from 1 to 0 or from 0 to 1. Any bit XORed with itself gives a zero bit. This
gives a simple way to set a register to zero.121

XR 1,1 Set GR1 to zero

We can rewrite Figure 140 on page 291 (in a somewhat roundabout way) to use an X instruc-
tion:

L 0,DataWord Get integers
O 0,Mask3 Set third-integer space to all 1's
X 0,Mask3 Now set them to zeros
L 1,NewThird Etc., as before
SLL 1,6 Etc.
N 1,Mask3 Make sure there are no extra bits
OR 0,1 Etc.
ST 0,DataWord Store updated result
- - -
DS 0F

Mask3 DC X'0007FFC0'
Figure 141. Data masking using Exclusive OR

The O instruction first sets all bits in the third integer's position to 1-bits, and the X instruction
then resets them all to zero. We'll see another use of this technique in Figure 143 on page 293.

As another example of the use of the Exclusive OR instruction, suppose we want to force the
integer in GR7 to be the next larger multiple of 8 if it is not already a multiple of 8. (We saw a
different way to do this in Figure 109 on page 246.) Consider the two following code segments.

121 This is a very efficient way to zero a general register, because (unlike subtracting the register's contents from itself),
the CPU need not check for a possible overflow.

292 Assembler Language Programming for IBM System z™ Servers Version 2.00

A 7,=F'7' Force carry if any 1s in low 3 bits
N 7,=F'-8' Now, set last 3 bits to zero

Figure 142. Rounding to the next multiple of 8

That is a faster method, but space is required for the two constants. We can also use the “OR
then XOR” technique:

LH 0,=H'7' c(GR0) = 7 = alignment mask
AR 7,0 Force carry if any 1's in low 3 bits
OR 7,0 Now force those three bits to 1
XR 7,0 And now set them to zero

Figure 143. Rounding to the next multiple of 8

This method is more economical of total instruction length than those illustrated previously.

As a more detailed example, suppose we need to shift the (nonzero) integer contents of GR6 to
the left so that the most significant bit is immediately to the right of the sign bit, and store the
number of positions shifted at Norm. The most significant bit is the leftmost bit that differs from
the sign bit.

XR 8,8 Set shift count in GR8 to zero
Shift SLA 6,1 Shift left one bit position

BO Finish Branch if overflowed
AH 8,=H'1' Increment shift count
B Shift Try again

Finish SRA 6,1 Reposition
X 6,Digit Restore the lost bit
ST 8,Norm Store shift count
- - -

Norm DS F Storage space and alignment
Digit DC X'40000000' Mask bit for lost bit

We shift left until the overflow condition indicates that a bit different from the sign bit has been
shifted out of bit position 1. The following right shift moves everything back in place, but instead
of restoring the lost bit, extends the sign bit into the second bit position of R6, from which the
most significant bit was just lost. Since the sign is known to be the opposite of the lost bit, the X
operation inverts the second bit to give the correct result.

We can form the ones' complement of the number in GR7 by subtracting it from a word of all
1-bits, or by executing

X 7,=F'-1'

that does the same thing more simply. Thus, we can use the X instruction to form the two's
complement of a double-length integer, as in Figures 90 and 91 on page 226.

LM 8,9,Arg 64-bit operand in (GR8,GR9)
X 8,=F'-1' Ones' complement of high-order part
X 9,=F'-1' Ones' complement of low-order part
AL 9,=F'1' Add low-order 1-bit
BC B'1100',NoCarry Branch if no carry out
AL 8,=F'1' Add carry into high-order part

NoCarry STM 8,9,ARG Store complemented result
- - -

Arg DS 2F Double-length word integers
Figure 144. Complementing a double-length integer

This is definitely not the most efficient way to form a complement, but does show one use of
XOR.

Chapter V: Basic Instructions 293

Exercises

19.5.1.(2)+ Show by examining the possible bit patterns that the sequence of instructions given
below exchanges the contents of GR1 and GR2 without using any other register.

XR 1,2
XR 2,1
XR 1,2

Can the same be done between a register and a word in memory, using three instructions?

19.5.2.(2) What is the result of replacing the XR instructions in Exercise 19.5.1 with SR
instructions?

19.5.3.(4) Suppose you are programming on a processor that has addition and subtraction oper-
ations, a logical AND operation, but no OR or Exclusive OR.122 By examining various bit
combinations (particularly at the left end of a register), show that you can compute the missing
logical functions from

A OR B = (A + B) - (A AND B)
 X XOR B = (A OR B) - (A AND B)

19.5.4.(2)+ Consider these four logical expressions:

(1) A XOR (A XOR B)
(2) A XOR (B XOR A)
(3) (A XOR B) XOR A
(4) (B XOR A) XOR A

What is the result of each operation?

19.5.5.(2)+ Figure 141 on page 292 was rewritten by a student as follows:

L 0,DataWord Get old packed integers in GR0
L 1,NewThird Get new third integer in GR1
SLL 1,6 Position new value correctly
XR 1,0 XOR with old data in GR0
N 1,Mask3 Mask all but 3rd integer's GR1 bits
XR 0,1 XOR those bits back into GR0
ST 0,DataWord Store updated packed result

where Mask3 defines the same bit pattern. By suitable examples, prove that this program
segment either does or does not work.

19.5.6.(2) Rewrite Figure 142 on page 293 to use a single literal. Are any new problems
created in testing the Condition Code?

19.5.7.(2) Write a DC statement with an A-type constant to specify the mask in Figure 141 on
page 292.

19.5.8.(2) Write code sequences using logical instructions to extract the first, second, and fourth
integers packed in a word at DataWord in the format illustrated in Figure 115 on page 249, and
store the resulting values in the words at First, Second, and Fourth.

19.5.9.(3) The word at Pack contains four positive integers in the format illustrated in
Figure 115 on page 249. Write a code sequence that will retrieve and store at DataItem the
first, second, third, or fourth of the packed binary integers, depending on the value of the
halfword binary integer stored at ItemNbr, which may have value 1, 2, 3, or 4. (It may help to
use tables of masks and shift counts.)

122 This was true of some very early “Von Neumann” or “Institute-type” processors like the ILLIAC 1.

294 Assembler Language Programming for IBM System z™ Servers Version 2.00

19.6. Interesting Uses of Logical Instructions (*)

The examples of logical instructions in the previous sections show “normal” uses. You can do
some other interesting things with them; we will illustrate a few.123

1. Test a nonzero, nonnegative number to see if it's a power of 2:

Y = ((2*X)-1) AND X) XOR X

If Y is zero, X is a power of 2. (Note that if X is zero or is the maximum negative number,
Y=0 .) To illustrate:

L 0,=F'5' X in GR0 X'00000005'
LR 1,0 Copy X to GR1 X'00000005'
SLL 1,1 2*X X'0000000A'
S 1,=F'1' (2*X-1) X'00000009'
NR 1,0 (2*X-1) AND X X'00000001'
XR 1,0 ((2*X-1) AND X) XOR X X'00000004'
JZ PowerOf2 Branch if a power of 2

so that 5 is not a power of 2.

2. Isolate a number's rightmost 1-bit. If X is a nonzero, nonnegative number:

Y = (((X-1) XOR X)+1)/2

then Y is the rightmost 1-bit of X. To illustrate:

L 0,=F'6' X in GR0 X'00000006'
LR 1,0 Copy X to GR1 X'00000006'
S 1,=F'1' (X-1) X'00000005'
XR 1,0 (X-1) XOR X X'00000003'
A 1,=F'1' ((X-1) XOR X)+1 X'00000004'
SRL 1,1 Y=(((X-1) XOR X)+1)/2 X'00000002'

which is the rightmost bit of 6 = B'00...0110'. If X is zero or the maximum negative
number, Y will be zero.

3. Turn off the rightmost 1-bit of a positive binary number X:

Y = X AND (X-1)

To illustrate:

L 0,=F'6' X in GR0 X'00000006'
LR 1,0 Copy X to GR1 X'00000006'
S 1,=F'1' (X-1) X'00000005'
NR 1,0 (X-1) AND X X'00000004'

If this process is repeated, the number of iterations is determined by the power of two
represented by the leftmost 1-bit.

4. Right-propagate the rightmost 1-bit of a nonzero word:

Y = X OR (X-1)

To illustrate:

L 0,=F'12' X in GR0 X'0000000C'
LR 1,0 Copy X to GR1 X'0000000C'
S 1,=F'1' (X-1) X'0000000B'
OR 1,0 (X-1) OR X X'0000000F'

5. Isolate the rightmost 1-bit of a word:

Y = X AND (-X)

To illustrate:

123 Some of these examples are based on IBM Thomas J. Watson Research Center Report RC 5809 Functions
Realizable with Word-Parallel Logical and 2's-Complement Addition Instructions by Henry S. Warren, Jr.

Chapter V: Basic Instructions 295

L 0,=F'12' X in GR0 X'0000000C'
LCR 1,0 Copy -X to GR1 X'FFFFFFF4'
NR 1,0 (-X) AND X X'00000004'

6. Turn off the rightmost contiguous string of 1-bits in a word:

Y = [(X OR (X-1)) + 1] AND X

To illustrate:

L 0,=F'23' X in GR0 X'00000017'
LR 1,0 Copy X to GR1 X'00000017'
S 1,=F'1' (X-1) X'00000016'
OR 1,0 (X-1) OR X X'00000017'
A 1,=F'1' ((X-1) OR X)+1 X'00000018'
NR 1,0 (((X-1) OR X)+1) AND X X'00000010'

and B'00..010111' becomes B'00..010000'.

7. Left-propagate the bit at position k in a word:

Y = [(X AND (2k+ 1)) XOR 2k] − 2k

A more “natural” way to program this might be to write:

L 0,X
SLL 0,K
SRA 0,K

but that wouldn't be as interesting.

8. Test if a number is a power of 2, minus 1:

Y = (X XOR (X+1))

if Y is zero, X is of the form 2N −1.

To illustrate:

L 0,=F'31' X in GR0 X'0000001F'
LR 1,0 Copy X to GR1 X'0000001F'
A 1,=F'1' (X+1) X'00000020'
XR 1,0 (X+1) XOR X X'00000000'

so 31 is a power of 2 minus 1.

Exercises

19.6.1.(2)+ In example 1 of this section, it is stated that if X is 0 or the maximum negative
number, Y=0. Verify this statement.

19.6.2.(3) In example 1 of this section, what result Y is obtained if X is the negative of a
number that is a power of 2?

19.6.3.(3) In example 2 of this section, what result Y is obtained if X is zero? What result is
obtained if X is a negative number?

19.6.4.(2)+ In example 3 of this section, what will happen if X is a negative number?

19.6.5.(2)+ In example 3 of this section, what will happen if X is zero?

19.6.6.(2)+ In example 4 of this section, what will happen if X is zero? If X is negative?

19.6.7.(2) In example 5 of this section, what will happen if X is zero? If X is negative?

19.6.8.(2)+ In example 6 of this section, what will happen if X is zero? If X is negative?

19.6.9.(2) Example 7 above shows how to left-propagate a bit in a general register. Suppose
there is an integer K between 1 and 31 stored in the word at KWord. Write a code sequence that

296 Assembler Language Programming for IBM System z™ Servers Version 2.00

will left-propagate the bit in position K of the word in GR5, using the detailed formula (not the
“natural” solution).

19.6.10.(2)+ Use the techique of example 3 of this section to count the number of 1-bits in the
word in GR0, and leave the result in GR2.

19.6.11.(2) In example 8 of this section, will the technique work if the value of X is unsigned?

19.6.12.(3)+ It is claimed that this formula:

(NOT X) AND (X+1)

will create a mask that isolates the rightmost zero bit of X. That is, if X=7, the resulting mask
is X'00000008'. Write instructions testing a range of negative and positive values of X to vali-
date or invalidate this claim. What will be the result if X=0?

19.6.13.(3)+ It is claimed that all three of these formulas:

(NOT X) AND (X-1), NOT(X OR -X), and (X AND -X)-1

will form a mask matching all trailing zero bits. That is, if X=12, the resulting mask is
X'00000003'. Write instructions testing a range of negative and positive values of X to validate
or invalidate this claim for all three formulas. What will be the result if X=0?

19.6.14.(3)+ It is claimed that this formula:

X XOR (X-1)

will form a mask matching the rightmost one bit of X, and all trailing zero bits. That is, if
X=8, the resulting mask is X'0000000F'. Write instructions testing a range of negative and pos-
itive values of X to validate or invalidate this claim. What will be the result if X=0?

19.7. Summary

Table 94 gives a compact summary124 of the three logical operations:

Table 94. Summary of the logical operations AND, OR, XOR

The instructions discussed in this section are summarized in Table 95.

Table 95. Logical-operation instructions discussed in this section

Operation
Anything with

One Zero Itself

AND It remains
unchanged

It is changed to
zero

It remains
unchanged

OR It is changed to
one

It remains
unchanged

It remains
unchanged

XOR It is inverted It remains
unchanged

It is changed to
zero

Function Operand length (bits) 32 64

AND (memory) N NG
AND (register) NR NGR
OR (memory) O OG
OR (register) OR OGR

XOR (memory) X XG
XOR (register) XR XGR

124 Courtesy of Michael Stack.

Chapter V: Basic Instructions 297

Exercises

19.7.1.(4) Given the four logical operations AND, OR, XOR, and NOT, where (NOT A) is
equivalent to (1 XOR A): which of each can be expressed in terms of two of the other three?

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

N 54 O 56 X 57

NG E380 OG E381 XG E382

NGR B980 OGR B981 XGR B982

NR 14 OR 16 XR 17

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

14 NR 56 O B982 XGR

16 OR 57 X E380 NG

17 XR B980 NGR E381 OG

54 N B981 OGR E382 XG

Terms and Definitions
AND operation

A logical (boolean) operation between two bits, whose result is 1 only if both operand bits
are 1.

OR operation
A logical (boolean) operation between two bits, whose result is 1 if either operand bit is 1.

XOR operation
A logical (boolean) operation between two bits, whose result is 1 if either operand bit is 1
while the other is zero. If the operand bits are identical, the result is zero.

Programming Problems

Problem 19.1.(4) In binary addition, the sum S of two binary digits A and B is

S = A XOR B,

and the carry bit is

c = A AND B.

Thus, to add two numbers composed of a string of binary digits, we must form the sum bit S(i)
of the appropriate digits A(i) and B(i), as well as the carry bit from the next lower-order digit
position, c(i −1). The logical formulas for the sum and carry digits then become

S(i) = A(i) XOR B(i) XOR c(i-1)

and the new carry bit is

c(i) = (A(i) AND B(i)) OR (B(i) AND c(i-1)) OR (A(i) AND c(i-1))

298 Assembler Language Programming for IBM System z™ Servers Version 2.00

That is, c(i) is 1 if two or more of A(i), B(i), and c(i −1) are 1.

Write a program that computes the logical sum of several pairs of words A and B by per-
forming the above operations 32 times, once on each bit position in the word in succession.
Save or calculate enough information during this process so that when the operation is com-
plete, you can store a byte at CCL whose value is the same as the CC setting that would result if
the AL or ALR instructions had been used to add the same operands. Your sample values
should generate all four possible CC values.

If you can, store at CCA a byte whose value is the same as the CC setting that would result if
the A or AR instructions had been used to add the same operands.

Thus, you should detect the presence or absence of a final carry, and whether the result is zero
or nonzero and positive or negative, by examining the bits as the operation progresses.

Problem 19.2.(3) Write a code sequence that forms the logical sum of two word operands A
and B, using the same logical formulas as in Problem 19.1. In this case, however, the oper-
ations should be performed on all 32 bits at once. (Show that there is no interference between
neighboring bit positions.) One method is to generate a word containing

S(1) = A XOR B

and a word

c(1) = A AND B.

The word S(1) contains the sum digits for the first addition, and the word c(1) contains the
carries generated in the first addition step. Shift c(1) left one bit position, and repeat the cycle
by ANDing and XORing S to c, generating a new sum S(2) and a new set of carries c(2).
Repeat the process until either c(n) is zero for some n, or 32 steps have been done. That is,

S(n+1) = S(n) XOR (2*c(n))
c(n+1) = S(n) AND (2*c(n))

Store the final sum at Sum, and set the word at CCodeL to contain the value of the Condition
Code setting as it would have been produced by the AL or ALR instructions.

Problem 19.3.(2) Modify the logical operation sequences in Problem 19.2 (or in Problem 19.1)
to perform additions or subtractions, as indicated by whether the word at SubFlag is or is not
zero. Test your program on a representative set of values for A and B.

Problem 19.4.(3) There are two parts to this problem. First, a small table of prime numbers is
computed using a method called the “Sieve of Eratosthenes”, and then the table is condensed
for printing.

To construct the table of primes, lay out in memory a table area of 400 units of any convenient
size; the choice of size is up to you. Consider them to be numbered from 1 to 400. Then,
beginning with table entry number 2, mark in some way each multiple of 2 (other than 2 itself),
up to 400. Then find the next unmarked quantity in the table (which will be 3), and mark each
multiple of that number. Then search for the next unmarked number (which will be 5), and
continue in this fashion.

Only prime numbers will remain unmarked. You need not make passes over the table marking
multiples of any number greater than 19, since the first unmarked number to be marked in this
“sieving” process will be the square of the number whose multiples are being marked.

From this table, produce a condensed version in a string of 400 bits (50 bytes) such that 1-bits
indicate that the corresponding number is unmarked (and therefore prime). Define the string in
a statement such as

PrimeBts DC XL50'00' Space for 400 bits

so that an appropriate single statement will print the entire string of 100 hexadecimal digits, that
should start with X'EA28...', representing 1, 2, 3, 5, 7, 11, 13,

If you wish, you may compute the final bit string directly, without having to go through the
intermediate steps of forming a byte table.

Chapter V: Basic Instructions 299

Problem 19.5.(3) In Problem 19.4, you produced a string of bits indicating whether the number
that gave its position in the string was a prime number. Half the bits in the table are wasted,
since all even numbers except 2 cannot be prime.

Write a program that will produce a string of 200 bits (25 bytes) indicating which of the odd
numbers less than 400 are prime. That is, if the k-th bit of the string is a 1-bit, the number
2k-1 is prime. Your string of 200 bits should start with X'F6D32D...', representing 1, 3, 5, 7, 11,
13,

If you had a string of 230 bytes (1GB) available for storing the bits, what is the largest prime
whose primality you could indicate in that bit string?

Problem 19.6.(2) Choose an example from Section 19.6 on page 295 and write a program to
test the given formula for a range of values.

300 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter VI: Addressing, Immediate Operands, and Loops

VV VV IIIIIIIIII
VV VV IIIIIIIIII
VV VV II
VV VV II
VV VV II
VV VV II
VV VV II
VV VV II
VV VV II
VV VV II
VVVV IIIIIIIIII
VV IIIIIIIIII

The previous chapters have described many different types of instructions. Recent additions to the
original System/360 architecture include extensions to those basic types that can make your pro-
grams more efficient, and often much easier to write.

• Section 20 describes different types of address generation and the important concept of
addressing modes and the very useful “Load Address” instruction.

• Section 21 introduces instructions with immediate operands that operate on data in the general
registers.

• Section 22 examines old and new forms of branch instructions, some of which have immediate
operands. These instructions help manage loops efficiently for iterative processing.

Chapter VI: Addressing, Immediate Operands, and Loops 301

20. Address Generation and Addressing Modes

2222222222 00000000
222222222222 0000000000
22 22 00 00

22 00 00
22 00 00
22 00 00

22 00 00
22 00 00

22 00 00
22 00 00
222222222222 0000000000
222222222222 00000000

20.1. Address Generation

System z provides three forms of Effective Address generation:

1. base-displacement with unsigned 12-bit displacements;

2. base-displacement with signed 20-bit displacements; and

3. relative-immediate.

The next three subsections will describe them.

20.1.1. Address Generation With 12-Bit Displacements

We saw in Sections 5.1 and 5.3 on pages 62 and 63 how Effective Addresses are generated from
instructions using base-displacement addressing: the CPU adds the displacement to the contents
of the base register (and the index register, if any is specified). Figure 19 on page 62 and
Figure 21 on page 64 illustrate the process.

In this form, 12-bit displacements are limited to the range

0 ≤ displacement ≤ +212 −1, or 0 ≤ displacement ≤ +4095.

20.1.2. Address Generation With 20-Bit Displacements

In Section 14.7 we saw examples of RXY-type instructions (like LG and STG) that use a 20-bit
signed displacement. Table 96 illustrates the RXY- and RSY-type instruction formats:

Table 96. Format of RXY- and RSY-type instructions

For RSY-type instructions the X2 field is replaced by an R3 field, but that doesn't affect address
generation other than not supporting indexing.

opcode R1 X2 B2 DL2 DH2 opcode

302 Assembler Language Programming for IBM System z™ Servers Version 2.00

An Effective Address is generated for these “long-displacement” instructions in much the same
way it is generated for RX and similar types with an unsigned 12-bit displacement. In this case
the displacement is a signed 20-bit number; the displacement fields are rearranged and combined
as shown in Figure 145.

─ ─┬───┬───┬───────────┬────────┬─ ─
Instruction │ x │ b │ DL │s DH │

─ ─┴───┴───┴─────┬─────┴───┬────┴─ ─
� �

┌─────────┼─────────┘
� �

┌──┐
│�──────── sign─extended �─────┼s DH │ DL │ 64─bit signed displacement
└──────────────────────────┬─────────────────────────┘

� Add to
┌──────────────────────────┴─────────────────────────┐
│ c(base register b) │
└──────────────────────────┬─────────────────────────┘

�
Effective Address

Figure 145. Effective Address generation for long-displacement instructions

In these instructions, the traditional 12-bit unsigned displacement field (named “D”) is now
named “DL”, and the high-order 8-bit signed displacement extension is named “DH”. A 20-bit
signed displacement is formed from DH and DL: DH is concatenated at the left end of DL, and
then sign-extended to 64 bits. This gives a displacement value in the range

−219 ≤ displacement ≤ +219 −1, or −524288 ≤ displacement ≤ +524287.

rather than the limited 12-bit displacement range

0 ≤ displacement ≤ 4095.

If the DH field is zero, the result is generated from the familiar 12-bit unsigned displacement.

If the instruction is RXY-type, the address calculation adds both the base and index register con-
tents, if applicable.

The Assembler uses the same resolution rules described in Sections 10.9 (on page 127) and 10.13
(on page 132) with one added step:

5. If no nonnegative displacement can be assigned, choose the register giving a negative dis-
placement with the smallest magnitude.

To illustrate, suppose X has value X'2468A0'. With traditional 16-bit addressing halfwords, these
statements would fail:

Using X,3
L 9,X-4 Addressability error

The operand X-4 is not addressable, because the RX-type instruction L provides only an unsigned
12-bit displacement. The LY instruction has an extended 3-byte base-displacement, so that

Using X,3
LY 9,X-4

will resolve the implied address with an extended 3-byte base-displacement X'3 FFC FF', where
the “true” displacement from the base location in GR3 to the operand location is X'FFFFC'. That
is, B2 = 3 , DL2 = X'FFC', and DH2 = X'FF'.

The instructions

Using X,3
LY 9,X+4

Chapter VI: Addressing, Immediate Operands, and Loops 303

will resolve the implied address with an extended 3-byte base-displacement X'300400', where the
traditional 16-bit addressing halfword X'3004' is in the first two bytes and DH2 = X'00'.

Long displacements provide far greater addressability than the traditional 12-bit displacements,
which are limited to 4KB.

0 ┌───────────────────────────────────┐�── Base Register
4KB └───────────────────────────────────┘

Figure 146. Addressability range with 12-bit displacements

You can address very large data areas with a single base register, by setting the base address at (or
near) the “middle” of the area, as shown in Figure 147.

� ┌───────────────────────────────────┐ −512K
│ ├───────────────────────────────────┤
│ ├───────────────────────────────────┤
│ ├───────────────────────────────────┤
│ : :
│ : :
1MB ├───────────────────────────────────┤�── Base Register
 │ ├───────────────────────────────────┤
 │ : :
 │ : :
 │ ├───────────────────────────────────┤
 │ ├───────────────────────────────────┤
 � └───────────────────────────────────┘ +512K−1

256 × 4KB
Figure 147. Addressability range with 20-bit displacements

With 12-bit unsigned displacements, addressing 1MB could require 256 base registers.

Some RX-type and SI-type instructions have equivalent forms with long displacements. They are
shown in the following table (and some of them will be described later).

12-bit dis-
placement

20-bit dis-
placement

12-bit dis-
placement

20-bit dis-
placement

12-bit dis-
placement

20-bit dis-
placement

A AY LA LAY S SY

AH AHY LD LDY SH SHY

AL ALY LE LEY SL SLY

C CY LH LHY STCM STCMY

CH CHY LM LMY STC STCY

CL CLY M MY STD STDY

CLI CLIY MH MHY STE STEY

CLM CLMY MS MSY STH STHY

CVB CVBY MVI MVIY STM STMY

CVD CVDY N NY ST STY

IC IC NI NIY TM TMY

ICM ICMY O OY X XY

L LY OI OIY XI XIY

There are many other instructions with long displacements that are not direct extensions of other
RX-type and SI-type instructions.

304 Assembler Language Programming for IBM System z™ Servers Version 2.00

20.1.3. Address Generation With Relative-Immediate Operands

The formats of the two relative-immediate instruction types are shown in Tables 97 and 98.

Table 97. Format of R-I instructions with 16-bit immediate
operands

Table 98. Format of R-I instructions with 32-bit immediate operands

Unlike the arithmetic and logical immediate operands we'll see in Sections 21.1 through 21.3,
these RI2 relative-immediate operands do not involve data in memory or in a general register.
Instead, they are used to form the Effective Address:

1. Sign-extend the immediate operand to 64 bits, and shift it left once, giving 2×RI2.

2. Add the address of the current relative-immediate instruction (not the address in the IA of the
PSW); the result is the Effective Address. Thus, the Effective Address is relative to the
address of the current instruction.

This process is illustrated in Figure 148.

Opcode R1 Op RI2

Opcode R1 Op RI2

RI2
┌──────────────┬──────────────┐
│ Opcode, regs │sbbbbbbbbbbbbb│ RI─type instruction
└──────────────┴───────┬──────┘

┌┘ Shift left 1 bit
�

┌───┴───────┐
│�─────────── sign─extended �─────────┼sbbbbbbbbbbbbb0│ 64─bit signed offset
└──────────────────────────┬──────────────────────────┘

� Add to
┌──────────────────────────┴──────────────────────────┐
│ address of the instruction itself │ (Not the PSW's IA!)
└──────────────────────────┬──────────────────────────┘

�
Effective Address

Figure 148. Effective Address formation for relative-immediate instructions

In effect, you have added or subtracted the number of halfwords specified by the RI2 operand to
the address of the instruction.125 The signed RI2 value means that the Effective Address can either
precede or follow the address of the instruction. For 16-bit RI2 fields,

Instruction's address −65536 ≤ Effective Address ≤ Instruction's address +65534,

and for 32-bit RI2 fields,

Instruction's address −4294967296 ≤ Effective Address ≤ Instruction's address +4294967294.

Both these “offsets” from the instruction's address are adequate for most programs.

To resolve the implied addresses of instructions with relative addressing, the Assembler calculates
the difference between the locations of the operand and the instruction and divides the result by 2.
The target operand must

125 The RI2 operand is doubled because the Effective Address usually forms a branch address, which must always refer
to a halfword boundary. For some other processor architectures, the Instruction Address is called the “Program
Counter”, and Effective Addresses calculated relative to the address of the instruction are then called “PC-relative”.

Chapter VI: Addressing, Immediate Operands, and Loops 305

• be aligned on a halfword boundary, and

• have the same relocation attribute as the instruction. (This rule can be relaxed if the target
operand is an external symbol, as we'll see in Section 38.)

For example, a “Branch Relative on Condition” instruction (we'll discuss it in Section 22.1)
might look like this:

BRC 8,Target Branch if Condition Code 0
- - -

Target L 0,NewValue

and the Assembler will calculate the correct RI2 offset from the BRC instruction to the Target
instruction.

Exercises

20.1.1.(1) The RI-type instruction at address X'174629C' generates an Effective Address. For
each of the four following RI2 operands, show the generated Effective Address. Assume the
generated address is 32 bits long.

1. −1
2. 6845
3. −65536
4. 2

20.1.2.(1) The RIL-type instruction at address X'7B1EF0' generates an Effective Address. For
each of the following RI2 operands, show the generated Effective Address. Assume the gener-
ated address is 32 bits long.

1. −1
2. 384593
3. −512044
4. 3

20.1.3.(2) Suppose c(GR4)=X'FFFFFF7C' and c(GR7)=X'9610B6C0'. Show the Effective
Address generated by each of these instructions. Assume the generated address is 32 bits long.

1. L 0,0(4,7)
2. L 0,3624(4,7)
3. LG 0,4(4,7)
4. LG 0,-8194(4,7)

20.1.4.(1) In Figure 148 on page 305, there is a comment saying “(Not the PSW's IA!)”. Why?

20.1.5.(1) Relative address offsets can be either 2 or 4 bytes long. What is the maximum
allowed distance to an operand from a referencing instruction with (a) a 2-byte offset, (b) a
4-byte offset?

20.1.6.(1) Suppose a relative-immediate instruction is at address X'27B9AE'. For each of the fol-
lowing four 2-byte immediate operands, what is the Effective Address of the instruction?

(1) X'0003'
(2) X'FFE4'
(3) X'700F'
(4) X'8000'

20.1.7.(2) How can you generate an odd Effective Address using relative-immediate operands?

20.1.8.(1) Some coders refer to operands like “A+8” and “*+6” as “relative addressing”. How
would you describe such operands?

306 Assembler Language Programming for IBM System z™ Servers Version 2.00

20.2. Addressing Modes

We've seen how an Effective Address is generated; what happens when we use it? The answer
depends on the CPU's current addressing mode, often abbreviated “AMode”. All the instructions
we've discussed have ignored AMode considerations; we now consider some basic aspects of this
important topic.

System z supports three addressing modes: 24-bit, 31-bit, and 64-bit. 24-bit addressing was used
in the original System/360, when memory was very expensive: a large processor may have had as
much as 256K bytes of storage, and many had far less.126 24-bit addresses could reference up to
224 (16 million) bytes, which seemed so large that 24-bit Effective Addresses were expected to be
enough for a very long time. Continued application growth was managed by adding virtual
addressing facilities in the early 1970s, but addresses were still limited to 24 bits.127

In the late 1970s and early 1980s, rapid application growth required more addressability; 31-bit
addressing was introduced, which provided addressability up to 2G bytes. Because existing appli-
cations usually needed to continue executing using 24-bit addressing, great care was taken to
ensure that addressing extensions were compatible with older applications.

The growth demands on applications and operating systems continued. Techniques like parti-
tioning128 allowed some relief, but it was soon clear that more than 31-bit addressing was needed,
at least to manage physical memories much larger than 2G. Thus, in the early 2000s, 64-bit
addressing and 64-bit general registers were introduced with z/Architecture.

When 31-bit addressing was introduced, it was necessary to distinguish areas of memory address-
able with 24-bit Effective Addresses — that is, addresses between 0 and 224 −1 — from addresses
requiring 31-bit Effective Addresses. The separation between these areas was called the “line”, so
that the first 224 bytes were “below the line” and the rest were “above the line”. Similarly, when
64-bit Effective Addresses were provided with System z, the separation of areas having addresses
less than 231 and those having larger addresses was called the “bar”, so that bytes having addresses
between 0 and 231 −1 were “below the bar” and those with greater addresses were “above the
bar”.

Each of the three addressing modes affects the generation of z/Architecture Effective Addresses:

• in 24-bit mode, the leftmost 40 bits of the Effective Address (0-39) are set to zero, leaving the
rightmost 24 bits intact.

0 39 40 63
┌──┬─────────────────────────────────┐
│ �── 00000 00000 ── │ │
└──┴─────────────────────────────────┘
 �────────────── ignored ─────────────────────────── �──────── 24─bit address ───────

• in 31-bit mode, the leftmost 33 bits of the Effective Address (0-32) are set to zero, leaving the
rightmost 31 bits intact.

0 33 63
┌───┬──┐
│ �── 00000 00000 ── │ │
└───┴──┘
 �────────────── ignored ────────────────── �──────────── 31─bit address ────────────

126 Some of the most popular System/360 models had only 32K bytes of storage, of which 14K was needed for the
operating system, leaving 18K bytes for applications. Programs were written very carefully, and often in Assembler
Language!

127 Another memory-saving technique was overlay, which we'll describe briefly in Section 38.9.
128 Partitioning uses address translation to allow more than one operating system to run in a single physical memory,

each behaving as if its set of “real” addresses starts at zero.

Chapter VI: Addressing, Immediate Operands, and Loops 307

• in 64-bit mode, all 64 bits form the Effective Address.

0 63
┌──┐
│ │
└──┘
 �───────────────────────────────────64─bit address ──────────────────────────────────

 Remember:

An Effective Address is not the same as the contents of a register, even
though it may be derived from the contents of one or more registers.

The areas of addressability for the three addressing modes are sketched in Figure 149.

2**64 ┌─────────────────────┐
│ │ �
│ │ │
│ │ │
: : │ Addressable
│ │ │ with AMODE 64
: : │
│ │ │
│ │ │

2**31 ├─────────────────────┤ │ �── the “bar”
│ │ │ �
│ │ │ │ Addressable
: : │ │ with AMODE 31
│ │ │ │
│ │ │ │

2**24 ├─────────────────────┤ │ │ �── the “line”
│ │ │ │ �
: : │ │ │ Addressable with AMODE 24
│ │ � � �
└─────────────────────┘

Figure 149. Areas of memory addressed by three AMODEs

Instructions that place or update addresses in the general registers are called “modal” instructions,
because the result depends on the addressing mode. We'll see some examples in Section 20.3.

Effective Address addressing-mode considerations

• In 24-bit or 31-bit addressing modes, 40 or 33 high-order bits of the
64-bit Effective Address (respectively) are set to zero.

• If a value in a general register is used for addressing, its high-order bits
are not set to zero (as for generated addresses), but are ignored.

The CPU's current addressing mode is determined by two bits in the Program Status Word,
“Basic addressing mode” and “Extended addressing mode”, illustrated in Figure 150.

 �────────────────────────────────── 128─bit PSW ──────────────────────────────────
┌──────────────────┬─┬─┬──────────────────┬───┐
│ │E│B│ │ Instruction Address (IA) │
└──────────────────┴─┴─┴──────────────────┴───┘
0 31 32 63 64 127
Figure 150. System z PSW showing addressing-mode bits

The meanings of the E and B bit settings are shown in Table 99 on page 309.

308 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 99. PSW addressing-mode bits

Almost all instructions that reference operands in memory depend in some way on the current
addressing mode; and instructions that update addresses in registers also depend on the addressing
mode. These are called modal instructions. Other instructions (like AR) are called non-modal
because their results are independent of addressing modes.

In Section 38 we will see instructions used to change addressing modes, and show why attention
to addressing modes can be very important — and very useful..

Exercises

20.2.1.(1)+ Suppose c(GG1)=X'00000000 82006A04' and c(GG2)=X'00000000 FFFF8200'. An
RXY-type instruction at address X'629D58' looks like this:

What Effective Address does it generate in 24-bit addressing mode? In 31-bit addressing mode?
In 64-bit addressing mode?

20.2.2.(2) Repeat Exercise 20.1.3, showing how the generated Effective Addresses depend on the
addressing mode.

E B Addressing mode

0 0 24-bit mode

0 1 31-bit mode

1 0 Invalid combination

1 1 64-bit mode

opcode A 2 1 X'A06' X'04' opcode

20.3. Load Address Instructions

The name “Load Address” is misleading: the instruction loads a register (but not from memory or
another register), and its operand may or may not be an address: the Effective Address of the
second operand is loaded into the R1 register. Thus, it might more properly be named “Load
Effective Address”.

Although we normally wouldn't consider it a logical instruction, Load Address is often classified
that way. The three instructions are listed in Table 100.

Table 100. Load Address instructions

Op Mnem Type Instruction Op Mnem Type Instruction

41 LA RX Load Address E371 LAY RXY Load Address

C00 LARL RIL Load Address Relative Long

LA and LAY are RX- and RXY-type instructions, and LARL generates the Effective Address
from its address and the 32-bit RI2 operand, as described in Section 20.1.3 on page 305. In each
case, the Effective Address replaces the contents of GR R1.

The affected parts of GR R1 depend on the CPU's current addressing mode. As noted in Section
20.2, some of the high-order bits of the Effective Address may be set to zero.

Suppose the following LAY instruction is at address X'003B6D0E', and addressability has been
established. Then if we execute

LAY 0,-1 Put -1 in register 0 (?)

the result depends on the addressing mode:

Chapter VI: Addressing, Immediate Operands, and Loops 309

• in 24-bit mode, the Effective Address is X'00FFFFFF', and the high-order 32 bits of GG0 are
unchanged.

• in 31-bit mode, the Effective Address is X'7FFFFFFF', and the high-order 32 bits of GG0 are
unchanged.

• in 64-bit mode, the Effective Address is X'FFFFFFFFFFFFFFFF', and the high-order 32 bits of
GG0 are changed.

Modal Instructions

LA, LAY, and LARL are modal instructions: the resulting Effective
Address depends on the addressing mode.

In any addressing mode, a nonnegative integer “n” between 0 and 4095 can be placed in a register
by executing

LA r,n(0,0)

where the displacement contains the constant “n”. Instead of writing

L 2,=F'1'

requiring 8 bytes (4 for the instruction and 4 for the constant generated by the literal), or

LH 2,=H'1'

requiring 6 bytes, we can write either

LA 2,1 or LA 2,1(0,0)

This requires only 4 bytes and less execution time, because no memory access is required.

Large signed integer values can be placed in a 64-bit register using LAY if the addressing mode is
64-bit, as shown in Figure 151.

LAY 0,500000 c(GR0) = +500000
LAY 1,-500000 c(GG1) = -500000 (64-bit mode only!)

Figure 151. Loading integer constants with the LAY instruction

You can also use values assigned to absolute symbols:

HalfMiln Equ 500000 Value = +500000
LAY 2,HalfMiln c(GR2) = +500000
LAY 2,-HalfMiln c(GG2) = -500000 (64-bit mode only!)

This can often eliminate the need for constants in memory and the storage references needed to
access them.

For signed arithmetic values, it can be safer to initialize a register with one of the arithmetic
immediate instructions described in Section 21.2 on page 321.

Be Very Careful!

The Effective Address will depend on the addressing mode! LAY 0,-1
generates X'00FFFFFF' in 24-bit addressing mode, and X'7FFFFFFF' in
31-bit mode.

For example, see Exercise 20.3.8.

Because LA and LAY do not affect the CC, we can clear a register without disturbing a CC
setting that may be required at a later point in the program. For example, suppose we wish to add
c(A) and c(B) and clear the result to zero if it overflows, without changing the CC set by the
addition. These two instruction sequences will work:

310 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 0,A L 0,A
A 0,B A 0,B
BNO ST BNO ST
LA 0,0 L 0,=F'0'

ST ST 0,Answer ST ST 0,Answer

Because the LA instruction computes an Effective Address, it also provides a simple way to incre-
ment a number in a register (other than register 0) by a small positive amount. We put the incre-
ment into the displacement, and use the same register for the R1 and B2 digits. For example,

LA 4,17(0,4)

increases the contents of GR4 by 17, if the original value in GR4 is not corrupted. For example,
in 24-bit addressing mode, c(GR4) must lie between −17 and 224 −18. Using LA to increment
register contents is usually limited to cases where the quantity being incremented is an address or
a reasonably small integer.

Be Careful!

Don't use a Load Address instruction to increment a negative number, or
a number large enough that the result might be affected by the current
addressing mode.

Suppose we want to perform the shifting operation described in Figures 113 and 114 on page 248,
where we wanted to shift the word at N to the right enough places so that its rightmost bit is a
1-bit. Now, however, we also require that the number of positions shifted be stored at the
halfword named Count.

L 4,N Get integer to shift
LA 3,1 Set GR3 to 1
LCR 3,3 Initial shift count set to -1

Shift SRDL 4,1 Shift a bit into GR5
LTR 5,5 Test sign of GR5
LA 3,1(0,3) Increment GR3 by 1
BNM Shift Branch if GR5 not negative
SLDL 4,1 Move bit back into place
STH 3,Count Store shift count

Figure 152. Counting number of shifts to make rightmost bit a 1-bit

By setting the shift count to −1 initially, we guarantee that the correct value will be in GR3 when
we exit from the loop. The first time the LA instruction is executed, the result in GR3 will be
zero. The placement of the LA instruction between the LTR and the ensuing BNM shows that
no change is made to the CC; normally, we would place the LTR just before the BNM because
the relation between the two is then clearer to the program's readers.

A third use of the LA instruction, and possibly the most important, is to generate addresses for
operands in memory. For example, we may require the address of some operand to be in a given
register while executing a segment of code. Suppose we want to add three integers, and branch
after all additions are completed to NoErr if no overflow occurs, and to Err1 if one or more over-
flows occur. Let the integers to be added be stored in successive words beginning at QQ.

LA 9,NoErr Set branch address for no errors
L 2,QQ Get first integer
A 2,QQ+4 Add second integer
BNO OK1 Branch if no overflow
LA 9,Err1 Set branch address for overflow

OK1 A 2,QQ+8 Add third integer
BNOR 9 Branch if no or one overflow
B Err1 Branch, some addition overflowed

Figure 153. Using LA to set a branch address

The last unconditional branch instruction could also be written

Chapter VI: Addressing, Immediate Operands, and Loops 311

BO Err1

without affecting the operation of the code, since that instruction is reached only if the branch
condition for the immediately preceding instruction is not met. By specifying an unconditional
branch it is clear that the branch must always be taken if it is reached.

There is an important assumption in Figure 153 on page 311 regarding the two LA instructions:
the locations named NoErr and Err1 must be addressable, since the LA instruction simply per-
forms the address computation specified by the base and displacement assigned by the Assembler.
It's sometimes easy to forget that symbols used in LA instructions must be addressable, since no
direct reference is being made to a memory location: only an Effective Address is being generated,
and no checks are made for the validity of that address.

The addressability limitations of LA can often be overcome using LAY or LARL.

Exercises

20.3.1.(1) The LARL instruction has a signed 32-bit RI2 immediate operand. Why can LARL
not be used to load the R1 register with a large even integer value?

20.3.2.(1) If the CPU is executing in 24-bit addressing mode, show how the LA instruction can
be used as a masking instruction, producing the same result in a register as

N reg,=A(X'FFFFFF')

20.3.3.(1)+ Can the first machine instruction in Figure 153 on page 311 be written

LA 9,A(NoErr) ?

20.3.4.(1)+ Can the first machine instruction in Figure 153 on page 311 be written

LA 9,=A(NoErr) ?

20.3.5.(2)+ The following two instructions usually have an equivalent effect:

LA 9,NoErr c(GR9) = A(NoErr)
L 9,=A(NoErr) c(GR9) = A(NoErr)

Under what circumstances would you use one in preference to the other? Under what circum-
stances would the two not be equivalent?

20.3.6.(2)+ Suppose there is a number between 0 and 7 in GR5, and you want to place into
GR8 a single bit whose position within the low-order byte of that register is given by the
number in GR5. Thus, if GR5 contains X'00000006', GR8 should contain X'00000002'. A
student claimed that the following code sequence does the job; prove or disprove that claim.

LA 8,X'100'(0,5)
SRL 8,1(8)

20.3.7.(2) Discuss the differences between

LA x,number(0,x)
and AH x,=H'number'

as techniques for incrementing the contents of register GRx by a small positive integer
“number”. Under what circumstances would the result be different, and in what ways? Will it
work for all values of GRx? Which values will work, and which values won't? What differ-
ences may be required if “number” is defined by an EQU statement like this?

number EQU 29

20.3.8.(3) In Figure 151 on page 310, what will the assembled instructions look like? How will
the results depend on the current addressing mode?

20.3.9.(2) Suppose you execute these two instructions in 24-bit addressing mode:

312 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 6,=A(X'FFFFFF')
LA 6,2(,6)

What value will be in GR6?

What value will be in GR6 if the first instruction had been written

L 6,=A(X'FFFFFF00') ?

20.3.10.(2) In Figure 152 on page 311, we might want to initialize GR3 to −1 using

LAY 3,-1

What reasons might be given for not using LAY?

20.3.11.(2)+ If x and y are numbers between 1 and 15, what are the differences between
these two instructions?

LR x,y and LA x,0(0,y)

20.3.12.(3)+ Suppose GR15 contains one of the values 0, 4, 8, or 12. Depending on c(GR15),
you want to branch to A, B, C, or D respectively.129 For a program with a base
register providing addressability to the code, you might write

B BList(15) Branch into table of branches
BList B A Branch if c(GR15) = 0

B B Branch if c(GR15) = 4
B C Branch if c(GR15) = 8
B D Branch if c(GR15) = 12

Suppose your program has no base register to provide addressability for the code.
How can you accomplish this task?

20.3.13.(1) Why can't use use LA or LAY to increment a small nonnegative number in GR0?

20.3.14.(2)+ We are given these two definitions of the symbol Number:

1. Number DC X'1234'

2. Number DC X'ABCD'

Assuming 24-bit addressing mode: what hexadecimal value is left in GR10 by this instruction
sequence?

LH 10,Number
SLL 10,8
LA 10,0(10,0)
SRL 10,8

Now, in 31-bit addressing mode, what hexadecimal value is left in GR10 for each definition of
Number?

20.3.15.(2)+ Suppose the contents of general registers 0, 1, and 2 are given by
c(GR0)=X'2112E6D8', c(GR1)=X'9B017822', and c(GR2)=X'00FFFF00'. What Effective
Address is generated in 24-bit addressing mode for each of the following addressing halfwords?

1. X'00FE'
2. X'1AF9'
3. X'2109'

Now, find the Effective Addresses generated in 31-bit addressing mode.

20.3.16.(2)+ Suppose this instruction is at address X'543B6D0E':

129 This is a common convention for handling a “return code” from a called subroutine.

Chapter VI: Addressing, Immediate Operands, and Loops 313

LAY 0,*

What Effective Address will be generated in (1) 24-bit, (2) 31-bit, and (3) 64-bit addressing
mode?

20.3.17.(3)+ A programmer claims that you can test whether adding a length in GR1 to an
existing address in GR2 will cross a known power-of-two boundary with the instructions
shown below. Write a test program with various input values to test his assertion.

LAY 1,-1(1,2)
XR 1,2
N 1,Mask
JNZ Crossed Branch if adding crosses
- - -

Mask DC A(-8192) Negative of power of 2 boundary

20.4. 64-Bit Virtual Addresses

We saw in Figure 22 on page 68 how 31-bit virtual addresses are divided into shorter compo-
nents for mapping with translation tables into real addresses. The same technique is used for
64-bit virtual addresses, except that an additional 33 high-order bits must be mapped. This is illus-
trated in Figure 154.

33 11 8 12
┌───┬──────────────┬─────────┬──────────────────┐
│ region index │ segment │ page │ byte │
│ │ index │ index │ index │
└───┴──────────────┴─────────┴──────────────────┘

Figure 154. 64-bit Virtual Address

Because a 33-bit translation table would be extremely large, the region index is subdivided into
three portions, called “region first“, “region second”, and “region third” indexes, for which the
mapping tables are more manageable. This is sketched in Figure 155.

11 11 11 11 8 12
┌────────────────┬────────────────┬─────────────────┬──────────────┬─────────┬──────────────────┐
│ region 1st │ region 2nd │ region 3rd │ segment │ page │ byte │
│ index │ index │ index │ index │ index │ index │
└────────────────┴────────────────┴─────────────────┴──────────────┴─────────┴──────────────────┘

Figure 155. 64-bit Virtual Address with Region Indexes

Fortunately, these details are handled by the operating system so we can focus on our applica-
tions.

20.5. Summary

In this section, we discussed addressing modes and the three instructions shown in Table 101.

Table 101. Load Address instructions described in this section

Function Instruc-
tion

Result in R1 general register

AMode = 24 AMode = 31 AMode = 64

Load
Address
(based)

Load
Address
(relative)

LA
LAY

LARL

Effective Address in
bits 40-63;
zero in bits 32-39;
bits 0-31 unchanged.

Effective Address in
bits 33-63;
zero in bit 32;
bits 0-31 unchanged.

Effective Address in
bits 0-63.

314 Assembler Language Programming for IBM System z™ Servers Version 2.00

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

LA 41 LARL C00 LAY E371

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

41 LA C00 LARL E371 LAY

Terms and Definitions
addressing mode

One of three modes supported by System z that determines the length of an Effective
Address.

AMode
An abbreviation for “addressing mode”.

DH
In an instruction supporting 20-bit displacements, the 5th byte of the instruction containing
the signed High-order 8 bits of the displacement.

DL
In an instruction supporting 20-bit displacements, the unsigned Low-order 12 bits of the dis-
placement.

modal instruction
An instruction that places or updates addresses in the general registers, with results that
depend on the addressing mode.

relative address
An Effective Address determined by an offset relative to an instruction containing an RI2
operand.

Chapter VI: Addressing, Immediate Operands, and Loops 315

21. Immediate Operands

2222222222 11
222222222222 111
22 22 1111

22 11
22 11
22 11

22 11
22 11

22 11
22 11
222222222222 1111111111
222222222222 1111111111

In Section 4.2 on page 51 we saw the five basic instruction classes introduced with System/360.
The only class with immediate data was the SI-type instructions, where a byte of data in the
instruction operated on, or was stored into, a byte in memory, as sketched in Figure 14 on
page 52. We'll learn more about those in Section 23.

Many new instructions include “immediate’ data that is part of the instruction, rather than being
in memory. Thus, it is “immediately” available. Most immediate operands work with data in the
general registers, rather than memory: Figure 156 shows how immediate operands in RI- and
RIL-type instructions interact with data in registers.130 You may want to compare it to Figure 14
on page 52.

┌─────────────────────────────┐
│ Registers │
└─┬───────┬──────────┬──────┬─┘
� └──�────�──┘ �

RI,│ RR │
RIL│ │

┌───────────────┴───┐ │RX,
│ Instruction │ │RS
└───────────────┬───┘ │

SI│ SS │
� ┌──�────�──┐ �

┌─┴───────┴──────────┴──────┴─┐
│ Memory │
└─────────────────────────────┘

Figure 156. Instruction classes, including RI, RIL

In early processors, the relative speeds of memory accesses and instruction execution using
memory operands were nearly the same. As processor speeds have increased, instructions can
often be completed in much less time than it takes to access memory operands. As this speed
difference has grown, the relative cost of memory accesses has also grown, despite many methods

130 Because z/Architecture continues to evolve, you should check the z/Architecture Principles of Operation regularly;
some newer instructions operate on immediate data in the instruction and data in memory.

316 Assembler Language Programming for IBM System z™ Servers Version 2.00

providing intermediate stages of “buffering”, using special internal cache memories. Caches can
help reduce, but not eliminate, the speed difference.

Because memory accesses in many applications refer to constant data, instructions containing
these constants provide immediate access to the data without additional memory references. The
resulting improvements in application performance have shown the value of these relative-
immediate instructions.

Two immediate-operand lengths are supported. In RI-type instructions, the I2 immediate
operand occupies a halfword, the last 16 bits of the 32-bit instruction.

Table 102. RI-type instruction

In RIL-type instructions, the immediate operand I2 occupies a word, the last 32 bits of the 48-bit
instruction.

Table 103. RIL-type instruction

Several of the instructions we'll examine use the last two letters of the instruction mnemonic to
indicate a specific portion of the R1 register, with combinations of “H” and “L”. The first letter
refers to the High half of a 64-bit register or the Low half of the register. Similarly, the second
letter refers to the High halfword or the Low halfword of the half of the register specified by the
first letter.131 This is illustrated in Figure 157.

opcode R1 Op I2

opcode R1 Op I2

 �───────── High Half ───────── �────────── Low Half ─────────
High High High Low Low High Low Low

┌───────────────┬───────────────┬───────────────┬───────────────┐ 64─bit
│ HH │ HL │ LH │ LL │ operand
└───────────────┴───────────────┴───────────────┴───────────────┘ register
 0 15 16 31 32 47 48 63

Figure 157. Four halfwords in a 64-bit general register

Another way of describing this:

HH High Half's High Half (bits 0-15)
HL High Half's Low Half (bits 16-31)
LH Low Half's High Half (bits 32-47)
LL Low Half's Low Half (bits 48-63)

Other instructions with 32-bit immediate operands end in the letters “H” or “L” meaning the H
or Low half of the register, followed by “F” to indicate that the immediate operand is a fullword.

We'll now investigate these instructions in three groupings: insert and load, arithmetic, and
logical.

131 See the comments at the start of Section 14, on page 178.

Chapter VI: Addressing, Immediate Operands, and Loops 317

21.1. Insert and Load Instructions with Immediate Operands

21.1.1. Logical-Immediate Insert Instructions

The insert group of logical-immediate instructions is summarized in Table 104.

Table 104. Insert-Immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

C08 IIHF RIL Insert Logical Immediate
(high) (64←32)

C09 IILF RIL Insert Logical Immediate
(low) (64←32)

A50 IIHH RI Insert Logical Immediate
(high high) (64←16)

A51 IIHL RI Insert Logical Immediate
(high low) (64←16)

A52 IILH RI Insert Logical Immediate
(low high) (64←16)

A53 IILL RI Insert Logical Immediate
(low low) (64←16)

The sketch in Figure 158 shows the operation of these six instructions. For example, IIHF inserts
its 32-bit (Fullword) immediate operand into the high half of GG R1.

 �───────── High Half ───────── �────────── Low Half ─────────
High High High Low Low High Low Low

┌───────────────┬───────────────┬───────────────┬───────────────┐
│ HH │ HL │ LH │ LL │
└───────────────┴───────────────┴───────────────┴───────────────┘

� └───┬───┘ � � └───┬───┘ �
IIHH│ │IIHF │IIHL IILH│ │IILF │IILL

│ └─────┐ └──┐ ┌──┘ ┌─────┘ │
└───────────┐ │ │ │ │ ┌────────────┘

┌───────────────┬───┴─┴────┴─────────┴────┴─┴─────┐
│ Instruction │ 16─ or 32─bit Immediate operand │
└───────────────┴─────────────────────────────────┘

Figure 158. Operation of six Insert Immediate instructions

The insert-immediate operations are similar to the capabilities of the ICM and ICMH instructions
that refer to storage operands. For example, these two instructions have the same result:

ICM 5,B'1100',=C'LH' Insert 'LH' into bits 0-15 of GR5
IILH 5,C'LH' The same with an immediate operand

except that IILH avoids a memory reference. Similarly, these two are equivalent:

ICMH 3,B'1111',=F'-3' Insert -3 into bits 0-31 of GG3
IIHF 3,-3 The same with an immediate operand

You can think of the IILF instruction as though it's a “Load Immediate” instruction:132

IILF 11,123456789 has the same result as...
L 11,=F'123456789' so you could even think of it as L

*** LI 11,123456789 ...but not as LI!

These instructions let you insert 16- or 32-bit operands into any halfword or word portion of a
general register without disturbing other parts of the register.

21.1.2. Arithmetic- and Logical-Immediate Load Instructions

These instructions are listed in Table 105 on page 319.

132 But you could implement your own LI macro instruction using the macro instruction capabilities of the Assembler.

318 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 105. Load and insert instructions with immediate operands

Op Mnem Type Instruction Op Mnem Type Instruction

A78 LHI RI Load Halfword Immediate
(32←16)

A79 LGHI RI Load Halfword Immediate
(64←16)

C01 LGFI RIL Load Immediate (64←32)

C0E LLIHF RIL Load Logical Immediate
(high) (64←32)

C0F LLILF RIL Load Logical Immediate
(low) (64←32)

A5C LLIHH RI Load Logical Immediate
(high high) (64←16)

A5D LLIHL RI Load Logical Immediate
(high low) (64←16)

A5E LLILH RI Load Logical Immediate
(low high) (64←16)

A5F LLILL RI Load Logical Immediate
(low low) (64←16)

The LHI, LGHI, and LGFI instructions are arithmetic load operations, where the I2 immediate
operand is sign-extended from 16 to 32 bits or from 32 to 64 bits, as required by the R1 register
length. They operate just like the corresponding LH, LGH, and LGF instructions, except that
the second operand is found in the I2 field of the instruction rather than in memory. For
example, compare the operation of the LHI instruction in Figure 159 with the operation of LH
in Figure 62 on page 183:

┌───────────────────┬───────────────────┐
│�─ sign─extended �─┼s │ GR R1
└───────────────────┴───────────────────┘
 0 � 31
┌───────────────────┬─────────┴─────────┐
│ LHI Instruction │s │ Halfword in LHI instruction
└───────────────────┴───────────────────┘

16 31
Figure 159. Operation of LHI instruction

A valuable application of instructions like LHI involves symbolically-defined constants. Suppose
you have a table of data items, and you define a symbol NItems whose value is the number of
items:

Table DS 0F Start of table
Item1 DS CL(ItemLen) Each item has length 'ItemLen'

- - - Space for more similar items
TableEnd DS 0X End of the table
*
NItems Equ ((TableEnd-Table)/ItemLen) Number of items in table

Then, you can place the count of data items into GR8 using LHI:

LHI 8,NItems Initialize item counter

Defining symbols like NItems symbolically means that if the table expands or contracts, you need
only reassemble the program and the value of NItems will be recalculated automatically.

LGHI extends its 16-bit operand to 64 bits in GG R1, as shown in Figure 160.

┌───┬───────────────────┐
│�────────────────── sign─extended �──────────────────────┼s │ GG R1
└───┴───────────────────┘
0 48 � 63

┌───────────────────┬─────────┴─────────┐
│ LGHI Instruction │s │
└───────────────────┴───────────────────┘

16 31
Figure 160. Operation of LGHI instruction

Chapter VI: Addressing, Immediate Operands, and Loops 319

Similarly, the LGFI instruction extends its 32-bit operand to 64 bits, as shown for LGF in
Figure 73 on page 195.

Suppose c(GG9)=X'12345678 00000000'; then

LHI 9,X'CBA9' Load a halfword-immediate operand

will set the rightmost 32 bits of GR9 to X'FFFFCBA9', leaving the high-order 32 bits of GG9
unchanged. Now suppose c(GG9)=X'12345678 9ABCDEF0'; the other two load-immediate
instructions give the sign-extended results shown in Figure 161:

LGHI 9,X'CBA9' c(GG9)=X'FFFFFFFF FFFFCBA9' extend 1-bit
LGFI 9,X'789ABCDE' c(GG9)=X'00000000 789ABCDE' extend 0-bit

Figure 161. Examples of load-immediate instructions

The other six logical instructions have an unusual property: the I2 immediate operand is placed
in the proper 16 or 32 bits of the 64-bit general register, and (unlike the insert-immediate
instructions) the rest of the entire register is set to zero! The Load Logical instructions we dis-
cussed in Section 14.11 on page 195 did zero-extension only on the left, rather than also zeroing
bits to the right of the loaded operand.

The following figure pictures the operation of these six logical load instructions.

 �───────── High Half ───────── �────────── Low Half ─────────
High High High Low Low High Low Low

┌───────────────┬───────────────┬───────────────┬───────────────┐
│ HH │ HL │ LH │ LL │
└───────────────┴───────────────┴───────────────┴───────────────┘

� └───┬───┘ � � └───┬───┘ �
 LLIHH│ │LLIHF │LLIHL LLILH│ │LLILF │LLILL

│ └─────┐ └──┐ ┌──┘ ┌─────┘ │
└───────────┐ │ │ │ │ ┌────────────┘

┌───────────────┬───┴─┴────┴─────────┴────┴─┴─────┐
│ Instruction │ 16─ or 32─bit Immediate operand │
└───────────────┴─────────────────────────────────┘

Figure 162. Operation of six logical load instructions

In each case, after the I2 operand has been loaded into the specified part of GG R1, the rest of
the register is set to zero. For example, if c(GG9)=X'FEDCBA9876543210', executing each of the
following instructions will change GG9 as indicated:

LLIHF 9,X'13579BDF' c(GG9)=X'13579BDF 00000000'
LLILF 9,X'FDB97531' c(GG9)=X'00000000 FDB97531'
LLIHH 9,X'2468' c(GG9)=X'24680000 00000000'
LLIHL 9,X'2468' c(GG9)=X'00002468 00000000'
LLILH 9,X'2468' c(GG9)=X'00000000 24680000'
LLILL 9,X'2468' c(GG9)=X'00000000 00002468'

The Load Logical Immediate instructions are useful whenever you need to place a value into part
of a general register and set the rest of the register to zero, and they help you avoid unnecessary
clearing of the target register. For example, if the LLIHF instruction was not available and you
wanted to load X'13579BDF' into the high-order 32 bits of GG9 (as in the first instruction above),
you would have to do something like

L 9,=F'13579BDF' c(GR9)=X'13579BDF'
SLLG 9,9,32 c(GG9)=X'13579BDF 00000000'

requiring both a memory reference and an extra instruction. Similarly, to get the result of the
LLILH instruction above, you would have to do these two instructions

SGR 9,9 Set GG9 to zero
IILH 9,X'2468' c(GG9)=X'00000000 24680000'

which uses one of the immediate-operand instructions. Or, another use could have been

320 Assembler Language Programming for IBM System z™ Servers Version 2.00

SGR 9,9 Set GG9 to zero
ICM 9,B'1100',=X'2468' c(GG9)=X'00000000 24680000'

again requiring an extra instruction and a memory access.

Exercises

21.1.1.(1) What will the Assembler do if you write LHI 0,76543 ? What will be placed in
GR0?

21.1.2.(1) What is the difference between an I2 operand and an RI2 operand?

21.2. Arithmetic Instructions with Immediate Operands

The arithmetic instructions with immediate operands can be arranged in three groups:

• add and subtract instructions

• compare instructions

• multiply instructions

These instructions can be arranged into very regular patterns, like the related RX-type instructions
we saw in Section 16.

21.2.1. Arithmetic-Immediate Add and Subtract Instructions

The four arithmetic and four logical instructions in this group are shown in Table 106.

Table 106. Arithmetic-immediate add and subtract instructions

Op Mnem Type Instruction Op Mnem Type Instruction

A7A AHI RI Add Halfword Immediate
(32←16)

A7B AGHI RIL Add Halfword Immediate
(64←16)

C29 AFI RIL Add Immediate (32) C28 AGFI RIL Add Immediate (64←32)

C2B ALFI RIL Add Logical Immediate (32) C2A ALGFI RIL Add Logical Immediate
(64←32)

C25 SLFI RIL Subtract Logical Immediate
(32)

C24 SLGFI RIL Subtract Logical Immediate
(64←32)

These instructions are very useful: they can replace most memory references to constants and
literals. Consider the example in Figure 88 on page 223 where we add the first N odd numbers,
but now we use immediate values instead of literals. Three storage references have been replaced
by immediate operands in the statements marked with * in the comment field.

LHI 4,1 * c(GR4) = accumulated sum
LR 7,4 c(GR7) = count of additions

Test CH 7,NN Compare count to c(NN)
BE Store Branch if equal, N terms added
LR 0,7 Compute next odd integer
AR 0,0 Counter + counter = 2N
AHI 0,1 * Add 1, giving next odd term
AR 4,0 Add term to sum
AHI 7,1 * Increment count by 1
B Test Branch back to see if finished

Store ST 4,SUM Store result

Almost every previous example using a halfword or word literal can be replaced by an immediate
operand. This saves both execution time and the bytes needed for the storage operand.

Chapter VI: Addressing, Immediate Operands, and Loops 321

21.2.2. Arithmetic-Immediate Compare Instructions

The four arithmetic and two logical instructions in this group are shown in Table 107.

Table 107. Arithmetic-immediate compare instructions

Op Mnem Type Instruction Op Mnem Type Instruction

A7E CHI RI Compare Halfword Imme-
diate (32←16)

A7F CGHI RI Compare Halfword Imme-
diate (64←16)

C2D CFI RIL Compare Immediate (32) C2C CGFI RIL Compare Immediate
(64←32)

C2F CLFI RIL Compare Logical Immediate
(32)

C2E CLGFI RIL Compare Logical Imme-
diate (64←32)

Suppose you must examine a character in storage to see if it is a special character, or a letter or
digit, and retain the character in GR0 for further processing. (Remember that letters and digits in
the EBCDIC representation have values greater than X'80'.) You could write the test like this:

LLC 0,Char Get character, clear rest of GR0
CHI 0,X'80' Test for special character
BNH Special Special if representation <= X'80'

The LLC instruction was illustrated in Figure 75 on page 197.

It helps to remember that these compare-immediate instructions always refer to operands in regis-
ters, never in memory:

CH 2,NN Compare to halfword in memory...
* CHI 2,NN ... but this would fail if assembled

- - -
NN DC H'42'

21.2.3. Arithmetic-Immediate Multiply Instructions

Table 108 lists the two arithmetic multiply-immediate instructions:

Table 108. Arithmetic-immediate multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

A7C MHI RI Multiply Halfword Imme-
diate (32←16)

A7D MGHI RI Multiply Halfword Imme-
diate (64←16)

There are no multiply-immediate instructions with 32-bit operands.133 This is rarely a problem,
because you can use instructions like IILF or LGFI to put a 32-bit operand into a temporary
register. For example, if the product and operands are small enough you can use MHI:

L 1,Operand1 Get a number to be multiplied
MHI 1,36 Multiply by 36, product in GR1

and if the product and operands are larger, you can use IILF:

L 1,Operand2 Get another number to be multiplied
IILF 15,629036721 Put multiplier temporarily in GR15
MR 0,15 Form long product in (GR0,GR1)

133 At the time of this writing. But new instructions are added regularly to the System z architecture, so check the Princi-
ples of Operation.

322 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

21.2.1.(1) Why is there a SLFI instruction, but no SFI instruction?

21.2.2.(2) Do Exercise 18.2.7 on page 269, using immediate-operand instructions and no literals.

21.3. Logical Operations with Immediate Operands

As we have seen, the last two letters of these instruction mnemonics refers to a word or halfword
in part of a 64-bit general register. The three logical operations are AND, OR, and XOR.

The portions of the first operand in GG R1 not involved in the operation of these instructions is
not affected, and remain unchanged. This was shown in Figure 158 on page 318, where the
“Insert Immediate” instructions involve either 16 or 32 bits of the register, and the remaining bits
are unchanged. (The “Load Immediate” instructions do clear the remaining fields of the register!)

21.3.1. Logical-Immediate AND Instructions

The AND group of logical-immediate instructions is summarized in Table 109.

Table 109. AND-immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

C0A NIHF RIL AND Immediate (high)
(64←32)

C0B NILF RIL AND Immediate (low)
(64←32)

A54 NIHH RI AND Immediate (high high)
(64←16)

A55 NIHL RI AND Immediate (high low)
(64←16)

A56 NILH RI AND Immediate (low high)
(64←16)

A57 NILL RI AND Immediate (low low)
(64←16)

The last example in Section 19.3 uses a bit mask in memory. We can improve it by using an
immediate operand in an NILL instruction.

L 1,DataWord B'aaaaaaaaabbbbcccccccccccccdddddd'
SRL 1,6 B'000000aaaaaaaaabbbbccccccccccccc'
NILL 1,X'1FFF' B'0000000000000000000ccccccccccccc'
ST 1,Third Store Result

Figure 163. Extracting an unsigned integer value using AND Immediate

The last example in Section 19.4 uses a bit mask in memory. We can also improve it using an
NILF immediate operand:

L 0,DataWord Get 4 packed integers
NILF 0,X'FFF8003F' Clear a space for third (c's)
L 1,NewThird Get new value of third integer
SLL 1,6 Shift into proper position
OR 0,1 'OR' into place in GR0
ST 0,DataWord Store new data word

Figure 164. Inserting a new integer value using AND Immediate

21.3.2. Logical-Immediate OR Instructions

The OR group of logical-immediate instructions is summarized in Table 110 on page 324.

Chapter VI: Addressing, Immediate Operands, and Loops 323

Table 110. OR-immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

C0C OIHF RIL OR Immediate (high)
(64←32)

C0D OILF RIL OR Immediate (low)
(64←32)

A58 OIHH RI OR Immediate (high high)
(64←16)

A59 OIHL RI OR Immediate (high low)
(64←16)

A5A OILH RI OR Immediate (low high)
(64←16)

A5B OILL RI OR Immediate (low low)
(64←16)

Suppose you want to set the sign bit of GG8 to a 1-bit. You can use either of these:

OIHH 8,X'8000' Set sign bit to 1
OIHF 8,X'80000000' Set sign bit to 1

but OIHF is 6 bytes long while OIHH is only 4 bytes long.

21.3.3. Logical-Immediate XOR Instructions

The XOR group of logical-immediate instructions is summarized in Table 111.

Table 111. XOR-immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

C06 XIHF RIL XOR Immediate (high)
(64←32)

C07 XILF RIL XOR Immediate (low)
(64←32)

You might wonder why there are no XIHH, XIHL, XILH, and XILL instructions, like those for
the 16-bit operands of the logical-immediate AND and OR instructions. (See Exercise 21.3.1.)

The example in Figure 141 on page 292 uses AND, OR, and XOR instructions referring to oper-
ands in memory. We can rewrite it to use immediate operands:

L 0,DataWord Get integers
OILF 0,X'0007FFC0' * Set third-integer space to all 1's
XILF 0,X'0007FFC0' * Now set them to zeros
L 1,NewThird Load new value for third integer
SLL 1,6 Move to correct position
NILF 1,X'0007FFC0' * Make sure there are no extra bits
OR 0,1 Insert the new third value
ST 0,DataWord Store updated result

Figure 165. Data masking using immediate operands

We can improve this example to reduce the possibility of typographic errors, by defining the mask
symbolically:

Int3Mask Equ X'0007FFC0' Mask for isolating the 3rd integer
L 0,DataWord Get integers
OILF 0,Int3Mask Set third-integer space to all 1's
XILF 0,Int3Mask Now set them to zeros
L 1,NewThird Load new value for third integer
SLL 1,6 Move to correct position
NILF 1,Int3Mask Make sure there are no extra bits
OR 0,1 Insert the new third value
ST 0,DataWord Store updated result

Figure 166. Data masking using a symbolically defined immediate operand

This technique is recommended whenever one value must be used in several instructions. If you
mistype the mask value, it needs correcting in only one place.

324 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

21.3.1.(2)+ Explain why there is actually no need for the four XOR halfword-immediate
instructions XIHH, XIHL, XILH, and XILL.

21.3.2.(2)+ Show why the “Halfword” forms of the AND-immediate logical NIxx instructions
(like NILH, etc.) are unnecessary.

21.3.3.(2)+ Show why the “Halfword” forms of the OR-immediate logical OIxx instructions
(like OIHL, etc.) are unnecessary.

21.3.4.(1) Use instructions with immediate operands to set the high-order byte of GR1 to zero.

21.3.5.(1) Use instructions with immediate operands to invert the sign bit of GG7.

21.3.6.(1) Use instructions with immediate operands to round c(GR2) to the next higher mul-
tiple of 16, if it is not already a multiple of 16.

21.3.7.(2) A programmer wanted to test the value of some bits in GR3, and wrote these
instructions:

NILL 3,X'00F0' Isolate the 4 interesting bits
BZ AllZeros Branch if all 4 bits were zero
CH 3,=X'0070' Check if leftmost bit is 1
BNL BitWas1 Branch if that bit was 1
- - - Test other values

What value will be in GR3 when control arrives at the instruction named BitWas1?

21.3.8.(2)+ A programmer wanted to extract the six low-order bits of GR4, and considered
these three sequences of instructions:

(1) N 4,=X'0000003F'

(2) SLL 4,26
SRL 4,26

(3) SRDL 4,26
SR 4,4
SLDL 4,26

Criicize each sequence in terms of its simplicity and/or efficiency, and suggest a single instruc-
tion to use in place of each.

21.3.9.(2)+ A friend of the programmer in Exercise 21.3.8 suggested using an instruction with
an immediate operand:

NILL 4,X'003F'

Is his solution acceptable? Explain why or why not.

21.4. Summary

The immediate-operand instructions described in this section can provide savings in three ways:

1. they eliminate the need to access operands from storage,

2. they save the space that those operands needed, and

3. they help eliminate the need for base registers that might have been required to address those
operands.

The load- and insert-immediate instructions are summarized in Table 112 on page 326. The
insert-immediate instructions don't affect any part of the R1 register other than the bit positions
where the immediate operand has been inserted.

Chapter VI: Addressing, Immediate Operands, and Loops 325

Table 112. Load and insert instructions with immediate operands

The arithmetic-immediate instructions are summarized in Table 113.

Table 113. Arithmetic instructions with immediate operands

The logical-immediate instructions are summarized in Table 114. The logical-immediate
instructions don't affect any part of the R1 register other than the bit positions where the imme-
diate operand has been ANDed, ORed, or XORed.

Table 114. Logical instructions with immediate operands

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Operation
Operand 1 32 bits 64 bits

Operand 2 16 bits 32 bits 16 bits 32 bits

Arithmetic Load LHI LGHI LGFI

Logical Load

LLIHH
LLIHL
LLILH
LLILL

LLIHF
LLILF

Insert

IIHH
IIHL
IILH
IILL

IIHF
IILF

Operation
Operand 1 32 bits 64 bits

Operand 2 16 bits 32 bits 16 bits 32 bits

Arithmetic Add/Subtract AHI AFI AGHI AGFI

Logical Add/Subtract ALFI
SLFI

ALGFI
SLGFI

Arithmetic Compare CHI CFI CGHI CGFI
Logical Compare CLFI CLGFI

Multiply MHI MGHI

Operation
Operand 1 32 bits 64 bits

Operand 2 16 bits 32 bits 16 bits 32 bits

AND

NIHH
NIHL
NILH
NILL

NIHF
NILF

OR

OIHH
OIHL
OILH
OILL

OIHF
OILF

XOR XIHF
XILF

326 Assembler Language Programming for IBM System z™ Servers Version 2.00

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

AFI C29 IILF C09 NIHH A54

AGFI C28 IILH A52 NIHL A55

AGHI A7B IILL A53 NILF C0B

AHI A7A LGFI C01 NILH A56

ALFI C2B LGHI A79 NILL A57

ALGFI C2A LHI A78 OIHF C0C

CFI C2D LLIHF C0E OIHH A58

CGFI C2C LLIHH A5C OIHL A59

CGHI A7F LLIHL A5D OILF C0D

CHI A7E LLILF C0F OILH A5A

CLFI C2F LLILH A5E OILL A5B

CLGFI C2E LLILL A5F SLFI C25

IIHF C08 MGHI A7C SLGFI C24

IIHH A50 MHI A7D XIHF C06

IIHL A51 NIHF C0A XILF C07

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

A50 IIHH A5F LLILL C0B NILF

A51 IIHL A78 LHI C0C OIHF

A52 IILH A79 LGHI C0D OILF

A53 IILL A7A AHI C0E LLIHF

A54 NIHH A7B AGHI C0F LLILF

A55 NIHL A7C MGHI C24 SLGFI

A56 NILH A7D MHI C25 SLFI

A57 NILL A7E CHI C28 AGFI

A58 OIHH A7F CGHI C29 AFI

A59 OIHL C01 LGFI C2A ALGFI

A5A OILH C06 XIHF C2B ALFI

A5B OILL C07 XILF C2C CGFI

A5C LLIHH C08 IIHF C2D CFI

A5D LLIHL C09 IILF C2E CLGFI

A5E LLILH C0A NIHF C2F CLFI

In general, these immediate-operand instructions don't do anything you can't do with operands in
memory. But on modern CPUs, they will execute much faster and will help reduce the size of
your program.

Chapter VI: Addressing, Immediate Operands, and Loops 327

Terms and Definitions
immediate operand

An operand contained in a field of the instruction itself.

Programming Problems

Problem 21.1.(2) Rewrite Problem 18.7 to generate a hexadecimal addition table, using imme-
diate operands wherever possible.

Problem 21.2.(2) Rewrite Problem 18.8 to generate a hexadecimal multiplication table, using
immediate operands wherever possible.

328 Assembler Language Programming for IBM System z™ Servers Version 2.00

22. Branches, Loops, and Indexing

2222222222 2222222222
222222222222 222222222222
22 22 22 22

22 22
22 22
22 22

22 22
22 22

22 22
22 22
222222222222 222222222222
222222222222 222222222222

Programs often process data repetitively or iteratively under the control of a counter or some
other condition. In this section we examine several instructions that simplify coding “loops”,
sequences of instructions executed repeatedly.

First, we'll describe a newer form of branch instruction, the relative-immediate branch.

22.1. Branch Relative on Condition Instructions

The conditional relative branch instructions BRC and BRCL calculate their branch address by
adding twice the immediate operand to the address of the branch instruction, as described in
Section 20.1.3 on page 305. They have the formats shown in Tables 115 and 116.

Table 115. Format of the BRC instruction

RI-type branch instructions for which the value of the RI2 operand lies in the range

−215 ≤ RI2 ≤ 215−1, or
−32768 ≤ RI2 ≤ 32767

allow the relative offset to the branch target to lie as far as −65536 and +65534 bytes away.

Table 116. Format of the BRCL instruction

For RIL-type branch instructions the value of the RI2 operand lies in the range

−231 ≤ RI2 ≤ 231−1, or
−2147483648 ≤ RI2 ≤ 2147483647

A7 M1 4 RI2

C0 M1 4 RI2

Chapter VI: Addressing, Immediate Operands, and Loops 329

This means the offset of the branch target can be more than 4 billion bytes away from the
RIL-type instruction, in either direction.134

Relative branch instructions can help you reduce or even eliminate the need for base registers to
address your instructions. We will describe conditional relative branches here, and examine other
forms of relative branch shortly.

In almost every situation where you use an RX-type conditional branch (introduced in Section
15) you can replace it with a branch relative on condition instruction. For example, if you want
to branch to the instruction named Equal if c(GR3)=c(GR12), you might have written a based-
branch instruction like

CR 3,12 Compare c(GR3) to c(GR12)
BC 8,Equal Branch if they're equal

or, you could use a relative branch by writing

CR 3,12 Compare c(GR3) to c(GR12)
BRC 8,Equal Branch if they're equal

While this may seem extra effort for no obvious gain, the relative branch has one major advan-
tage: the target of any relative branch can be very distant from the branch instruction, while a
based branch target can be at most +4094 bytes from the address of the based branch. The only
(and usually minor) disadvantage is that relative branch instructions can't be indexed.

Like the extended mnemonics shown in Table 61 on page 210, the Assembler supports a similar
set of extended mnemonics for branch relative on condition instructions, listed in Table 117.
Because the most-used forms of these extended mnemonics begin with the letter “J”, they are
often called “Jump” instructions.

Table 117. Extended branch relative on condition mnemonics and their branch mask values

RI Mnemonic RIL Mnemonic Mask Meaning

BRC JC BRCL JLC M1 Conditional Branch

BRU J BRUL JLU 15 Unconditional Branch

BRNO JNO BRNOL JLNO 14 Branch if Not Ones (T)
Branch if No Overflow (A)

BRNH JNH BRNHL JLNH 13 Branch if Not High (C)

BRNP JNP BRNPL JLNP 13 Branch if Not Plus (A)

BRNL JNL BRNLL JLNL 11 Branch if Not Low (C)

BRNM JNM BRNML JLNM 11 Branch if Not Minus (A)
Branch if Not Mixed (T)

BRE JE BREL JLE 8 Branch if Equal (C)

BRZ JZ BRZL JLZ 8 Branch if Zero(s) (A,T)

BRNZ JNZ BRNZL JLNZ 7 Branch if Not Zero (A,T)

BRNE JNE BRNEL JLNE 7 Branch if Not Equal (C)

BRL JL BRLL JLL 4 Branch if Low (C)

BRM JM BRML JLM 4 Branch if Minus (A)
Branch if Mixed (T)

BRH JH BRHL JLH 2 Branch if High (C)

BRP JP BRPL JLP 2 Branch if Plus (A)

BRO JO BROL JLO 1 Branch if Ones (T)
Branch if Overflow (A)

JNOP JLNOP 0 No Operation

134 That ought to be enough for most programs. (But that's what they said at one time about 24-bit addressing.)

330 Assembler Language Programming for IBM System z™ Servers Version 2.00

 Note:

The letter L in these mnemonics sometimes means “Long” (as in JLU)
and sometimes “Low” (as in JL).

The previous example could be rewritten as

CR 3,12 Compare c(GR3) to c(GR12)
JE Equal Branch if they're equal

and no base register is needed for the JE instruction.

The Assembler checks that the branch target is within the current control section, so that you
won't accidentally branch to an instruction that isn't part of the program containing the branch.
(Such a branch is allowed if the target is an external symbol; we'll discuss this case in Section 38.)

Using explicit offsets from the current instruction is generally a poor practice:

CR 3,12 Compare c(GR3) to c(GR12)
JE *+10 Branch 10 bytes if they're equal

This will cause maintenance problems if another instruction is added or removed between the JE
and whatever instruction is 10 bytes away. The assembler generates X'A784 0005', where the
offset value 10 has been halved at assembly time so that the Effective Address at execution time
will be correct.

An even poorer coding technique is writing the RI2 operand explicitly:

CR 3,12 Compare c(GR3) to c(GR12)
JE 10 Branch 10(?) bytes if they're equal

The Assembler will issue a warning and then generate the instruction with the explicit absolute
operand in the RI2 field, X'A784 000A' so that the branch target is actually 20 bytes away!

Branch relative instructions can be very helpful in programs larger than 4K bytes, where using
based branch instructions may require more than one base register to provide addressability.
With relative branches, you can often reduce the number of “program base” registers (or even
eliminate them entirely), freeing registers for other more productive uses.

Exercises

22.1.1.(1) The extended mnemonic for the “Long” relative branch instructions is formed by
adding the letter L after the initial letter “J”. But the Long unconditional relative branch mne-
monic is JLU, not JL. Why?

22.1.2.(1) Can you think of situations where JNOP and JLNOP will be useful?

22.1.3.(2)+ What machine instruction is generated by each of these statements?

(1) J *-10
(2) J *+2046
(3) J -40
(4) JL *+2

What will happen if the last of these is executed?

22.2. A Simple Example of a Loop

We will use variations on a simple example to illustrate some basic principles. Suppose a string —
a one-dimensional array — of 80 bytes containing character data in the EBCDIC representation
begins at Str and ends at Str+79. The character string could represent data read from an
80-character record.

Chapter VI: Addressing, Immediate Operands, and Loops 331

We want to scan the string and replace all special (non-alphanumeric) characters by blanks. That
is, any character with EBCDIC representation less than C'a' (X'81') should be replaced by C' '
(X'40').135 Thus, letters and digits will be unchanged.

We begin with the example in Figure 167. It performs the required processing in a straightfor-
ward but perhaps clumsy way. This “problem” will be used for several more examples, so try to
understand the basic idea here.

SR 0,0 Characters are inserted into GR0
LR 1,0 Character count in GR1, initially 0
LA 2,C'a' c(GR2) = X'00000081'
LA 3,C' ' c(GR3) = X'00000040'
LA 4,Str First byte's address in GR4

GetChar IC 0,0(,4) Get a byte from the string
CR 0,2 Compare to letter 'a'
JNL Okay Branch if a letter or digit
STC 3,0(,4) Otherwise replace by a blank

Okay LA 4,1(,4) Increment character address by 1
LA 1,1(,1) Increase character count by 1
C 1,=F'80' Compare count to 80 (string length)
JL GetChar Loop if less than 80 done so far
- - -

Str DC CL80'String-to,be(Scanned+For*Special=Characters$#'
Figure 167. A simple loop to scan and replace characters

The character comparisons are made in the rightmost bytes of registers GR0 and GR2.136 The
address of the byte being examined is in GR4, and is incremented by 1 at each step, and was
initialized to the address of the first character before entering the loop. The branch instruction at
the end of the loop must branch if the contents of GR1 is less than 80, not if it is less than or
equal to 80: otherwise, the final test would cause the byte at Str+80 to be examined and possibly
changed. The string ends at Str+79.

Exercises

22.2.1.(2)+ Show the result at Str after the program segment in Figure 167 completes exe-
cution.

22.2.2.(1) Revise the program in Figure 167 to use extended relative branch mnemonics and no
literals.

22.3. Simple Tables and Array Indexing

The next version of this program uses the indexing capabilities of the IC and STC instructions.137

Assume that the character string at Str has been defined as in Figure 167.

135 Table 13 on page 87 shows that in the EBCDIC character representation, all letters and numeric digits have
encodings greater than X'80'.

136 LA (and not LHI) was used to load GR2 and GR3 with C'a' and C' '. LA and LHI are both very fast instructions;
the CPU pays special attention to LA, because address generation is a fundamental operation. Basically, there's no
detectable difference in speed.

137 Review Sections 5.3 and 9.5 for a quick summary of indexing.

332 Assembler Language Programming for IBM System z™ Servers Version 2.00

SR 0,0 Clear GR0 for character insertion
SR 1,1 Initialize index to 0
LA 3,C' ' c(GR3) = blank at right end

GetChar IC 0,Str(1) Get a character from string
C 0,=A(C'a') Compare to letter 'a'
JNL Okay Jump if not less than X'81'
STC 3,Str(1) Replace by a blank

Okay LA 1,1(,1) Increment index by 1
C 1,=F'80' Compare to length of string
JL GetChar Branch if not done
- - -

Figure 168. A simple loop, using indexing

The byte being examined is now addressed using GR1 as an index register. The first time the IC
instruction named GetChar is executed, the contents of GR1 is zero and the Effective Address
generated will be the address of Str. On the last execution of the IC instruction, the contents of
GR1 is 79, and the last byte of the string is inserted into GR0 for examination. Then, after the
LA instruction named Okay is executed, the contents of GR1 is 80, the branching condition for
the final JL instruction is not met, and control will pass to the following instruction.

A minor difference in this version is that the 32-bit word containing the EBCDIC representation
of the letter 'a' is now a word in memory, specified by the literal =A(C'a'), rather than in GR2 as
before.138

Figure 169 illustrates another use of indexing. Three fullword integers stored beginning at QQ are
added with tests for overflow. In this case, however, after the sum is complete, a branch to NoErr
is made if no overflows occurred, to Err1 if exactly one overflow occurred, and to Err2 if two.

SR 1,1 Set overflow count in GR1 to zero
L 0,QQ Load first integer into GR0
A 0,QQ+4 Add second integer
JNO A1 Branch if no overflow
LA 1,4(,1) Indicate one overflow

A1 A 0,QQ+8 Add third integer
JNO A2 Branch if no overflow
LA 1,4(,1) Indicate an overflow

A2 B BrTbl(1) Indexed(!) branch into branch table
BrTbl J NoErr 0-overflow branch

J Err1 1-overflow branch
J Err2 2-overflow branch

Figure 169. Indexing into a branch table

When the instruction named A2 is reached, GR1 contains the number of overflows multiplied by
four. This is used as an index in computing the Effective Address of the BC instruction at A2,
which will be BrTbl, BrTbl+4, or BrTbl+8. The appropriate branch instruction will then transfer
control to the desired location. The symbol BrTbl need not be on a fullword boundary: the index
in GR1 is incremented by 4 for each overflow to account for the length of the J instructions.

Branch tables provide a fast and efficient way to route control to different parts of a program.

Exercises

22.3.1.(2) A list of N halfword integers is stored beginning at DATA and the number N is a
halfword integer at NBR. Write a code sequence that will store at the fullwords POS, NEG, and
NZT respectively the sum of the positive terms, the sum of the negative terms, and the number
of zero terms.

138 While =F'129' and =A(X'81') would give identical results, using the fullword integer literal is a poor practice, because
your reader can't tell that the literal is intended for use in a character comparison.

Chapter VI: Addressing, Immediate Operands, and Loops 333

22.3.2.(1) What will happen if the conditional branch instruction named A2 in Figure 169 is
changed to a relative branch instruction?

22.3.3.(2)+ Revise Figure 168 on page 333 to use immediate operands to replace references to
operands in memory.

22.4. Branch on Count Instructions

The branch on count instructions are shown in Table 118. None of them changes the CC
setting.

Table 118. Branch on count instructions

Op Mnem Type Instruction Op Mnem Type Instruction

46 BCT RX Branch on Count (32) 06 BCTR R R Branch on Count Register
(32)

E346 BCTG RXY Branch on Count (64) B946 BCTGR RRE Branch on Count Register
(64)

A76 BRCT RI Branch Relative on Count
(32)

A77 BRCTG RI Branch Relative on Count
(64)

Like the conditional relative branches, the Assembler provides extended mnemonics for the two
branch relative on count instructions:

Table 119. Extended mnemonics for branch relative on count instructions

The Branch on Count instructions simplify counting and branching operations like those in
Figures 167 and 168 above. As with the BCR and BC instructions, the branch address is
obtained either from R2 for BCTR and BCTRG (unless the R2 digit is zero, in which case no
branch is ever taken); or from the Effective Address for BCT and BCTG.

The branch address is computed first. Then, the branching condition is determined by first arith-
metically reducing the contents of R1 by one, and branching only if the resulting contents of R1 is
not zero. That is, the branch does not occur only when the result is zero.

The CC is unchanged, and has no effect on the branching condition. An interruption condition is
never recognized, even if an internal fixed-point overflow occurs (that is, if the new contents of R1
“wraps around” from the largest negative number to the largest positive number).

We can rewrite our original example in Figure 167 on page 332 to use a JCT instruction, by
stepping backwards along the string of characters starting at Str+79 and ending at Str. This lets
us use the same quantity both as an index and a counter.

Instruction Extended Mnemonic

BRCT JCT

BRCTG JCTG

SR 0,0 Clear GR0
LA 1,80 Set GR1 to number of characters
LA 2,C'a' c(GR2) = letter 'a'
LA 3,C' ' c(GR3) = blank

Next IC 0,Str-1(1) Get a character
CR 2,0 Compare 'a' to character
JNH Okay Branch if 'a' is low or equal
STC 3,Str-1(1) Otherwise blank it out

Okay JCT 1,Next Count down by 1, jump if not 0
Figure 170. A backward loop to scan and replace characters

334 Assembler Language Programming for IBM System z™ Servers Version 2.00

We used the implied address Str−1 in the second operand of the IC and STC instructions
because the possible values in GR1 now run from 80 to 1, rather than from 0 to 79 as before.
The range of values is different, but the direction of incrementation makes no difference in this
example. This can be thought of as reflecting a difference in numbering the bytes in the string: if
we number them from 0 to 79 they are addressed by writing the operand as Str(1); but if the
bytes are numbered from 1 to 80, they must be addressed by writing the operand as Str−1(1).

On the final pass through the loop, the contents of GR1 will be 1; when the JCT instruction is
executed, the contents of GR1 is reduced to zero, the branching condition is finally not met, and
control passes to the next sequential instruction. We see an immediate gain in program efficiency
over the example in Figure 168 on page 333: if we count the instructions inside the loop, we
have reduced them from 7 to 5, and we would expect about the same reduction in processing
time.

The Branch on Count instructions are especially useful when a predetermined number of loop
iterations is needed, and no special attention must be paid to indexing quantities. The count of
loop iterations is often set at execution time rather than at assembly time.

To illustrate several uses of these instructions, consider these examples taken from previous
sections.

1. The word at Nbr contains a positive integer N; compute the sum of the cubes of the first N
integers. (See Figure 125 on page 267.)

L 4,Nbr c(GR4) = index 'K', initially N
SR 5,5 Initialize sum to zero

Next LR 1,4 c(GR1) = K
MR 0,1 K * K
MR 0,4 K cubed
AR 5,1 Add to sum
JCT 4,Next Decrease K by 1, and loop
ST 5,Sum Store sum

2. The halfword at NN contains a positive integer N; store at NSq the sum of the first N odd
integers. (See Figure 82 on page 218.)

SR 0,0 Clear sum to zero
LH 1,NN Get N from memory

Loop LA 2,0(1,1) (Count + Count) in GR2
BCTR 2,0 (2 * Count) - 1
AR 0,2 Add to sum
JCT 1,Loop Reduce count and branch
ST 0,NSq Store result

Figure 171. Calculate the sum of the first N odd integers

Because N is positive and at most 15 bits long, we can use the LA instruction to compute
(N+N) in one step, since we know the result will fit in the rightmost 24 bits of GR2 for any
addressing mode (so long as N is less than 222). The following BCTR instruction does not
branch, because the R2 digit is zero; its only effect is to reduce the contents of GR2 by one,
as required. (The K-th odd integer is 2K −1.)

3. Find the two's complement of the double-length integer stored in the pair of words at Arg.
(See Figure 91 on page 226.)

LM 6,7,Arg Double-length number in (GR6,GR7)
LCR 6,6 Complement high-order part
LCR 7,7 Complement low-order part
JZ XXX Branch if carry out of GR7
BCTR 6,0 Otherwise reduce c(GR6) by 1

XXX STM 6,7,Arg Store complemented result

This is identical to the example in Figure 91 on page 226 except that the BCTR instruction
replaces

Chapter VI: Addressing, Immediate Operands, and Loops 335

SL 6,=F'1'
or

AHI 6,-1

so the CC setting may be different when the STM is executed. The BCTR instruction with
R2=0 may be used this way anywhere in a program; it is shorter than subtracting a constant
“1” from memory, but has the possible (minor) disadvantage that the CC is not set.139

As a further example of the BCT instruction, the program segment in Figure 172 stores the cubes
of the integers from 1 to 10 in a table of ten successive fullwords starting at the word named Cube,
but this time working backwards so the words are stored in descending order.

NCubes Equ 10 Number of table entries
LA 4,NCubes c(GR4) = number to be cubed

Mult LR 3,4 Move it to GR3
MR 2,3 Square it
MR 2,4 And cube it
LR 1,4 Set up index in RX
SLL 1,2 Multiply by 4 for word length
ST 3,Cube-4(1) Store in correct table position
JCT 4,Mult Branch back (NCubes-1) times
- - -

Cube DS (NCubes)F Space for 'NCubes' Words
Figure 172. Store the cubes of the first 10 integers

In this case we used the integer argument in GR4 to index the desired word in the table. Since the
table entries are 4-byte words, the index must be multiplied by four for each item, so we use SLL
to multiply. Because the first entry in the table corresponds to “1 cubed”, the implied address of
the ST instruction must be Cube-4 so that the address of each entry will be calculated correctly.

Exercises

22.4.1.(2)+ In Figure 171 on page 335, show how you can eliminate one instruction from the
body of the loop.

22.4.2.(1)+ In the BCT and BCTR instructions, what initial values of GR R1 will cause a
fixed-point overflow when the instruction is executed?

22.4.3.(2) A string of N bytes is stored beginning at String, and N is a halfword integer stored
at NN. Store the string at Gnirts in reversed order.

22.4.4.(3) Suppose there is a nonnegative integer K whose value is stored in memory at the
word integer KK. Starting at Str is a string of bytes whose bits are a random assortment of
zeros and ones. Write a code sequence that will find the K-th one-bit in the string, and store its
bit offset in the word at BitOff. For example, if the string starts with X'C607...', then if K=1
the bit offset is 0; if K=4 the bit offset is 6; and if K=6, the bit offset is 14.

22.4.5.(2)+ If b is the number of a register, what will happen if you execute these instructions?

BCT b,0(,b) or BCT b,0(b,0)

22.4.6.(3)+ A list of 100 fullword integers is stored beginning at the word named IntList.
Write a code sequence that moves the integers into a list beginning at NewList, but do not
move an item if it is identical to its predecessor. Store the number of items in the new list at
NumNews. For example, if the first six values at IntList are 3, 5, 5, 5, 4, 3, then the list at
NewList would begin with 3, 5, 4, 3.

139 AHI and BCTR are both very fast, and AHI sets the condition code.

336 Assembler Language Programming for IBM System z™ Servers Version 2.00

22.4.7.(2) The following code sequence is supposed to calculate the same sum of N odd integers
as in Figure 171 on page 335. Why doesn't it? What does it calculate?

LH 7,NN
LA 1,1

XXX LA 0,1(7,7)
AR 1,0
JCT 7,XXX
ST 1,Nsq

22.4.8.(3) For the program below, determine first the machine code assembled for each of the
instruction statements. Then when (at execution time) control reaches the SVC instruction,
determine c(GR2). (Don't try to assemble and then execute the program, since the SVC will
undoubtedly do something undesirable.)

Ex22_4_8 START 0
USING *,8 Establish addressability
BASR 8,0 Set base register
LA 4,4 Initialize counter
LA 7,AA Initialize address
SR 2,2 Set sum box to zero

Loop NOPR 0 Let the CPU catch its breath
AH 2,0(,7) Add a data item to the sum
LA 7,2(0,7) Increment address by 2
BCT 4,Loop Branch back if not done
SVC 3 Do something unforgettable

AA DC H'1,2,3,4,5,6,7,8,9' Table of numbers
END Ex22_4_8

22.4.9.(4) Repeat Exercise 22.4.6, but this time the results at NewList may not contain any
duplicate items. For example, if the six initial values at IntList are 2, 3, 2, 4, 2, 3, NewList
would begin with the values 2, 3, 4.

22.4.10.(2) Write a sequence of instructions that will count the number of 1-bits in GG1 and
leave the count in GG0. The original contents of GG1 need not be preserved.

22.4.11.(2)+ Repeat Exercise 17.2.6 using a BCT instruction to count the number of shifts.

22.4.12.(3)+ These instructions are intended to form the sums C(J)=A(J) +B(J) for values of J
from 1 to 64. Show the generated object code, assuming that the PrintOut instruction generates
exactly 32 bytes on the first available halfword boundary.

 Loc Object Code Assembler Language Statements
 ____ _____________ BASR 12,0
 ____ _____________ Using *,12
 ____ _____________ LA 3,64
 ____ _____________ LA 7,A
 ____ _____________ Using A,7
____ _____________ Loop L 0,A
____ _____________ A 0,B
____ _____________ ST 0,C
____ _____________ BCT 3,Loop
____ _____________ Drop 7
____ _<32 bytes>__ PrintOut *
____ _____________ A DS 64F
____ _____________ B DS 64F
____ _____________ C DS 64F

22.4.13.(2)+ In Exercise 22.4.12, the instructions don't perform the expected calculation.
Explain what happens, and what needs to be fixed.

Chapter VI: Addressing, Immediate Operands, and Loops 337

22.4.14.(3)+ An exercise required writing instructions to count the number of 1-bits in GR1
and leave the count in GR0. A student wrote:

SR 0,0 Set count to zero
LA 2,32 Count 32 bits

Loop SLL 1,1 Shift a bit into sign position
LTR 1,1 Test sign bit
BZ Next Branch if sign bit is zero
LA 0,1(,0) Add 1 to count of 1-bits

Next BCT 2,Loop Repeat for all 32 bits

The instructions didn't work. Find and fix the errors.

22.4.15.(3)+ Write instructions to count the number of 1-bits in GR1, leave the count in GR0,
and leave GR1 unchanged without saving and then restoring its contents.

22.4.16.(2)+ State the cases in which each of the following five instruction sequences give dif-
ferent results, and explain the differences.

(1) LCR 0,0 (2) X 0,=F'-1' (3) X 0,=F'-1'
A 0,=F'1' AL 0,=F'1'

(4) BCTR 0,0 (5) S 0,=F'1'
X 0,=F'-1' X 0,=F'-1'

22.4.17.(2)+ Consider these three instructions:

LCR 1,1
BCTR 1,0
LCR 1,1

1. What do these instructions do?
2. What instruction(s) do they imitate?
3. How do final Condition Code settings differ between these three instructions and the

instruction(s) they imitate? For at least these initial values in GR1:

(1) X'00000000'
(2) X'00000001'
(3) X'7FFFFFFF'
(4) X'80000000'
(5) X'FFFFFFFF'

determine the resulting c(GR1) and the CC setting from executing the three instructions,
and compare the results to what you get by executing the “imitated” instruction.

22.5. Looping in General

Most of these programming examples used loops to perform some iterative task, and the termi-
nation condition depended on a counting operation. More generally, many applications require
that

• some quantity be established as an index

• whose value is changed regularly by an increment

• and is then compared to some comparand;

• a branch may then be made depending on some condition determined by the comparison.

These four terms — index, increment, comparand, and condition — will appear in several forms
when we look at the branch on index instructions in Section 22.6.

338 Assembler Language Programming for IBM System z™ Servers Version 2.00

The term “index” means the variable quantity that controls or determines completion of the loop;
it may or may not be related to a value used as an index in an RX-type instruction (that is, speci-
fied by an index register specification digit).

If the increment is negative it might be more appropriate to call it a decrement. Rather than using
special names to distinguish the sign of the increment, we will assume the increment can be either
positive or negative.

Loops have many forms; here are two of the most common. The loops we have seen tested for
loop completion at the end of the loop; this is called a “Do-Until” loop, because the loop is
executed until the termination condition is reached. This is illustrated in Figure 173.

 ┌──────────────────────┐ ┌────────┐ ┌───────────────┐ ┌────────────┐
──│ Initialize index, ├────│ loop ├──│ add increment ├──│ compare to ├── done

│ increment, comparand │ � │ body │ │ to index │ │ comparand │
└──────────────────────┘ │ └────────┘ └───────────────┘ └─────┬──────┘

└─────────────────────────────────�───────┘ not done
Figure 173. Sketch of a Do-Until loop

As this figure indicates, a Do-Until loop is always executed once.140

The other form is called a “Do-While” loop, because the loop is executed only while the termi-
nation condition has not been reached. This is illustrated in Figure 174.

┌──┐
┌──────────────────────┐ � ┌────────────┐ ┌────────┐ ┌─────┴─────────┐

──│ Initialize index, ├────│ compare to ├──────│ loop ├──│ add increment │
│ increment, comparand │ │ comparand │ not │ body │ │ to index │
└──────────────────────┘ └─────┬──────┘ done └────────┘ └───────────────┘

done └──────
Figure 174. Sketch of a Do-While loop

For the Branch on Count instructions, the four loop-control items are all implied by the instruc-
tion: the index is in register R1, the increment is −1, the comparand is zero, and the condition for
branching is inequality. This rather limited set of possibilities may be sufficient for you to code
your loop effectively.

 Note!

The terminology for Do-While and Do-Until loops can be misleading.
Such a loop is executed until the test condition becomes false, or only
while the test condition remains true.

Figure 175 on page 340 shows another method to calculate a table of the first 10 cubes. The
difference from Figure 172 on page 336 is that an address, rather than a subscripting index, is
used as the varying quantity controlling execution of the loop.

140 For many years, this was the characteristic behavior of loops in the FORTRAN programming language.

Chapter VI: Addressing, Immediate Operands, and Loops 339

NCubes Equ 10 Number of table entries
LA 1,Cube+0*4 Address of first table entry
LA 2,Cube+(NCubes-1)*4 Address of last table entry
LA 3,1 c(GR3) = number to be cubed

Mult LR 5,3 Move multiplicand to GR5
MR 4,3 Square
MR 4,3 Cube
ST 5,0(,1) Store in table
LA 3,1(,3) Increment number to be cubed
LA 1,4(,1) Increment table address
CR 1,2 Compare to end address
JNH Mult Jump back if not past end of table
- - -

Cube DS (NCubes)F Table of resulting values
Figure 175. Store the cubes of the first 10 integers in a different way

In this case an explicit address in the ST instruction is used, rather than an implied address as in
Figure 172 on page 336. This means that the loop termination condition is determined from
address arithmetic, not from tests on any of the quantities being calculated in the loop. It's often
convenient to perform such addressing calculations explicitly, rather than rely on the Assembler to
assign all bases and displacements. The “index” of the entries in the table can be thought of as
running from 0 to (NCubes −1)*4 = 36 in steps of 4.

We used indexing in Figures 172 and 175 to compute a table of cubes. In Figure 172 on
page 336, the “index” of the loop in GR4 is also used in GR1 to “index” the ST instruction; in
Figure 175, the “index” of the loop is the address contained in GR1, but no RX-style “indexing”
is done in any of the RX instructions.

Do-Until and Do-While loops are examples of “Structured Programming” forms, but other types
of loop structures are often used. For example, you can test for a loop-exit condition in the body
of the loop:

┌�──┐
┌────────────┐ � ┌────────────┐ ┌────────┐ ┌────────────┐ │

──│ Initialize ├────│ loop body, ├──│ exit ├──│ loop body, ├──┘
└────────────┘ │ first part │ │ test │ │ remainder │

└────────────┘ └───┬────┘ └────────────┘
done └──────

Exercises

22.5.1.(2) A table of N halfword integers is stored beginning at HH, and N is a halfword integer
at NHwds. Store the integers into the table starting at RR in reverse order.

22.5.2.(2) Your solution to Exercise 22.4.9 will probably contain two loops. What are their
types?

22.5.3.(1) What type of loop is illustrated in Figure 175?

22.6. Branch on Index Instructions

Because indexed loops are a key part of many programs, System z provides the Branch on Index
High and Branch on Index Low or Equal instructions shown in Table 120 on page 341. They
can greatly simplify coding of loops.

340 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 120. Branch on index instructions

Op Mnem Type Instruction Op Mnem Type Instruction

86 BXH RS Branch on Index High (32) EB44 BXHG RSY Branch on Index High (64)

87 BXLE RS Branch on Low or Equal
(32)

EB45 BXLEG RSY Branch on Index Low or
Equal (64)

84 BRXH RSI Branch Relative on Index
High (32)

EC44 BRXHG RIE Branch Relative on Index
High (64)

85 BRXLE RSI Branch Relative on Low or
Equal (32)

EC45 BRXLG RIE Branch Relative on Index
Low or Equal (64)

As there are no essential differences between BXH/BXLE and BXHG/BXLEG other than using
32-bit registers for the former and 64-bit registers for the latter, our examples will use the 32-bit
forms. None of the instructions changes the CC setting.

As with Branch on Count, these instructions provide the three functions of incrementation, com-
parison, and conditional branching, but with much greater flexibility. BXH and BXLE are
RS-type instructions requiring two register specification digits R1 and R3, as indicated in Tables
121 and 122.

Table 121. RS-type BXH and BXLE instructions

BXHG and BXLEG are RSY-type instructions that also require R1 and R3 operands:

Table 122. RSY-type BXHG and BXLEG instructions

The relative-immediate forms of the branch on index instructions use two different instruction
formats, RSI and RIE:

Table 123. RSI-type BRXH and BRXLE instructions

Table 124. RIE-type BRXHG and BRXLG instructions

Like the STM and LM instructions, the use of registers other than GR R3 may be implied. First,
note that all of the loop-control quantities (index, increment, and comparand) are carried in regis-
ters. The index is always in GR R1, and the increment is always in GR R3. The comparand is
contained either in (GR R3+1) (if R3 is even), or in GR R3 (if R3 is odd).

Thus, if we write

BXLE 7,4,NEXT

then the index is in GR7, the increment is in GR4, and the comparand is in GR5. On the other
hand, if we write

BXLE 7,5,NEXT

the index is again in GR7, but both the increment and the comparand are in GR5. Using an
odd-numbered register for both the increment and the comparand will be discussed in Section
22.9.

We use a simple notational device to illustrate the fact that the comparand is always in an odd-
numbered register: that is, if the R3 operand is even, the comparand is in GR(R3+1), and if the
R3 operand is odd, the comparand is in GR R3. We write R3 |1 to mean that the register con-

opcode R1 R3 B2 D2

opcode R1 R3 B2 DL2 DH2 opcode

opcode R1 R3 RI2

opcode R1 R3 RI2 opcode

Chapter VI: Addressing, Immediate Operands, and Loops 341

taining the comparand is determined by ORing a low-order 1 bit into the R3 digit. Thus, GR8 |1
refers to GR9, and GR9 |1 is the same as GR9.141

The operation of Branch on Index instructions, as sketched in Figure 176, is:

1. The sum of the index and increment is computed internally, and any overflow occurring in
forming the sum is ignored.

2. The sum is then compared algebraically to the comparand. Whether or not the branching
condition is met is noted: for “Branch on Index High” this means that the sum is algebra-
ically greater than the comparand, and for “Branch on Index Low or Equal” that the sum is
algebraically less than or equal to the comparand.

3. The sum then replaces the index, and the branch is taken if the branching condition is met.

┌─────────┐ ┌─────────┐ ┌───────────┐ ┌───────────┐
┌───────┐ │ Decode: │ │ Compute │ │ Compare │ │ Is Branch │ yes

──│ Fetch ├─│ Compute ├─│ index + ├─│ sum to ├─│ condition ├────┐
└───────┘ │ branch │ │Increment│ │ Comparand │ │ met? │ │

│ address │ └─────────┘ └───────────┘ └─┬─────────┘ │
└─────────┘ no│ │
┌─────────────┐ ┌──────────────┐ │ ┌────────┐ │
│ Fetch next │ │ Sum replaces │ � │ Br.Addr│ │

�───┤ instruction │�────┤ index │�────┴──┤ to IA │�─┘
└─────────────┘ └──────────────┘ └────────┘

Figure 176. Operation of BXH and BXLE instructions

The branching condition is not reflected in the CC setting: neither of the “Branch on Index”
instructions changes the CC.

Because the branch address is computed during the “Decode” portion of the instruction cycle
before incrementation takes place, the Effective Address may not be as expected if the R1 and B2
digits are the same (unless both are zero, which is very unlikely.)

It's important to note that the comparison takes place before the sum replaces the index; we will
see examples of situations where this is important. (Exercise 22.9.8 is recommended!)

Figure 177 shows another way to visualize the execution of BXH and BXLE.

┌───────────────────┐
┌──│ sum ≤ comparand ? ├─────────┐

BXLE│ └────────┬──────────┘ no │
┌─────────┐ │ yes│ │ ┌───────┐

 │ sum = │ ┌───┴─────┐ � ┌─────────────┐ � │ sum │
──│ index + ├──│ opcode? │ ├──│Br.addr to IA├──•──│ to ├─
 │increment│ └───┬─────┘ � └─────────────┘ � │ index │
 └─────────┘ │ yes│ │ └───────┘

BXH│ ┌────────┴──────────┐ no │
└──│ sum > comparand ? ├─────────┘

└───────────────────┘
Figure 177. Operation of BXH and BXLE instructions

The Branch on Index instructions are powerful and useful, though they sometimes seem difficult.
Normal uses require three general registers, of which two must be an even-odd register pair.

The placement of the comparand in R3 |1 rather than in R3+1 (as would seem more useful and
natural) is undoubtedly due to a design requirement for the original models of System/360: it was
simpler to OR than to add a low-order one-bit to the register specification digit. Also, other

141 We are using the PL/I-language notation for the logical “OR” operation, represented by the vertical-bar character
“ |”.

342 Assembler Language Programming for IBM System z™ Servers Version 2.00

double-length instructions such as M, D, and SLDA specify an even-numbered R1 register, and
the corresponding odd-numbered register may be “addressed” in the CPU by forcing a low-order
one-bit into the register specification digit R1.

Like the conditional relative branches, the Assembler provides extended mnemonics for the four
branch relative on index instructions:

Table 125. Extended mnemonics for branch relative on index instructions

Exercises

22.6.1.(3) In the execution of the BXH and BXLE instructions, any overflow in forming the
sum of the index and the increment is ignored. However, the comparison of the sum and the
comparand requires an internal subtraction, in which an overflow might occur.

Make a table that includes all of the eight possible combinations of (1) BXH or BXLE, (2) sign
of result of subtraction is + or − , and (3) an internal overflow did or did not occur during the
subtraction. Determine for each of the eight combinations whether or not a branch will occur.

Instruction Extended Mnemonic

BRXH JXH

BRXHG JXHG

BRXLE JXLE

BRXLG JXLEG

22.7. Examples Using BXLE

To illustrate BXH and BXLE, consider the example given in Figure 167 on page 332 in Section
22.2, where we want to replace non-alphanumeric characters by blanks. We'll rewrite the code
sequence to use a BXLE instruction.

LM 0,3,=F'0,0,1,79' Preset registers GR0-GR3
* Chars inserted in GR0, index in GR1,
* increment in GR2, comparand in GR3.

LM 4,5,=A(C'a',C' ')
* Letter 'a' in GR4, blank in GR5.
GetChar IC 0,Str(1) Get a character from the string

CR 0,4 Compare to letter 'a' in GR4
BNL Alpha Branch if alphanumeric
STC 5,Str(1) Otherwise, store a blank

Alpha BXLE 1,2,GetChar Increment, test, and branch
- - -

Figure 178. Replacing special characters with blanks, using BXLE

The values of the index run from 0 to 79; when control reaches the BXLE instruction, the incre-
ment (+1) in GR2 is added to c(GR1). Because GR2 is an even-numbered register, the sum is
compared to the comparand in the next higher-numbered register, GR3. If the sum is less than or
equal to 79, the branching condition is met, and control will be transferred to the instruction
named GetChar after the sum is placed back into GR1. When control finally passes to the instruc-
tion following the BXLE, c(GR1) will be 80.

To give an example where BXLE appears in a more normal context, we will rewrite Figures 172
and 175 to compute a table of the cubes of the first 10 integers, stored starting at Cube.

Chapter VI: Addressing, Immediate Operands, and Loops 343

NCubes Equ 10 Number of table entries
LA 7,1 Initial integer = 1
SR 4,4 Set index to zero
LA 2,4 Increment of +4 for indexing
LA 3,4*(NCubes-1) Comparand (=36) in GR3

Mult LR 1,7 N in GR1
MR 0,1 N * N
MR 0,7 N cubed
ST 1,Cube(4) Store in table
AHI 7,1 Increase N by 1
BXLE 4,2,Mult Increase index by 4 and loop
- - -

Cube DS (NCubes)F Space for table of cubes
Figure 179. Creating a table of cubed integers using BXLE

This segment uses fewer instructions inside the loop, at the expense of some extra instructions
outside the loop: this is often a valuable technique, especially for loops executed many times. The
following two code segments do the same calculation, but are set up slightly differently.

NCubes Equ 10 Number of table entries
LA 7,1 Initial value of N = 1
LA 4,4 Set increment in GR4 to 4
LR 2,4 Initial index in GR2 is 4
LA 5,4*NCubes Comparand in GR5 = 40

Mult LR 1,7 c(GR1) = N
MR 0,1 N squared
MR 0,7 N cubed
ST 1,Cube-4(2) Store in table
AHI 7,1 Increment N by 1
BXLE 2,4,Mult Count and loop

Figure 180. Creating a table of cubed integers using BXLE

In this example, the index runs from 4 to 40 in steps of 4, rather than from 0 to 36 as in
Figure 179. There is no significant difference between the methods illustrated in Figures 179 and
180, except that the second can be simpler: since the integer N runs from 1 to 10 in steps of 1, the
multiplication by 4 to account for the length of the fullword result makes it natural to have the
index run from 4 to 40 in steps of 4. In Section 23 we will examine cases where such consider-
ations are important, when we access tables of data stored in array form.

Another variation of this example is given in Figure 181, where the index and comparand quanti-
ties are addresses.

NCubes Equ 10 Number of cubes
LA 4,Cube+0*4 Index set to initial table address
LA 2,4 Increment = 4 for fullwords
LA 3,Cube+(NCubes-1)*4 Comparand = final table address
LA 7,1 Initial value of N = 1

Mult LR 11,7 N
MR 10,11 N * N
MR 10,7 N * N * N
ST 11,0(,4) Store in table
AHI 7,1 Increment N by 1
BXLE 4,2,Mult Increment address by 4 and loop

Figure 181. Creating a table of cubed integers with addresses as controls

344 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

22.7.1.(3)+ Examine these two instructions, and determine (1) whether the branch to XX will be
taken, and (2) what will be the contents of GR3 after both instructions have been executed.

LA 3,1
BXLE 3,3,XX

Then, answer the same two questions, assuming that the second instruction is BXH instead.

22.7.2.(3)+ Suppose we execute the following two instructions:

LA 3,3
BXLE 3,3,*

Next - - -

What will be in GR3 when the next instruction is executed? Make the same determination for
BXH.

22.7.3.(3) A positive 64-bit dividend in registers GR6 and GR7 is divided by a positive divisor,
using the D instruction. What will happen if the instruction following the divide is

BXLE 6,7,WhatNext ?

22.7.4.(2) In Figure 178 on page 343, combine the first two instructions into a single LM that
uses a literal with an A-type constant. Then, initialize registers GR0 through GR5 using imme-
diate operands. Including space required for the constants, which code sequence is shorter?

22.7.5.(4) Suppose registers GRx and GRy (where GRy is an odd-numbered register) contain
nonnegative integers. A student claimed that we can leave in register GRx the sum of their con-
tents modulo (231 −1) with the following instruction pair:

BXLE x,y,*+8 Form c(GRx)+c(GRy)
SL x,=F'2147483647' (231−1)

Verify or disprove his claim.

22.7.6.(2) The following code sequence tries to find the leftmost 1-bit of the positive nonzero
number in GR1, and put its bit number into GR0.

SR 0,0 Initialize bit position to 0
LA 2,1 Initialize BXLE increment
LA 3,32 Initialize BXLE comparand

X SLA 1,1 Shift test word left once
JM Y Check for minus sign
JXLE 0,2,X Count up by 1 and loop

Y - - - Rest of code

The program segment does not work correctly. Explain why not, and then correct it without
increasing the number of instructions.

22.7.7.(3)+ By starting with a negative index value, it is possible to use a single register to hold
the increment and comparand of a BXLE instruction. Rewrite the examples in Figures 179
through 181 to use this technique.

22.7.8.(2) Repeat Exercise 22.7.1, but replace the first instruction with the following:

L 3,=F'1073741824' (230)

Now, do the same again, replacing the LA by

L 3,=F'-2147483647' (-231+1)

22.7.9.(3)+ If you execute this BXLE instruction:

LM 1,3,=F'7,17,77'
BXLE 1,2,*

Chapter VI: Addressing, Immediate Operands, and Loops 345

How many times will the BXLE instruction be executed? How many times will it branch?
What will be the sequence of values in GR1?

22.7.10.(2)+ Suppose A, B, and C are three positive integers used to initialize the index, incre-
ment, and comparand registers of a BXLE instruction that controls the iterations of a loop.
How many times will the body of the loop be executed?

22.8. Examples Using BXH

To illustrate the use of the BXH instruction, Figures 179 and 181 will be rewritten so that the
indexing runs in the opposite direction. First, we calculate the table of cubes using “normal”
indexing.

LA 7,10 Initial value of N
LHI 8,-1 c(GR8) = -1 for incrementing N
LA 4,40 Initial index = 40
LHI 2,-4 Increment = -4
SR 3,3 Comparand = 0

Mult LR 1,7 N
MR 0,7 N * N
MR 0,7 N * N * N
ST 1,Cube-4(4) Store in table
AR 7,8 Add -1 to N
BXH 4,2,Mult Count and loop

Figure 182. Creating a table of cubed integers using BXH

When the instruction following the BXH is reached, the index in GR4 will be zero.

We can use the value −4 for both the increment and the comparand and carry them in the same
register, as in Figure 183.

LA 7,10 Initial value of N is 10
LA 4,36 Initial index = 36
LHI 5,-4 Increment and comparand are -4

Mult LR 1,7 N
MR 0,7 N squared
MR 0,7 N cubed
ST 1,Cube(4) Store in table
BCTR 7,0 Decrease N by 1
BXH 4,5,Mult Count down and loop

Figure 183. Creating a table of cubed integers, using BXH in a special way

In this case the R3 digit 5 is odd, so R3 |1 is the same as R3; the BXH will increment the index in
GR4 by −4, compare it to −4 (the comparand, also in GR5), and branch until the resulting sum
becomes equal to −4, when control will pass to the following instruction.

Exercises

22.8.1.(3) Suppose we execute the instructions

SRL 1,1
BXH 1,1,*-4

Describe the behavior of this code segment as it depends on the initial contents of GR1. Then
do the same, but with BXLE instead of BXH.

346 Assembler Language Programming for IBM System z™ Servers Version 2.00

22.9. Specialized Uses of BXH and BXLE (*)

Some specialized uses of BXH and BXLE involve unusual combinations of register specification
digits.

1. Suppose the contents of an odd-numbered register such as GR9 is zero. Then the instruction

XR 9,9 Set GR9 to zero
BXLE 4,9,XXX Branch to XXX if c(GR4) is <= 0

will branch to XXX only if the contents of GR4 is less than or equal to zero. Similarly,

BXH 4,9,YYY Branch to YYY if c(GR4) is > 0

would branch to YYY only if the contents of GR4 is greater than zero.

Since BXH and BXLE neither set nor test the condition code, this technique can be used in
situations where a condition code reflecting the state of the contents of GR4 is not available,
the current CC setting must be undisturbed, or if we want to avoid using instructions such as
LTR followed by a conditional branch.

2. Suppose we want to perform the inverse of the BCT instruction: that is, we want to incre-
ment the positive contents of a register by +1, and then branch. If we set c(GR7) to +1, and
c(GR2) is greater than zero, then

LHI 7,1 Initialize GR7 to +1
BXH 2,7,XXX Increment c(GR2), branch to XXX

will branch to XXX after incrementing c(GR2) by 1, unless the sum overflows. (There will be
no indication of the overflow in the CC setting!) Similarly, if there is a negative integer in
GR2,

BXLE 2,7,YYY Branch to YYY if c(GR2) not > +1

will increment c(GR2) and branch to YYY so long as the resulting sum does not exceed +1.

3. If c(GR4) is +1, then the instruction

BXH 5,4,ZZZ

will increment c(GR5) by 1 and then branch if the sum does not overflow. The index and
comparand are in the same register: if the comparison was made after the sum was placed in
GR5, equality would always be indicated, and the BXH would never branch.

Such special uses of the Branch on Index instructions are rare; they are used mostly in applica-
tions such as table searching and loop control. Try these exercises and the Programming Prob-
lems; you'll more fully appreciate the power of the branch on index instructions.

Exercises

22.9.1.(3) Suppose c(GR2)=5 and c(GR3)=73. What will be left in GR2 after executing these
two instructions?

BXLE 2,2,*
SRL 2,1

More generally, if GR2 contains a small positive integer and GR3 contains a larger positive
integer, what will be in GR2? Are there limits on the value of c(GR3)?

22.9.2.(3)+ What will be left in GR5 after executing these instructions?

LHI 5,1 Initialize GR5 to +1
BXLE 5,5,* Do something interesting

Now, answer the same question for BXH.

22.9.3.(4) As in Exercise 22.7.6, the following code sequence tries to place in GR0 the number
of the leftmost bit in the positive nonzero number in GR1. Prove that it works correctly.
(Hint: consider the possible values of the two leftmost bits in GR1.)

Chapter VI: Addressing, Immediate Operands, and Loops 347

LA 0,1 Initialize bit counter
LR 2,0 ... and bit count increment
SR 3,3 Zero comparand

Loop BXH 1,1,ZBit Skip if zero bit
B Done Exit with bit number in GR0

ZBit BXH 0,2,Loop Increment bit count and try again
Done - - - Bit number now in GR0

22.9.4.(4) What values in GR1 will cause the instruction

BXH 1,1,Yes

to branch to the location named Yes?

22.9.5.(4) Repeat Exercise 22.9.4, but with a BXLE instruction.

22.9.6.(4) What values in GR0 and GR1 will cause the instruction

BXH 0,1,Yes

to branch to the location named Yes?

22.9.7.(4) Repeat Exercise 22.9.6, but with a BXLE instruction.

22.9.8.(2)+ The operation of the Branch On Index instructions has often been described as
follows:

1. The increment is added to the index, and the sum replaces the index.

2. The new index is compared to the comparand to determine the branch condition.

How is this description different from ours, and when and why is this description incorrect?
Give an example showing how it would affect the actual operation of the Branch On Index
instructions.

22.9.9.(4)+ This instruction sequence evaluates X**N (XN) for 32-bit integer values of X and
N. The base value X is in GR3, and the exponent value N is in GR0. Determine the algorithm
used to evaluate the exponential; assume that no overflows occur.

XR 1,1 Clear GR1 to zero
SRDL 0,1 Shift low-order exponent bit to GR1
BXH 1,1,OneBit Branch if it was a 1-bit

ZeroBit MR 2,3 Was a 0-bit, square work value
SRDL 0,1 Shift another low-order bit for test
BXLE 1,1,ZeroBit Branch if it's zero to square again

OneBit BXLE 0,1,Finished Br if remaining exponent bits all 0
LR 5,3 More bits to do. Copy work value

Square MR 4,5 Square work value
SRDL 0,1 Move another bit for testing
BXLE 1,1,TestMore Branch if it's zero
MR 2,5 Otherwise multiply work into answer

TestMore BXH 0,1,Square Branch if any 1-bits remaining
Finished - - - Result is in GR3

You will find it very instructive to follow this instruction sequence for several values of the
exponent such as 1, 5, 8, 11, and 15.

348 Assembler Language Programming for IBM System z™ Servers Version 2.00

22.10. Summary

The relative branch instructions discussed in this section are summarized in Table 126.

Table 126. Branch relative on condition instructions

The loop-control instructions discussed in this section are summarized in Table 127.

Table 127. Branch instructions for loop control

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Operation
Relative-Immediate Operand Length

16 bits 32 bits

Branch on Condition (Relative) BCR BCRL

Operation
Register Length

32 bits 64 bits

Branch on Count (Register) BCTR BCTGR
Branch on Count (Indexed) BCT BCTG
Branch on Count (Relative) BRCT BRCTG

Branch on Index BXH
BXLE

BXHG
BXLEG

Branch on Index (Relative) BRXH
BRXLE

BRXHG
BRXLG

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

BCT 46 BRCT A76 BXH 86

BCTG E346 BRCTG A77 BXHG EB44

BCTGR B946 BRXH 84 BXLE 87

BCTR 06 BRXHG EC44 BXLEG EB45

BRC A74 BRXLE 85

BRCL C04 BRXLG EC45

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

06 BCTR A74 BRC EB44 BXHG

46 BCT A76 BRCT EB45 BXLEG

84 BRXH A77 BRCTG EC44 BRXHG

85 BRXLE B946 BCTGR EC45 BRXLG

86 BXH C04 BRCL

87 BXLE E346 BCTG

Chapter VI: Addressing, Immediate Operands, and Loops 349

Terms and Definitions
comparand

A quantity to which an incremented index is compared to determine whether a loop should
be repeated.

increment
A (normally) constant value used to update the value of an index for each iteration of a loop.

index
A varying quantity used to control each iteration of a loop.

R3 |1
A notation referring to the general register containing the comparand of a branch on index
instruction. If the R3 operand is even, R3 |1 is the next higher odd-numbered register; and if
the R3 operand is odd, R3 |1 is that odd-numbered register.

Programming Problems

Problem 22.1. Write a program to print a formatted hexadecimal multiplication table.

Problem 22.2. Each section of this text starts with large “block numbers” showing the section
number. The blocks are 12 characters wide and 12 characters high.

Write a program that reads a single record containing up to 72 numeric digits, and print up to
10 “block number” digits at a time across the page, each separated from the preceding by 2
spaces. If more than 10 digits are provided on the input record, print 2 blank lines before each
succeeding group. If a space appears in the input record, leave that 12-character position blank
in the printed output. (Remember that the 12 blanks are separated from any preceding char-
acter by 2 spaces.)

Thus, if your input record contained only the three characters '1 2' (with a space between the
two digits), your printed output would look like this; the bottom line is shown here only to
help you understand the spacing.

11 2222222222
111 222222222222
1111 22 22
11 22
11 22
11 22
11 22
11 22
11 22
11 22

1111111111 222222222222
1111111111 222222222222
....+....1....+....2....+....3....+....4....+....5....+....6.... etc.

Some other sections are headed with “block letters”. You will enjoy extending your program
to handle letters as well as digits.*

* Such block-lettered pages were called “banner pages”, and were often used to separate fan-folded printer outputs for
one job from another.

350 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter VII: Bit and Character Data

VV VV IIIIIIIIII IIIIIIIIII
VV VV IIIIIIIIII IIIIIIIIII
VV VV II II
VV VV II II
VV VV II II
VV VV II II
VV VV II II
VV VV II II
VV VV II II
VV VV II II
VVVV IIIIIIIIII IIIIIIIIII
VV IIIIIIIIII IIIIIIIIII

In previous chapters we discussed instructions that manipulated data in byte, halfword, word, and
doubleword formats. The four sections of this chapter examine more basic System z instructions
that work with individual bits and bytes, and with varying-length character strings.

• Section 23 shows how we can manipulate data consisting of single bytes and individual bits
within a byte.

• Section 24 first introduces important concepts in using SS-type instructions. It then describes
frequently-used instructions used to process data involving large or variable numbers of bytes,
and introduces the powerful “Execute” instructions.

• Section 25 examines instructions that process very long byte strings, and strings containing a
special character.

• Section 26 discusses other character representations such as ASCII, Unicode and other
multiple-byte characters, and instructions to handle them.

Chapter VII: Bit and Character Data 351

23. Bit and Byte Data and Instructions

2222222222 3333333333
222222222222 333333333333
22 22 33 33

22 33
22 33
22 3333

22 3333
22 33

22 33
22 33 33
222222222222 333333333333
222222222222 3333333333

Instructions having an operand in the instruction itself are called immediate instructions: the
operand is immediately available from the Instruction Register, rather than from another register
or (more slowly) from memory. We saw examples of register-immediate operands in Section 21.
Here, the target operand of an SI-type instruction is in memory, whereas the RI-type and
RIL-type instructions in Section 21 refer to target operands in the general registers.

23.1. SI- and SIY-Type Instructions

SI- and SIY-type instructions let you manipulate byte and bit data. They use an 8-bit immediate
operand contained in the second (I2) byte of the instruction, in the two formats shown in Tables
128 and 129.

Table 128. SI-type instruction format

Table 129. SIY-type instruction format

The actions of the corresponding SI-type and SIY-type instructions are the same, so we'll describe
only the SI forms. (Remember: the SIY-type instructions support a signed 20-bit displacement,
while the SI-type instructions use an unsigned 12-bit displacement.)

The operand field is written as either

D1(B1),I2 or S1,I2
showing the explicit and implied forms of address for the first operand.

The first operand of SI-type machine instruction statements typically refers to the name of a byte
in memory. The second operand must be a nonnegative absolute expression of value less than
256, so that it will fit into the I2 byte of the instruction.

Table 130 on page 353 describes the behavior of the instructions; the first operand is the single
byte at the Effective Address.

opcode I2 B1 D1

opcode I2 B1 DL DH opcode

352 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 130. SI-type instruction actions

Operation Mnemonic Action CC set?

Move MVI, MVIY Operand 1 �── I2 No

AND NI, NIY Operand 1 �── Operand 1 AND I2 Yes

OR OI, OIY Operand 1 �── Operand 1 OR I2 Yes

XOR XI, XIY Operand 1 �── Operand 1 XOR I2 Yes

Compare CLI, CLIY Operand 1 Compared to I2 Yes

Test Under Mask TM, TMY Test Selected Bits of Operand 1 Yes

23.2. MVI Instructions

Table 131 lists the two Move Immediate instructions:

Table 131. Move Immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

92 MVI SI Move Immediate EB52 MVIY SIY Move Immediate

MVI stores its I2 operand into the byte at the Effective Address.

MVI X,0 Set the byte at X to zero
MVI X,255 Set the byte at X to all 1-bits
MVI X,C'Y' Store EBCDIC character 'Y' at X
MVI X,C' ' Store EBCDIC blank at X

Figure 184. Examples of the MVI instruction

MVI is often used to initialize a byte whose bits will be used as bit flags, or to store a character.
For example:

MVI FlagByte,0 Set all flag bits to zero
MVI CrrgCtrl,C'1' Printer carriage control for new page

Exercises

23.2.1.(1) What do you expect will happen if you write these instructions?

MVI 0(4),B'000000000010101010'
MVI 0(4),B'000000000101010101'
MVI 0(4),-1

23.3. NI, OI, and XI Instructions

Table 132 summarizes these six Storage-Immediate instructions:

Table 132. Logical Storage-Immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

94 NI SI AND Immediate EB54 NIY SIY AND Immediate

96 OI SI OR Immediate EB56 OIY SIY OR Immediate

97 XI SI XOR Immediate EB57 XIY SIY XOR Immediate

The CC settings after NI, OI, and XI are shown in Table 133 on page 354:

Chapter VII: Bit and Character Data 353

Table 133. CC settings by SI-type logical instructions

The logical operations of the NI, OI, and XI instructions are between corresponding bits of the
first and second operands, as we saw in Section 19. (You might want to review Figure 138 on
page 289.)

Operation CC setting

AND
OR

XOR

0: all result bits are zero
1: result bits are not all zero

(1) NI X,0 Same as 'MVI X,0' except CC set to 0
(2) NI X,253 Sets bit 6 at X to 0 (see below)
Figure 185. Examples of the NI instruction

Sometimes it is better to use other types of self-defining term for the second operand; example (2)
could be written

NI X,B'11111101'

which more clearly shows that bit 6 will be zeroed.

(3) OI X,255 Same as 'MVI X,255' except CC set to 1
(4) OI X,B'00000010' Sets bit 6 at X to 1

(5) OI LowerA,C' ' c(LowerA) now is C'A'
LowerA DC C'a' Lower case letter 'a'
Figure 186. Examples of the OI instruction

XI X,B'0000010' Inverts bit 6 at X
Figure 187. Example of the XI instruction

Exercises

23.3.1.(1) Example (5) in Figure 186 claims that the OI instruction changes C'a' to C'A'. Is
this true? Why or why not?

23.3.2.(1) Write one instruction that will set the high-order and low-order bits of the byte at
Flags to zero without affecting any of the other six bits.

23.3.3.(1) Write one instruction that will set the high-order and low-order bits of the byte at
Flags to one without affecting any of the other six bits.

23.4. CLI Instructions

Table 134 shows the two Compare Immediate instructions:

Table 134. Compare Immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

95 CLI SI Compare Immediate EB55 CLIY SIY Compare Immediate

The CLI instruction logically compares the byte in memory to the eight-bit I2 operand as
unsigned integers. The result is indicated by the CC setting, shown in Table 135 on page 355.

354 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 135. CC settings after CLI instruction

You'll remember that the same settings are generated by the CL and CLR instructions, in
Table 74 on page 232.

The following statements would result in the indicated CC settings. We use literals for the first
operand so that both operand values are immediately visible.

CLI =C'A',X'C1' CC = 0: c(Operand 1) = I2
CLI =X'00',0 CC = 0: c(Operand 1) = I2
CLI =C' ',B'01000000' CC = 0: c(Operand 1) = I2
CLI =X'1',X'2' CC = 1: c(Operand 1) < I2
CLI =C'A',250 CC = 1: c(Operand 1) < I2
CLI =C'X',C'X'-1 CC = 2: c(Operand 1) > I2
CLI =X'1',X'0' CC = 2: c(Operand 1) > I2

 Remember:

The first operand in a CLI comparison is always the byte in memory at
the Effective Address.

We can rewrite the example in Figure 167 on page 332 (and its variations) to blank out the
special characters in the string at Str, now using CLI and MVI instructions. We'll start at the
right (high-addressed) end and scan from right to left.

CC Indication

0 Operand 1 = I2
1 Operand 1 < I2
2 Operand 1 > I2

LA 1,L'Str Initialize loop count to string len
Next LA 2,Str-1(1) Form character's indexed address

CLI 0(2),C'a' Compare addressed character with 'a'
JNL AlfaNum Skip blanking if not less than 'a'
MVI 0(2),C' ' Blank out if not alphanumeric

AlfaNum JCT 1,Next Count down and loop
- - -

Str DC CL80'String ...'
Figure 188. A simpler loop to scan and replace characters

Because SI-type instructions cannot be indexed, the LA instruction named Next generates the
memory address for the character to be tested. The CLI instruction then compares the byte in
memory at that address to the immediate operand C'a'. If the byte in memory contains a bit
pattern with value greater than or equal to C'a', the following JNL instruction will branch around
the MVI instruction. If the branching condition is not met, the MVI stores an EBCDIC blank
character into the character string. These two SI-type instructions have simplified the previous
examples of the same process.

Exercises

23.4.1.(1)+ Suppose the length of a string of bytes starting at Data is not known, but we know
that the end of the string is marked with a byte of all 1-bits. Write a code sequence which will
leave the length of the string in GR1.

23.4.2.(1)+ In solving Exercise 23.4.1, a student wrote these instructions:

SR 1,1 Initialize index
Loop LA 1,1(,1) Increment by one

CLI Data-1(1),X'FF' Test the byte
BNE Loop Branch if not all 1-bits

Chapter VII: Bit and Character Data 355

Will this work?

23.4.3.(2)+ An 80-byte record starts at Record. Using CLI, find the address of the last non-
blank character; store its address at LastChAd and store the length of the “initial” character
string (from the first character to the last nonblank) at DataLen.

23.4.4.(2) Write an instruction that will set the Condition Code to 1 without changing any data
or referencing any register, and without referencing any constants in storage.

23.4.5.(2) Write an instruction that will set the Condition Code to 2 without changing any data
or referencing any register, and without referencing any constants in storage.

23.4.6.(1)+ A programmer tested a byte at Char for the lower case letter f, and wrote

CLI Char,f

He wasn't satisfied with the result; find two ways to help him.

23.4.7.(2) Write an instruction that will set the Condition Code to 0 without changing any data
or referencing any register, and without referencing any constants in storage.

23.5. Test Under Mask Instructions

Table 136 shows the two Test Under Mask instructions:

Table 136. Storage-Immediate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

91 TM SI Test Under Mask EB51 TMY SIY Test Under Mask

The Test Under Mask instruction is very useful in applications that examine bits. Because the
CPU cannot directly address individual bits, data in bit form must be treated differently from data
in byte or word form.

The I2 (immediate) operand of a TM instruction is a mask indicating which bits of the addressed
byte are examined: wherever a 1-bit appears in the mask, the corresponding bit position in the
first operand is examined, and wherever a 0-bit appears in the mask, the corresponding bit of the
memory operand is ignored. The result of the examination is indicated in the Condition Code, as
shown in Table 137.

Table 137. CC settings after TM instruction

If the I2 mask is zero (meaning that no bits are tested), the CC is set to zero. The following
examples illustrate uses of the TM instruction.

1. Branch to Minus if the fullword integer at Num is negative. (This technique can be used to
avoid loading anything into a register.)

TM Num,X'80' Test leftmost bit at Num
JO Minus Branch if a 1-bit

2. Branch to Even if the fullword integer at Num is even.

TM Num+L'Num-1,1 Test rightmost bit of the word
JZ Even Branch if bit is zero

3. Branch to Mixed if the bits of the byte at BB are not all zeros or all ones.

CC Indication

0 Bits examined are all zero, or mask is zero

1 Bits examined are mixed zero and one

3 Bits examined are all one

356 Assembler Language Programming for IBM System z™ Servers Version 2.00

TM BB,255 Test all eight bits
JM Mixed Branch if mixed zero and one

4. Branch to Small if the value of the halfword integer at HNum is between −512 and +511: that
is, if the leftmost seven bits of the integer are all 0's or all 1's.

TM HNum,X'FE' Test leftmost seven bits
BC 9,Small Branch if bits all zero or all one

The NI, OI, XI, and TM instructions let you set and test “on-off” and “yes-no” indicators in a
program. For example, as in Figure 169 on page 333, suppose we wish to add the three fullword
integers stored beginning at Q, and after all additions are done, branch to NoErr if no overflows
occurred and to Error if one or more overflows occurred.

NI Flag,X'FE' Set indicator bit for no overflows
L 0,Q Get first integer
A 0,Q+4 Add second integer
JNO NextA Branch if no overflow
OI Flag,1 Set overflow bit to 1 ('on')

NextA A 0,Q+8 Add third integer
JO Error Branch if overflow
TM Flag,1 Otherwise examine overflow bit
JZ NoErr If bit was zero, no overflows
JO Error If one, overflow occurred
- - -

Flag DS X Overflow flag byte
Q DS 3F Integers to be added
Figure 189. Setting an overflow-indication flag bit

The OI instruction ORs a 1-bit into the rightmost bit position of the byte named Flag, setting it
to a 1. Only the rightmost bit of the byte is modified, so the remaining seven bits could be used
to indicate other conditions in the same program.

As another example of these instructions, suppose we have a list of N halfword integers stored at
List, where the positive nonzero fullword integer N is stored at NN. We must add the elements of
the list, except that alternate elements of the list are added twice. Whether the even-numbered or
the odd-numbered elements are added twice is determined by the setting of the rightmost bit of
the byte named Switch: if the bit is 1, the odd-numbered elements (beginning with the first) are
added twice.

LA 4,List Initial list address in GR4
L 3,NN Number of elements in GR3
SR 6,6 Initialize sum to zero

Load LH 5,0(,4) Get a halfword list element in GR5
AR 6,5 Add to sum once
TM Switch,1 Test switch bit
JZ Once Branch if zero, add only once
AR 6,5 Add a second time

Once LA 4,2(,4) Increment list address by 2
XI Switch,1 Invert switch bit
JCT 3,Load Get next list element
- - -

NN DS H Number of halfwords in the list
Switch DC B'0' Byte with the 'switch' bit
Figure 190. Adding alternate list elements twice

Since the XOR of a 1-bit and any other bit inverts its value, the XI instruction alternately sets the
switch bit to one and zero. The TM instruction examines only the rightmost bit of Switch, and
the branching condition is met if the bit is zero.

Chapter VII: Bit and Character Data 357

Exercises

23.5.1.(2) In example 4 following Table 137 on page 356, show that if the leftmost seven bits
of a halfword integer are all zeros or all ones, then the value of the integer lies between −512
and +511.

23.5.2.(3)+ Show that the operation of the TM instruction can be correctly described as
follows:

1. Form internally the logical AND of the first operand and I2. If the result is zero, set the
CC to zero and go to the next instruction.

2. If the result of step 1 is nonzero, form internally the logical XOR of the result byte from
step (1) and I2. If the new result is zero, set the CC to 3 and go to the next instruction.

3. Otherwise set the CC to 1, and go to the next instruction.

23.5.3.(2) Write an instruction that will set the Condition Code to 3 without changing any data,
and without referencing any register.

23.5.4.(2)+ A programmer needed to test the sign of a 4-byte binary integer stored at BIN
without using any registers, and then branch to POS if the number was not negative. He wrote:

TUM BIN,80 Test Under Mask for sign bit
BP POS Branch if nonnegative

Why didn't this work? Repair his instructions to work correctly.

23.5.5.(1) Use a TM instruction to set the Condition Code to zero without referencing any reg-
isters and without referencing any constants in storage.

23.5.6.(1)+ In example 3 of Section 23.5, can the extended mnemonic BNM be used to mean
“Branch if Not Mixed”? Why?

23.6. Bit Data

The above examples illustrated SI-type instructions used mainly for control purposes. Another
important application is to manipulate data in bit form, data that takes only two values. For
example, suppose that the record of a person carrying automobile insurance requires the following
“yes-no” information: (1) age less than 25? (2) male? (3) driver-training course completed? (4)
married? (5) any previous claims? (6) assigned risk? Let the “yes” answers be represented by
1-bits in the byte named Status. Here are ways we could perform the given tasks.

1. The policy-holder has passed his 25th birthday.

Under25 Equ B'10000000' Define the young-person bit
NI Status,X'FF'-Under25 He's getting older now

2. The policy-holder has just married.

Married Equ B'00010000' Define the married-person bit
TM Status,Married Did he say he was already married?
JO Bigamy (You never know!)
OI Status,Married Indicate he's married now

3. The policy-holder has submitted a claim. If it is the first, branch to Tsk; otherwise, branch to
TskTsk.

HasClaim Equ B'00001000' Define the made-a-claim bit
TM Status,HasClaim Test if he claimed previously
JO TskTsk Yes, must be accident-prone
J Tsk Accidents can happen to anyone

4. If the policy-holder is single, male, under age 25, and has not completed a driver-training
course, branch to HighCost. As this example shows, you can test more than one bit with a
single instruction:

358 Assembler Language Programming for IBM System z™ Servers Version 2.00

Trained Equ B'00100000' Define the driver-trained bit
Male Equ B'01000000' Define the male-driver bit

TM Status,Married+Trained Test 'Married' and 'Trained'
JNZ Next Branch if both not zero
TM Status,Male+Under25 Test age and sex
JO HighCost If young untrained male, branch

Next - - - Rest of program

5. If the policy-holder is an assigned risk, indicate that he has previous claims if he also has no
driver training.

Assigned Equ B'00000100' Define the assigned-risk bit
TM Status,Assigned Check assignment status
JZ Next Branch if not assigned
TM Status,Trained Check driver training
JO Next Branch if completed
OI Status,HasClaim Otherwise set claim bit on

Next - - - Rest of program

6. If the policy-holder is married, or has completed driver training, branch to LowRisk.

TM Status,Married+Trained Check status
JM LowRisk Branch if either but not both

These examples use EQU statements to assign symbolic names to values representing bits. Unfor-
tunately, this is not the same as assigning a name to a bit itself; languages like PL/I have a BIT
data type, but Assembler Language does not.142

Exercises

23.6.1.(2) Write instructions to format the bits in the byte at BitData as eight EBCDIC 0 and 1
characters starting at BitChars.

23.6.2.(1)+ In Example 6 of Section 23.6, can the extended mnemonic BNZ be used?

23.6.3.(1)+ Suppose we defined a bit with the statement

Over25 EQU X'80'

How would you modify the statement in Example 1 of Section 23.6 to use this new definition?

23.7. Avoiding Bit-Naming Problems (*)

To illustrate a common problem using bit data, suppose we have defined two bytes containing
flag bits, as follows:

Flag1 DS X Define a byte containing flag bits
Bit0 Equ X'80' Name the value of bit 0 (leftmost)
Flag2 DS X Another flag byte
Bit1 Equ X'40' And a value for bit 1 (next)

Under normal circumstances, we would refer to the bits with a code sequence like

TM Flag1,Bit0 Test a bit in flag byte
JZ SomeCode Go do something if zero

The result of executing this TM instruction could easily be confused with

142 You can use macro instructions to implement a bit-defining and bit-handling language that names bits and protects
against referring to them accidentally.

Chapter VII: Bit and Character Data 359

TM Flag1,Bit1 Test bit 1 (in the wrong byte!)
JZ MoreCode Branch if zero

or
TM Flag2,Bit0 Test bit 0 (in the wrong byte!)
JZ WhatCode Branch if zero

If there is no way to force the “definitions” of Bit0 and Bit1 to be associated with their
“owning” bytes, then if we use the wrong byte name we will test or manipulate the wrong bits. If
we execute the instruction

OI Flag2,Bit0

we will set a bit in the wrong byte. Mistakes like this are not uncommon.

Here is a simple technique that avoids this naming problem: define MyBit and HisBit with the
following statements:

MyBit DS 0XL(X'80') Define location and length attribute
DS X Reserve actual storage

HisBit DS 0XL(X'40') Define location, new length attribute
DS X Reserve actual storage

Figure 191. Defining bit names safely

The zero duplication factors mean that no storage will be reserved by the two bit-definition state-
ments. The symbols MyBit and HisBit have the value attributes of the following byte, and their
length attributes can be used to indicate which bit within each byte is desired. We then test the bit
with an instruction sequence like

TM MyBit,L'MyBit Test desired bit in correct byte
JZ YourCode Branch if MyBit is zero

Figure 192. Using safely-defined bit names

and no reference will be made to (now nonexistent) symbols naming the bytes containing the
MyBit and HisBit bits. Referring to MyBit only by its name and length attribute greatly reduces
the chances of incorrectly referencing bit data.

Some IBM macros define bit names by their position in a byte:

Bit0 Equ B'10000000' Bit 0
Bit1 Equ B'01000000' Bit 1
Bit2 Equ B'00100000' Bit 2
Bit3 Equ B'00010000' Bit 3
Bit4 Equ B'00001000' Bit 4
Bit5 Equ B'00000100' Bit 5
Bit6 Equ B'00000010' Bit 6
Bit7 Equ B'00000001' Bit 7

If you use definitions like these to set a specific bit at a known position in a byte, the bit name
indicates the bit's position. If, however, the bit is intended to have a meaning like “Initialization
Complete” or “End of Input”, it is much better practice give the bit a meaningful name:

InitDone Equ B'00000001' If 1, initialization completed
EndInput Equ B'00000010' If 1, no further input exists

Exercises

23.7.1.(2) Suppose the definition of MyBit in Figure 191 had been written

DS B
MyBit Equ *-1,X'80'

Would the instructions in Figure 192 work correctly? Why or why not?

360 Assembler Language Programming for IBM System z™ Servers Version 2.00

23.7.2.(2)+ Using the bit-naming technique illustrated in Figure 191, define two bits named
BitA and BitB in a single unnamed byte. Then, write code sequences to do the following:

1. Set BitA and BitB to zero.
2. Invert the value of BitB.
3. Branch to Both if BitA and BitB are both one.
4. Leave in GR0 the value of BitA+BitB (that is, a number which is 0, 1, or 2 depending on

whether neither, either, or both bits are 1).

23.8. A Data Conversion Example

As a final example using SI-type instructions, suppose there is a fullword integer stored at NN
that we want to convert to a character string of printable decimal digits. The sign of the number
must precede the first digit; if the number is zero, the characters +0 should be placed at the right-
hand end of the character string. Because a fullword integer can contain a value at most ten digits
long in its decimal representation, we will reserve eleven bytes at CharVal for the result. We use
the conversion method described in “ 2.3. Converting Integers from One Base to Another (*)”
on page 19.

The method shown here works, but is clumsy and complex. We will see when we examine
packed decimal data in Section 30 that other instructions greatly simplify this task.

D EQU 10 Max number of digits
LA 2,D First, blank out result area

Blank LA 3,CharVal-1(2) Construct byte address
MVI 0(3),C' ' Store blanks in first 'D' bytes
JCT 2,Blank Branch back (D-1) times
LA 3,CharVal+D Set up address of rightmost digit
L 1,NN Get number to be converted
LPR 1,1 Take its magnitude

CnvtLoop SR 0,0 Clear high-order register
D 0,=F'10' Generate a digit by division
STC 0,0(,3) Store the remainder digit
OI 0(3),X'F0' Form correct EBCDIC representation
BCTR 3,0 Move character pointer left by 1
LTR 1,1 If quotient is zero, finished
JP CnvtLoop If nonzero, generate more digits
MVI 0(3),C'-' Assume value was -, put sign
TM NN,X'80' Check actual sign of argument
JO AllDone Branch if it was indeed -
MVI 0(3),C'+' Sign is +, store character

AllDone - - - Rest of program
CharVal DS CL(D+1) Output character string, with sign
NN DS F Number to be converted
Figure 193. Converting a binary integer to characters

23.9. Instruction Modification (*)

In olden days, it was sometimes thought to be useful (or clever) to change the mask field of a
conditional branch instruction, so that it alternately contained B'1111' and B'0000', causing an
unconditional branch to alternate with a no-operation. The example in Figure 190 on page 357
might be rewritten as in Figure 194 on page 362 to use this technique.

Chapter VII: Bit and Character Data 361

L 1,NN Get number of elements to be added
LA 0,2 Set up increment of 2 in GR0
AR 1,1 2 * N
SR 1,0 2 * (N-1) = comparand for BXLE
SR 2,2 Initialize index in GR2 to zero
SR 3,3 Same for sum, in GR3
OI Brnch+1,X'F0' Set for single add on first pass
TM Switch,1 Check to see if setup is correct
JZ Add Jump if branch setup is correct
NI Brnch+1,X'0F' Otherwise set up to add twice

Add AH 3,List(2) Add a term from the list
Brnch BC 0,FlipMask Mask field alternated by XI inst'n

AH 3,List(2) Add again if required
FlipMask XI Brnch+1,X'F0' Invert branch mask bits again

BXLE 2,0,Add Count and loop
ST 3,Result Store answer

Figure 194. Adding alternate list elements twice, with program modification

The mask field of the BC instruction is addressed as Brnch+1, because Brnch is the name of the
byte containing the operation code. Then, the instructions that manipulate the mask bits are
written to leave unchanged the index register specification digit of the second byte of the instruc-
tion at Brnch, because we do not want to modify the index digit.

Modifying an instruction in memory is now considered a terrible programming practice, for these
reasons:

1. The coding tends to be more difficult to understand, because you won't know with any cer-
tainty what is done by a given instruction if it could be modified by other parts of the
program.

2. Debugging the program is more difficult, since it is usually easier to keep track of data (such
as at Switch in Figure 190 on page 357) than parts of instructions. What you see in
memory might not match your program listing. (It's no longer the program you wrote!)

3. If you must rewrite part of a program, it may be difficult to find all the instructions that
modify or are modified by others.

4. If, as many programs are, the program must be reenterable (a property requiring no self-
modification), such techniques are forbidden.

5. Modern processors assume that any instruction modifying memory is referring to data, so
they prefetch large groups of instructions for faster decoding. If the CPU discovers that you
have stored into the part of the program it prefetched, it must discard its initial analysis and
re-fetch again. This can slow your program considerably.

Important Advice

Avoid self-modifying programs.

Most instruction modification needs are best handled by the Execute instruction, which we'll see
in Section 24.11.

To show that the example in Figure 194 need not rely on program modification, the code
segment in Figure 195 on page 363 does the same calculation more rapidly and safely.

Study the actions of the JXH and JXLE instructions carefully!

362 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 1,NN Set up JXLE comparand N in GR1
BCTR 1,0 N-1
ALR 1,1 2 * (N-1) = 2N-2 in GR1
LA 0,2 Increment in GR0
SR 3,3 Initialize sum to zero
SR 2,2 Same for index
TM Switch,1 Test for first term adding twice
JO Twice Branch if bit is 1, meaning yes

Once AH 3,LIST(2) Add a term once
JXH 2,0,Done Increment index, branch if done

Twice AH 3,LIST(2) Add a term
AH 3,LIST(2) ...twice
JXLE 2,0,Once Increment index and loop

Done - - - Continuation of program
Figure 195. Adding alternate list elements twice, without program modification

Exercises

23.9.1.(3) The following fragment of code was discovered in a trash can. By examining the
sequence of values contained in R4, determine what the code does.

LA 6,2
LA 4,5 Test number

VA AR 4,6
SLL 6,1
XI *-4,X'01' Flip-flop
- - - Some undecipherable material
B VA

23.9.2.(2) Show that the SI-type OI, NI, and XI instructions in Figure 194 on page 362 do not
modify the index register specification digit of the instruction named Brnch.

23.9.3.(2) A widely used program (HASP) contained an instruction sequence like the following:

OI Flag+1,1 Set a flag bit
- - -

Flag TM Flag+1,0 Test the flag byte
BNZ FlagSet Branch if not zero

Elsewhere in the program, other instructions modified the byte at Flag+1. Why would anyone
write a program this way?

23.10. Summary

The instructions we've discussed in this section are summarized in Table 138.

Table 138. Storage-Immediate instructions

Function
Operand 1

Operand 2
12-bit displacement 20-bit displacement

Move Immediate MVI MVIY I2
AND Immediate NI NIY I2
OR Immediate OI OIY I2

XOR Immediate XI XIY I2
Compare Immediate CLI CLIY I2

Test Under Mask TM TMY I2

Chapter VII: Bit and Character Data 363

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

CLI 95 NI 94 TM 91

CLIY EB55 NIY EB54 TMY EB51

MVI 92 OI 96 XI 97

MVIY EB52 OIY EB56 XIY EB57

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

91 TM 96 OI EB54 NIY

92 MVI 97 XI EB55 CLIY

94 NI EB51 TMY EB56 OIY

95 CLI EB52 MVIY EB57 XIY

Terms and Definitions
reenterable

A program is reenterable if

• Its execution can be suspended, then executed by other processes, and then resumed by
the original process with correct behavior for all processes.

• It can be executed simultaneously by multiple processes, with correct behavior for all
processes.

self-modification
A program modifies its instructions or constants. Considered a very poor programming prac-
tice with severe execution-time performance penalties, and forbidden if the program must be
reenterable.143

143 Technically, a self-modifying program can be reenterable if every execution instance makes exactly the same modifi-
cations. This is considered an even poorer practice.

364 Assembler Language Programming for IBM System z™ Servers Version 2.00

24. Character Data and Basic Instructions

2222222222 44
222222222222 444
22 22 4444

22 44 44
22 44 44
22 44 44

22 44444444444
22 444444444444

22 44
22 44
222222222222 44
222222222222 44

The instructions we've seen thus far have involved at most one memory operand; now we'll inves-
tigate basic SS-type instructions that work with two operands in memory having variable lengths.
We will also describe “Execute” instructions that help you handle varying-length data.

24.1. Basic SS-Type Instructions

We'll introduce some basic concepts using the instructions in Table 139.

Table 139. Basic character-handling instructions

Op Mnem Type Instruction Op Mnem Type Instruction

D2 MVC SS Move [Characters] E8 MVCIN SS Move [Characters] Inverse

D4 NC SS AND [Characters] D6 OC SS OR [Characters]
D7 XC SS XOR [Characters] D5 CLC SS Compare Logical [Characters]
DC T R SS Translate DD TRT SS Translate and Test

D0 T R T R SS Translate and Test Reverse

The word “Characters” is enclosed in square brackets because the z/Architecture Principles of
Operation description of those instructions omits that word from the name of the instruction, even
though it's implied by the instruction mnemonics. While often used to manipulate character data,
they simply process strings of bytes, whether or not they represent characters.

Because the lengths of the operands are not implied by the instruction (as we saw for instructions
like L and LH), the number of bytes to be processed must be specified somehow. The
instructions in Table 139 have the format illustrated in Table 140:

Table 140. Format of single-length SS-type instructions

opcode L B1 D1 B2 D2

Chapter VII: Bit and Character Data 365

These instructions are all 6 bytes long, have two Addressing Halfwords, and their second byte
(“L”) specifies the machine length or Encoded Length144 of the operand or operands; we'll explain
“Encoded Length” shortly.

The Assembler Language syntax of these instructions is shown in Figure 196:

mnemonic D1(N,B1),D2(B2)
Figure 196. Assembler Language syntax of basic SS-type instructions

where N, the Length Expression (LE) (also known as the program length) is the number of bytes
the instruction will process. (For some of these instructions, “at most” N bytes.)

The important difference between N and L is explained in Section 24.5 on page 370.

Except for TRT and TRTR, the only reference to or use of the general registers by the
instructions in Table 139 on page 365 is for operand addressing.

The result of each operation is found in the first operand location, except for TRT, TRTR, and
CLC, which modify no data in memory.

24.2. Operand Specifications and Explicit Lengths

As illustrated on page 114 in Section 9.9, you could write a typical SS-type instruction as

MVC Field(5),Area

The operand field specifies three quantities: the implied addresses of the operands named Field
and Area, and the number of bytes to be moved, 5.

Because the symbols Field and Area must be resolved into addressing halfwords, we must derive
five operand-dependent quantities: the Encoded Length L and the base and displacement of the
two addressing halfwords. The base and displacement of each addressing halfword is assigned by
the Assembler from an implied address.

The number L in the Encoded Length byte generated by the Assembler is derived from the
Length Expression (N) in your machine instruction statement. The Length Expression may also
be explicit or implied; we'll discuss implied Length Expressions in Section 24.4.

You will remember from Section 8.5 on page 102 that machine instruction statement operands
can take any of these three forms:

expr expr(expr) expr(expr,expr)

where the third format can sometimes be written expr(,expr).

For most of the instructions we've seen so far, these formats are used for the first four instruction
types shown in Table 141 on page 367, where S is our notation for an implied address, an abso-
lute or relocatable expression. In the last row, we see that SS-type instructions introduce new
possibilities:

144 The Encoded Length byte is sometimes called the “machine length” or “Length Specification Byte”.

366 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 141. Instruction types and operand formats

In particular, notice that for SS-type instructions, the third operand format does not resolve to
D(X,B)!

Suppose we want to move 23 bytes from the area of memory beginning at AA to the area begin-
ning at BB. We could write

MVC BB(23),AA Move 23 bytes from AA to BB

where the addresses of the two operands are implied. For SS-type instructions, the number in
parentheses is not an index register specification, but an explicit Length Expression. Its value, 23,
is the number N of bytes to be moved.

There are several ways to specify the Length Expression, as shown in Table 142. (Remember
that “S1” and “S2” are our notations for the implied addresses of the first and second operands.)

Table 142. SS-type instructions with explicit length

An explicit Length Expression is simply an expression you write in your machine instruction
statement. Suppose we again want to move 23 bytes from AA to BB and that if GR9 is used as a
base register, the displacements for AA to BB will be X'125' and X'47D' respectively. Then,
Figure 197 shows how we could use any of the following four instructions, corresponding to the
four operand formats in Table 142:

Instruction
Type Operand Format

expr expr(expr) expr(expr,expr) expr(,expr)

R R register invalid invalid invalid

RX S S(X) D(X,B) D(,B)

RS S D(B) invalid invalid

SI S or immediate D(B) invalid invalid

SS S S(N) D(N,B) D(,B)

Explicit Length

S1(N),S2
D1(N,B1),S2

S1(N),D2(B2)

D1(N,B1),D2(B2)

MVC BB(23),AA S1(N),S2
MVC X'47D'(23,9),AA D1(N,B1),S2
MVC BB(23),X'125'(9) S1(N),D2(B2)
MVC 1149(23,9),293(9) D1(N,B1),D2(B2)

Figure 197. Examples of SS-type instruction operands

Equivalent decimal and hexadecimal self-defining terms are used for the displacements D1 and D2.

Exercises

24.2.1.(1) What is the difference between an implied address and an implicit address?

Chapter VII: Bit and Character Data 367

24.3. Symbol Length Attribute References

A Symbol Length Attribute Reference is written as the letter L followed by an apostrophe fol-
lowed by a symbol, as in L'BB. It is an absolute term with value equal to the length attribute of
the symbol. Because symbols can be defined in several ways, the following rules may be helpful:

1. If the symbol was defined in an EQU statement with * or a self-defining term in the operand
field, its length attribute is one. However, as noted in Section 8.4 on page 100, if you specify
a second operand in the EQU statement, that value will be used as the Length Attribute of
the symbol. For example, if you define the symbol XXX in this EQU statement,

XXX Equ *,13

then XXX will have the value of the current Location Counter, and length attribute 13.

2. The length attribute of a literal is defined; thus

MVC BB(L'=C'RAY'),=C'RAY'

(while clumsy) is valid; it's better to define a constant named by a symbol, and then use the
length attribute of the symbol:

MVC BB(L'RAY),RAY
- - -

RAY DC C'RAY'

3. The length attribute of a Location Counter Reference (*) is the length of the machine
instruction in which it appears. Thus MVC BB(L'*),AA assigns length attribute six, the length
of the MVC instruction.

• The length attribute of a symbol naming a macro instruction depends on the code it gen-
erates.

Exercises

24.3.1.(2) Can you find a way to specify an implied Length Expression whose value is zero?

24.3.2.(2) Is it possible to specify the length attribute of an expression using the L' notation?

24.4. Implied Lengths

If you don't specify an explicit length N, the assembler will derive an implied length from the first
term in the first operand.

Table 143. SS-type instructions with implied length

Note that if the address of the first operand is specified explicitly and the Length Expression is
implied, the comma following the left parenthesis is very important.

As a reminder, the words “explicit” and “implied” that we saw in Section 11.4 were used define
constants with explicit and implied lengths:

IMPLIED DC F'8' Implied length = 4 bytes
EXPLICIT DC FL5'8' Explicit length = 5 bytes

and the same words describe addresses:

Implied Length

S1,S2
D1(,B1),S2
S1,D2(B2)

D1(,B1),D2(B2)

368 Assembler Language Programming for IBM System z™ Servers Version 2.00

ImplAddr L 0,=F'6' Implied address, resolved by Assembler
ExplAddr L 0,X'D4'(0,7) Explicit address, specified by you

In this section, we use the same words to describe Length Expressions: you can provide an explicit
Length Expression, or you can let the Assembler derive the value of an implied Length
Expression.

We usually don't want to have to specify an explicit Length Expression, particularly when the
number of bytes should be apparent from the operands. For example, suppose the symbol BB is
defined in a DS statement like this:

MVC BB,=120C' ' Set field at BB to blanks
- - -

BB DS CL23 Field of length 23 bytes

Even though the second operand is 120 bytes long, if more than 23 bytes are moved by the MVC
instruction, then the data or instructions following the byte at BB+22 could be overwritten! Thus
the length of the string of bytes to be moved should be determined from the first, or receiving,
operand, rather than the second.

This is what the Assembler does. If no explicit Length Expression is given, the Length Attribute
of the first operand is used as the value of the Length Expression: it is implied by the operand. In
this example, the length attribute of the symbol BB is 23.

If the first operand is an expression rather than a single term, the length attribute is that of the
leftmost term in the expression. Thus, with BB defined as above, if we write

MVC BB-4+X'5'-1,=120C' '

then the length attribute of the first operand is 23, but if we write

MVC X'5'+BB-5,=120C' '

the length attribute of the first operand is 1 because the length attribute of a self-defining term is
always 1 (see Section 7.6).

Now, suppose we want to use an implied length, but with an explicit first operand address. The
value of the Length Expression cannot be immediately associated with a symbol that names an
area of the program using its length attribute. Unlike the examples in Figure 197 on page 367,
knowing the base and displacement of the symbol BB (9 and X'47D') does not necessarily give the
correct Length Expression when an implied length must be found. If an explicit base and displace-
ment are given, the value of the Length Expression is the length attribute of the displacement
expression. Thus

MVC X'47D'(,9),AA

specifies an implied length of 1 rather than 23, because X'47D' is a self-defining term. Using an
explicit address and an implied length is very rare; it's much better to use a Length Attribute Ref-
erence.

You can specify an explicit base and displacement, and still use an implied length. We could have
written

MVC BB-BB+X'47D'(,9),AA

and the length attribute of the displacement expression is the length attribute of BB, but this is
cumbersome and confusing. We can rewrite this example to use an explicit base and displace-
ment, in the improved form

MVC X'47D'(L'BB,9),AA Length Expression = L'BB
Figure 198. SS-type instruction using a Length Attribute reference

It is almost always better to use a Symbol Length Attribute Reference, which is one of the terms
we described when examining expressions in Section 8.1.

These rules are summarized in Table 144 on page 370. The last column shows how the Length
Expression is determined for the four possible forms of the first operand.

Chapter VII: Bit and Character Data 369

Table 144. Determining the Length Specification Byte

Advice: Use Implied Lengths

Wherever possible, use implied lengths and let the Assembler derive the
Length Expression for you. If the length of a data field changes, the
Assembler will recalculate the Length Expression; this is safer and much
more convenient than updating explicit Length Expressions manually.

Exercises

24.4.1.(1) How many bytes will be moved by these instructions? What values will you find in
the first operand fields?

(1) MVC A,=X'01020304050'
A DS H

(2) MVC B,=CL6'ABCDEF'
B DS BL4

(3) MVC C(3),=F'2'

24.4.2.(2)+ What are the formats of each of these possible operands when used as (a) the first
operand, and (b) the second operand of an MVC instruction?

(1) 7(4) (2) 24(6,12) (3) A(B) (4) 5(,1)

24.4.3.(2)+ The paragraph following Table 141 on page 367 says that the comma following the
left parenthesis is very important in some situations. Why?

First operand form Address specification Length Expression Length used

S1 implied implied L'S1
S1(N) implied explicit N

D1(,B1) explicit implied L'D1
D1(N,B1) explicit explicit N

24.5. The Encoded Length “L” and Program Length “N”

Now that we know how to write SS-type instruction statements with any Length Expression we
need, we will review what actually goes into the machine language instruction. As we noted in
Section 24.2, the value of the Encoded Length isn't necessarily the same as the value of the
Length Expression. Here's why.

Why do we use L in the object code format, but N in the machine instruction statement format?
They are different: L is one less than N (unless N is zero, in which case L is also zero). This is
important!

There are good reasons for this difference:

• programmers want to specify N, the true number of bytes involved;

• the CPU must sometimes know the address of the rightmost byte of an operand; that address
is the operand's Effective Address (its starting address) plus L;

• it makes no sense to operate on zero bytes (that's what NOP instructions are for!).

• the Execute instructions in Section 24.11 will show why instructions with zero length bytes are
very useful.

When you code a value N in a machine instruction statement, the Assembler converts it to the
correct value of L in the generated object code.

370 Assembler Language Programming for IBM System z™ Servers Version 2.00

Because the Length Specification Byte is a single byte, it can have any value between 0 and 255;
these actually specify operand lengths between 1 and 256. This is due to two factors:

• Every SS-type instruction always operates on at least one byte.

• All the instructions in Table 139 on page 365 except MVCIN and TRTR process data from
left to right in order of increasing addresses.

− For left-to-right instructions, the CPU must calculate the address of the last byte of each
operand to check for possible memory-access violations.

− Similarly, MVCIN, TRTR, and some other instructions process data from right to left, in
order of decreasing addresses, starting at the rightmost byte.

In both cases, the CPU must compute the addresses of the leftmost and rightmost bytes of the
operand. It is simplest to locate the rightmost byte by adding the Encoded Length L to the
effective address of the operand; if there are N bytes in a string starting at address A, its right-
most byte is at address A+N−1 = A+L.

That's why the Encoded Length has the value of the Length Expression minus 1.

Important Notation Difference!

The z/Architecture Principles of Operation illustrates SS-type instructions
like MVC this way, where the two uses of L can be very confusing:

 CLC D1(L,B1),D2(B2) [SS]

┌────────┬────────┬────┬────────────┬────┬────────────┐
│ D5 │ L │ B1 │ D1 │ B2 │ D2 │
└────────┴────────┴────┴────────────┴────┴────────────┘

Both the Assembler Language syntax with operands D1(L,B1),D2(B2)
and the format of the assembled instruction use the same letter “L” to
indicate the operand length! But the two numbers are not the same: the
first “L” in the Assembler Language statement is the Length Expression
(that we call N, the true number of bytes to process), while the second
“L” in the assembled instruction is the Encoded Length, one less than the
true length!

When you refer to the z/Architecture Principles of Operation, be very
careful to distinguish the two uses of L.

We usually don't care about this distinction because we let the Assembler determine the needed
quantities from the operands of the instruction statement. However, at execution time we may
need to calculate the number of bytes to be manipulated, so it's important to understand this
relationship between the Encoded Length and the actual number of bytes involved. An illus-
tration (showing a bad way to do this) is given in Example 4 of Section 24.6; the right way to do
this is discussed in Section 24.11.

Thus, the Encoded Length is a number one less than the value of the Length Expression, unless
an explicit length of zero is given, in which case the Encoded Length is also zero.

Encoded Length

The Encoded Length is one less than the Length Expression, unless the
Length Expression is zero.

The instructions in Figure 199 on page 372 would be assembled as indicated, assuming the same
displacements for the symbols AA and BB relative to the base address in GR9, as in Section 24.2.

Chapter VII: Bit and Character Data 371

* Instruction Assembled form
*

MVC BB(23),AA D216 947D 9125 LE=23
MVC BB(1),AA D200 947D 9125 LE=1
MVC BB(0),AA D200 947D 9125 LE=0
MVC 0(L'*,0),29(12) D205 0000 C01D LE=6 (MVC's length!)
MVC 15(L'BB-4,3),BB D212 300F 947D LE=19
MVC BB,AA D216 947D 9125 LE=23
MVC H(L'H,H),H D200 8008 0008 LE=1
MVC H(H,H),H(H) D207 8008 8008 LE=8
MVC H+BB-AA(,9),AA D200 9360 9125 LE=1
MVC T,BB-4 D216 947D 9479 LE=23
MVC BB-AA+4(9),AA D208 035C 9125 LE=9
- - -

BB DS CL23
T EQU BB Length attribute of T = 23
H EQU 8 Self-defining term, Len Attr = 1
Figure 199. Examples of Length Specification Bytes

Possible Confusion?

Sometimes people call “the value of the Length Expression” simply “the
length”. This can be confusing if “the length” is understood to mean the
contents of the Encoded Length, which is sometimes called the “machine
length”. That is:

• You provide implicitly or explicitly a Length Expression (a “symbolic
length” or “program length”).

• The Assembler generates the Encoded Length (the “machine length”).

24.6. The MVC and MVCIN Instructions

24.6.1. MVC: Move Characters

MVC moves the specified number of bytes starting at the second operand address to an area
starting at the first operand address. There are no restrictions on overlapping areas, so you can do
things like propagate a character through an area, or shift the bytes in an area. We need only
remember that almost all SS-type instructions are executed in such a way that each byte is stored
before the next source byte is accessed.

Figure 200 shows how MVC can be “emulated” by other instructions. Remember that the length
expression LE is not the Length Specification Byte of a “real” MVC.

*Emulate MVC BB(LE),AA Moves LE bytes from AA to BB
LA 1,BB Address of first operand
LA 2,AA Address of second operand
LA 0,LE Length Expression (N)
LTR 0,0 Check for zero
JNZ MoveByte Nonzero, OK to move
LA 0,1 LE=0 means move one byte

MoveByte IC 3,0(,2) Get a second-operand byte
STC 3,0(,1) Store at first operand
AHI 1,1 Increment first operand address
AHI 2,1 Increment second operand address
JCT 0,MoveByte Repeat until LE bytes moved

Figure 200. Emulated operation of MVC instruction

372 Assembler Language Programming for IBM System z™ Servers Version 2.00

Because MVC has no restrictions on operand overlap, the “byte at a time” emulation in
Figure 200 is “faithful” to the execution of MVC. Of course, the MVC instruction doesn't
modify any registers this way.

Here are some examples using MVC instructions.

1. Set the 120-byte area beginning at Line to blanks.

MVI Line,C' ' Store EBCDIC blank at 'Line'
MVC Line+1(119),Line Propagate through rest of area

This is sometimes called a “ripple” move. It requires less storage space than

MVC Line(120),=120C' '

because extra space is required for the literal string of 120 blanks.

Another way to set the 120-byte area at Line to blanks:

MVC Line,Line-1 Requires carefully-ordered DC's
- - -

Blank DC C' ' Single blank
Line DS CL120 Immediately follows the blank

2. Shift the 80-byte character string beginning at Str to the left by two character positions,
leaving blanks in the vacated positions.

MVC Str(78),Str+2 Move left by 2 bytes
MVC Str+78(2),=C' ' Two blanks at end

3. Exchange the contents of the halfword integers at A and B.

MVC Temp,A Move A to temporary location
MVC A,B Move B to A
MVC B,Temp Move old c(A) from Temp to B
- - -

Temp DS XL2
A DS H
B DS H

4. GR8 and GR9 contain respectively the address and length of a message whose length is posi-
tive and less than 120 characters. Move the message to the area named Line.

BCTR 9,0 Decrease length by 1
STC 9,MVC+1 Store in length byte of MVC (??)

MVC MVC Line(0),0(8) Move correct number of bytes

The BCTR reduces the character count in GR9 from its “true” value to the “machine
length” value required by the MVC: one less than the actual number of bytes to be moved.
This is a terrible way to do this, because it requires instruction modification (discussed in
Section 23.9). A a better way to do this uses the Execute instruction, which we'll see in
Section 24.11.

24.6.2. MVCIN: Move Characters Inverse

MVCIN was implemented to support languages written from right to left. It moves characters
the same way as MVC, but in reverse order. That is, the bytes of the second operand are fetched
in right-to-left order and are stored at the first operand in left-to-right order. The second operand
of the machine instruction statement must address the rightmost byte of the string to be moved.
For example:

MVCIN CRev,Chars+L'Chars-1 Move reversed Chars to CRev
- - -

Chars DC C'12345' Data to be moved
CRev DS CL(L'Chars) Moved data = C'54321'
Figure 201. Example of Move Inverse instruction

Chapter VII: Bit and Character Data 373

As Figure 200 on page 372 does for MVC, Figure 202 shows an emulation of MVCIN. The
emulation uses GR3 both as an index and as a count of the number of bytes to move.

*Emulate MVCIN BB(LE),AA+L'AA-1 Move inverse: LE bytes from AA to BB
LA 3,LE Number of characters to move in GR3
LTR 3,3 Check for LE = 0
JNZ LENotZro Skip if greater than zero
LA 3,1 LE = 1 moves one byte

LENotZro LA 1,BB Address of first operand
LA 2,AA-1 A(2nd operand's leftmost byte)-1

Insert IC 0,0(3,2) Insert a byte from right end of AA
STC 0,0(,1) Store at left end of BB
AHI 1,1 Increment first operand address
JCT 3,Insert Reduce byte count by one and loop

Figure 202. Emulated operation of MVCIN instruction

The emulated addressing seems to reference the byte preceding the leftmost byte of the second
operand. However, the indexed IC instruction will start by inserting the rightmost byte and will
end with the byte at AA, because GR3 actually contains the Length Expression, not the Length
Specification Byte.

Unlike MVC, the z/Architecture Principles of Operation does not guarantee “byte-by-byte” opera-
tion for MVCIN, so if the operands overlap by more than one byte, the results may be unpredict-
able.

24.6.3. MVCOS: Move Characters With Optional Specifications (*)

The specialized MVCOS instruction can simplify character moves.

Table 145. MVCOS instruction

Op Mnem Type Instruction

C80 MVCOS SSF Move [Characters] with Optional Specifications

The SSF instruction format illustrated in Table 146 is used for relatively few instructions.

Table 146. SSF instruction format used for the MVCOS instruction

Unlike the previous SS-type instructions, you specify the true length to be moved in a register, set
GR0 to zero,145 and the instruction will move up to 4096 bytes at a time. Its syntax is

MVCOS D1(B1),D2(B2),R3
where data is moved from the second operand to the first, and the number of bytes to move is
placed in the R3 operand register (which of course must not be GR0!). The number of bytes
actually moved is the number in the R3 register or 4096, whichever is less. The CC is set to 0 if
all bytes have been moved, or to 3 if more than 4096 bytes were specified.

For example, suppose we want to move 10000 bytes from Here to There:

opcode R3 op B1 D1 B2 D2

145 If nonzero bits appear in GR0, your program may cause a privileged-operation exception.

374 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 7,There Target address
LA 4,Here Source address
LHI 12,10000 Number of bytes to move
XGR 0,0 Set GR0 to zero (important!)

Mover MVCOS 0(7),0(4),12 Move up to 4096 bytes
JZ Done Branch if all bytes moved
AHI 7,4096 Update target address
AHI 4,4096 Update source address
AHI 12,-4096 Reduce remaining count
J Mover Repeat for more bytes

Done - - -
Figure 203. Example of MVCOS instruction

This example illustrates these important points:

• The source and target addresses, and the remaining byte count, are not updated by MVCOS:
you must do that.

• Setting GR0 to zero is very important: MVCOS is a semi-privileged instruction, and any
nonzero bits in GR0 may cause a program interruption (unless your program is executing in
Supervisor State).

The convenience of MVCOS compared to MVC or MVCL may be outweighed by its slightly
slower performance.

Exercises

24.6.1.(2) Suppose MVCIN used predictable “byte-by-byte” steps for any degree of operand
overlap. What result would appear in Figure 201 on page 373 if the instruction was

MVCIN Chars,Chars+L'Chars-1 ?

24.6.2.(2) The character string at Message has three segments, as defined by these statements:

Message DS 0C
Prefix DS CL43
Insert DS CL29
Suffix DS CL67

Write instructions that will move the strings at PText, IText, and SText into these fields, but
the string at IText must be moved to Insert in reverse order.

24.6.3.(1) What will be in the character string at Result after executing these instructions?

MVC Result,Data
- - -

Data DC C'Data'
Result DS CL8

24.6.4.(1) What is in both operands after executing this MVC?

MVC Result2(8),Data2
- - -

Result2 DS C'ABCD'
Data2 DC C'PQRSTUVW'

24.6.5.(2) In example 4 of Section 24.6.1, is there any reason (other than very poor style) not to
write the last two instruction statements as

STC 9,*+5
MVC LINE(0),0(8) ?

24.6.6.(3) Consider these two examples of an MVCIN instruction with overlapping operands:

Chapter VII: Bit and Character Data 375

(1) MVCIN X,Y+L'Y-1
- - -

X DS CL7
ORG *-1

Y DC CL7'ABCDEFG'

(2) MVCIN Q,P+L'P-1
- - -

P DC CL5'12345'
ORG *-1

Q DS CL5

In each case, the target and source operands overlap by one byte. After executing the
instructions, what data is at X and Q? Why is this one-byte overlap not a problem?

24.6.7.(2)+ Suppose three character strings are defined by the statements

A DC C'123456'
B DC C'PQRSTUVW'
C DS CL(L'A+L'B)

Write instructions to concatenate the strings at A and B into a single string at C.

24.6.8.(2)+ Suppose three character strings are defined by

D DC C'987654ABCDE'
E DS CL4
F DS CL(L'D-L'E)

Write instructions to split the string at D into two substrings at E and F.

24.6.9.(3)+ You are given a string of characters starting at Str whose length is stored at N, and
are required to extract a substring of characters whose length is at K, starting at a character
whose offset from N is stored at P. The extracted substring should be stored at Sub, and its
length should be stored in the word at L. (N, K, P, and L are words in your program.)

In case the substring is not fully contained in Str, the values at K and L will differ; and if no
valid substring can be extracted (for example, P exceeds N), store zero at L.

24.6.10.(2) A programmer needed to move a group of N records from Source to Target, where
he assumed that the length of the record is defined by L'Rec. He wrote

MVC Target(N*L'Rec),Source

Under what circumstances will this work correctly, or not?

24.6.11.(2) What will happen in the instructions in Figure 200 on page 372 if the value of the
Length Expression exceeds 256?

24.7. The NC, OC, and XC Instructions

The logical instructions NC, OC, and XC perform the AND, OR, and XOR operations described
in Section 19 on two strings, byte by byte, leaving the result in the first operand string. The CC
is set as in Table 93 on page 289. These examples illustrate the three instructions.

1. Clear the 120-byte area at Line to binary zeros.

XC Line(120),Line Set 120 bytes to zero

We could have used the same technique here as in example 1 of Section 24.6 (by moving a
string of 120 zeroed bytes).

2. Branch to Yes if the fullword integer at Lump is zero.

376 Assembler Language Programming for IBM System z™ Servers Version 2.00

OC Lump(4),Lump OR 4 bytes to each other
JZ Yes Branch if all bytes are zero

or
NC Lump(4),Lump AND 4 bytes to each other
JZ Yes Branch if all bytes are zero

The first and second operands are identical, so only only the CC is set; no data is changed.
This technique can sometimes be used when a register is not free.

Don't test a string of bytes for zero this way if the operand is memory-protected, because
both instructions store into the first operand.

3. Suppose there are two words named XX and ZZ that each contain four positive integers,
packed as illustrated in Figure 115 on page 249, shown here:

9 bits 4 bits 13 bits 6 bits
┌───────────┬──────┬───────────────┬────────┐
│ aaaaaaaaa │ bbbb │ ccccccccccccc │ dddddd │
└───────────┴──────┴───────────────┴────────┘
 �────A──── �──B─ �──────C────── �──D───

Replace the second integer in the word at XX by the corresponding value from the word at
ZZ.

MVC Temp,ZZ Move new value to temporary location
NC Temp,Mask Eliminate all but second integer
OC XX,Mask Set bits in 2d integer position to 1
XC XX,Mask Now set them to zeros
OC XX,Temp Insert new value into word at XX
- - -

Temp DS XL4 Temporary workspace
Mask DC XL4'00780000' Mask bits for 2nd integer position
Figure 204. Inserting bits in a word using logical SS-type instructions

4. Exchange the contents of the halfword integers at A and B. (Compare example 3 on page
373.)

XC B,A XOR A to B
XC A,B XOR B to A
XC B,A XOR A to B
- - -

A DS H
B DS H

This technique was used to exchange register contents in Exercise 19.5.1.*

Exercises

24.7.1.(2) Revise the instructions in Figure 204 to use two masks, two NC instructions, and
one OC instruction.

24.7.2.(2) A student suggested the following code sequence as a solution to the problem of
replacing data items embedded in a larger field:

* Which you solved correctly, of course.

Chapter VII: Bit and Character Data 377

XC Old,New Make a mess of Old field
NC Old,Mask Zero space for New item
XC Old,New Now clean it all up
- - -

Old DC C'DOWNWITH'
New DC C'PINKNUDITY'
Mask DC 2X'FF',4X'0',2X'FF'

Verify that his method works, and discover the identity of the student.

24.7.3.(2) The bits in the byte at BitData are to be converted to a string of eight EBCDIC 0
and 1 characters starting at BitChars. A student suggested using these instructions:

LHI 1,8 Count 8 bits in GR0
IC 0,BitData Get the source byte

Repeat STC 0,BitChars-1(1) Store a byte at BitChars
SRL 0,1 Shift right by one bit
JCT 1,Repeat Iterate for all 8 bits
NC BitChars,=8X'1' AND off all but low-order bit
OC BitChars,=8C'0' OR makes EBCDIC 0 or 1 characters
- - -

BitData DC B'10010001' Sample source byte
BitChars DS CL8 Converted characters

Does this work? What will be found at BitChars? Explain your answer.

24.8. The CLC Instruction

CLC compares the first operand to the second operand one byte at a time, until either an ine-
quality is detected or the required number of bytes has been compared. As with CLI, each step
of the comparison is between unsigned 8-bit logical integers, and the CC settings are as shown in
Table 135 on page 355.

1. If the 120 bytes at Line contain blanks, branch to AllBlank.

CLC Line(120),=CL120' ' Compare to 120 blanks
JE AllBlank Branch if equal

or
CLC =CL120' ',Line Compare to 120 blanks
JE AllBlank Branch if equal

Because compare instructions modify neither operand, a literal can be used as the first
operand; this second method uses the Length Attribute of the literal as the Length
Expression.

2. Two non-negative word integers are stored at SS and TT. Branch to TBig if the number at
TT is larger than the number at SS. (The restriction to non-negative integers means that a
logical comparison gives the same result as an algebraic comparison.)

CLC TT(4),SS Compare c(TT) to c(SS)
JH TBig Branch to TBig if TT is greater

3. Two negative word integers are stored at SS and TT. Branch to TBig if the number at TT is
algebraically larger than the number at SS. (Because both integers are algebraically negative,
a logical comparison is the same as an algebraic comparison; see Exercise 24.8.1.)

CLC TT(4),SS Compare logically, and...
JH TBig Branch if c(TT) > c(SS)

4. A list of 100 names and occupations, each contained in a block of 60 bytes, is stored begin-
ning at List. Branch to Found if any of the blocks matches the name and occupation in the
block at WhoIsIt.

378 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 1,List Initialize GR1 to A(first block)
LA 2,100 Set GR2 count to number of blocks

Test CLC 0(60,1),WhoIsIt Compare blocks
JE Found Branch if blocks are equal
LA 1,60(,1) Increment address by block length
JCT 2,Test Count down and branch
J NotFound No matching block was found

Exercises

24.8.1.(2) Example 3 above claims that a logical comparison of two negative integers gives the
same result as an algebraic comparison. Show that this is or is not true.

24.8.2.(3)+ Write instructions using CLC to correctly compare arithmetically two signed word
integers in memory having arbitrary signs. For example, CLC should show that +10 > −10.
(It can be done!)

24.8.3.(2) Suppose we wish to test the string of 220 bytes at R to see if they all contain zero. It
is claimed that each of the following instructions will set the CC to zero if and only if the string
contains all zero bytes. For which of these instructions is the claim true?

(1) OC R(220),R
(2) NC R(220),R
(3) CLC R+1(219),R
(4) CLC R(220),=220X'0'

24.8.4.(2)+ A programmer described the operation of the CLC instruction with the phrase “the
shorter operand is padded with blanks”. Give two reasons why this is incorrect.

24.8.5.(2) Write instructions to test a string of 72 bytes at Chars and branch to AllBlank if
every character is blank, without using a constant string of 72 blank characters. Use a CLC
instruction.

24.8.6.(2)+ In Example 1 above, what would happen if you had written

CLC =120C' ',Line

instead?

24.8.7.(1)+ What does this instruction do? Is it at all useful? If so, why?

CLC 1(7,4),0(4)

24.9. The TR (translate) Instruction

The Translate instruction replaces each byte in a string with any of another 256 possible values.
Like MVC, the TR instruction moves bytes from the second operand location to the first operand
location, but in a very different and possibly disorderly way. It actually performs a sort of
“pseudo-indexing”:

1. An “argument” byte is obtained from the first operand address.

2. The value of that byte (as an eight-bit unsigned integer) is added internally to the second
operand address, to access a “function byte” from the second operand.

3. The accessed function byte replaces the argument byte at the first operand address.146

146 In mathematical terminology, the TR operation can be thought of as replacing the argument bytes x1, x2, ..., xn by
the function bytes f(x1), f(x2), ..., f(xn). (Terminology aside, it's a simple operation.)

Chapter VII: Bit and Character Data 379

4. The first operand address is incremented by one, and the process repeats until all first
operand bytes have been translated.

5. The Condition Code is unchanged.

For example, suppose the string of five argument bytes at PP contains X'0201040503', and the
character string at GG contains the character constant C'ABCDEF'. If we execute the instruction

TR PP(5),GG

then the final contents of the five bytes at PP will be C'CBEFD'. The first argument byte taken
from the first operand is X'02'; the function byte at GG+X'02' is C'C', and this replaces the first
byte at PP. Similarly, the fifth and last argument byte at PP is X'03'; the function byte at
GG+X'03' is C'D', which replaces the final byte in the string at PP.

Unlike the SS-type instructions we've seen thus far, the TR instruction can access bytes as far as
255 bytes away from the second operand address, whereas the other instructions accessed only
those bytes within the area whose length is determined by the Length Specification Byte.

A sequence of RX-type instructions simulating the TR instruction helps clarify its operation. In
Figure 205, the symbols L, B1, D1, B2, and D2 have the values from the TR instruction being
simulated. For this example, assume that B1 and B2 are not 1 or 2, because we will use those
registers in the simulation.

*Emulate TR D1(L,B1),D2(B2) Translate L bytes
LHI 0,L Set counter in GR0 to number of bytes
AHI 0,1 Get L; create program length N
SR 1,1 Set first operand index to zero
SR 2,2 GR2 Indexes table at 2nd operand

GetArg IC 2,D1(1,B1) Get argument byte from 1st operand
IC 2,D2(2,B2) Use as index to get function byte
STC 2,D1(1,B1) Store in string at 1st operand
AHI 1,1 Increment first operand index by 1
JCT 0,GetArg Loop until N argument bytes done

Figure 205. Emulating the TR instruction

You can appreciate the power of TR if you consider the example in Figure 167 on page 332 and
its variations. We wanted to replace all special characters with blanks. If we create an appropriate
translation or translate table, the entire process can be done with one TR instruction, as in
Figure 206.

TR Str(80),TRTable Translate all specials to blanks
- - -

TRTable DC (C'a')C' ' Anything less than C'a' is blanked
DC C'abcdefghi' Letters are unchanged
DC 7C' ' Non-printing characters are blanked
DC C'jklmnopqr' Print letters as is
DC CL8' ' More non-printing characters
DC C'stuvwxyz' Last of the lower-case letters
DC 23C' ' Blank anything between 'z' and 'A'
DC C'ABCDEFGHI' Letters are unchanged
DC 7C' ' Non-printing characters are blanked
DC C'JKLMNOPQR' Print letters as is
DC CL8' ' More non-printing characters
DC C'STUVWXYZ' Last of the upper-case letters
DC 6C' ' Blank anything between 'Z' and '0'
DC C'0123456789' Digits print okay
DC 6C' ' Tail-enders are blanked too

Figure 206. TR instruction to change special characters to blanks

380 Assembler Language Programming for IBM System z™ Servers Version 2.00

As a second example of the TR instruction, suppose we will need to print the contents of the
word at HexWord as eight hexadecimal digits, and we must place the eight EBCDIC characters
representing the hex digits in a string starting at Spred.

L 1,HexWord Get fullword to be converted
LA 2,Spred Address of character being stored
LA 3,8 Digit counter in GR3

Clear SR 0,0 Clear GR0 for shifting
SLDL 0,4 Shift a hex digit into GR0
STC 0,0(,2) Store in string at 'Spred'
LA 2,1(,2) Increment character address by 1
JCT 3,Clear Loop until 8 digits are stored
TR Spred,=C'0123456789ABCDEF' Translate to EBCDIC
- - -

Spred DS CL8 Converted result goes here
Figure 207. Translating hex digits to EBCDIC characters (1)

We can also index in the opposite direction, as in Figure 208.

L 0,HexWord Get fullword to be converted
LA 2,8 Counter and index in GR2

Shift SRDL 0,4 Shift a digit into GR1
SRL 1,28 Position for storing
STC 1,Spred-1(2) Store in character string
JCT 2,Shift Decrease index and shift again
TR Spred,=C'0123456789ABCDEF' Translate to EBCDIC
- - -

Spred DS CL8 Converted result goes here
Figure 208. Translating hex digits to EBCDIC characters (2)

This result is sometimes called “spread hex”; the UNPK instruction (in Section 27) does this
operation much more easily.

Exercises

24.9.1.(1) Assemble the translation table in Figure 206 on page 380 and verify that all non-
blank characters are in positions corresponding to their EBCDIC encodings, and that the trans-
late table is 256 bytes long.

24.9.2.(2)+ Suppose the bits within each byte of a string of bytes are to be rotated to the right
by one bit position, so that B'10110001' becomes B'11011000'. Write a code sequence,
including a TR instruction and the necessary translate table, to do the rotations.

24.9.3.(2) The translation table in Figure 206 on page 380 uses hand-counted values for the
duplication factors on DC statements that generate blanks. Rewrite the table to use duplication
factors calculated by the Assembler based on the hexadecimal representations of the characters.

24.9.4.(4) A certain program needed to place each of the 80 characters in the string at InputRec
into an array of 80 words at A1Format in such a way that each successive word contains one
character from the string in its leftmost byte, followed by three blank characters. (This format
was used by some early Fortran compilers to read character data into a program.) Write a
program segment (in Assembler Language, of course!) to do this using TR instructions.

24.9.5.(2)+ Write a short program segment which will use a TR instruction and an appropriate
table to interchange the positions of the two hex digits in a byte. How long must the table be?

24.9.6.(2)+ Rewrite Exercise 22.5.1. to use a TR instruction and an appropriate translate table.
Are there any limitations on the length of the list? Explain your conclusion.

Chapter VII: Bit and Character Data 381

24.9.7.(2)+ Rewrite Exercise 17.4.6 to use a Translate instruction and an appropriate translate
table.

24.9.8.(4) Write a program segment to do the reverse of the action performed by your solution
to Exercise 24.9.4: the high-order bytes of each of the fullwords in the array at A1Format should
be collected into an 80-character string at OutRec.

24.9.9.(3) Assuming that only the valid EBCDIC characters shown in Table 13 on page 87 will
appear in the string, write statements to generate a translation table that will set all other char-
acters to blanks. Verify that your translate table is 256 bytes long.

24.9.10.(4) Write a sequence of instructions including TR that will cause the hex digits in a
string of bytes at Old to be “shifted right” by one digit position at New. That is, if we start with
X'123456' at Old, we should find X'012345' at New.

Then do the same for a left shift of one digit position; the result (starting with the same data)
would then be X'234560'.

24.9.11.(2) Suppose you must translate a very long record to contain all upper-case letters.
Assuming the record starts at Record and its length is found in the word at Reclen, write a
translate table and instructions that will do the translation.

24.9.12.(2) Suppose you must convert the 8 hex digits of c(GR9) to 8 EBCDIC characters
representing those digits, starting at GR9Hex. Will these instructions work? Explain why or why
not, and describe the intended function of the instructions named Q1, Q2, and Q3.

LHI 0,8
LA 1,GR9Hex

Repeat XR 8,8
SLDL 8,4

Q1 AHI 8,240
Q2 CHI 8,250

JL Store
Q3 AHI 8,-57
Store STC 8,0(,1)

AHI 1,1
JCT 0,Repeat
- - -

GR9Hex DS CL8

24.9.13.(2)+ The string of characters at Text contains a mixture of lower-case and upper-case
letters, and its length in the halfword at TextLen is less than 256. Write instructions including
TR that will change the lower-case letters to their upper-case equivalents.

24.9.14.(2) Suppose the two bytes stored at Zone contain arbitrary bit patterns, represented as
X'wxyz'. Write a code sequence with one or more TR instructions which will convert the given
pair of bytes to the form X'Fxzy'. That is, interchange the two low-order digits, and replace the
high-order digit by X'F', no matter what its original value might have been. (This is similar to
the action performed by the UNPK instruction discussed in Section 27.)

24.9.15.(2)+ If you execute the following TR instruction, what will you find in the operand
named OddTable when the instruction completes?

TR OddTable,OddTable Identical first and second operands
- - -

OddTable DC X'01000302050405'

24.9.16.(3) A student suggested the following instructions as a way to convert a string of bytes
at InString to pairs of EBCDIC characters at OutStrng representing the hex values of the
source data. That is, if the first source byte contains X'9F', the first two output characters will
be 9F.

382 Assembler Language Programming for IBM System z™ Servers Version 2.00

XR 0,0 Clear a work register
XR 2,2 Input-byte index
XR 3,3 Output string index
LHI 4,L'InString Number of bytes to convert

Convert IC 0,InString(2) Get a source byte
SRDL 0,4 Shift right 4 bits
STC 0,OutStrng(3) Store leftmost hex digit
SRL 1,28 Move rightmost hex digit to end
STC 1,OutStrng+1(3) Store rightmost hex digit
AHI 2,1 Increment input index
AHI 3,2 Increment output index
JCT 4,Convert Repeat for all input bytes
TR OutStrng,=C'0123456789ABCDEF' Translate to EBCDIC

Does this work? What precautions should the student's program take?

24.9.17.(5)+ In Exercise 17.3.16 you reversed the bits in a 32-bit word, using shift instructions.
Now, write a DC statement to create a translate table that will reverse the bits in each byte of a
string.

24.9.18.(5) Using your solutions to Exercises 24.9.3 and 24.9.17, write a sequence of
instructions using two TR instructions that will reverse both the bytes and the bits of the word
at DataWord and store the result at RevData. For example, if c(DataWord)=X'12345678', the
resulting c(RevWord) will be X'1E6A2C48'. (We'll see in Section 26 that there are easier ways
to reverse bytes.)

24.9.19.(3) Suppose you define this translate table:

X DC 256AL1(X'FF'-(*-X))

and the you execute this instruction:

TR X(256),X

What happens? If you repeat the instruction N times, will you ever get the original table at X?
If so, how many times?

24.9.20.(3) Repeat Exercise 24.9.19 with this translate table:

X DC 256AL1(*-X)

What happens? If you repeat the instruction N times, will you ever get the original table at X?
If so, how many times?

24.10. The TRT and TRTR Instructions

Whereas TR converts a sequence of byte values into new values, TRT and TRTR are used to
search a string of bytes for one or more specified values. These instructions are especially useful
in scanning for punctuation, delimiters, and erroneous characters.

As we saw for MVC and MVCIN, the first operand of TRT refers to the leftmost byte of the first
storage operand, while the first operand of TRTR refers to the rightmost byte of the first storage
operand.

The operation of TRT and TRTR is identical to TR through steps 1 and 2 on page 379, and
quite different thereafter.

3. The first operand is not modified; the accessed byte from the table addressed by the second
operand (the function byte) does not replace the argument byte from the first operand string.
Instead, the function byte is examined: if it is zero, we continue with step 4 of the description
of TR, incrementing (or decrementing) the first operand address and decrementing the count.

If the function byte is not zero,

• It is placed in the rightmost byte of GR2 (the rest of the register is unchanged);

Chapter VII: Bit and Character Data 383

• The address of the argument byte which caused a nonzero function byte to be accessed is
placed in GR1 or GG1, depending on the addressing mode:

− in 24-bit mode, into the rightmost 24 bits of GR1, and the remaining bits of GR1 are
unchanged

− in 31-bit mode, into the rightmost 31 bits of GR1, and the leftmost bit of GR1 is set to
zero

− in 64-bit mode, into all the bits of GG1.

• The operation terminates, and the CC indicates the result of the operation, as shown in
Table 147.

Table 147. Condition Code settings for TRT and TRTR instructions

24.10.1. TRT

To illustrate the basic operation of TRT, suppose we must scan a string of characters to find the
address of the first numeric character. First, we create a translate table with zero function bytes in
all positions except for those corresponding to the EBCDIC representation of decimal digits,
where the function bytes are nonzero.

NumChar DC (X'F0')X'00',10X'01',6X'00'

Then, suppose we test the following strings using TRT:

String1 DC C'abc123def' Decimal digit before end of string
String2 DC C'*abcdef*' No decimal digits
String3 DC C'AB7' Decimal digit in final position

Then, after executing the following instructions, the contents of GR1, GR2, and the CC are as
shown:

The xxxxxx characters mean that those portions of GR2 are unchanged when the X'01' function
byte is inserted.

As another example, suppose we must scan a string of 80 characters beginning at Record for the
punctuation characters period, comma, and apostrophe. When one of them is found, a branch
should be made to Period, Comma, or Apost respectively, with the address of that punctuation
character in GR1. If none is found, branch to NoPunct. First, we will write an example using
CLI instructions, but not TRT.

CC Meaning

0 All accessed function bytes were zero.

1 A nonzero function byte was accessed before the
last argument byte was reached.

2 The nonzero function byte accessed corresponds to
the last argument byte.

Instruction c(GR1) c(GR2) CC

TR String1,NumChar A(String1+3) X'xxxxxx01' 1
TR String2,NumChar unchanged unchanged 0
TR String3,NumChar A(String3+2) X'xxxxxx01' 2

384 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 1,Record Initialize character address
LA 2,80 Number of characters to examine

TestPunc CLI 0(1),C'.' Compare to period
BE Period Branch if found
CLI 0(1),C',' Compare to comma
BE Comma Branch if found
CLI 0(1),C'''' Compare to apostrophe
BE Apost Branch if found
AHI 1,1 Otherwise increment address by 1
JCT 2,TestPunc Count and loop
B NoPunct Branch if none were found

Figure 209. Searching for punctuation characters using CLI

The TRT instruction does the same processing much more rapidly, but at the cost of memory
space for the translate table.

SR 2,2 Clear GR2, to be used as an index
TRT Record(80),PuncTbl Scan for punctuation
JZ NoPunct Branch if none found
B *(2) Function byte is index for branch
J Period Period
J Comma Comma
J Apost Apostrophe

PuncTbl DC (C'.')X'00',X'04' Function byte 4 for period
DC (C','-C'.'-1)X'00',X'08' 8 for comma
DC (C''''-C','-1)X'00',X'0C' 12 for apostrophe
DC (255-C'''')X'00' Remainder of table

Figure 210. Searching for punctuation characters using TRT

The three nonzero function bytes are at positions in the table corresponding to the values of the
EBCDIC representations of the characters being sought. The function values are multiples of
four so they can be used to index the branch instruction B *(2). If the conditional branch to
NoPunct had been omitted, GR2 might contain zero and the program could have gone into an
infinite loop at the B instruction.

This translate table was constructed by observing that we need not know the values of the
EBCDIC representations of the period, comma, and apostrophe, only that their representations
are in ascending order. This means that (for example) the number of characters between the
period and the comma is the positive quantity (C','-C'.'+1).

Suppose your program has received a string of decimal characters into a field named InputNum.
Before using the data, it's a good practice to validate it. (Data validation helps avoid errors and
program interruptions that may occur much later in your program.) Figure 211 shows one way
to do this.

TRT InputNum,ValidDec Test for all numeric data
JZ Valid Branch to process valid data
JNZ ReEnter Something invalid, ask for re-entry
- - -

ValidDec DC (C'0')X'01' Values < X'F0' are invalid
DC 10X'00',6X'01' Values > X'F9' are invalid

InputNum DS CL12 Numeric characters?
Figure 211. Using TRT to validate numeric characters

As another example of the TRT instruction, suppose we are required to scan the quoted character
string starting at Sentence for the occurrence of an embedded character string containing either
apostrophes (as in ″She said, 'Never!'″), or quotation marks (as in 'I said, ″I won't″'). As
these examples indicate, the other delimiter may appear freely inside the outer string.

Chapter VII: Bit and Character Data 385

If such an embedded string exists, we must store its starting address (excluding the preceding
delimiter) at StrAddr and its length in bytes (again excluding the delimiters) at StrLen. (For the
first string, the result would be the 10 characters She•said,•). If no string exists, branch to None,
and if the apostrophe or quotation mark which would terminate the string is missing, branch to
Unfin. Assume the length of the data string to be scanned is stored at SentLen, and is 256 or less.
The program segment in Figure 212 scans first for the starting delimiter; when it is found, the
proper table is chosen to search for the ending delimiter.

LA 1,Sentence Starting data address in GR1
L 2,SentLen Fetch length to scan, and...
BCTR 2,0 Decrement by 1 for length byte,
STC 2,TRT1+1 Store in TRT1 instruction.
LA 3,0(2,1) C(GR3) = A(last data byte)
SR 2,2 Clear GR2 for function byte
ST 2,StrLen And set result length to 0

TRT1 TRT 0(*-*,1),T Scan for first delimiter
JZ None Exit if nothing useful found
LA 4,1(,1) Step over starting delimiter,
ST 4,StrAddr And store string start address.

LastCh JC 2,Unfin Exit if that's all there was
LA 1,1(,3) C(GR1) = A(last data byte)+1
SR 3,4 (length-1) of rest of data
STC 3,TRT2+1 Store in length byte of TRT2
L 3,TAdd-4(2) Address of correct table in GR3
SR 2,2 Reset GR2 for function byte

TRT2 TRT 0(*-*,4),0(3) Scan rest of data with new table
SetLen S 1,StrAddr Subtract start address of string

ST 1,StrLen And store result string length
LTR 2,2 Test for closing delimiter found,
JZ Unfin Branch if not found.
- - -

StrLen DS F Length of final string
StrAddr DS A Address of final string
TAdd DC A(T2,T3) Table addresses
T DC 125X'0',X'040008',128X'0' Initial TRT table
* Function byte = 4 for apostrophe, 8 for quotation mark
T2 DC 125X'0',X'4',130X'0' Stop on apostrophe
T3 DC 127X'0',X'4',128X'0' Stop on quotation mark
Figure 212. Using TRT to scan for embedded quotations

Several items in Figure 212 deserve comment.

• The two STC instructions modify the TRT instructions at TRT1 and TRT2. The Execute
instruction in the next section shows a much better way to do this.

• The expression *-* in the instructions named TRT1 and TRT2 is the Location Counter value
subtracted from itself, which is always zero. This notation is often used to indicate that the
contents of the field will be provided by the program at execution time.

• By storing zero at StrLen before scanning the string (just preceding TRT1), we have taken care
of the possibility that the initial delimiter may have been the last character in the data string;
this condition is detected by the conditional branch instruction named LastCh.

• The function byte in the table named T is used by the Load instruction just preceding the
second TRT as an index to load into GR3 the address at TAdd of the desired secondary table.

• By presetting GR1 to the address of the byte immediately following the data string, we can
complete the scan with the second TRT as follows. If a closing delimiter exists, GR1 will
eventually point to it, and the instruction named SetLen will calculate the number of bytes
between the delimiters; GR2 will then contain the nonzero function byte X'04'. However, if
no closing delimiter is found, GR1 and GR2 are unchanged, and we can still compute a useful
string length before exiting to Unfin.

386 Assembler Language Programming for IBM System z™ Servers Version 2.00

As a final example using TRT to scan variable-length data, suppose a string of characters at Names
contains names separated by commas and terminated by a period. We will construct at List a
table of fullword addresses of the first character of each name, followed by a word containing the
number of characters in that name, which is known to be less than 256. When the table is com-
plete, the number of names is stored in the word at NbrNms. To protect against omitted punctu-
ation or other errors, we will branch to LongName if no comma or period is found within 256
characters of the start of a name. No tests are made for repeated names.

MaxNames Equ 50 Assume at most 50 names found
SR 3,3 GR3 contains index for list
SR 2,2 Clear function-byte switch in GR2
LA 1,Names Initialize scan address

Scan LR 4,1 Save initial character address
TRT 0(256,1),TRTB Scan for period or comma
JZ LongName Branch if no punctuation found
ST 4,List(3) Store address of name in list
SR 1,4 Compute name length
ST 1,List+4(3) Store length of name, too
LA 3,8(,3) Increment list index
LA 1,1(4,1) Move GR1 to start of next name
JCT 2,Scan Branch if comma was encountered
SRL 3,3 If period, compute and store ..
ST 3,NbrNms ...the number of names found
- - -

TRTB DC (C'.')X'00',X'01' Function = 1 for period
DC (C','-C'.'-1)X'00',X'02' Function = 2 for comma
DC (255-C',')X'00' Zero otherwise
- - -

Names DC C'Brown,Green,Wonka,Ofstrand,Jones,Smedley,Doe,'
DC C'Apple,Doe,Smithwich,Softnard,Smith,Doelful,'
DC C'Lostkind,Jones,Lurp,VonHimmelsBergenSchneider,Doe.'

NbrNms DS F Number of names found
List DS (2*MaxNames)A Table for addresses and counts
Figure 213. Using TRT to scan a string of names and build an occurrence list

The only unusual feature of Figure 213 is using the function byte as a branching switch: if a
period is encountered, GR2 will contain +1, and the JCT instruction will not branch.

24.10.2. TRTR

The test in Figure 211 on page 385 can be done with TRTR and the same translate table:

TRTR InputNum+L'InputNum-1,ValidDec Test for numeric data
JZ Valid Branch to process valid data
JNZ ReEnter Something invalid, ask for re-entry
- - -

Figure 214. Using TRTR to validate numeric characters

Programs often must analyze character strings, finding “tokens” to be processed individually. But
how do you know when there is no more data in the string, and the rest of the string is blanks? A
common technique is to scan backwards from the end of the string, searching for the last non-
blank character in the string. This is sometimes done with a CLI instruction:

Chapter VII: Bit and Character Data 387

LA 1,String+L'String-1 Address of end of string
Check CLI 0(1),C' ' Check for a blank

JNE Done Exit loop if nonblank
BCTR 1,0 Reduce address by 1 byte
J Check And check again

Done - - - GR1 points to last nonblank
Figure 215. Scanning a string backward using CLI

This scan can also be done (perhaps more quickly) using a TRTR instruction:

TRTR String+L'String-1,BlankTbl Scan backward
JZ AllBlank Problem: string is all blanks
- - - GR1 points to last nonblank

BlankTbl DC (C' ')X'1',X'0',(256-C' '-1)X'1'
Figure 216. Scanning a string backward using TRTR

While this may appear to use more memory than a CLI loop, translate tables like this are often
used in many different places, so a single table can be referenced by many instructions.

Exercises

24.10.1.(1) Verify that the translate table in Figure 210 on page 385 generates exactly 256
bytes, and that the nonzero entries are at offsets corresponding to the EBCDIC representations
of the punctuation characters.

24.10.2.(2) Show that the ORG instruction can be used to build the Translate and Test table of
Figure 213 on page 387 as follows:

TRTB DC XL256'0' Define table, length 256
ORG TRTB+C'.'
DC X'1' Function byte for period
ORG TRTB+C','
DC X'2' Function byte for comma
ORG TRTB+256 Reset LC to end of table

Use this technique to construct the table in Figure 210 on page 385. Why is this method
superior to the one used in Figures 210 and 213? Can the first DC be replaced by DS?

24.10.3.(2) In Figure 212 on page 386, the length byte in the second TRT is calculated by the
“SR 3,4” just preceding it. Is there any reason why the result of the subtraction cannot be
negative? What would happen if it was?

24.10.4.(2) In Figure 212 on page 386, three distinct translate tables were used: one to scan for
an initial apostrophe or quotation mark, and the other two to scan for the matching delimiter
at the end of the quoted string. Rewrite the example to use a single translate table, which is
suitably initialized for each use by instructions such as

XC T(256),T Set entire table to zero
MVI T+C'''',4 Set to stop on apostrophe

24.10.5.(4)+ In Figure 212 on page 386, there are three translate tables. Show how these tables
can be overlapped in a way that requires only about one-half as much space.

24.10.6.(2) Write instructions to scan the string of 120 characters at CharData and leave in GR1
the address of the first character that is neither alphabetic nor numeric.

24.10.7.(2) In Exercise 23.4.3 you scanned a character string at Record to locate the last non-
blank character. Do the same exercise, but this time use MVCIN and TRT instructions instead
of CLI.

24.10.8.(2) In Figure 212 on page 386, why is it necessary to reset GR2 to zero before exe-
cuting the second TRT?

388 Assembler Language Programming for IBM System z™ Servers Version 2.00

24.10.9.(2) The translate table in Figure 216 on page 388 is defined with a single DC state-
ment. Verify that it generates the desired data.

24.10.10.(3) Modify the coding in Figure 213 on page 387 to store each name only once, and
add a word to each name's entry in the list giving the number of occurrences of that word.

24.10.11.(2)+ Show the contents of GR2 and the Condition Code setting after executing the
following instructions:

SR 2,2
TRT XX,=XL5'20100'
- - -

XX DC X'0004010203'

24.10.12.(3)+ Some experiments have shown that trailing blanks can be removed more effi-
ciently than in Figures 215 and 216 by starting at the end of the string and comparing to a
doubleword of blanks until a mismatch occurs, and then using a backward CLI scan. Write an
instruction sequence to implement this technique to truncate the string starting at String
having length L, and store the truncated length of the string in the halfword at TruncLen.

24.10.13.(2) Revise Exercises 24.7.3 and 24.10.7 to use a TRTR instruction.

24.10.14.(2)+ In Figure 215 on page 388, what will happen if the content of String is all
blanks?

24.11. The Execute Instructions

While the Execute instructions are not SS-type, they are often used with SS-type instructions to
help process character data.

Table 148. Execute instructions

Op Mnem Type Instruction Op Mnem Type Instruction

44 EX RX Execute C60 EXRL RIL Execute Relative Long

The two Execute instructions in Table 148 are unusual, because they specify the execution of
another instruction at a different address! We will use some concepts of the basic instruction cycle
described in Section 4 and illustrated in Figure 13 on page 50.

These instructions are executed using these steps:

1. The Effective Address is computed, and the R1 digit of the Execute instruction is saved.

2. The instruction at the Effective Address, the target (or subject) instruction, is placed into the
Instruction Register (IR), replacing the EX or EXRL. The Instruction Address in the PSW is
unchanged, and still contains the address of the instruction following the Execute.

3. If the new instruction in the IR is another execute instruction, a program interruption occurs,
and the Interruption Code in the old PSW is set to 3. (There is a good reason for this inter-
ruption, as we'll see shortly.)

4. If the R1 digit of the Execute instruction was zero, proceed to step 5. Otherwise, the right-
most byte of general register R1 is ORed into the second byte of the IR. Both GR R1 and
the target instruction in memory remain unchanged.

5. The (possibly modified) target instruction in the IR is now decoded and executed as though
it was the original instruction fetched from memory.

If the target instruction in the IR does not change the IA in the PSW (it is not a successful
branch instruction), execution continues with the instruction following the Execute. If the target
instruction does change the IA in the PSW (it is a successful branch), execution will continue
with the instruction at the branch address. The CC is changed only if the target instruction sets
the CC.

Chapter VII: Bit and Character Data 389

24.11.1. Execute Instruction Without Target-Instruction Modification

To illustrate uses of EX and EXRL, we first consider examples where the R1 digit is zero, so that
no ORing occurs in the IR.

1. Store at CCC the quantity 2*C(A)-C(B), where A and B are the names of words in memory.

SR 1,1 Clear index to zero
LA 2,4 Increment = 4, instruction length
LA 3,12 Comparand = 12

Execute EX 0,Inst(1) Execute an instruction
JXLE 1,2,Execute Increment by 4 and loop
- - -

Inst L 0,A Load GR0 from A (4-byte instruction)
AR 0,0 Double c(GR0) (2-byte instruction)
NOPR 0 2 bytes spacing
S 0,B Subtract c(B) (4-byte instruction)
ST 0,CCC Store result (4-byte instruction)

Figure 217. Executing a list of instructions

This program segment does four simple instructions the hard way, and merely illustrates a
way to execute instructions which are “out-of-line”, and not directly in the normal stream of
program execution. The list of instructions at Inst could be executed independently of the
first five instructions by branching to Inst, giving the same result much more rapidly.

2. Suppose we wish to add the three word integers stored beginning at Q. Depending on the
number of overflows: if no overflows occur, multiply the result by 10; if one overflow occurs,
do nothing; and if two overflows occur, set the result to 1.

SR 1,1 Clear overflow counter in GR1
L 0,Q Get first integer
A 0,Q+4 Add second integer
JNO NoOfloA Branch if no overflow
AHI 1,4 Indicate one overflow

NoOfloA A 0,Q+8 Add third integer
JNO NoOfloB Branch if no overflow
AHI 1,4 Indicate another overflow

NoOfloB EX 0,FixIt(1) Execute correct operation
ST 0,Result And store result
- - -

FixIt MH 0,=H'10' Multiply by 10
NOP 0 Do nothing
LA 0,1 Set result to +1

Figure 218. Executing a list of instructions

3. Suppose we must place in GR6 the address of some byte in memory, and that the desired
address is known only to be the Effective Address of some other RX-type instruction. To
make matters more complicated, suppose also that the addressing calculation needed by the
RX instruction could make use of any registers but R14 and R15; that is, the base and index
digits can be anything from 0 to 13. We assume that GR15 is currently being used for a base
register, and that GR14 contains the address of the RX instruction in question.

We will construct a LA instruction in a work area with the same index, base, and displace-
ment fields as the RX instruction, and then execute that LA instruction.

390 Assembler Language Programming for IBM System z™ Servers Version 2.00

MVC MakeLA(4),0(14) Move original RX inst'n to work area
NI MakeLA+1,X'0F' Clear old R1 digit position
OI MakeLA+1,X'60' Set new R1 digit to 6
MVI MakeLA,X'41' Set 'LA' opcode into instruction

* Contents of MakeLA is now 416xbddd
EXRL 0,MakeLA Execute the constructed 'LA'
- - - GR6 now has the desired address

MKLA DS 2H 4 bytes on halfword boundary
Figure 219. Constructing an executed instruction

This instruction sequence changes no registers other than GR6, even though R0 could have
been used in the instruction sequence without affecting the operation of the EX, because
GR0 or GG0 could not have been used by the LA as a base or index register. This illustrates
a technique you can use when all other register contents must remain unchanged.

24.11.2. Execute Instruction with Target-Instruction Modification

The Execute instructions are most useful when the R1 digit is not zero, implying modification of
the target instruction in the IR.

1. Suppose we wish to move to Line a message whose address and length are in GR8 and GR9
respectively, as in example 4 on page 373.

BCTR 9,0 Decrease Length Expression by 1
EX 9,Move Execute the MVC instruction
- - -

Move MVC Line(*-*),0(8) Executed instruction, length = 0

The Length Specification Byte in GR9 is ORed into the proper position in the (target) MVC
instruction in the IR. In the assembled MVC instruction, the length byte was preset to zero
by a zero explicit Length Expression. A major advantage of this method is that the instruc-
tion in storage is unmodified, an important consideration in writing re-enterable code.

This is a very typical use of an Execute instruction.

2. Suppose we must branch to Yes if the rightmost byte of GR3 contains B'00011111'.

EX 3,CLI Execute the comparison
BE Yes Branch if equality is found
- - -

CLI CLI ChkBits,0 Executed instruction
ChkBits DC B'00011111' Comparison quantity

The same problem could be solved without using EX, but extra storage accesses would be
required:

STC 3,Temp Store the byte to be tested
CLI Temp,B'00011111' Compare to desired pattern
JE Yes Branch if equal
- - -

Temp DS X Byte from GR3 to be tested

3. Store at RegTotal the sum of the contents of registers GR0 through GR10.

LA 12,10 Count in GR12
Loop EX 12,Adder Execute add instruction, sum in GR0

JCT 12,Loop Decrease counter and register digit
ST 0,RegTotal Store sum at RegTotal
- - -

Adder AR 0,0 R2 digit modified by EX

The R2 digit of the AR instruction is modified in the IR to contain values from 10 to 1. It is
rare to use Execute instructions to modify register specification or mask digits of executed
instructions.

4. The fullword at Mask contains an integer whose value lies between 0 and 15, to be used as the
mask digit of a BC instruction branching to CondMet.

Chapter VII: Bit and Character Data 391

L 1,Mask Get mask value
SLL 1,4 Position correctly as M1
EX 1,BCInst Execute the BC

NotMet - - - Fall through if condition not met
- - -

BCInst BC 0,CondMet BC with mask of 0

To complete execution of the EX instruction, the mask digit in the rightmost byte of GR1 is
ORed into the BC instruction in the IR. The branch condition is now determined in the
usual way; if it is met, the branch address of CondMet will be placed into the IA in the PSW.
The execution of a successful branch instruction causes control to be “taken away” from the
EX instruction.

5. Branch to OddVal if the rightmost bit of GR9 is a 1-bit (that is, the number in GR9 is odd).

EX 9,TMInst Execute a TM instruction
JNZ OddVal Branch if a 1-bit
- - -

TMInst TM OneBit,0 Test all 8 bits of next byte
OneBit DC B'00000001' Only rightmost bit = 1

In the IR, the rightmost byte of GR9 becomes the mask byte (the immediate operand, I2) of
the TM instruction. This mask then tests whatever bits of the byte at OneBit correspond to
1-bits in the mask. If the rightmost bit of GR9 is a 1-bit, the tested bits will not be all zero,
and the branch to OddReg will occur. (There are much easier ways to do this test!)

6. As a final (and more practical) example, suppose GR5 contains an integer specifying the
number of bytes to be moved from a string beginning at AA to an area whose address is con-
tained in GR7. The number of bytes may be greater than 256.

LTR 5,5 Test number of bytes to be moved
BNP Finis Exit if not greater than zero
LA 1,AA GR1 contains 'from' address

Test CHI 5,256 See if byte count exceeds 256
JL Last If not, do last part of move
MVC 0(256,7),0(1) Move 256 bytes
AHI 1,256 Increment 'from' address
AHI 7,256 Increment 'to' address
AHI 5,-256 Decrease byte count by 256
JNZ Test If not zero, go try again
J Finis If count is zero, all done

LMVC MVC 0(0,7),0(1) Move last part of byte string
Last BCTR 5,0 Decrease byte count by 1 for ex

EX 5,LMVC Move last part of string
Finis - - - Rest of program goes here
Figure 220. Moving a string of bytes of unknown length

In Section 25, we will see how the MVCL and MVCLE instructions can handle such “long”
moves more simply.

Using an EX instruction to supply the length byte for an SS-type instruction is its most common
application.

24.11.3. Comments on the Execute Instructions (*)

1. The reason that an Execute instruction may not be the target of an Execute instruction (as
stated in step 3 on page 389) is that the CPU could remain in a Fetch-Decode loop (com-
prising steps 1 through 4 of the Execute-instruction description) if the Execute instruction
tried to execute itself, or if a chain of Execute instructions was circular. That is, consider what
could happen if the instruction

EX 0,* What are we doing, and why???

392 Assembler Language Programming for IBM System z™ Servers Version 2.00

is allowed. This loop is very awkward for a CPU to stop, and is avoided simply by not
allowing Executes of Execute instructions.147

2. When possible, place the target of an Execute instruction close to the EX.148

3. Be very careful when executing instructions with 12-bit opcodes, such as AHI. The low-order
digit of the R1 register should be zero, to avoid changing the opcode of the target.

4. Instructions that form Effective Addresses relative to an executed instruction use the address
of the target, not the address of the Execute instruction itself. For example, suppose GR9
contains a branch mask value in the next-to-rightmost hex digit, and we execute a Branch
Relative instruction:

EX 9,GoToXYZ Execute the relative branch
- - -

GoToXYZ BRC *-*,XYZ Branch if CC matches the mask bits

The CPU determines the Effective Address of the BRC instruction relative to its address, not
the address of the EX.

5. The Execute instruction was sometimes described as a special branch instruction! It is said
that EX causes an unconditional branch to the target instruction, followed by an uncondi-
tional branch back to the instruction following the EX, unless the target instruction is itself a
successful branch.

This incorrectly describes the contents of the Instruction Address, which remains at the
address of the instruction following the EX, and obscures the modification of the second byte
of the target instruction. This is sometimes described by saying “the instruction is modified,
but remains unchanged in memory”.

Both descriptions are misleading.

While this discussion of the IR may not be exactly what's done in System z processors, it does
describe the effect of the instruction, and gives a better feel for the way the CPU executes its
instructions. You need not believe in the “magic” of an instruction being simultaneously modi-
fied and remaining unmodified.

24.11.4. Modifiable Parts of Instructions

The highlighted parts of the operands in the instructions listed in Table 149 on page 394 indicate
the modifiable portions of typical instruction types as targets of the Execute instructions.

147 This is a fact of computing life that was learned the hard way: on some early processors, the only “fix” was to turn
off power and restart the machine. I knew a graveyard-shift computer operator on an older machine who discovered
how to create an Execute loop. Then, he would file a “Computer Trouble Report” for the engineers, and go home
early.

148 Some programmers use an “idiom” like this:

LA 1,N Number of bytes to move
BCTR 1,0 Make it a machine length
MVC A(*-*),B Move only 1 byte from B to A
EX 1,*-6 Move all N bytes from B to A

This is not generally recommended, because the CPU must process the MVC instruction twice.

Chapter VII: Bit and Character Data 393

Table 149. Modifiable portions of typical EX target instructions

Because the second byte of some instructions contains part of the operation code, there is usually
little reason to execute those instructions with a nonzero R1 digit.

Exercises

24.11.1.(2) What is the relationship between the USING statements in effect when an EX
instruction is assembled, and those in effect when the target instruction is assembled?

24.11.2.(2)+ A programmer believed that EX “branches to the target instruction, and then
branches back to the instruction following the EX if the target instruction was not a successful
branch”. Consider the following code sequence:

EX 0,BASR1
Here - - -

- - -
BASR1 BASR 1,0
There - - -

What would he claim to be in GR1 after the EX is executed? What will be in GR1?

24.11.3.(2)+ Suppose control passes to the following sequence of instructions:

LA 1,BStar
EX 0,BASR1 Execute the BASR instruction
LR 0,0 Do nothing in particular

BStar B * Wait here for answer
BASR1 BASR 1,0 Do something, maybe

AR 0,0 Also do nothing in particular
B BStar Branch to waste some cycles

When control arrives at BStar, the address of some instruction should be in GR1. What is it?
What will be the value of the Instruction Length Code immediately after the EX instruction
has completed execution?

24.11.4.(2)+ Rewrite Exercise 17.2.9 to use an EX instruction and eight TM instructions to test
the proper bit of the selected byte.

24.11.5.(3) We must move a number of bytes from a string whose starting address is contained
in GR1, to a string whose starting address is contained in GR2. The number of bytes to be
moved (which can be greater than 256) is in GR3. Write a code sequence to perform the
move.

24.11.6.(3)+ Suppose you must scan a string of length L (where L ≤ 200) bytes starting at
DCData that may contain paired ampersands and apostrophes (as in a C-type character con-

Type Operands Modifiable

R R R1,R2 R1,R2
RX, RXY R1,D2(X2,B2) R1,X2

RS, RSY
R1,R3,D2(B2)
R1,M3,D2(B2)
R1,D2(B2)

R1,R3
R1,M3

R1
SI, SIY D1(B1),I2 I2

SS
D1(L,B1),D2(B2)
D1(L1,B1),D2(L2,B2)
D1(L1,B1),D2(B2),I3

L
L 1,L2
L 1,I3

SSF R3,D1(B1),D2(B2) R3

RI R1,I2
M1,I2

R1
M 1

394 Assembler Language Programming for IBM System z™ Servers Version 2.00

stant). Write instructions to scan the string and move it to DCGen with each paired occurrence
replaced by a single occurrence. Store the length of the resulting string at DCGenL.

24.11.7.(2) In Exercise 24.9.13 on page 382, the string at Text was assumed to be shorter than
256 characters. Repeat the exercise, now assuming that the string's length may be up to 14000
characters.

24.11.8.(3)+ A string of M characters at Data is to be moved to an N-byte area named DataPad
and extended or “padded” with blanks if N > M. Assume that both M and N are ≤ 256, and
have been defined in EQU statements. If N < M, move only N bytes. (Don't use MVCL or
MVCLE!)

24.11.9.(3) In Exercise 24.8.4 on page 379, you explained why CLC does not pad the shorter
operand with blanks. Write an instruction sequence that simulates the operation of a “CLC”
instruction that does pad the shorter operand with blanks. Your instructions must set the Con-
dition Code correctly.

24.11.10.(3) Parentheses are used in many programming languages to enclose expressions,
denote groupings, and so forth. These parentheses must be balanced: that is, they must
“match up” so that (1) each left parenthesis has a matching right parenthesis that follows it
somewhere, (2) the leftmost parenthesis must be a left parenthesis, and (3) it must be matched
by the rightmost parenthesis. More formally, if L(n) and R(n) are the number of left and right
parentheses encountered after scanning n characters, and if there are N characters in the string,
then a balanced string must have L(n)≥ R(n) for 0 < n <N, and L(N)=R(N).

Using appropriate TRT and EX instructions, write a program segment which will test a string
of characters for balanced parentheses. Assume initially that GR7 contains the address of the
string, and its length in bytes is a 32-bit binary integer in GR8. Branch to Balanced and
Unbalncd for successful and unsuccessful scans, respectively.

24.11.11.(2)+ Modify the illustration of the fetch-decode-execute cycle in Figure 16 on page 55
to show how the Execute instruction and its target instruction are fetched and decoded. Indicate
explicitly where the test for an Execute exception is made.

24.11.12.(2) Suppose the bits within the byte stored at Rotator are to be rotated to the right N
bit positions, where N is defined by the three low-order bits in GR1. Write a code sequence,
including the necessary translate table or tables, to do the shift.

Can you devise a table which will accomplish the shift by executing only a single TR instruc-
tion?

24.11.13.(2)+ In example 5 on page 392 in Section 24.11.2, we want to test for the presence of
a 1-bit in GR9. What will happen if the branch instruction is JO instead of JNZ?

24.11.14.(2) How can the code sequence in example 5 of Section 24.11.2 be modified to test if
the contents of some register is a multiple of a given power N of 2? What are the limitations on
this technique?

24.11.15.(2)+ A programmer used an EX instruction to load the constant 137 into a general
register whose number was determined at execution time. He knew that the number of the
target register would be in the rightmost 4 bits of GR1, and wrote

EX 1,LHIOp Load the constant into a GPR
- - -

LHIOp LHI 0,137 Executed: load into the target GPR

This won't do what he wants. Explain why not, and show what he should have written.

24.11.16.(2) Write a code fragment using an Execute instruction that will convert the byte at
Byte to 8 EBCDIC characters starting at Char that represent the value of its 8 bits.

24.11.17.(2) Modify the coding in Figure 212 on page 386 to use EX instructions where appro-
priate.

Chapter VII: Bit and Character Data 395

24.11.18.(3)+ Suppose your CPU has no MVCIN instruction, and you want to move the string
of L characters starting at Source to the string of L characters starting at Target in reverse
order. Assuming that 0 < L < 256 is a number in GR0, create an appropriate translate table
and instructions that will move the characters as required.

24.11.19.(2)+ If c(GR1) = X'FEDCBA98', and you then execute this instruction:

EX 1,Sub
- - -

Sub SR 5,2

what SR instruction will the CPU actually execute?

24.11.20.(2) How can an EX instruction choose one of multiple possible target instructions in a
single execution?

24.12. Summary

 Remember:

The length you code in an SS-type assembler instruction statement (N)
specifies how many bytes are involved (unless you code zero, in which
case one byte always participates in the operation). The length you
specify as the R1 operand of an EX instruction (L) is one less than the
number of bytes involved.

For most instructions, operand overlap is not a problem.

• If neither operand is changed (for example, by CLC and TRT), operand overlap doesn't
matter.

• Most instructions operate as though the bytes of the source operand are fetched one at a time,
and the result byte is stored at the target operand before the next source byte is fetched.149

• For other instructions, operand overlap can lead to unpredictable results.

We'll note special cases as they arise.

Table 150 summarizes Table 142 on page 367 and Table 143 on page 368 about explicit and
implied length specification in single-length SS-type instructions:

Table 150. Operands of single-length SS-type instructions

The instructions discussed in this section are shown in Table 151 on page 397.

Explicit Length Implied Length

S1(N),S2 S1,S2
D1(N,B1),S2 D1(,B1),S2

S1(N),D2(B2) S1,D2(B2)

D1(N,B1),D2(B2) D1(,B1),D2(B2)

149 Modern processors may fetch, process, and store groups of several bytes, but the result still appears to be byte-at-a-
time operation.

396 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 151. Basic instructions for data in storage

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Function Instruction Data is Processed CC Set?

Move MVC
MVCIN

Left to right
Right to left No

Move MVCOS Left to right Yes

AND NC Left to right Yes

OR OC Left to right Yes

XOR OC Left to right Yes

Compare CLC Left to right Yes

Translate TR Left to right No

Translate and Test TRT Left to right Yes

Translate and Test
Reverse

TRTR Right to left Yes

Execute EX
EXRL — Depends on target

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

CLC D5 MVCIN E8 TR DC

EX 44 MVCOS C80 TRT DD

EXRL C60 NC D4 XC D7

MVC D2 OC D6

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

44 EX D4 NC DC TR

C60 EXRL D5 CLC DD TRT

C80 MVCOS D6 OC E8 MVCIN

D2 MVC D7 XC

Terms and Definitions
IR

Instruction Register; an internal register holding a target instruction so its second byte may
be modified by an Execute instruction prior to decoding.

Length Expression
A value (N or LE) coded implicitly or explicitly in a machine instruction statement for an
SS-type instruction, from which the Assembler derives the Length Specification Byte L.

Length Specification Byte
The second byte (L) of an SS-type instruction, one less than the length of its operand or
operands.

Chapter VII: Bit and Character Data 397

target instruction
An instruction addressed by an Execute instruction.

Programming Problems

Problem 24.1.(2) Using the definitions in Exercise 24.11.10, write a program which will read
character strings from records and test for balanced parentheses. Print each string and a message
which indicates whether or not it is balanced. Assume that the first blank character ends the
character string.

Problem 24.2.(3) A “perfect shuffle” of a deck of 52 playing cards interleaves each card of the
top 26 cards with each card of the bottom 26, in exactly the same way for each shuffle.150 Thus,
after a single shuffle the order of the cards is 1, 27, 2, 28, ... 25, 51, 26, 52.

It is claimed that after a small number (less than 10) of perfect shuffles, the original order of the
cards is restored. Test this claim by writing a program using a TR instruction to perfectly
shuffle the numbers from 1 to 52. The results may be displayed in hexadecimal.

Just for fun, try your program for different (even!) numbers of “cards” to see how many shuf-
fles are needed to recover the original order.

Problem 24.3.(3) Write a program to read 80-character records that should contain only
EBDCIC decimal digits or blanks. If any invalid character is found, display the record and the
column number where the invalid character was found.

Problem 24.4.(4) In storing data containing large numbers of characters, it is often useful to find
some way to “compress” the data. For example, if the data consists of 80-byte records that
rarely contain 80 nonblank characters, space might be saved if we discard the trailing blanks
(following the last nonblank character on the record, and place a control byte at the beginning
that gives the length of the remaining string. Thus, a record containing only an asterisk in
column 1 would be stored as the two bytes X'015C', a saving of 78 bytes.

Many such compression schemes exist, and they can be simple or elaborate depending on the
needs of a particular situation. One packing method applicable to strings containing many
repeated characters is the following:151

1. Copy the first character of the record in its exact form.

2. Replace each subsequent character by the binary value (or difference) that when added to
the preceding character's value (ignoring carries) will produce the desired character.

3. When the difference is zero, indicating a redundant (repeated) character, that zero difference
is used as a flag, and the next character contains a count of the number of remaining repe-
titions.

4. Preceding each string of compressed text is a record length byte containing the number of
bytes in the string, including itself.

5. A record length byte containing zero indicates the end of the compressed text for that
record.

These examples may help:

Input String Compressed Line Record

AAAAAAAAAA 04 C1 00 08
AAAAABBBBB 07 C1 00 03 01 00 03
BBAA 06 C2 00 00 FF 00 (no extra 00!)
ABCDDDDDEFFGH 0D C1 01 01 01 00 03 01 01 00 00 01 01

150 This is also known as an “out-shuffle”.
151 Due to J. E. Hunter, IBM Technical Disclosure Bulletin, Volume 15, Number 6, November 1972.

398 Assembler Language Programming for IBM System z™ Servers Version 2.00

(This compression scheme will require more space than the original text if the longest string of
repeated characters is of length 2, as in the third example.)

Write a program that will read 80-byte records and produce a block of compressed text records
in memory. For example, if there were only a single compressed text record (a single “line” of
text), as in the fourth example above, then the block in memory would contain 14 bytes:

0D C1 01 01 01 00 03 01 01 00 00 01 01 00

Then, “de-compress” the block of text, and print it. If you can, write your compressed text
onto records and give them to someone else to expand. Compare the expanded results to the
original records.

Problem 24.5.(4)+ A common requirement in scanning character strings is that some character
positions must match a “pattern” exactly, while other positions may match any character. For
example, suppose a pattern is defined by C'AB%CD', meaning that when scanning a test string,
AB must match the first two characters of the test string, the % means that any character in the
third position of the test string is acceptable, and CD must match the fourth and fifth charac-
ters of the test string. For example, this pattern would match the test string C'AB?CD'. but not
the test string C'ABCDEF'.

Write a program that will accept a pattern string (perhaps on a record with initial characters
'Pattern') followed by records containing test strings. Print the pattern, the test string, and an
indication of whether the pattern matches the test string or not.

Problem 24.6.(5)+ This problem is an extension of Problem 24.5. In addition to a pattern char-
acter like % that will match an arbitrary character in a test string, it is often useful to match
some characters while some number of others need not be matched. For example, if a pattern
uses the character * to mean “match any number of characters, including none”, then the
pattern C'A*B' would match test strings like C'AB' and C'A123B'. Similarly, a pattern like C'A*'
would match test strings like C'A' and C'ABCDEFG'.

As in Problem 24.5, write a program that will accept various patterns followed by test strings,
and print the pattern, the test string, and an indication of whether the pattern matches the test
string or not.

Problem 24.7.(5)+ Combine the two pattern types of Problems 24.5 and 24.6, so that a pattern
might look like C'A%B*C', which would match test strings like C'A.BC' and C'AJBRSTUVWC'.

Problem 24.8.(2) A programmer claimed that he can convert the hex digits of a word stored at
Word to eight EBCDIC characters stored at HexWord representing the hex digits with these
instructions:

L 2,Word
L 4,=4X'0F'
LR 3,2
SRL 3,4
NR 3,4
NR 4,2
STM 3,4,Temp
TR Temp,=C'0123456789ABCDEF'
MVC HexWord,=X'0004010502060307'
TR HexWord,Temp
- - -

Temp DS D
HexWord DS CL8
Word DC X'1F2E3D4C' (For example)

Write a program to test his claim with a variety of values at Word.

Problem 24.9.(2) Write a program to simulate the execution of the TR instruction.

Problem 24.10.(3) Write a program to simulate the execution of the TRT instruction, without
considering final Condition Code settings

Chapter VII: Bit and Character Data 399

Problem 24.11.(4) Write a program to simulate the execution of the TRT instruction, with
correct settings of the Condition Code when execution completes.

Problem 24.12.(3)+ Write a program to display on three lines the 80-byte records of any short
program you wrote: on the first line, the original record (with double-spacing carriage control;
and on the second and third lines, each byte of the original line is shown in “vertical hex”,
where the first hex digit of the EBCDIC character is shown on the upper line, and the second
hex digit on the lower line. For example, the characters This is a TEST (or
X'E38889A24088A2408140E3A5E2E3') would be arranged on 3 output records like this:

0This is a TEST
 E88A48A484EAEE
 38920820103523

The key to the solution is the translate table.

This technique can be very useful for displaying the contents of records (like object modules)
that contain a mixture of EBCDIC and binary values.

Problem 24.13.(3) Write a program to read the records shown below. The first record is a title
line, the next is blank, and the remaining records contain the name of a student and four exam
grades in columns 31-40, 41-50, 51-60, and 61-70.

Write a program to read the data and produce a report with the average grade for each student
in columns 71-80, and after the last student's grades and average, skip a line and print the
average grade for each exam. For example, the output might be formatted like this:

Name Exam 1 Exam 2 Exam 3 Exam 4 Average

Student 1 nn nn nn nn nn
 - - -
Student n nn nn nn nn nn

Exam Averages nn nn nn nn nn

This is some sample data:

Name Exam 1 Exam 2 Exam 3 Exam 4 Final

Doaks, Joe 79 83 88 91 93
Queue, Susie 44 91 67 97 89
Shakes IV, Pete 97 89 80 100 73
Burley, Hurley 61 71 85 88 97
Throckmorton, Chauncey 90 90 88 74 92
Doaks, Jonathan 79 83 87 95 47

Problem 24.14.(3) Write a program to read the records shown below, that contain the text of
Lincoln's “Gettysburg Address” as a string of characters in fixed-format 80-byte records. You
will need a work area of about 2000 bytes.

Count and print the number of words.

These are the records for you to read:

400 Assembler Language Programming for IBM System z™ Servers Version 2.00

Four score and seven years ago our fathers brought forth on this continent a ne
w nation, conceived in liberty, and dedicated to the proposition that all men a
re created equal. Now we are engaged in a great civil war, testing whether that
 nation, or any nation, so conceived and so dedicated, can long endure. We are
met on a great battle-field of that war. We have come to dedicate a portion of
that field, as a final resting place for those who here gave their lives that t
hat nation might live. It is altogether fitting and proper that we should do th
is.

But, in a larger sense, we can not dedicate, we can not consecrate, we can not
hallow this ground. The brave men, living and dead, who struggled here, have co
nsecrated it, far above our poor power to add or detract. The world will little
 note, nor long remember what we say here, but it can never forget what they di
d here. It is for us the living, rather, to be dedicated here to the unfinished
 work which they who fought here have thus far so nobly advanced. It is rather
for us to be here dedicated to the great task remaining before us -- that from
these honored dead we take increased devotion to that cause for which they gave
 the last full measure of devotion -- that we here highly resolve that these de
ad shall not have died in vain -- that this nation, under God, shall have a new
 birth of freedom -- and that government of the people, by the people, for the
people, shall not perish from the earth.

Problem 24.15.(4) Write a program to read the same records as in Problem 24.14. Now, create a
table of distinct words, ignoring differences between lower and upper case forms of the same
word. Sort the words into alphabetical order, and print the words and the number of occur-
rences of each.

Problem 24.16. Write a program to read the same records in Problem 24.14.

Your program should then create a readable version of the text on lines of 60 characters, with
words correctly joined where they were split across the original records. No characters may go
past the end of the 60-character output line. For example, if two input records contain some-
thing like this:

�────────────────────────────────── 80 characters ─────────────────────────────�
word1 word2 word3 word4 word5 word6 word7 word8 word9 wordiness wordA wordB word
C wordD wordE ...

then your formatted line would contain something like this:

�──────────────────────── 60 characters ───────────────────�
word1 word2 word3 word4 word5 word6 word7 word8 word9
wordiness wordA wordB wordC wordD wordE ...

If you encounter a completely blank line in the input, leave a blank line in the formatted
output.

You might enjoy making the width of the output line depend only on a symbol defined by an
EQU statement; try values such as 60, 80, and 100.

Problem 24.17.(4) Write a program to read the data in Problem 24.14. Create an output area of
the same size as your input area. Now, you will encrypt the records from the input to the
output areas. Create a “key” by defining a suitably random binary fullword from a 9-digit
decimal value. Then, encrypt the input message as follows:

1. XOR your key with the first word of the input message, and store the result in the output
buffer.

2. XOR that result with the second word of the input message, and store the result in the
second word of the output buffer.

3. Continue in this way until the entire message has been encrypted.

Chapter VII: Bit and Character Data 401

Then, create a third buffer of the same length as the input buffer. Using your key, decrypt the
message in the output into this third buffer, using the same technique. Then, compare your
decrypted result with the original. (They should be identical!)

Problem 24.18.(3) Write a program to read records with blank-terminated strings of octal (base
8) digits. Assuming the octal digits represent a right-adjusted binary number, convert the digits
to binary represented as a string of hexadecimal digits. Then, display the original octal digit
string followed by the converted hex string.

Remember that the rightmost octal digit contains the three low-order bits of the binary
number, so that octal 76543 (O'76543'? What's its value in decimal?) is the same as X'7D63'.

402 Assembler Language Programming for IBM System z™ Servers Version 2.00

25. Character Data and Extended Instructions

2222222222 55555555555
222222222222 555555555555
22 22 55

22 55
22 555555555
22 5555555555

22 555
22 55

22 55
22 555
222222222222 55555555555
222222222222 555555555

All the instructions discussed thus far complete their task before the next instruction is processed.
In this section, we'll look at some instructions that may take much longer to complete. This
means that if the CPU is interrupted by a high-priority request, something must be done about
the current instruction. The CPU handles this in one of two ways:

• Method A: Save enough information in the general registers about the intermediate state of the
instruction, reset the Instruction Address back to the address of the interrupted instruction,
and then process the interrupt. When execution of your program resumes, the interrupted
instruction continues from its intermediate state as though it had not been interrupted.

• Method B: Process a portion of the operands, update registers appropriately, and set the Con-
dition Code to 3 to indicate that the operation was only partially completed. Any pending
interruptions can then occur. The Instruction Address is not reset, so the following instruction
should test for CC=3 and branch back to the interrupted instruction so it can complete the
operation.

We'll see each “method” in the instructions in this section.

The processed portion of the operands can vary greatly from instruction to instruction, and for
repeated executions of the same instruction.

25.1. Move Long and Compare Logical Long

These instructions also use a special “padding” character, or an “end” (or “stop”, “test”, “search”,
“special”, “terminating”) character.152 All the instructions in Table 152 on page 404 use a padding
character.

152 The appropriate name for the “end” character depends on how it's used; some names are more descriptive than
others for a given instruction.

Chapter VII: Bit and Character Data 403

Table 152. Basic character-handling instructions using padding characters

Op Mnem Type Instruction Op Mnem Type Instruction

0E MVCL R R Move Long A8 MVCLE RS Move Long Extended

0F CLCL R R Compare Logical Long A9 CLCLE RS Compare Logical Long
Extended

We begin by examining the Move Long (MVCL) and Compare Logical Long (CLCL)
instructions in a general way. Both are RR-type instructions with the usual format, and they
both use four general registers! The instruction formats are

MVCL R1,R2
CLCL R1,R2

where both R1 and R2 designate an even-odd pair of registers. (A specification exception occurs if
either R1 or R2 is odd.) The even-numbered registers contain the operand addresses, and the next-
higher odd-numbered registers contain the operand lengths; each length is treated as a 24-bit
unsigned number. The high-order byte of R2+1 contains the padding byte, as sketched in
Figure 221. (Register lengths and addressing modes are ignored for a moment.)

┌──┐
│ Operand 1 address │ GPR R1
├───────────────────────────────┬────────┬─────────────────────────┤
│//│ Operand 1 Length │ GPR R1+1
└───────────────────────────────┴────────┴─────────────────────────┘
┌──┐
│ Operand 2 address │ GPR R2
├───────────────────────────────┬────────┬─────────────────────────┤
│///////////////////////////////│pad byte│ Operand 2 length │ GPR R2+1
└───────────────────────────────┴────────┴─────────────────────────┘
0 31 32 40 41 63

Figure 221. Register use by CLCL and MVCL

MVCL and CLCL simplify moving and comparing long strings of bytes, which would otherwise
require lengthy loops.

These instructions are unlike MVC and CLC in several respects.

• Two lengths are specified; the operands may have different lengths, and the instructions depend
on both lengths.

• Much longer strings of bytes may be compared or moved in a single instruction. Instead of a
limit of 256 bytes, MVCL and CLCL can specify up to 224 −1 bytes.153

• All four registers may be changed by the instructions. The addresses in the even-numbered
registers depend on the addressing mode.

• The lengths are true lengths rather than “machine lengths” (the true length minus 1). Only the
24 low-order bits of R1+1 and R2+1 (containing the operand lengths) are updated, and the
remaining bits are unchanged.

• The high-order byte of R2+1 holds a “pad byte” used to extend certain operands, if necessary.

• The MVCL instruction sets the Condition Code, and no data movement takes place if there is
any possibility of “destructive overlap” of the operands.

• Either R1 or R2 may be zero, so that GR0 may contain an operand address!

• Both instructions are interruptible: if an interrupt occurs before the operation is complete,
“Method A” is used: the registers are updated appropriately, and the Instruction Address in
the PSW is “backed up” by 2 bytes from the address of the following instruction to the

153 At the time MVCL and CLCL were implemented, The operand length of 224 − 1 bytes seemed sufficient for many
years. But memory sizes grew rapidly, so MVCLE and CLCLE were added to handle longer compare and move
operations. We'll see them in Section 25.2.

404 Assembler Language Programming for IBM System z™ Servers Version 2.00

address of the CLCL or MVCL instruction. When control is returned to the interrupted
program, execution of the instruction resumes with the remnants of the operands.

25.1.1. MVCL

In the absence of special conditions, MVCL operates by moving bytes from the second (source)
operand field to the first (target) operand field. As noted in our discussion of implied lengths in
Section 24.3, the number of bytes moved is controlled by the first (receiving) operand length.
Thus, if the first operand length is zero, no bytes are moved.

Unlike MVC, MVCL tests for the possibility of destructive overlap, which occurs when any part
of the first operand field is used for a source after data has been moved into it. If destructive
overlap could occur, the CPU sets the Condition Code to 3, and moves no data.

Execution of MVCL proceeds (conceptually) as follows:

1. Bytes are moved one by one from the second to the first operand field; the counts are decre-
mented by 1 and the addresses are incremented by 1 for each byte moved.

2. If both operand counts reach zero at the same time, the CC is set to 0.

3. If the first operand count reaches zero before the second operand count, the CC is set to 1.
That is, the target length in R1+1 less than the source length in R2+1.

4. If the second operand count reaches zero first, the pad character is used as a source byte until
the first operand count reaches zero; the CC is then set to 2. That is, the target length in
R1+1 greater than the source length in R2+1.

5. On termination, the operand 1 length is zero, and the operand 1 address has been updated by
the corresponding length. The operand 2 address has been incremented by the number of
bytes moved from the second operand field whether or not padding has occurred, and the
second operand count has been decreased by the same amount.

6. On termination (even for destructive overlap),

• in 24-bit addressing mode, the leftmost byte of GR R1 and GR R2 are zeroed, and the
high-order half of GG R1 and GG R2 are unchanged;

• in 31-bit addressing mode, the leftmost bit of GR R1 and GR R2 is zeroed, and the high-
order half of GG R1 and GG R2 are unchanged;

• in 64-bit addressing mode, both GG R1 and GG R2 are updated.

MVCL sets the Condition Code as shown in Table 153.

Table 153. CC settings after MVCL

Figure 222 on page 406 may help you to to visualize the operation of MVCL, assuming there is
no destructive overlap. The figure uses these notations:

A1 Address of a first-operand byte, c(R1)
c(A1) The first-operand byte at address A1
L1 Remaining length of the first operand, c(R1+1)
A2 Address of a second-operand byte, c(R2)
c(A2) The second-operand byte at address A2
L2 Remaining length of the second operand, c(R2+1)
Pad Padding byte

CC Meaning

0 Operand 1 length = Operand 2 length

1 Operand 1 length < Operand 2 length; part of operand 2 not moved

2 Operand 1 length > Operand 2 length; operand 1 was padded

3 Destructive Overlap, no data movement

Chapter VII: Bit and Character Data 405

Reader Note

In the following figure sketching the flow of the MVCL instruction, there
are many places where subscripts would be more appropriate, but the
formatter used for this text cannot then properly align other parts of the
diagram. This comment also applies to Figures 225, 229, 232, 235, 236,
and 239 in this Section 25.

START──L1=0? ───── L2=0? ───── c(A1)← Pad
� │ No No│ Yes �
│ Yes│ � A1=A1+1
│ │ c(A1)←c(A2) L1=L1−1
│ │ � �
│ │ A1=A1+1 L1=0? ────┐
│ � A2=A2+1 │ Yes �

 │ ┌────────┐ L1=L1−1 No│ ┌─────┐
 │ │Done; if│ L2=L2−1 │ │Done;│
 │ │L2=0 CC0│ Yes � │ │ Set │
 │ │else CC1│�──── L1=0? │ │ CC2 │
 │ └────────┘ No│�──────────────┘ └─────┘
 │ � ┌─────────────────┐
│ Interrupt │ PSW IA = IA─2 │

 └�────────────── Pending? ──── │Process interrupt│
No Yes └─────────────────┘

Figure 222. Conceptual execution of the MVCL instruction

To illustrate some uses of MVCL, suppose we want to set the area at Line to blanks (as in
example 1 of Section 24.6).

LineLen Equ 120 Number of blanks to move
SR 1,1 Operand 2 length = 0
ICM 1,8,=C' ' Pad character is blank
LA 2,Line Set address of first operand in GR2
L 3,=A(LineLen) And first operand length in GR3
MVCL 2,0 Move pad characters to 'Line'

Figure 223. Using MVCL to set a field to blanks

Because the second operand length in GR1 is zero, we need not initialize GR0 with an address.

This method is a lot more work than the example in Section 24.6, because we must set up four
registers and a pad byte. However, MVCL is superior to MVC when the number of bytes to be
moved grows large: by omitting the ICM (which inserts the padding character into R1), we could
just as easily have set the area to zero, as in example 1 of Section 24.7. MVCL is often used this
way to zero large blocks of memory without having to use XC instructions, and to initialize areas
without using MVC instructions with overlapping operands.

Suppose GR8 and GR9 contain the address and length of a message which is to be moved to the
120-byte area at PrintMsg. We will pad the message with blanks if it fits, and branch to WontFit
if all of the message won't fit in the 120-byte area.

LA 2,PrintMsg First operand address
LA 3,L'PrintMsg First operand length
ICM 9,8,=C' ' Set padding character to blank
MVCL 2,8 Move the string, pad if necessary
JL WontFit Branch if something left over (CC1)
JO NotMoved Error, destructive overlap (CC3)

Figure 224. Moving a message with padding and length checking

406 Assembler Language Programming for IBM System z™ Servers Version 2.00

No Execute instruction (or STC, to store a length byte into an MVC) was needed to supply a
Length Specification Byte for the move.

25.1.2. CLCL

The two operand byte strings are compared byte by byte as unsigned binary numbers (just as for
CLC), starting at the low-addressed end and proceeding toward higher addresses. The compar-
ison stops when an inequality is detected, or when the end of the longer operand is reached (not
the shorter!). Unlike MVCL, where only the first operand might be padded, CLCL can pad either
operand! The CC is set in the usual way to indicate the result of the comparison. If both operand
lengths are zero, or if R1 and R2 designate the same register, the CPU simply sets the CC to zero,
indicating equality.

The comparison can be considered as proceeding in the following way:

1. Bytes are compared one by one; the operand addresses are incremented by 1 and the operand
lengths are decremented by 1 for each step.

2. If an inequality is detected before either length becomes zero, the CC is set, registers R1 and
R2 contain the addresses of the unequal bytes, and the counts in the rightmost 24 bits of the
respective odd-numbered registers contain one more than the number of bytes that remain to
be compared. (That is, the addresses have been incremented by the number of equal bytes,
and the lengths have been decremented by the same amount.) The CC setting indicates the
larger or smaller operand.

3. If one of the lengths becomes zero, the comparison continues with the padding character
being compared to bytes from the longer operand. For the shorter operand, the even register
contains the address of the first byte past the end of the operand string, and the odd register
contains zero.

4. If an inequality is detected between the padding character and a byte from the longer
operand, the address and count for that operand are set as in step 2 (the address and count
for the shorter operand were set in step 3).

5. If no inequality is detected before the longer count becomes zero, the even-numbered register
points to the first byte past the end of the longer operand string.

6. The register contents on termination are the same as shown for MVCL in step 6.

If the two operands are completely equal (including the padding character, if needed), both counts
will be zero, and the corresponding addresses will have been incremented by the original count
values.

CLCL sets the Condition Code as shown in Table 154.

Table 154. CC settings after CLCL

Figure 225 on page 408 may help clarify this description. The figure uses notations similar to
those preceding Figure 222 on page 406:

A1 Address of a first-operand byte, c(R1)
c(A1) The first-operand byte at address A1
L1 Remaining length of the first operand, c(R1+1)
A2 Address of a second-operand byte, c(R2)
c(A2) The second-operand byte at address A2
L2 Remaining length of the second operand, c(R2+1)
Pad Padding byte
x:y x is compared to y

CC Meaning

0 Operand 1 = Operand 2, or both lengths 0

1 First Operand low

2 First Operand high

Chapter VII: Bit and Character Data 407

START ──── L1=0? ───── L2=0? ─────────── c(A1):Pad
Yes│ No │No Yes =/│ │=

� � � │
┌�──── Pad:c(A2) �───── L2=0? c(A1):c(A2) ────┬�────┘ │
│ =/ │= │Yes │= =/ │ │
� � � � � �

┌─────┐ A2=A2+1 ┌─────┐ A1=A1+1 ┌─────┐ A1=A1+1
│Done;│ L2=L2−1 │Done;│ A2=A2+1 │Done;│ L1=L1−1
│ Set │ │ │ Set │ L1=L1−1 │ Set │ │
│CC1,2│ │ │ CC0 │ L2=L2−1 │CC1,2│ │
└─────┘ │ └─────┘ │ └─────┘ │

└───────────────────────────│�──────────────────────┘
� ┌─────────────────┐

START �──── Interrupt pending? ────│ PSW IA = IA−2 │
No Yes │Process interrupt│

└─────────────────┘

Figure 225. Conceptual execution of the CLCL instruction

The greater power of CLCL compared to CLC is seen in the changes to the four registers at the
end of the operation. Not only do you know exactly how many bytes were compared, but the
precise position of the inequality is known, which is impossible with CLC unless the bytes are
compared one at a time.154 By testing the lengths for zero, you can tell whether an inequality
occurred between bytes in memory, or between the padding character and a byte in memory.

To illustrate CLCL, suppose we want to see if all 120 bytes at Line contain blanks, and branch to
AllBlank if so.

LA 2,Line First operand address in GR2
LA 3,120 First operand length in GR3
SR 1,1 Second operand length = 0
ICM 1,8,=C' ' Pad character is blank
CLCL 2,0 Compare first operand to blank
JE AllBlank Branch if all blanks at 'Line'
- - - GR2 points to first nonblank char

Figure 226. Using CLCL to test for blanks

Because the length of the second operand in GR1 is zero, no address is needed in GR0.

Suppose we have read two records into memory, and want to determine if they are equal; let the
addresses and lengths of the records be stored in fullwords at Addr1, Len1, Addr2, and Len2
respectively.

• If the records are unequal up to the length of the shorter record, we will branch to UnEqual.
• We branch to Equal if their lengths and contents are identical.
• We branch to Equal1 or Equal2 respectively if the operands are equal up to the shorter length,

but operand 1 or operand 2 is longer.
• Neither operand may be padded.

154 For long strings of bytes, this could be painfully slow.

408 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 2,Addr1 Set first operand address
L 3,Len1 And length of first record
L 6,Addr2 Set second operand length
L 7,Len2 And length of second operand
LA 1,Equal Assume lengths are equal
CLR 3,7 Compare lengths
JE Compare Go compare if equal lengths
JH Op1Long Branch if operand 1 longer
LA 1,Equal2 Operand 2 longer, set equality exit
LR 7,3 2nd operand length = shorter value
J Compare And compare

Op1Long LA 1,Equal1 Operand 1 longer, set equality exit
LR 3,7 1st operand length = shorter value

Compare CLCL 2,6 Compare operands with equal lengths
JNE UnEqual Branch if inequality detected
BR 1 Branch to desired equality routine

Figure 227. Comparing two records without padding

The preliminary effort in this example ensures that GR3 and GR7 will both contain the shorter
operand length when the CLCL is executed. This illustrates precautions we must take if we don't
want the shorter operand to be extended with a padding character.

Exercises

25.1.1.(1) Why does using GR0 for an operand address not violate the rules given in Section 10,
where GR0 can't be used to generate an Effective Address?

25.1.2.(2)+ What do you think will happen if MVCL is the target of an EX instruction, and an
interruption occurs before the MVCL operation is completed?

25.1.3.(1) Using MVCL, is there any possibility of destructive overlap if the length of the
second operand is 1?

25.1.4.(1) Suppose the operand 1 length of an MVCL instruction is zero. What will be the CC
setting?

25.1.5.(2)+ A 3500-byte area at Field contains a value in its first byte that is to be propagated
through the rest of the area (all 3500 bytes are to contain that value). Write a code sequence
using MVCL to perform the task.

25.1.6.(3)+ It is claimed that destructive overlap will not occur with MVCL if

• operand 1 address ≤ operand 2 address, or
• operand 1 address > operand 2 address + MINLEN − 1

where MINLEN is the smaller of the two operand lengths. Is this true? Why?

25.1.7.(2)+ Suppose we execute this instruction sequence:

LA 0,STR1 Address of first operand string
LA 1,L'STR1 Length of first operand string
LA 2,STR2 Address of second string
LA 3,L'STR2 Length of second string
ICM 3,8,PAD Padding character in GR3
CLCL 0,2 Compare STR1 to STR2

For each of the following sets of definitions of the symbols STR1, STR2, and PAD, show what
will be in GR0 through GR3 and the CC setting after the CLCL is executed. (Assume that the
address of the symbol STR1 is X'074212D0' in each case.)

Chapter VII: Bit and Character Data 409

(1) STR1 DC F'1'
STR2 DC F'2'
PAD DC X'0'

(2) STR1 DC CL120' '
STR2 DC 110C' '
PAD EQU STR2

(3) STR1 DC CL20'**'
STR2 DC C'**'
PAD DC H'40'

(4) STR1 DC 0XL5
STR2 DC C'ABCD'
PAD DC X'FF'

25.1.8.(2) Sketching MVCL operands and their lengths sometimes helps you understand when
destructive overlap may occur. For example, in this sketch,

┌─────────────┐ Source operand
┌────┴─────────┬───┘ No destructive overlap
└──────────────┘ Target operand

no destructive overlap occurs because no target operand byte is used as a source operand byte if
data is moved one byte at a time. Sketch other possibilities to determine when destructive
overlap will and will not occur.

25.1.9.(3) As in Exercise 24.11.15, use one or more MVC instructions to move a string of bytes
whose address is in GR1 to an area whose address is in GR2; the number of bytes in GR3 is
greater than zero and less than X'FFFFFF'. Perform these additional tests:

1. If the strings overlap destructively branch to Destroy with no data having been moved.

2. If the data strings overlap, but no data is destroyed, perform the move and then branch to
Overlap.

25.1.10.(3) What factors must be considered if you write instructions to emulate the behavior of
CLCL?

25.1.11.(2) Rewrite the example in Figure 226 on page 408, reversing the operands: that is,
make the first operand have zero length.

25.1.12.(1) Revise Exercise 24.8.5 to use a CLCL instruction.

25.1.13.(1) Can you do a “ripple” move with MVCL, as you can with MVC?

25.1.14.(1)+ Revise Figure 223 on page 406 to initialize to zero the 8192 bytes starting at New.

25.1.15.(4) Suppose you are using a CPU that does not support the MVCL instruction. Write
instructions (not using MVCL!) to simulate MVCL, including correct Condition Code settings.

25.2. Move Long and Compare Logical Long Extended

These two instructions are only slightly more complicated than MVCL and CLCL. Both
instructions use “Method B” to allow the CPU to process interruption conditions. Table 155
gives their format:

Table 155. Format of MVCLE and CLCLE instructions

opcode R1 R3 B2 DL2 DH2 opcode

410 Assembler Language Programming for IBM System z™ Servers Version 2.00

There are three operands: the operands in the even-numbered registers R1 and R3 are analogous
to the R1 and R2 operands of MVCL and CLCL. The second operand is not used as an address;
instead, the low-order 8 bits of its Effective Address are used as the padding byte.

┌────────────── ─ ─ ─ ──────────┬───────┐
│ ///////////// ///////// │ pad │ Second operand's Effective Address
└────────────── ─ ─ ─ ──────────┴───────┘

Note that the second operand of the machine instruction is specified as the third operand of the
assembler instruction statement.

For example, to specify a blank padding character, you could write

MVCLE 2,8,C' '(0)
CLCLE 4,14,X'40'(0)

Another difference is that the odd-numbered registers hold the 32-bit (or 64-bit) operand lengths,
which can be from 0 to 232 −1 (or from 0 to 264 −1 for 64-bit addressing mode).

┌───────────────────────────────┬──────┬───────────────────────┐
│ Operand 1 address │ GPR R1
├───────────────────────────────┼──────┴───────────────────────┤
│ Operand 1 length │ GPR R1+1
└───────────────────────────────┴──────────────────────────────┘
┌───────────────────────────────┬──────┬───────────────────────┐
│ Operand 3 address │ GPR R3
├───────────────────────────────┼──────┴───────────────────────┤
│ Operand 3 length │ GPR R3+1
└───────────────────────────────┴──────────────────────────────┘

Figure 228. Register use by MVCLE and CLCLE

If these instructions are executed in 24- or 31-bit addressing modes, the rightmost 24 or 31 bits of
the even-numbered registers contain the operand addresses. On termination, the high-order (non-
address) bits of the R1 and R3 registers may or may not be set to zero.155

25.2.1. MVCLE

Unlike MVCL, no overlap test is done for MVCLE; the results of overlapping operands are
unpredictable. Its execution is sketched in Figure 229 on page 412, using similar notations as in
Figure 222 on page 406, except that the source operand address is A3 and the source operand
length is L3.

155 This is not just a whim on the part of the CPU; it's meant to give the CPU designers more freedom to decide how
best to implement the instructions. (Maybe it's a whim on the part of the CPU designers?)

Chapter VII: Bit and Character Data 411

START──L1=0? ───── L3=0? ───── c(A1)← Pad
� │ No No│ Yes �
│ Yes│ � A1=A1+1
│ │ c(A1)←c(A3) L1=L1−1
│ │ � �
│ │ A1=A1+1 L1=0? ────┐
│ � A3=A3+1 │ Yes �

 │ ┌────────┐ L1=L1−1 No│ ┌─────┐
 │ │Done; if│ L3=L3−1 │ │Done;│
 │ │L3=0 CC0│ Yes � │ │ Set │
 │ │else CC1│�──── L1=0? │ │ CC2 │
 │ └────────┘ No│�──────────────┘ └─────┘
 │ �
 │ Enough ┌─────────────┐
 └�────────────── for now? ──── │Done; Set CC3│

No Yes └─────────────┘

Figure 229. Conceptual execution of the MVCLE instruction

On termination, the register contents are:

1. If the first operand has been completed, the CC is set to 0 if the two operand lengths were
equal. Both operand addresses have been incremented by that length, and both lengths are
now zero.

2. If the first operand has been completed, the CC is set to 1 if the first operand is shorter than
the third. Both operand addresses has been incremented by the first operand length, the first
operand length is 0, and the third operand length has been decremented by the first operand's
original length.

3. If the first operand has been completed, the CC is set to 2 if the first operand is longer than
the third (meaning that the first operand was padded). Both operand lengths are zero, and
both addresses have been updated by their original lengths.

4. If the CPU has moved enough bytes and wants to pause for any pending interruptions, the
CC is set to 3. You would then branch back to the MVCLE instruction to resume the move.
Both addresses and lengths have been updated for the bytes moved.

5. Whatever the reason for termination, the registers are updated to account for the amount of
data that has been moved.

6. Some special padding byte values can be used to improve the performance of MVCLE; see
the z/Architecture Principles of Operation for details.

To summarize, MVCLE sets the Condition Code as shown in Table 156.

Table 156. CC settings after MVCLE

We can use MVCLE for the same task as in Figure 223 on page 406, where we again assume
that GR8 and GR9 have been initialized already:

CC Meaning

0 All bytes moved, operand lengths are equal

1 All bytes moved, operand 1 shorter; part of operand 2 was not moved

2 All bytes moved, operand 1 longer; operand 1 was padded

3 Some bytes moved; end of operand 1 not reached

412 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 2,PrintMsg First operand address
LA 3,L'PrintMsg First operand length
LA 0,C' ' Set padding character to blank

Move MVCLE 2,8,0 Move the string, pad if necessary
JO Move Repeat if not finished

Figure 230. Using MVCLE to set a field to blanks

As another example, suppose we use MVCLE to initialize a large area of storage starting at Work
to zeros:

XR 0,0 Source address will be ignored,
XR 1,1 ...because source length is zero
LA 2,Work Start of area to initialize
L 3,WorkSize Length of work area

Clear MVCLE 2,0,X'00' Initialize with X'00' padding
JO Clear Repeat if necessary

BlockLen Equ 32000
NBlocks Equ 20000
WorkSize DC A(BlockLen*NBlocks) Large area
Figure 231. Using MVCLE to initialize an area to zero

It's unlikely that you'd ever need to initialize such a large an area of storage; because the value at
WorkSize is larger than 224, we can't use MVCL.

It may or may not be important to your application that MVCLE does not check for overlap.

25.2.2. CLCLE

CLCLE operates in much the same way as CLCL, as sketched in Figure 232, using the same
notations as in Figure 225 on page 408, except that the source operand address is A3 and the
source operand length is L3.

START ──── L1=0? ───── L3=0? ─────────── c(A1):Pad
Yes│ No │No Yes =/│ │=

� � � │
┌�──── Pad:c(A3) �───── L3=0? c(A1):c(A3) ────┬�────┘ │
│ =/ │= │Yes │= =/ │ │
� � � � � �

┌─────┐ A3=A3+1 ┌─────┐ A1=A1+1 ┌─────┐ A1=A1+1
│Done;│ L3=L3−1 │Done;│ A3=A3+1 │Done;│ L1=L1−1
│ Set │ │ │ Set │ L1=L1−1 │ Set │ │
│CC1,2│ │ │ CC0 │ L3=L3−1 │CC1,2│ │
└─────┘ │ └─────┘ │ └─────┘ │

└───────────────────────────│�──────────────────────┘
� ┌─────────────┐

START �──── Enough for now? ────│Done; Set CC3│
No Yes └─────────────┘

Figure 232. Conceptual execution of the CLCLE instruction

On termination, the registers are set as follows:

1. If an inequality is found, the CC is set as shown in Table 159 on page 415.

2. If the operands are equal (including the padding byte, if used), the addresses and lengths are
updated to account for the number of bytes compared.

Chapter VII: Bit and Character Data 413

3. If the CPU has compared enough bytes without an inequality and wants to pause for any
pending interruptions, the CC is set to 3. You would then branch back to the CLCLE
instruction to resume comparing.

CLCLE sets the Condition Code as shown in Table 157.

Table 157. CC settings after CLCLE

To illustrate, we'll rewrite Figure 221 on page 404 to use CLCLE:

CC Meaning

0 All bytes compared, operands equal, or both zero length

1 First operand low

2 First operand high

3 Some bytes compared without finding an inequality

LA 2,Line First operand address in GR2
LA 3,120 First operand length in GR3
XR 0,0 Second operand address is ignored,
XR 1,1 ...because its length is zero

Compare CLCLE 2,0,C' ' Compare first operand to blanks
JE AllBlank Branch if all blanks at 'Line'
JO Compare Repeat if comparison is incomplete
- - - GR2 points to first nonblank char

Figure 233. Using CLCLE to test for all blanks

The similarities of CLCL and CLCLE are close; only the operand lengths and the source of the
padding byte are different. But, the differences between CLC and CLCL/CLCLE are more signif-
icant:

• CLC requires only one or two base registers to address the operands; CLCL/CLCLE both
require up to four registers.

• CLC is limited to 256-byte operands; CLCL/CLCLE operands can be much longer.

• CLC simply indicates an inequality; CLCL/CLCLE also set R1 and R2 (or R3) to the
addresses of the unequal bytes.

• CLC does no padding; CLCL/CLCLE support a padding character.

Exercises

25.2.1.(2) What do you think will happen if the B2 register of a CLCLE or MVCLE instruction
is the same as R1 or R3 or R1+1 or R3+1?

25.2.2.(1)+ Can both operands of CLCL or CLCLE be padded?

25.2.3.(2) In 24-bit addressing mode, the maximum valid address is X'00FFFFFF', or 224 −1.
However, MVCLE allows you to specify operand lengths up to X'FFFFFFFF', or 232 −1. What
do you think will happen if you execute MVCLE with a length longer than X'FFFFFF'?

25.2.4.(1) In Figure 231 on page 413, what is the hex value of the word at WorkSize?

25.2.5.(2) Let NB2M be the number of bytes to be moved to Tgt from the second operand
field at Src by MVCL. Make a table which gives the initial and final register contents, and the
value of NB2M, for each of the possible resulting CC values when all bytes have been moved.
Then, do the same for MVCLE.

414 Assembler Language Programming for IBM System z™ Servers Version 2.00

25.3. Special “C-String” Instructions

The four instructions in Table 158 arose from the need to process character strings used by the C
and C+ + programming languages, where character strings are terminated by a zero byte (X'00')
called a null byte.156 The instructions have many general uses, whatever the origins of the data,
and whether or not it contains a null terminating byte.

We will use a bold italic letter “n” to represent a null byte, as in “n”. For example,

DC C'A C-string.',X'0' Generates 'A C-string.n'

The length of a C-string does not include the terminating null character, so that the single byte
X'00' represents a C-string of length zero (a “null string”).

Table 158. Character-handling instructions for terminated strings

Op Mnem Type Instruction Op Mnem Type Instruction

B255 MVST RRE Move String B25D CLST RRE Compare Logical String

B25E SRST RRE Search String B2A5 TRE RRE Translate Extended

These instructions all have RRE format, as shown in Table 159:

Table 159. Format of RRE-type instructions

Each instruction uses a special (end, test, or terminating) character in the rightmost byte of GR0.
All but TRE require that the remaining bits of GR0 be zero.

The operation of the MVCL, MVCLE, CLCL, and CLCLE instructions is controlled by a length
in a register; the four instructions in Table 158 are controlled by the presence of the special char-
acter in one or both operands. Only TRE uses both a length and a terminating character.

Exercises

25.3.1.(1)+ Write DC statements defining C-strings of length zero, one, and ten.

opcode R1 R2

25.4. Search String Instruction

The SRST instruction is the simplest of these four instructions. It scans the second operand
string addressed by register R2, looking for a byte matching the specified “test” character in GR0.
If a matching byte is found, the R1 register is set to its address. Because the second operand
string can be very long, the CPU uses “Method B” (described on page 403) to process part of the
string before checking for interruptions.

For finding a single character, SRST is simpler and faster than a Translate and Test instruction
like TRT, or a CLI loop. Unlike TRT, however, it searches for only a single character.

To use SRST, set the test character in GR0, set the R2 register to the address of the leftmost byte
of the string to be scanned, and the R1 register to the address of the first byte after the end of the
string. The CPU uses the address in the R1 register to know when to stop the scan; otherwise, it
could keep scanning bytes in memory until it found a match somewhere, or caused an unexpected
interruption. This is summarized in Figure 234 on page 416.

156 The earliest implementations of C were done on machines with instructions that could move bytes and simultaneously
test their values, so very few instructions were needed to move null-terminated character strings.

Chapter VII: Bit and Character Data 415

R2 R1
� �
┌─────────────────────────────────┐

 │ string to be searched │
 └─────────────────────────────────┘
Figure 234. Registers bounding the SRST search string

Table 160 gives the Condition Code settings after SRST:

Table 160. CC settings for SRST instruction

On completion, either or both of the R1 and R2 registers may be updated:

• If the CC is 1, the R1 register is updated and the R2 register is unchanged.

• If the CC is 2, both the R1 and R2 registers are unchanged.

• If the CC is 3, R1 is unchanged and R2 is updated to the address of the next byte to be tested.
You can then branch back to the SRST instruction to continue the search.

When a register is updated, any high-order bits not used for addressing are set to zero. Figure 235
sketches the operation of the SRST instruction. The notation used in the figure is:

A1 Address of the first byte after the end of the string being searched, in R1
A2 Address of a byte being checked during the search
Test Test character, taken from GR0

CC Meaning

1 Test character found; R1 points to it

2 Test character not found before the byte addressed by R1
3 Partial search with no match; R1 unchanged, R2 points to next

byte to process

Yes ┌────────┐
 START ── Save R1,R2 ───── A1≤A2? ────────│Done: │

� │ No │Set CC2 │
│ │ └────────┘
│ � Yes ┌────────┐
│ c(A2)=Test? ──────│Done: │
│ │ No │Set CC1 │
│ � └────────┘
│ A2=A2+1
│ │
│ No � Yes ┌─────────────┐
└�─── Enough ────────│Done: Set CC3│

for now? │Set R2←A2 │
└─────────────┘

Figure 235. Conceptual execution of the SRST instruction

If the test character is found at the moment the CPU has “scanned enough for now” and would
otherwise set the CC to 3, it may instead set the CC to 2; the net result is the same because
branching back to the SRST instruction when CC=3 will immediately produce CC=2.

For example, suppose you want to scan the string at MyData to find the first occurrence of a blank
character:

416 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 0,C' ' Search character is a blank
LA 1,MyData Set GR1 to start of the string
LA 5,MyData+L'MyData Set GR5 to byte past end of string

Repeat SRST 5,1 Scan the string for a blank
JO Repeat Scan was incomplete, try again
JH NotFound CC2, no blank was found
- - - GR5 points to the blank

If the Condition Code is 3, we simply branch back to the SRST to continue the search.

Exercises

25.4.1.(2) Write a sequence of instructions to find the last nonblank character in a C-string of
characters stored at CData, whose length (at most 256 bytes) is stored in the word at CDataLen.
If all blank characters are found, branch to AllBlank. If the C-string is empty, branch to
NullData.

25.4.2.(2)+ The C/C++ programming languages define the strlen function to return the length
of a C-string argument. Suppose a C-string of unknown length is stored at WorkArea. Store its
length in the word at WorkLen.

25.4.3.(3) The C/C++ programming language function memchr searches the first N bytes of a
C-string argument to find the first occurrence of a given byte. Suppose a C-string of unknown
length is stored at WorkArea, and you want to find an occurrence in the string of the byte stored
at FindByte, and the maximum number of bytes to search is stored in the word at N. If the
desired character is found, put its address in GR1; if not found, set GR1 to zero.

25.4.4.(2) A single byte is stored at OddByte. Write instructions to search for its first occurrence
in the C-string stored at Clutter. If found, set GR9 to the address of the first occurrence; if
not found, set GR9 to zero.

25.4.5.(3) Suppose your program processes words and sentences, and you must alternately
search for the blank ending a word and a nonblank starting the next word. Write a sequence of
instructions that show how to scan a string at TextLine and build arrays containing (a) the
length of each word, and (b) its starting address.

25.4.6.(4) Repeat Exercise 25.4.5 but assume that the words might be followed by punctuation
characters that should not be stored as part of the word.

25.5. Move String Instruction

The MVST instruction moves bytes from the second operand to the first, testing each source byte
for the ending character in the rightmost byte of GR0. If the entire operand (including the ending
character) has been moved, the CPU sets Condition Code 1, and sets the R1 register to the
address of the ending character. If some bytes remain to be moved, the addresses in R1 and R2 are
updated to point to the next bytes to be processed, unused high-order addressing bits are set to
zero, and the Condition Code is set to 3. Destructive overlap is not recognized, so be careful!

Table 161. CC settings for MVST instruction

Figure 236 on page 418 sketches the operation of the MVST instruction. The notation is the
same as in Figure 235 on page 416.

CC Meaning

1 Entire second operand moved; R1 points to end of first operand

3 Incomplete move; R1 and R2 point to next bytes to process

Chapter VII: Bit and Character Data 417

┌───────────────┐
START ─── c(A1) ← c(A2) ──── c(A2) = End Char? ────│Done; Set CC1 │

� │No Yes │R1 → last byte │
│ � └───────────────┘
│ A1=A1+1
│ A2=A2+1
│ │
│ No � Yes ┌──────────────┐
└�───────────────────────── Enough ────│Done; Set CC3 │

for now? │R1,R2,←A1,A2 │
└──────────────┘

Figure 236. Conceptual execution of the MVST instruction

The following example moves a null-terminated string from Old to New.

XR 0,0 Ending character is a null byte
LA 1,Old Address of source string
LA 2,New Address of target string

Move MVST 2,1 Move from Old to New
JO Move Repeat if CC=3
- - -

Old DC C'This is a null-terminated string',X'0'
New DS CL(L'Old+1) Reserve space for New string
Figure 237. Moving a null-terminated string

It's important to ensure that the target field is long enough to hold both the characters and the
null terminating byte.

Many programs must scan character strings containing tokens separated by commas. Using
MVST, you can move the tokens one at a time to a work area for analysis.

LHI 0,C',' Ending character is a comma
LA 1,Source Address of source string

NextTok LA 2,WorkArea Address of work area for a token
LR 3,1 Save starting address of token

Move MVST 2,1 Move from Source to WorkArea
JO Move Repeat if CC=3
SR 1,3 Subtract token's starting address
STH 1,TokenLen Save its length
- - - Process the token (preserve GR0,GR3)
LA 1,1(1,3) Point GR1 past the comma
J NextTok And go scan for the next token
- - -

Source DC C'LIST,OBJECT,XREF,ADATA,' String of tokens
WorkArea DS CL20 Reserve space for longest token
TokenLen DS H Length of current token
Figure 238. Using MVST to isolate comma-separated tokens

This example is incomplete because we would expect more tokens to follow the last one (ADATA),
and because the length of the entire string should be checked to see if the last token was not
followed by a comma.

Exercises

25.5.1.(2)+ What would happen in Figure 237 if you used an MVC instruction to move the
string from Old to New? (Assume the string is less than 250 bytes long.)

418 Assembler Language Programming for IBM System z™ Servers Version 2.00

25.5.2.(2) In Figure 238 on page 418, how would you know that you had correctly processed
the last token in the source string?

25.5.3.(2) In Figure 238 on page 418, is the length stored at TokenLen the length of the token,
or the length of the token and its terminating comma?

25.5.4.(3) Suppose a C-string is stored at From and you want to move it to Target but with the
additional limitation that at most N bytes are moved, where N is stored at NBytes. If the null
character terminating the string at From is moved, set GR1 to the address of the byte following
the null character; if the null character is not moved, set GR1 to zero.

25.5.5.(2)+ Write instructions to concatenate the C-string stored at Suffix at the end of the
C-string stored at Prefix. Make sure that the resulting C-string is terminated correctly.
Assume that the string at Suffix is at most 8000 bytes long.

25.5.6.(3) Repeat Exercise 25.5.5, but assume that the amount of space available for the concat-
enated string is only 150 bytes. If the result will not fit in the space available, branch to
TooLong.

25.5.7.(2)+ Write instructions to copy a C-string from Here to There.

25.5.8.(3) Modify the instructions in Figure 238 on page 418 to scan and process all the tokens
in the character string, given that the total length of the token string is in a word at StrLen and
that the string might contain only a single token without a trailing comma.

25.6. Compare Logical String Instruction

As we saw for CLCL and CLCLE, the two operands being compared can have different lengths,
and either operand may be padded. CLST, however, requires that the operands have the same
terminating character; and neither is padded during comparison.

The operands are compared byte by byte from left to right, until unequal bytes are found or the
end of an operand is reached. Unlike SRST, there is no stop address or operand length for either
operand, so be sure the strings are properly terminated.

If the end character is found in either operand before being found in the other, the shorter
operand is low; if they are found at the same time, the operands are equal.

The Condition Code settings after CLST are the same as those for other compare instructions,
except that CC3 indicates an incomplete operation. As with SRST and MVST, if the Condition
Code is 3, you can just branch back to repeat the CLST.

Table 162. CC settings for CLST instruction

Figure 239 on page 420 sketches the operation of the CLST instruction. The notation used in the
figure is:

A1 Address of a first-operand byte, c(R1)
c(A1) The first-operand byte at address A1
A2 Address of a second-operand byte, c(R2)
c(A2) The second-operand byte at address A2
End End character in GR0
x:y x is compared to y

CC Meaning

0 Entire operands are equal; R1 and R2 unchanged

1 First operand low; R1 and R2 point to last bytes processed

2 First operand high; R1 and R2 point to last bytes processed

3 Operands equal so far; R1 and R2 point to next bytes to process

Chapter VII: Bit and Character Data 419

Yes Yes ┌───────────┐
START ── Save R1,R2 ──── c(A1)=End? ─── c(A2)=End? ───────│Done: │

� │ No │ No │R1,R2←A1,A2│
│ │ � │Set CC0 │
│ │ Set CC1 ─────┐ └───────────┘
│ � Yes �
│ c(A2)=End? ──── Set CC2 ───────•────────────┐
│ │ No │
│ � �
│ c(A1):c(A2) ──── c(A1)<c(A2)? ─── Set CC2 ─•
│ │ = =/ │ Yes No │
│ � │ �
│ A1=A1+1 � ┌───────────┐
│ A2=A2+1 Set CC1 ───────────────│Done: │
│ │ │R1,R2←A1,A2│
│ No � Yes ┌─────────────┐ └───────────┘
└�─── Enough ─────│Done: Set CC3│

for now? │R1,R2←A1,A2 │
└─────────────┘

Figure 239. Conceptual execution of the CLST instruction

At termination, the contents of the registers are:

1. If the comparison ends at the End character for both operands, they are equal: the CC is set
to 0 and GR R1 and GR R2 are unchanged.

2. If the comparison ends at unequal bytes, the CC is set to 1 or 2 depending on whether the
first operand byte is less than or greater than the second operand byte. GR R1 and GR R2
contain the addresses of the unequal bytes.

3. If the comparison reaches the End character of one operand before the other, that operand is
considered the smaller and the CC is set accordingly. GR R1 and GR R2 point to the bytes
where the comparison stopped. (Note that no padding occurs!).

4. If the comparison is not complete when the CPU needs to allow for possible interrupts, the
CC is set to 3 and GR R1 and GR R2 have the addresses of the next bytes to be compared.
You can then branch back to the CLST instruction to continue comparing.

To illustrate, suppose you want to compare the two C-strings at A and B.

XR 0,0 Set null ending byte in GR0
LA 7,A Set GR7 to start of first operand
LA 5,B Set GR5 to start of second operand

Comp CLST 7,5 Compare the two strings
JO Comp Incomplete comparison, repeat
JE Equal Strings are equal
JH A_High String A compares higher than string B
J A_Low String A compares lower than string B

When an inequality is found, the ending characters of the operands are not part of the compar-
ison. However, when R1 and R2 are updated when the Condition Code is 3, they could contain
the addresses of either or both ending characters.

Exercises

25.6.1.(2) Write an instruction sequence that will compare the C-string stored at StringA to the
C-string stored at StringB. Set GR0 to +1 if StringA is greater than StringB, to zero if they
are equal, and to −1 if c(StringA) is less than c(StringB).

25.6.2.(3) Write an instruction sequence that will compare the first N bytes of the C-strings
stored at StringA and StringB respectively, where the number of bytes N is stored in the word
at NBytes. Set GR0 to +1 if StringA is greater than StringB, to zero if they are equal, and to

420 Assembler Language Programming for IBM System z™ Servers Version 2.00

−1 if StringA is less than StringB. Be sure to handle cases where either or both strings are
shorter than N bytes.

25.6.3.(2)+ Suppose these instructions are used to compare two C-strings:

XR 0,0 Ending character is a null byte
LA 1,X First operand is at X
LA 2,Y Second operand is at Y
CLST 1,2 Compare first and second operands

For each of the following, assume that the string named X is at address X'26F943'. Give the
Condition Code setting and the addresses in GR1 and GR2 after comparing each pair of
strings.

(1) X DC C'ABCD',X'0'
Y DC C'ABJE',X'0'

(2) X DC X'0'
Y DC X'0'

(3) X DC C'ABCD',X'0'
Y DC C'ABCDEFGH',X'0'

(4) X DC C'BCDEFGH',X'0'
X DC C'ABCD',X'0'

25.6.4.(4) Two strings of bytes begin at A and B and their lengths are stored in the halfwords at
LA and LB respectively. Compare the two strings up to the length of the shorter; however, if a
mismatch occurs and one of the unmatched bytes is X'FF', continue comparing. (Thus X'FF' is
a “don't care” character which can match any other character.) Branch to AB_Equal, A_High, or
B_High accordingly.

25.7. Translate Extended Instruction

The TRE instruction is similar in function to TR. In both cases, the first operand is the string of
bytes to be translated, scanning from left to right, and the second operand is the translate table.
There are several differences:

• Addresses: specified in base-displacement form for TR, but in R1 (which must be even) and
R2 for TRE.

• Lengths: for TR, encoded in the instruction itself, but in R1+1 for TRE.

• Stop condition: for TR, all first operand bytes are translated; for TRE, either all first operand
bytes are translated, or a first operand byte matches the “stop” character in GR0.

• Condition Code: unchanged by TR, but updated by TRE.

• Operand overlap: TR operates byte-by-byte so that operand overlap has no effect; for TRE
the results are unpredictable.

One important result of having a stop character is that it can't be translated, unless you add extra
instructions to do your own “translation” after TRE completes.

Table 163 gives the Condition Code settings following execution of a TRE instruction:

Table 163. CC settings for TRE instruction

CC Meaning

0 All bytes translated; R1 incremented by length, R1+1 set to 0

1 R1 points to the byte matching the stop character; R1+1 decremented by the
number of bytes processed before the match

3 R1 incremented and R1+1 decremented by the number of bytes processed

Chapter VII: Bit and Character Data 421

To illustrate, suppose a sentence of text starting at Sentence is known to be at most 800 bytes
long. We want to translate all alphabetic characters to upper case, and stop on the first period.

LHI 0,C'.' Stop character in GR0
LA 1,UpperTbl Address of translate table
LA 2,Sentence String to be translated
LHI 3,800 Maximum length

UpChars TRE 2,1 Translate characters to upper case
JO UpChars Repeat if not finished
JZ NoPeriod All characters translated, but ...

* ... no stop character was found.
- - - GR2 has address of the stop character

Figure 240. Translating characters to upper case with TRE

If we need to translate additional text, we can simply increment GR2, reset the length in GR3,
and continue.

The translate table referenced in Figure 240 could be defined with statements like these:

UpperTbl DC 256AL1(*-UpperTbl) Initialize table to identities
Org UpperTbl+C'a' Position at C'a'
DC C'ABCDEFGHI' Upper-case equivalents
Org UpperTbl+C'j' Position at C'j'
DC C'JKLMNOPQR' Upper-case equivalents
Org UpperTbl+C's' Position at C's'
DC C'STUVWXYZ' Upper-case equivalents
Org , Reposition Location Counter

Exercises

25.7.1.(2) What do you think will happen to a TRE instruction if R1 = 0 or R2 = 0?
If R1 = R 2?

25.7.2.(2)+ Suppose you execute these instructions:

LA 0,C'?'
LHI 3,N
LA 2,X
LA 9,Table
TRE 2,9

Assuming an appropriate translate table has been defined at Table, show the contents of GR2,
GR3, and the Condition Code for each of the following values of N and byte strings starting at
X which is at address X'7F290C'.

(1) N Equ 7
X DC C'Who? What?'

(2) N Equ 7
X DC C'Unknown?'

(3) N Equ 50
X DC 10C'Possibly? '

422 Assembler Language Programming for IBM System z™ Servers Version 2.00

25.8. Compare Until Substring Equal Instruction (*)

CUSE is a very complex instruction.157 It is unusual in another way: it is both interruptible
(“Method A”) and stops and sets Condition Code 3 to allow interruption processing (“Method
B”).158 Though not widely used, it may be applicable in certain applications.

Table 164. Compare Until Substring Equal instruction

Op Mnem Type Instruction

B257 CUSE RRE Compare Until Substring Equal

In general, there are two types of matching substring, depending on whether the equal substrings
are at the same or different offsets:

• In 'XBCY' and 'ABCD', the equal substrings 'B' and 'BC' (with lengths 1 and 2 respectively) are
at offset 1.

• In 'XYBC' and 'ABCD', the equal substrings 'B' and 'BC' are at different offsets.

The CUSE instruction searches only for equal substrings at the same offset, and having the length
specified in GR0. It requires six general registers, two of which are fixed: GR0 and GR1. The
rightmost byte of GR0 contains the length of the desired matching substrings, and the rightmost
byte of GR1 contains a padding byte. The remaining bits of both registers are ignored.

The addresses of the two operands are specified by the even-numbered registers R1 and R2, and
their lengths are in R1+1 and R2+1, respectively. And unlike instructions like MVCL and
CLCLE, the lengths are signed, and a negative length is treated as zero.159

It's important to remember that the substrings must occur at the same offset in both operands.
Thus, in the two strings

ABCDEFG and QRSDEFT

the substring DEF occurs at offset 3, so CUSE can identify matching substrings for lengths 1, 2,
and 3. However, in the two strings

ABCDEFG and BCDEFGH

the string BCDEFG appears at different offsets, so they will not be considered as equal substrings by
CUSE.

The padding character in GR1 is used to extend the shorter string if necessary. For example, if the
padding byte is C'*' and the two operand strings are

ABC and BCD**

with lengths 3 and 5 respectively, and the substring length is 2, then the matching substring will
be the characters **.

The Condition Code and registers are set as indicated in Table 165 on page 424.

157 Other complex instructions include EDIT and EDMK; we'll see them in Section 30 when we describe packed
decimal arithmetic.

158 At the time of this writing, I know of no other instruction that supports both types of interruption management.
159 A signed length seems strange, as it's hard to think of uses for strings with negative lengths. Other instructions like

MVCL and MVCLE use unsigned lengths. (See Exercise 25.8.7.)

Chapter VII: Bit and Character Data 423

Table 165. Condition Code settings by CUSE

Here are some examples of CUSE: suppose we execute the code sequence in Figure 241 for
various values of String1 and String2 and their lengths, with different pad characters, searching
for matching 3-byte substrings in each case:

CC Meaning

0 Equal substrings found; R1, R2, and lengths updated; or,
the substring length is 0, and R1, R2 are unchanged

1 Ended at longer operand, last bytes were equal
(allows continuing search for further matches if required)

2 Ended at longer operand, last bytes were unequal; or,
both operand lengths = 0 and the substring length is > 0

3 Search operation incomplete, last compared bytes unequal;
R1 and R2 and lengths are updated

LA 0,Substr_Len Desired substring length in R0
LA 1,Pad_Char Pad Character in R1
LM 2,5,=A(String1,L'String1,String2,L'String2)
CUSE 2,4

Figure 241. Examples using the CUSE instruction

The results are shown in Table 166; matching substrings are underlined.

Table 166. Results of examples using the CUSE instruction

String1 L1 String2 L2
Substr
Len

Pad
Char CC

L1
after

L2
after Result

CABCEFDEFEAB 12 ACBABBCEFEAB 12 3 C' ' 0 5 5 Match
ABCDEF 6 BCDEFA 6 3 C' ' 2 0 0 No match
ABCBACAC 9 BCBABCAC 9 3 C' ' 0 3 3 Match at end
ABC 3 CABAAA 6 3 C'A' 0 0 3 Match with pad
ABC 3 CABCAB 6 3 C'A' 2 0 0 No match
ABCBA 5 BCBAA 5 3 C'A' 1 1 1 No match, last bytes equal

Searching for matching substrings can be a complex and tedious process, especially if different
offsets are allowed. (See Exercise 25.8.1 and Programming Problem 25.1.)

Exercises

25.8.1.(4) Write a sequence of instructions using CLCLE instructions to emulate the function
of CUSE.

25.8.2.(2)+ What is the length of the longest matching substring that can be found using
CUSE?

25.8.3.(2) Suppose a CUSE instruction detects an inequality following several equal bytes, but
the number of equal bytes is less than the required substring length. Should the instruction
restart its comparison at the second equal bytes, or at the bytes following the inequality?

25.8.4.(2)+ Suppose your CUSE instruction specifies a substring length 2 with padding char-
acter A. If the strings ABCA and DEFA are compared, will it find a matching substring AA?

25.8.5.(2) If the substring length is 1, how is CUSE similar to and different from CLCLE?

25.8.6.(4) Create a flow diagram for CUSE, similar to those in Figures 236 and 239.

25.8.7.(5) Suppose the CUSE instruction supports negative operand lengths, and performs a
backward search. For example, if StringA is ABCD and has length +4, while StringB is WCBZ and

424 Assembler Language Programming for IBM System z™ Servers Version 2.00

has length −4. If the search starts at the rightmost byte of an operand with negative length, it
would find a matching substring BC in this case.

Write instructions to emulate a CUSE instruction that supports negative operand lengths.

25.9. Summary

Null-terminated C-strings must be handled carefully. If the terminating null byte is omitted, pro-
grams scanning or moving such strings may process far more data than intended, possibly over-
writing other data or parts of the program.

The instructions discussed in this section are listed in Table 167; all set the Condition Code.

Table 167. Extended instructions for character data

Exercises

25.9.1.(3)+ The C/C++ function strncpy copies at most N characters from a C-string at From to
a C-string at To and pads it with null bytes if the “From” string has fewer than N characters.
Assuming that the number N is stored in a word at NBytes, write an instruction sequence to
perform this function.

25.9.2.(2)+ The C/C++ function strcat concatenates characters from the C-string at Second to
the end of the C-string at First. Write an instruction sequence to perform this function, being
sure that the result has only a single null character.

25.9.3.(3) The C/C++ function strncat concatenates at most N characters from a C-string at
Second to the end of the C-string at First and terminates the result with a null byte. Assuming
that the number N is stored in a word at NBytes, write an instruction sequence to perform this
function.

25.9.4.(3) The C/C++ function strncmp compares at most N characters from the C-string at A to
the C-string at B. Assuming that the number N is stored in a word at NBytes, write an instruc-
tion sequence to perform this function, setting GR0 to +1 if A>B, to 0 if A=B, and to −1 if A<B.

25.9.5.(2) The C/C++ function strchr searches a C-string for the first occurrence of a character.
Write instructions to perform this function, assuming that the C-string is stored at CString and
the character to be sought is stored at FindChar. If the character is found, set GR3 to its
address; otherwise, set GR3 to zero.

25.9.6.(3)+ The C/C++ function strrchr searches a C-string for the last occurrence of a char-
acter. Write instructions to perform this function, assuming that the C-string is stored at
CString and the character to be sought is stored at FindChar. If the character is found, set GR3
to its address; otherwise, set GR3 to zero.

25.9.7.(3) The C/C++ function strspn searches a C-string for any of the characters in a second
C-string, and returns the length of the initial portion of the first string containing characters
belonging to the second. Assuming that the C-strings are stored at First and Second, write
instructions that will place in GR1 the length of the first part of the first string containing only
characters from the second.

Function Length control End-char control

Move
MVCL
MVCLE

MVST

Compare
CLCL
CLCLE
CUSE

CLST

Search SRST
Translate TRE

Chapter VII: Bit and Character Data 425

25.9.8.(3) The C/C++ function strcspn searches a C-string for any of the characters not in a
second C-string, and returns the length of the initial portion of the first string containing no
characters belonging to the second. Assuming that the C-strings are stored at First and Second,
write instructions that will place in GR1 the length of the first part of the first string containing
none of the characters from the second.

25.9.9.(3) The C/C++ function strpbrk searches a C-string for the first occurrence of any char-
acter in a second C-string, and returns the address of the character if present, or a null (zero)
pointer if none is found. Assuming that the C-strings are stored at First and Second, write
instructions that will place in GR1 the address of the first occurrence in the first string of any
character from the second, or zero if none is found.

25.9.10.(3) The C/C++ function strstr searches a C-string for the first occurrence of a second
C-string, and returns the address of the first character of that matching string if present, or a
null (zero) pointer if none is found. Assuming that the C-strings are stored at First and
Second, write instructions that will place in GR1 the address of the first occurrence in the first
string of the second string, or zero if none is found. If the second string is null, return the
address of the first.

25.9.11.(2) The C/C++ function memchr searches N bytes in memory for the first occurrence of a
character, and returns a pointer to the character if present or a null (zero) pointer if none is
present. Write instructions to perform this function, assuming that the data to be searched is
stored at MemData, the character to be sought is stored at FindChar, and the number N is stored
in a word at NBytes. If the character is found, set GR3 to its address; otherwise, set GR3 to
zero.

25.9.12.(2) The C/C++ function memset stores a character into the first N bytes of a C-string.
Write instructions to perform this function, assuming that the C-string is stored at CString, the
character to be stored is at FillChar, and the number N is stored in a word at NBytes.

What will happen if the null bytes at the end of the C-string is overwritten, or if no null byte is
placed after the N-th byte?

25.9.13.(4)+ A string of EBCDIC characters starting at Str+2 contains substrings of blanks and
nonblanks. The total length of the string is a halfword binary integer in the two bytes at Str.
Write instructions to replace multiple blanks in the string with a single blank, and update the
string length accordingly. (Such a result is sometimes called “blank-compressed”.)

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

CLCL 0F CUSE B257 MVST B255

CLCLE A9 MVCL 0E SRST B25E

CLST B25D MVCLE A8 TRE B2A5

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

0E MVCL A9 CLCLE B25D CLST

0F CLCL B255 MVST B25E SRST

A8 MVCLE B257 CUSE B2A5 TRE

426 Assembler Language Programming for IBM System z™ Servers Version 2.00

Terms and Definitions
C-string

A string of zero or more bytes ending with a zero or “null” byte.

destructive overlap
Destructive overlap occurs when any part of a target operand field is used for a source after
data has been moved into it.

interruptible
An instruction is interruptible if the CPU suspends its operation, updates the registers
involved in the operation and subtracts the instruction's length from the Instruction Address
in the PSW, so that when the program resumes execution, the instruction will start from the
point where it was interrupted.

null byte
A zero or X'00' byte, sometimes indicated by the character n.

Programming Problems

Problem 25.1.(3) Write a program that reads two character strings from two 80-byte records,
and searches for the first and longest matching substring at any offset within the two strings.
Use a blank for the padding character. Print the original strings, the matching substring and its
length, and its offset within each string. Repeat for several pairs of input strings.

For example, if the two strings are 'XYA12345' and '$12345678', the longest matching substring
is '12345' with length 5, at offsets 3 and 1 respectively. The requirement that you find the
longest matching substring means that you shouldn't report a one-byte substring like '1'.

Problem 25.2.(3)+ Programs must sometimes isolate a string of characters preceded and fol-
lowed by strings of blanks. For example, if the original string is '•••AB•CD••' (where • means a
blank character), the desired result is the string 'AB•CD'.

Write a program that reads 80-character records and removes leading and trailing blanks. Print
the original record, and the “blank-trimmed” result and its length. Repeat for several input
records.

Some sample input records might include

DC CL80' AB CD ' As in the example above
DC 80C'*' No blanks
DC CL80'AB' No leading blanks
DC CL78' ',C'YZ' No trailing blanks
DC CL80' ' All blanks

You should create other records to exercise your program.

Chapter VII: Bit and Character Data 427

26. Other Types of Character Data (*)

2222222222 6666666666
222222222222 666666666666
22 22 66 66

22 66
22 66
22 66666666666

22 666666666666
22 66 66

22 66 66
22 66 66
222222222222 666666666666
222222222222 6666666666

For many programs, you need not be concerned with the details of the character representation
used for your programs. There are times, however, when programs need to recognize the
encodings used for data they read or create. This section introduces some of the other character
encodings you may meet, and instructions to help process them.

26.1. Character Representations

Data is stored as strings of bits; we interpret the meanings of the bits differently for different data
types. Every computer system must solve the problem of representing characters as bit patterns.

Many character encodings exist, and many others have been forgotten. As the number of
encodings for a given character grew it became much more difficult to exchange data among
systems. This led to efforts to standardize on a smaller set of codes; among them are single-byte
EBCDIC, ASCII, double-byte EBCDIC, and Unicode. We'll investigate each in turn.

26.1.0. An Early Character Encoding

On the earliest “Institute” machines, input and output were done with punched paper tape pre-
pared and printed on Teletype™ machines. The characters were encoded as five bits on tapes
with six holes, a smaller one of which was a “feed” or “sprocket” hole just above the center of the
tape, that was used to move the tape on mechanical readers or measure its progress on photoelec-
tric cell readers. An example of a tape segment is shown in Figure 242:

───
• • • • • • • • �── Row 5
• • • • • • • • �── Row 4
• • • • • • • • • • • • • �── Feed/sprocket holes
• • • • �── Row 3
• • • • • • • �── Row 2
• • • • • • • �── Row 1

───
 1F 1F 12 18 00 08 1B 19 03 1A 01 04 1F �── Hex value of hole combinations

Figure 242. Fragment of an Institute-machine punched paper tape

Because there were only five data-bit positions on the tape, encoding decimal digits, capital letters,
and special characters required switching between “number shift” and “letter shift”. This means
that each combination of five bits might mean two different things, depending on which shift

428 Assembler Language Programming for IBM System z™ Servers Version 2.00

mode was active (much as on a typewriter keyboard with a shift lock). These bit combinations
are shown in the following two tables.160

Table 168. Punched paper tape encodings with values 00-0F

Hex Value 0 1 2 3 4 5 6 7 8 9 A B C D E F
Row 5
Row 4 • • • • • • • •

Feed hole • • • • • • • • • • • • • • • •
Row 3 • • • • • • • •
Row 2 • • • • • • • •
Row 1 • • • • • • • •

Num Shift 0 1 2 3 4 5 6 7 8 9 + − N J F L

Ltr Shift P Q W E R T Y U I O K S N J F L

Table 169. Punched paper tape encodings with values 10-1F

Hex Value 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
Row 5 • • • • • • • • • • • • • • • •
Row 4 • • • • • • • •

Feed hole • • • • • • • • • • • • • • • •
Row 3 • • • • • • • •
Row 2 • • • • • • • •
Row 1 • • • • • • • •

Num Shift Dly $ CRLF (Ltr
Shf ,) / Dly = . Num

Shf ' : * Spc

Ltr Shift Dly D CRLF B Ltr
Shf V A X Dly G M Num

Shf H C Z Spc

In Table 169, “Dly” means “Delay”,161 “CRLF” means “Carriage Return and Line Feed”, “Ltr
Shf” means “Letter Shift”, “Num Shf” means “Number Shift”, and “Spc” means “Space”.

Normal tape input skipped characters with a hole in Row 5; special instructions were used to read
characters using any combination of holes.

Note that you can't start reading a tape at any arbitrary position, because you won't know which
shift mode is active. (We will see in Section 26.4 that there is a similar problem with Double-
Byte EBCDIC character sets.)

26.1.1. BCD characters

The EBCDIC code used in System z is a descendant of the older BCD (“Binary Coded
Decimal”) punched-card encodings used on many early IBM processors. Each character was 6
bits wide, and was represented as two octal digits.162 Other computer manufacturers use similar
(and sometimes very different) six-bit character encodings.

Table 170 on page 430 gives the BCD encodings. There are no lower-case characters, and fewer
“special” characters than are supported by EBCDIC. (See Exercise 26.1.3.)

160 These punched paper tape codes were used on the “ILLIAC 1” machine at the University of Illinois, the first
“Institute” machine at a university. Many other five-bit teletype codes were used worldwide.

161 The “Delay” code was needed to allow time for the teletype printer carriage to return to the left margin before
printing the next characters.

162 We mentioned base-8 (octal) encoding in Section 2.2.

Chapter VII: Bit and Character Data 429

Table 170. Old six-bit BCD character representation

Table entries with more than one character show variations in the BCD character representations
used among different IBM processors.163

Exercises

26.1.1.(1) Suppose a string of 60 bytes contains characters encoded in BCD; each byte has two
high-order zero bits. Write a sequence of instructions that will convert the BCD characters to
EBCDIC.

26.1.2.(2)+ Suppose a string of 72 bytes contains 96 BCD six-bit characters packed together
with no padding bits. That is, each group of three bytes contains four BCD characters. Write a
sequence of instructions that will “unpack” the BCD characters from the string starting at
BCDChars into a string of 96 EBCDIC characters starting at EBCDChar. Translate characters as
needed.

26.1.3.(1) If the card image in Table 12 on page 78 uses the BCD coding in Table 170, what
40 octal digits will encode the characters in the first 20 columns?

26.1.4.(1) Assuming that punched paper tapes are prepared starting in Letter-shift mode, what
are the characters on the Teletype tape in Figure 242 on page 428? What are the characters if
the tape is prepared starting in Number-shift mode?

26.1.5.(1) In Figure 242 on page 428, a hole punched in Row N corresponds to what power of
2?

Octal Char Octal Char Octal Char Octal Char

00 0 20 + & 40 − 60 blank

01 1 21 A 41 J 61 /
02 2 22 B 42 K 62 S

03 3 23 C 43 L 63 T

04 4 24 D 44 M 64 U

05 5 25 E 45 N 65 V

06 6 26 F 46 O 66 W

07 7 27 G 47 P 67 X

10 8 30 H 50 Q 70 Y

11 9 31 I 51 R 71 Z

13 = # 33 . 53 $ 73 ,
14 ' @ 34) ¤ 54 * 74 (%

26.2. EBCDIC Representations and Code Pages

In System/360 processors, the 8-bit byte required a new 8-bit character encoding, EBCDIC. Ini-
tially, the character set included mainly the characters used in the United States.

However, these early processors were soon used in many countries where the EBCDIC characters
shown in Table 13 on page 87 did not provide “national” characters. For example, “father” in
French (“père”) requires e-grave, and “young woman” in German (“Fraülein”) requires u-umlaut.

Thus, additional EBCDIC encodings were created; these are grouped in “code pages” giving the
characters assigned to each of 256 possible bit patterns. It was difficult to exchange data and

163 The ¤ symbol (encoding 34) was used as a substitute for the many currency symbols used in different countries.

430 Assembler Language Programming for IBM System z™ Servers Version 2.00

programs because the same character encoding was often different among code pages. For
example, Table 171 on page 431 shows some of the varying hexadecimal encodings used in
current EBCDIC tables, for these language groupings:

Code Page Description
037 Original EBCDIC: this “ancestral” EBCDIC code page is the code page used for

Assembler Language programs
500 Modern EBCDIC; a few special characters have different encodings than in code

page 037
1047 International-1
1140 United States, Canada, Netherlands, Australia, New Zealand, Portugal, Brazil
1141 Austria, Germany
1142 Denmark, Norway
1143 Finland, Sweden
1144 Italy
1145 Spain, Latin American Spanish
1146 United Kingdom
1147 France
1148 International-1, supporting most “Western” languages
1149 Iceland
1153 Eastern Europe

All the code pages above 1140 support the euro character ∈.164

Table 171 shows some examples of why you can't assume that a given encoding represents an
expected character. As your program is moved from region to region (and displayed or printed
on unknown code pages), many of the encodings for the characters are different.

Table 171. Sample EBCDIC characters with varying code points among code pages

Char 037 500 1047 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1153

$ 5B 5B 5B 5B 5B 67 67 5B 5B 4A 5B 5B 5B 5B

@ 7C 7C 7C 7C B5 80 EC B5 7C 7C 44 7C AC 7C

7B 7B 7B 7B 7B 4A 63 B1 69 7B B1 7B 7B 7B

| 4F BB 4F 4F BB BB BB BB 4F 4F BB BB BB 6A

¬ 5F BA B0 5F BA BA BA BA 5F 5F BA BA BA —

[BA 4A AD BA 63 9E B5 90 4A B1 90 4A AE 4A

] BB 5A BD BB FC 9F 9F 51 5A BB B5 5A 9E 5A

{ C0 C0 C0 C0 43 9C 43 44 C0 C0 51 C0 8E C0

} D0 D0 D0 D0 DC 47 47 54 D0 D0 54 D0 9C D0

∈ — — — 9F 9F 5A 5A 9F 9F 9F 9F 9F 9F 9F

If you write programs or create data that might be sent to other countries, it helps to remember
that many EBCDIC characters have the same encoding across almost all modern EBCDIC code
pages. These “invariant” characters are called the Syntactic Character Set:

• blank/space
• decimal digits
• upper-case and lower-case Latin-alphabet letters
• these special characters:

+ < = > % & * ″ ' () , _ - . / : ; ?

Using just these 82 characters will also help you avoid the possibility that your program could be
difficult to read when printed, or when displayed on a different terminal or workstation. Note
that the three “national” characters allowed in Assembler Language symbols (the dollar sign $, the

164 This is the best available approximation to the euro character in the character set used for this text.

Chapter VII: Bit and Character Data 431

at sign @, and the sharp, hash, octothorpe, or (US) pound sign #) are not invariant across
EBCDIC code pages!

Exercises

26.2.1.(3) Suppose your program contains character data written using code page 037, and you
must translate the character data to the code page used in Sweden, 1143. Write statements to
generate a 256-byte table for translating characters in code page 037 to characters in code page
1143. Assume that all the varying characters are those shown in Table 171 on page 431. (For
extra credit: try to find if there are any other “variant” characters between those two code
pages.)

26.2.2.(1) What does your Assembler generate if you code this statement?

DC C'@#$|{[]}'

26.2.3.(1) How many characters are in the Systactic Character set?

26.3. ASCII

A widely used single-byte character representation is the “American Standard Code for Informa-
tion Interchange”, or ASCII for short. It started as a 7-bit code and was later extended to 8 bits.
The hexadecimal character encodings for 7-bit ASCII165 are shown in Table 172 on page 433.

165 Different ASCII character encodings are used on other hardware and software systems. This encoding and its 8-bit
superset (known as “ASCII Standard 8859-1”) is the representation used for System z applications.

432 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 172. 7-bit ASCII character representation

All these characters use only the rightmost 7 bits; the high-order bit is zero. When the high-order
bit is 1, more characters are available; many are accented or special. For example, the e-grave
character in “père” has ASCII representation X'D8', and the u-umlaut character in “Fraülein” has
ASCII representation X'FC'.

The Assembler generates ASCII character constants if you specify subtype A on a C-type con-
stant. For example:

ASCIICon DC CA'ASCII Characters'

will generate

X'41534349492043686172616374657273'
* A S C I I C h a r a c t e r s

The Assembler treats the nominal value of the constant as EBCDIC characters, and translates
each byte to ASCII, after pairing of & and ', as for other character constants and terms.

You can also generate ASCII constants by specifying the TRANSLATE(AS) option; this causes
all C-type constants (with no subtype) to be translated from EBCDIC to ASCII. Note that char-
acter self-defining terms are not translated to ASCII, unless you also specify the
COMPAT(TRANSDT) option. It is worth remembering that the ASCII code for a blank space
is X'20'.

Char Code Char Code Char Code Char Code

blank 20 8 38 P 50 h 68

! 21 9 39 Q 51 i 69

″ 22 : 3A R 52 j 6A

23 ; 3B S 53 k 6B

$ 24 < 3C T 54 l 6C

% 25 = 3D U 55 m 6D

& 26 > 3E V 56 n 6E

' 27 ? 3F W 57 o 6F

(28 @ 40 X 58 p 70

) 29 A 41 Y 59 q 71

* 2A B 42 Z 5A r 72

+ 2B C 43 [5B s 73

, 2C D 44 \ 5C t 74

- 2D E 45] 5D u 75

. 2E F 46 ^ 5E v 76

/ 2F G 47 _ 5F w 77

0 30 H 48 ` 60 x 78

1 31 I 49 a 61 y 79

2 32 J 4A b 62 z 7A

3 33 K 4B c 63 { 7B

4 34 L 4C d 64 | 7C

5 35 M 4D 4 65 } 7D

6 36 N 4E f 66 ˜ 7E

7 37 O 4F g 67 (none) 7F

Chapter VII: Bit and Character Data 433

Exercises

26.3.1.(1)+ If you saw a hexadecimal display of a string of alphanumeric characters (letters and
digits), what would help you decide whether they were represented in ASCII or EBCDIC?

26.3.2.(2) What machine language data is generated by these statements?

Con1 DC CA'5*(2.236/Denom)+Pi'
Con2 DC CA'Invalid Expression?'
Con3 DC CA'Hello, World!'
Con4 DC CA'BitMask&&Byte||''Chars'''

26.4. Double-Byte EBCDIC Data (*)

The EBCDIC characters representable by a single 8-bit byte have too few values to handle ideo-
graphic languages like Japanese. To solve this problem, the EBCDIC encodings were extended to
encodings with pairs of bytes, and two special byte codes allow switching between “double-byte”
characters and our familiar single-byte characters.

Single-byte character sets are sometimes abbreviated “SBCS”, and a collection of double-byte
characters is a “Double Byte Character Set”, or “DBCS” for short.

DBCS data is a stream of single bytes, grouped in pairs. Groups of DBCS pairs are always delim-
ited by “Shift-Out” (SO) and “Shift-In” (SI) byte codes:

• Shift-Out (X'0E') shifts out of single-byte mode to double-byte mode;

• Shift-In (X'0F') shifts in to single-byte mode from double-byte mode.

Data between the SO and SI byte codes is always treated as byte pairs. The byte codes for amper-
sand and apostrophe are not treated specially in DBCS data.

A string of bytes mixing single- and double-byte characters is illustrated in Figure 243, where sb
represents a single-byte EBCDIC character, db represents one of the two bytes of a double-byte
EBCDIC character, and SO and SI represent the Shift-Out and Shift-In byte codes.

� � � � �── shift codes
┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐
│sb│sb│SO│db│db│db│db│db│db│SI│sb│sb│SO│db│db│db│db│SI│sb│sb│
└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

└─────────────────┘ └───────────┘
3 DB characters 2 DB chars

Figure 243. Mixed single- and double-byte EBCDIC characters

These 20 bytes represent 6 single-byte characters and 5 double-byte characters.

Because the byte codes used for SO and SI aren't displayable, we use a special notation for DBCS
data.

• It's customary to represent SO pictorially by <, and SI by >. (Remember that the actual char-
acters “<” and “>” are not in the data!) Sometimes the characters � and are used instead.

• We represent double-byte characters by Dx. Thus, <Dz> represents a Shift-Out, a double-byte
character, and a Shift-In. Its hexadecimal value is represented by 0EDDzz0F. (A confusing nota-
tion: the DD characters represent the hex value of the high-order byte of the DBCS pair, and zz
represents hexadecimal value of the low-order byte.)

• Latin-alphabet EBCDIC characters in DBCS format are represented by .X, so that the DBCS
letter A could be shown as “.A”. These are sometimes called “wide” Latin-alphabet charac-
ters, because DBCS-sensitive devices display them that way. For example, the DBCS “A”
could be written “<.A>”.

434 Assembler Language Programming for IBM System z™ Servers Version 2.00

• Single-byte SBCS EBCDIC characters are represented by “e” (or themselves). Thus, the char-
acters in Figure 243 might be described as “ee<DbDbDb>ee<DbDb>ee”.

• Except for DBCS blanks, which have representation X'4040', both DBCS bytes have values in
the range [X'41',X'FE']. This is illustrated in Table 174.

Here are some examples of DBCS data:

<.A> X'0E42C10F' (pure DBCS)
 <.'.&> X'0E427D42500F' (pure DBCS; & and ' not paired)
 <Da> X'0E....0F' (whatever Da represents; e.g. X'0EDDaa0F')
 <'&> X'0E7D500F' (in the user-defined character range)
 a<.A>b X'810E42C10F82' (mixed SBCS and DBCS data)
Figure 244. Examples of DBCS data

Some DBCS EBCDIC code point assignments for Japanese are given in Table 173. The first
byte of a DCBS character selects a ward, a group of DBCS code points having identical first
bytes. Each ward can represent up to 192 DBCS characters.

Table 173. Japanese DBCS assignments

Thus, the “.” in DBCS representations of Latin-alphabet SBCS characters represents the X'42'
ward byte. Table 174 shows the overall structure of DBCS character representations; valid
DBCS codings are in the shaded areas.

Table 174. DBCS encoding

First (ward)
byte

Second byte Contents

X'41' X'41-FE' Greek, Cyrillic, Roman numerals

X'42' X'41-FE' Latin alphabets and alphanumerics

X'43' X'41-FE' Katakana: phonetic, foreign loan words

X'44' X'41-FE' Hiragana: grammatical endings and Japanese
indigenous words

X'45-55' X'41-FE' Kanji basic set

X'56-68' X'41-FE' Kanji extension set

X'69-7F' X'41-FE' User definable

X'80-FE' X'41-FE' Reserved

0
0

4
0

4
1

F
F

00

40
41

FF

Chapter VII: Bit and Character Data 435

It helps considerably that the “standard” EBCDIC characters shown in Table 13 on page 87 are
represented in DBCS with X'42' as the first two digits. That is, if a nonblank character's
EBCDIC representation is X'xy', its DBCS representation is X'42xy'.

26.4.1. The DBCS Option (*)

The Assembler's DBCS option controls recognition of DBCS data. It also allows G-type con-
stants and self-defining terms. The byte codes for SO and SI are recognized as shifts only if the
DBCS option is active, and ampersand and apostrophe byte codes are not tested for pairing in
either byte of a double-byte character.

If the NODBCS option is active (the Assembler's default), normal rules apply:

• Shifts (SO and SI) are just data bytes.

• Nothing is recognized as DBCS data.

• Ampersands and apostrophes between SO/SI are recognized for pairing.

• G-type constants and self-defining terms are not allowed.

26.4.2. G-Type DBCS Constants and Self-Defining Terms (*)

Like any other form of character data, DBCS data must be enclosed in apostrophes. It is allowed
wherever EBCDIC character data is allowed.

You can specify both pure and mixed DBCS data in statement operands. Pure DBCS data is
DBCS only, as in C'<Da..Dz>'. Mixed DBCS data may contain both single-byte EBCDIC and
DBCS data, as in C'ee<Da..Dz>ee'.

Both G-type constants and self-defining terms are written G'dbcs_data', and support only pure
DBCS data. The shifts are removed from the generated object code. For example:

DC G'<DwDxDy>' Generates X'DDwwDDxxDDyy' (6 bytes)
DC G'<.A.&.B>' X'42C1425042C2' (6 bytes)

In addition, redundant SI/SO pairs such as >< are removed, since they have no useful effect in
pure DBCS data. For example:

DC G'<Dx><Dy>' Generates X'DDxxDDyy' (4 bytes)
DC G'<.A><.B>' X'42C142C2' (4 bytes)

Because each DBCS character is two bytes, G-type self-defining terms contain either one or two
DBCS characters.

DBCSAC Equ G'<DxDy>' Has value X'DDxxDDyy'
DBCSB Equ G'<.B>' Has value X'000042C2'
GNull Equ G'<>' Causes an error

Constants and terms are padded on the right with DBCS blanks:

DC GL4'<.B>' Generates X'42C24040'

Explicit lengths must be a multiple of 2 bytes, and truncation is done at the right end of the
constant.

C-type constants and self-defining terms may contain either pure DBCS or mixed DBCS data.
Unlike G-type constants and self-defining terms, the shift bytes are generated. For example:

DC C'1<DxDy>2' Generates X'F10EDDxxDDyy0FF2'
DC C'<.A.&.B>' X'0E42C1425042C20F'
DC C'1<Dx>2<Dy>3' X'F10EDDxx0FF20EDDyy0FF3'

Also, redundant SI/SO pairs (><) are not removed. For example:

DC C'<Dx><Dy>' Generates X'0EDDxx0F0EDDyy0F'
DC C'<.A><.B>' X'0E42C10F0E42C20F'

436 Assembler Language Programming for IBM System z™ Servers Version 2.00

C-type self-defining terms may contain only one DBCS character, because the shift bytes are
included:

DBCSJ Equ C'<.J>' Has absolute value X'0E42D10F'
CNull Equ C'<>' Value X'00000E0F' (not truly DBCS!)

Both G-type and C-type constants are padded on the right with EBCDIC blanks:

DC CL5'<.B>' Generates X'0E42C20F40'

and truncation is also on the right. However, truncation into DBCS data not allowed if the
DBCS option is specified. For example,

DC CL3'<.B>' Generates an error message

truncates into the DBCS data.

Thus, identical nominal values are treated differently in G-type and C-type constants. For
example:

GTerm Equ G'<.A>' Has value X'000042C1' (no shifts)
CTerm Equ C'<.A>' Has value X'0E42C10F' (with shifts)

26.4.3. Continuation Rules for DBCS Data (*)

When the DBCS option is active, the SO and SI are not considered continuation indicators! If an
SI appears before the continuation-indicator column at the end of a continued line, and is fol-
lowed by an SO in the continue column of the next line, they are considered redundant, and are
removed in the generated constant.

Because G-type DBCS constants might be displayed on devices sensitive to DBCS characters,
DBCS characters should not be split at points of continuation. The Assembler provides a special
extended continuation rule when the DBCS option is active, a flexible end column on a line-by-
line basis. If the continuation indicator is nonblank, then the end column is the first column to
the left of the continuation indicator that differs from the continuation indicator. Assuming
default end and continuation columns, Figure 245 shows how extended continuation works:

col.16 ↓ col.72 ↓
DBCSA DC G'<DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDt>*************

<DuDvDwDx>///
<DyDzD1D2D3D4D5>' No SO/SIs in generated constant

*
DBCSB DC C'123456789A123456789B123456789C123456789D123456789E=====

<D1D2D3D4>' SO/SI are generated
Figure 245. Extended continuation for DBCS data

For DBCSA the continuation character * at the end of the first line is extended to the left, so the
end column becomes the SI code following Dt. And because the continuation line starts with an
SO code, both are eliminated. Similarly, the SI following Dx and the SO on the third line are
redundant, so the generated constant will be

'DaDbDcDdDeDfDgDhDiDjDkDlDmDnDoDpDqDrDsDtDuDvDwDxDyDzD1D2D3D4D5'

However, the constant named DBCSB is a C-type constant, so the shift bytes are included, and the
generated value also includes four equal sign (X'7E') characters:

X'F1F2F3F4F5F6F7F8 F9C1F1F2F3F4F5F6 F7F8F9C2F1F2F3F4 F5F6F7F8F9C3F1F2
 F3F4F5F6F7F8F9C4 F1F2F3F4F5F6F7F8 F9C57E7E7E7E0Exx F1xxF2xxF3xxF40F'

where the xx characters among the last nine bytes are the hexadecimal representation of the high-
order byte of the four DBCS characters D1D2D3D4.

Chapter VII: Bit and Character Data 437

Be Careful!

Don't try to process bytes of DBCS data starting at an arbitrary position,
because you may not know whether there was a previous Shift-Out or
Shift-In byte (or none at all!), or whether your chosen byte is the second
byte of a DBCS character.

Exercises

26.4.1.(1) Assuming the DBCS option is specified, what data will be generated by these state-
ments?

A DC G'<.A.B.C>'
B DC GL4'<.A.B.C>'
C DC CL4'<.A.B.C>'
D DC C'<.A.B.C>'

26.5. Unicode

Unicode is a much broader topic than this brief summary can properly describe. We'll first intro-
duce some background, then the character representation, and how to use the Assembler to create
Unicode character constants. Section 26.6 will introduce instructions used to process Unicode
data.

26.5.1. The Unicode Representation

The growing number of (human) languages using character data led to an international effort to
standardize on a single encoding. The resulting Unicode166 standard has greatly simplified char-
acter data exchange among nations and languages. It is identical to the International Standards
Organization (ISO) ISO/IEC 10646 standard, and provides for 8-bit (UTF-8), 16-bit (UTF-16),
and 32-bit (UTF-32) encodings.167 All three encodings represent the same repertoire of all charac-
ters and (essentially) all languages of the modern world.

Unicode assigns every UTF-16 character a 16-bit numeric “scalar” value, denoted U+nnnn, where
each n represents a hexadecimal digit. (It is the same as X'nnnn'.) The 7-bit ASCII character
code shown in Table 172 on page 433 is a basic element of the Unicode standard: all 8-bit ASCII
codes are used as the 256 lowest UTF-16 values, U+0000 through U+00FF. This is the same as
ASCII Standard 8859-1.

Unicode character assignments encompass a truly enormous variety of characters; some subsets
are shown (for your amazement) in Table 175 on page 439.168

166 Unicode™ is a trademark of Unicode® , Inc. Unicode is officially known as the Unicode Standard, and was created
by a cooperative effort of the Unicode Consortium and the International Standards Organization (ISO). You can find
code charts at http://www.unicode.org/charts/

167 UTF is an abbreviation for “Unicode Transformation Format”.
168 Additional encodings have also been standardized for highly specialized uses such as ancient Phoenecian and

Sumero-Akkadian Cuneiform. The Unicode Standard contains the encodings and some interesting history.

438 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 175. Sample Unicode assignments

As sometimes happens with international standards, compromises were needed to satisfy the needs
of all participants. Originally, Unicode was intended to be a purely 16-bit encoding, but as its
popularity grew, more codes were needed to support new characters. This led to a provision for
“surrogate” characters: the first 16-bit Unicode character (the “high surrogate”) indicates that the
next 16 bits (the “low surrogate”) are an extension of the the first; together, they are called “surro-
gate pairs”. This allowed including over 1 million new characters without disrupting the basic
encoding scheme. (We'll see surrogate pairs again when we describe the format-conversion
instructions in Section 26.6.5.) Surrogate pairs are rarely used in Assembler Language programs.

For the next part of this discussion, we'll stay with the UTF-16 encoding, and describe the often-
used variant encoding, UTF-8, in Section 26.6.5.

26.5.2. Glyphs and Characters

A character is the basic unit of encoding, and UTF-16 is the most commonly used encoding
format. It is important to distinguish between “glyphs”and characters. A glyph is what you see
when a character is printed or displayed. For example, displayed forms might include a, a, a, a,
and A, A, A, A, A. All of these glyphs are representations of the two characters “a” and “A”,
four in lower case and five in upper case forms (normal, italic, bold, bold italic, and “small caps”).

Some “characters” can require more than one 16-bit Unicode character code value. For example,
Ä has Unicode coding U+00C4 (the same as X'00C4'). Because the base character A has been com-
bined or composed with an accent, it is called a precomposed character. However, Ä may also be
represented by two separate Unicode characters: the A (with coding U+0041) and a combining
mark ¨ (a diaresis or umlaut, with coding U+0308). This combination is called a decomposed form.

Similarly, ñ (U+00F1) = n (U+006E) + ∼ (U+0303) represent composed and decomposed forms.

Fortunately, Assembler programs rarely need to handle decomposed characters.

26.5.3. Unicode Character Constants

The Assembler generates Unicode constants if you specify constant type CU: that is, type C with
type extension U. The nominal value is a string of 8-bit EBCDIC code points.

Because the same character can have different EBCDIC encodings while Unicode provides unique
representations for all characters, the Assembler's CODEPAGE option lets you specify the character
representation used for the 8-bit single-byte nominal values in your CU-type constants.

To show why the CODEPAGE option may be important, suppose you live in England. When
preparing your program, you enter a byte for the £ “Pound Sterling” character. It has code point
X'5B' on code page 1146, the usual code page for the United Kingdom. However, if the
CODEPAGE(1146) option is omitted, the Assembler will convert the £ character to U+0024, the
Unicode representation of the $ dollar sign! This is because the Assembler assumes a default code

Range Block Name Range Block Name

U+0000-U+007F Basic Latin (ASCII) U+0080-U+00FF Latin-1 Supplement

U+0100-U+017F Latin Extended-A U+0180-U+01FF Latin Extended-B

U+0250-U+02AF Phonetics U+0300-U+0365 Combining Diacritics

U+0370-U+03FF Greek and Coptic U+0400-U+04FF Cyrillic

U+0590-U+05FF Hebrew U+0600-U+06FF Arabic

U+0900-U+097F Devanagari U+0980-U+09FF Bengali

U+13A0-U+13FF Cherokee U+1400-U+167F Canadian Aboriginal

U+2070-U+209F Superscripts and subscripts U+20A0-U+20CF Currency Symbols

U+3040-U+309F Hiragana U+30A0-U+30FF Katakana

U+4E00-U+9FFF China/Japan/Korea
Unified Ideographics

U+E000-U+F8FF Private Use

Chapter VII: Bit and Character Data 439

page on which $ has code point X'5B'. When the CODEPAGE(1146) option is specified, the
Assembler converts the £ correctly to U+00A3.

These constants are parsed using the usual rules for C-type constants (apostrophe and ampersand
pairing). Each byte of the result is then mapped from the EBCDIC encoding specified by the
CODEPAGE option to the equivalent 2-byte UTF-16 encoding.

The Length attribute of a CU-type constant is always measured in bytes (not “characters”); an
explicit length (if specified) must be even. If the explicit length is longer than the implied length,
the byte string is first padded with EBCDIC blanks, and if shorter, the byte string is truncated on
the right. Then, it is translated to UTF-16. Implied lengths are the number of bytes generated:
2×(number of EBCDIC characters after pairing).

SampleCU DC CU'Unicode Characters'
Figure 246. CU-type constant generating Unicode characters

The statement in Figure 246 generates these 36 bytes from the 18 nominal-value characters:

0055006E00690063 006F006400650020 0043006800610072 0061006300740065 00720073

Because the characters in the nominal value of the CU-type constant in 246 are members of the
invariant EBCDIC character set described on page 431, any of the CODEPAGE option values
described on page 431 may be specified to generate the above result.

Notice that each Unicode character starts with nine zero bits (B'0000 0000 0'), meaning that it is
representable in the 7-bit portion (U+0000 to U+007F) of the UTF-16 Unicode encoding.169 The
symbol SampleCU has Length Attribute 36.

It's important to remember that the Assembler's CODEPAGE option applies only when trans-
lating EBCDIC characters to Unicode in CU-type constants. The remaining characters in your
program are understood by the Assembler to be represented in the 037 code page.

Exercises

26.5.1.(2)+ In Figure 246, what changes to the generated object code would occur if your
program had been created using code page 1146?

26.5.2.(4) Search the web to find the character encodings used for upper-case letters and decimal
digits on old machines like the Control Data Corporation (CDC) 1604, the CDC 6600, the
Burroughs 5500, the IBM 7030 “Stretch” computer, and others. Show the differences, and
explain why Unicode is an improvement.

26.5.3.(1) What object code is generated by these constants?

C1 DC CU'ABC'
C2 DC CUL12'ABC'
C3 DC CUL2'ABC'
C4 DC CUL8'A&&B''C'

169 The Assembler actually used the 1148 EBCDIC code page for the EBCDIC-to-Unicode translation.

440 Assembler Language Programming for IBM System z™ Servers Version 2.00

26.6. Unicode Instructions

We will describe three groups of instructions:

• String search, compare, and move instructions
• Translation instructions
• Format conversion instructions

26.6.1. String Search, Move, and Compare

The three instructions in Table 176 search, compare, and move, Unicode strings. While each has
“Unicode” in its name, they actually just search for, compare, and move arbitrary two-byte
values; there is no need for the operands to be Unicode characters! They are very similar to their
single-byte counterparts: CLCLE, MVCLE, and SRST.

Table 176. Unicode string instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B2BE SRSTU RRE Search String Unicode EB8E MVCLU RSY Move Long Unicode

EB8F CLCLU RSY Compare Logical Long
Unicode

Their operand formats are:

SRSTU R1,R2
MVCLU R1,R3,D2(B2)
CLCLU R1,R3,D2(B2)

Though each instruction manipulates two-byte operands, there is no requirement that they be
halfword aligned.

26.6.1.1. Search String Unicode: SRSTU scans the second operand string addressed by register
R2, looking for a pair of bytes matching the rightmost two bytes of GR0 (the “test” character; the
rest of GR0 must be zero). If a match is found, the R1 register is set to its address. Because the
second operand string can be very long, the CPU uses “Method B” to process part of the string
before checking for interruptions.

To use SRSTU, put the test character in GR0, set the R2 register to the address of the leftmost
byte of the string to be scanned, and the R1 register to the address of the first byte after the end of
the string. The CPU uses this address to know when to stop the scan; otherwise, it could keep
scanning byte pairs in memory until it found a match somewhere, or caused an unexpected inter-
ruption.

Table 177 gives the Condition Code settings after SRSTU:

Table 177. CC settings for SRSTU instruction

On completion, either or both of the R1 and R2 registers may be updated:

• If the CC is 1, the R1 register is updated and the R2 register is unchanged.

• If the CC is 2, both the R1 and R2 registers are unchanged.

• If the CC is 3, R1 is unchanged and R2 is updated to the address of the next byte to be tested.
You can then branch back to the SRST instruction to continue the search.

CC Meaning

1 Test character found; R1 points to it

2 Test character not found before the byte addressed by R1
3 Partial search with no match; R1 unchanged, R2 points to next

byte to process

Chapter VII: Bit and Character Data 441

The operation of the SRSTU instruction is very similar to that of SRST, as sketched in
Figure 235 on page 416, except that the second operand address is incremented by 2.

For example, suppose you want to scan the string at MyData to find the first occurrence of a
Unicode “A” character:

UnicodeA Equ X'0041' Unicode capital letter A
LAY 0,UnicodeA Put test character in GR0
LA 1,MyData Set GR1 (R2) to string start
LA 5,MyData+L'MyData GR5 (R1) = byte past end

Repeat SRSTU 5,1 Scan the string
JO Repeat Scan was incomplete, try again
JH NotFound CC2, no match was found
- - - CC1, GR5 now points to the A

If the Condition Code is 3, we simply branch back to the SRST to continue the search.

26.6.1.2. Move Long Unicode: Like MVCLE, the results of overlapping operands are unpredict-
able. The execution of MVCLU is the same as in Figure 229 on page 412, except that addresses
are incremented by 2 and lengths are reduced by 2, and that two bytes are moved at each step.
Also, the low-order 16 bits of the Effective Address are used as the pad “character”.

Normally both operand lengths are even, but MVCLU allows either operand to have odd length.
The two-byte padding “character” is then described as the high-order padding byte followed by
the low-order padding byte.

• If the operand lengths are equal but odd, MVCLU does the same as MVCLE.

• If the first (target) operand length is odd and is shorter than the third (source) operand, an odd
number of bytes is moved.

• If the first operand is longer:

− If its length is even, padding starts with the even padding byte.
− If its length is odd, padding starts with the odd padding byte. This means that any addi-

tional padding is done with “proper” even-odd pairs of padding bytes.

MVCLU sets the Condition Code as shown in Table 178.

Table 178. CC settings after MVCLU

For example, suppose we use MVCLU to initialize a large area of storage starting at Work to
Unicode space characters:

CC Meaning

0 All bytes moved, operand lengths are equal

1 All bytes moved, operand 1 shorter; part of operand 2 was not moved

2 All bytes moved, operand 1 longer; operand 1 was padded

3 Some bytes moved; end of operand 1 not reached

XR 0,0 Source address in R3 will be ignored,
XR 1,1 ...because source length is zero
LA 2,Work Start of area to initialize in R1
L 3,WorkSize Length of work area in R1 + 1

Move MVCLU 2,0,X'020' Initialize with Unicode spaces
JO Move Repeat until done
- - -

WorkSize DC A(BlockLen*NBlocks) Length of work area
BlockLen Equ 32000 ...containing 32000 blocks,
NBlocks Equ 20000 ...each 20000 bytes long
Work DS (NBlocks)CL(BlockLen) Work area
Figure 247. Using MVCLU to initialize an area to Unicode spaces

442 Assembler Language Programming for IBM System z™ Servers Version 2.00

26.6.1.3. Compare Logical Long Unicode: CLCLU operates in much the same way as CLCLE.
However, operand lengths must be even, operand addresses are incremented by 2 and lengths are
decremented by 2, and the 16-bit padding “character” is contained in the low-order two bytes of
the Effective Address formed from the second operand.

CLCLU sets the Condition Code as shown in Table 179.

Table 179. CC settings after CLCLU

To illustrate, we'll rewrite Figure 247 on page 442 to use CLCLU to test if the same field con-
tains all Unicode spaces:

CC Meaning

0 All bytes compared, operands equal, or both zero length

1 First operand low

2 First operand high

3 Some bytes compared without finding an inequality

XR 0,0 R3 address will be ignored,
XR 1,1 ...because its length is zero
LA 2,Work Start of area to test in R1
L 3,WorkSize Length of test area in R1 + 1

Compare CLCLU 2,0,X'020' Compare entirely to pad bytes
JO Compare Repeat until done

Figure 248. Using CLCLU to test for Unicode spaces

 Warning!

Comparing and sorting character data in EBCDIC and Unicode can give
very different results, because the character encodings are quite different.

26.6.2. Optional Operands (*)

Many Unicode-related instructions introduce optional operands, which have not been used in
most of the instructions we've seen previously.

Unused fields in instructions are filled with zero bits by the assembler. But as System z has
evolved, the CPU architects have sometimes needed to extend the function of an existing instruc-
tion. Rather than create a new instruction, some of these previously unused fields were assigned
special bit-mask values.

It was important to avoid the problem that programs containing existing instructions now sup-
porting new fields might need to be rewritten to handle the new operand specifications. To solve
this, the new operand was made (a) optional and (b) the last operand of the assembler instruction
statement. If the optional operand is omitted, the Assembler sets the optional field to zero, as
usual. Thus, programs needing the enhanced function can specify the new operand, and existing
programs not specifying the new operand continue to work without modification.

For example, an RRE-type instruction has the format shown in Table 180.

Table 180. RRE-type instruction

The extension of RRE-type instructions to support the new optional operand required a new
instruction type: RRF, shown in Table 181 on page 444.

opcode R1 R2

Chapter VII: Bit and Character Data 443

Table 181. RRF-format instruction with an optional
operand

where M3 is the optional operand; the notation used in the z/Architecture Principles of Operation
describing the Assembler Language format of such instructions is illustrated in Figure 249, where
the square brackets [] indicate that the operand is optional.

opcode M3 R1 R2

mnemonic R1,R2[,M3]
Figure 249. Assembler instruction statement for RRF-type instructions with an optional operand

If the optional operand is omitted, the Assembler fills the M3 field of the instruction with zero
bits, so that writing

mnemonic R1,R2
is the same as writing

mnemonic R1,R2,0

We will see examples of optional operands in some of the following Unicode instructions.

26.6.3. Translation

It is often useful to translate between Unicode and a single-byte character encoding like EBCDIC
or ASCII; these instructions can help.

The four instructions for Unicode translation are listed in Table 182. Each has an optional
operand in the form shown in Table 181 and Figure 249 above.

Table 182. Unicode translate instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B993 TROO R R F Translate One to One B992 TROT R R F Translate One to Two

B991 TRTO R R F Translate Two to One B990 TRTT R R F Translate Two to Two

These instructions are generalizations of TRE, which was described in “25.7. Translate Extended
Instruction” on page 421, but there are interesting and significant differences:

• TRE tests a source-operand character, but these instructions test the function character from
the translate table.

• The address of the translation table for TRE is specified in R2, but is in GR1 for these four
instructions. Unlike other translate instructions, you can specify different source and target
operands, so the translation can be non-destructive.

• The source, target, and test characters can be either one or two bytes long. This means that
the translation tables may be (much) larger:

− TROO: Translate One to One (256-byte table)
− TROT: Translate One to Two (512-byte table)
− TRTO: Translate Two to One (64K-byte table)
− TRTT: Translate Two to Two (128K-byte table)

• If the optional operand is 1, these instructions suppress the test for a source character
matching the test character in GR0, and the translation is controlled only by the length of the
first operand.

• TRE tests the character in GR0 after the result byte has been stored, but these four
instructions test the function character against the character in GR0 before completing a char-
acter translation.

• If you are translating characters of the same length (one to one, or two to two), the source and
target operands have the same length. Otherwise:

444 Assembler Language Programming for IBM System z™ Servers Version 2.00

− If you translate One to Two, the target operand is twice as long as the source operand.
− If you translate Two to One, the target operand is half as long as the source operand.

• Unlike TR, TRT, and TRE, the translate tables must be aligned on a doubleword
boundary.170

• If the target operand contains two-byte characters (for TROT and TRTT), the source char-
acter is shifted left internally by one bit before being added to the table address from GR1, to
correctly address the two-byte translate table entries.

Some of these factors are summarized in Table 183.

Table 183. Arguments and translate tables for TRxx instructions

Table 184 summarizes how the registers are used by these four translate instructions:

Table 184. Registers used by TRxx instructions

All overlaps produce unpredictable results, whether of storage operands or of register assignments.

Table 185 describes the Condition Code settings after executing these instructions:

Table 185. Condition Code settings for TRxx instructions

Remember: if the optional M3 operand is 1, the test character is ignored.

Instruction Source Test Character Table Entry Table Size

TROO 1 byte 1 byte 1 byte 256

TROT 1 byte 1 byte 2 bytes 512

TRTO 2 bytes 2 bytes 1 byte 65,536

TRTT 2 bytes 2 bytes 2 bytes 131,072

Register Contents

GR0 Test character, unless the optional operand is 1, in which case GR0 can be used
for any other purpose.

GR1 Address of the translation table.

R1 Address of the target operand where translated characters will be stored; must be
even.

R1+1 Length in bytes of the second (source) operand; must be an even number for
TRTO, TRTT.

R2 Address of the source operand to be translated.

CC Meaning

0 All characters translated; if the optional operand was 0 (test character comparison
was performed), no function character matching the test character was found. R1
points to the byte after the last target character, R1+1 is zero, and R2 points to the
byte after the last source character,

1 If the optional operand was 0 (test character comparison was performed), a func-
tion character matching the test character was found. R1+1 is decreased by the
number of bytes processed before the character whose function character matched
the test character; R2 is incremented by the same number, and R1 is increased by
the number of bytes placed in the first operand.

3 Partial translation; branch back to the instruction to continue. Registers R1,
R1+1, and R2 have been adjusted so that translation will continue, eventually
ending with CC 0 or 1.

170 Originally, the translate tables for TRTO and TRTT had to be on a 4K-byte boundary, but this was quite inconven-
ient for most programs so the restriction was removed.

Chapter VII: Bit and Character Data 445

To illustrate, suppose TRTT is used to translate a string of DBCS characters to Unicode:

LA 1,MapTbl Point GR1 to the translation table
LA 2,UString Point GR2 to the Unicode result string
LA 3,L'DBCSCon Set GR3 to the second operand length
LA 4,DBCSCon Point GR4 to the DBCS source operand

TrDBCS TRTT 2,4,1 Translate without a test character
JO TrDBCS Repeat until all translations done
- - -

DBCSCon DC G'<.A.BY.Z>' DBCS character string
UString DS CL(L'DBCSCon) Unicode result has same length

DS 0D Doubleword alignment for table
MapTbl DC X' ... ' Mapping from DBCS to Unicode
Figure 250. Using TRTT to translate from DBCS to Unicode

Because the translate table at MapTbl could be up to 131,072 bytes long, we could take advantage
of the fact that DBCS characters have representations between X'4040' and X'7FFE' to define a
smaller table.

While these may seem very complex, the TROO instruction can be used in many places where
TR would be inconvenient, because it lets you specify separate source and target operands.

To illustrate, suppose you must translate a long string of characters at OldText to another string
at NewText while leaving the original string unchanged. Assume the string length is stored in the
word at TextLen and that the required translation table starts at TextTbl. Then, Figure 251
shows instructions using MVC and TR compared to instructions using TROO.

* With MVC and TR |* With TROO
L 3,TextLen | L 3,TextLen
LA 2,NewText | LA 2,NewText
LA 4,OldText | LA 4,OldText
LA 1,255 | LA 1,TextTbl

Repeat CHI 3,256 |Repeat TROO 2,4,1
JNH LastPart | JO Repeat
EX 1,MoveText |Done - - -
EX 1,TRText |
AHI 2,256 |
AHI 4,256 |
AHI 3,-256 |
J Repeat |

LastPart JNP Done |
BCTR 3,0 |
EX 3,MoveText |
EX 3,TRText |

Done - - - |
- - - |

MoveText MVC 0(*-*,2),0(4) |
TRText TR 0(*-*,2),TextTbl |
Figure 251. Translating a long string with TR and MVC, and with TROO

With TROO, the CPU adjusts the operand registers automatically, while with MVC and TR you
must write instructions to do the updates.

446 Assembler Language Programming for IBM System z™ Servers Version 2.00

26.6.4. Conversion Among Transformation Formats (*)

As mentioned in Section 26.5, the Unicode standard defines 8-, 16-, and 32-bit encoding formats;
each is useful in different contexts. One problem in transmitting Unicode data across networks is
that some of the byte codes used for the 16-bit or 32-bit Unicode characters also have meaning as
network control codes. It may be necessary to transform a UTF-16 or UTF-32 encoding to
UTF-8 for transmission over a network, and the receiver can transform the byte stream back to
UTF-16 or UTF-32 (or even work directly with the received UTF-8 byte stream).

The bits of a UTF-16 character are sometimes represented as shown in Figure 252:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
┌───┬───┬───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┬───┬───┐
│ a │ b │ c │ d │ e │ f │ g │ h │ │ i │ j │ k │ l │ m │ n │ o │ p │
└───┴───┴───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┴───┴───┘

Figure 252. Bits of a UTF-16 Unicode character

To see why UTF-8 is needed, consider the Cyrillic character “P” with representation U+0420. If
this was transmitted as single byte data, the single X'04' byte could be interpreted as an End of
Transmission (EOT) flag! Thus, the UTF-8 encoding transforms a UTF-16 character to one,
two, three, or four bytes as follows:

• If the UTF-16 character has the form B'00000000 0jklmnop' (it lies between U+0000 and
U+007F), it is transformed into a single byte B'0jklmnop'.

• If the UTF-16 character has the form B'00000fgh ijklmnop' (it lies between U+0080 and
U+07FF), it is transformed into the two bytes B'110fghij 10klmnop'.

• If a UTF-16 character lies between U+0800 and U+D7FF, or lies between U+DC00 and U+FFFF, it is
transformed into the three bytes B'1110abcd 10efghij 10klmnop'.

• Because the 16 UTF-16 bits were not sufficient to encode all required characters, forms with
scalar values greater than or equal to U+10000 were added; they are represented by surrogate
pairs, as illustrated in Figure 253. The four bytes of surrogate pairs have these bit patterns:

┌───┬───┬───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 1 │ 0 │ 1 │ 1 │ 0 │ a │ b │ │ c │ d │ e │ f │ g │ h │ i │ j │ High surrogate
├───┼───┼───┼───┼───┼───┼───┼───┤ ├───┼───┼───┼───┼───┼───┼───┼───┤
│ 1 │ 1 │ 0 │ 1 │ 1 │ 1 │ k │ l │ │ m │ n │ o │ p │ q │ r │ s │ t │ Low surrogate
└───┴───┴───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┴───┴───┘

Figure 253. Bits of a UTF-16 Unicode surrogate pair

Given a high surrogate that lies between U+D800 and U+DBFF and a low surrogate that lies
between U+DC00 and U+DFFF, the pair is transformed into the four UTF-8 bytes
B'11110uvw 10xyefgh 10ijklmn 10opqrst', where uvwxy = abcd+1.

While this transformation is complicated, it guarantees that no UTF-16 character will be mistaken
for a control code, and that the receiver can immediately find where a character encoded in
UTF-8 form begins. The initial bits of the first UTF-8 byte indicates how many bytes follow it in
a multi-byte sequence.

The Unicode and ISO standards also define a UTF-32 standard that uses 32 bits for each char-
acter, and does not need surrogates. The UTF-32 representation of a “normal” UTF-16 character
(as shown in Figure 252) with encodings from U+0000 to U+DBFF and from DC00 to U+FFFF, simply
appends two high-order bytes of zeros to the UTF-16 character.

For UTF-16 surrogate pairs, the mapping is more complex: the four bytes shown in Figure 253
are mapped into the form shown in Figure 254 on page 448, where the bits named uvwxy have
value abcd+1.

Chapter VII: Bit and Character Data 447

┌───┬───┬───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┬───┬───┐
│ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ 0 │ │ 0 │ 0 │ 0 │ u │ v │ w │ x │ y │ First 16 UTF-32 bits
├───┼───┼───┼───┼───┼───┼───┼───┤ ├───┼───┼───┼───┼───┼───┼───┼───┤
│ e │ f │ g │ h │ i │ j │ k │ l │ │ m │ n │ o │ p │ q │ r │ s │ t │ Second 16 UTF-32 bits
└───┴───┴───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┴───┴───┘

Figure 254. Bits of a UTF-32 Unicode character from a UTF-16 surrogate pair

The System z instructions that convert among the three UTF encodings are shown in Table 186.
Two of the instructions have two names, because CUUTF and CUTFU were implemented
before the other four; the original two were then renamed so that all six instruction names are
consistent. The old names are retained for compatibility.171

Table 186. Unicode format conversion instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B2A7 CU12,
CUTFU

R R F Convert UTF-8 to
UTF-16

B9B0 CU14 R R F Convert UTF-8 to UTF-32

B2A6 CU21,
CUUTF

R R F Convert UTF-16 to
UTF-8

B9B1 CU24 R R F Convert UTF-16 to UTF-32

B9B2 CU41 R R F Convert UTF-32 to
UTF-8

B9B3 CU42 R R F Convert UTF-32 to UTF-16

The CU12, CU14, CU21, and CU24 instructions have an optional M3 operand; CU41 and CU42
do not.

The R1 and R2 registers must be even, and contain the addresses of the first and second operands;
the next higher-numbered registers R1+1 and R2+1 contain the operand lengths.

The CU41 and CU42 instructions have the form shown in Table 180 on page 443, and the
CU12, CU14, CU21, and CU24 instructions have the form shown in Table 181 on page 444.

When these instructions were first implemented, the Unicode Standard did not forbid invalid
forms. Further revisions of the Standard made those forms invalid, so an optional operand was
added to CU12, CU14, CU21, and CU24 to let you choose whether or not “well-formedness”
should be enforced. If the optional operand is one, checking is done for well-formedness.172

Further details may be found in the z/Architecture Principles of Operation.

Table 187 shows the Condition Code settings after executing these instructions:

Table 187. CC settings after Unicode format conversion instructions

Exercises

26.6.1.(2) What do you think will happen if the B2 register of a CLCLU or MVCLU instruc-
tion is the same as R1 or R3 or R1+1 or R3+1?

26.6.2.(1) Can both operands of CLCLU be padded?

CC Meaning

0 Entire second operand was processed.

1 End of the first operand was reached.

2 An invalid UTF-8 character was found; or an invalid low surrogate was found; or
an invalid UTF-32 character was found.

3 Operation incomplete; branch back to it to complete the operation.

171 Originally, only the two instructions CUUTF and CUTFU were defined, meaning “Convert Unicode to UTF” and
“Convert UTF to Unicode”, respectively. At that time, “UTF” meant UTF-8, and “Unicode” meant UTF-16.

172 A well-formed multi-byte UTF-8 character requires that each byte after the first start with B'10'.

448 Assembler Language Programming for IBM System z™ Servers Version 2.00

26.6.3.(2)+ Write a sequence of instructions to find the last nonblank UTF-16 Unicode char-
acter in a string of UTF-16 Unicode characters stored at UData. If no nonblank characters are
found, branch to AllBlank.

26.6.4.(1)+ Write instructions to copy a string of Unicode characters from UHere to UThere.

26.6.5.(1) What UTF-16 Unicode characters can be used for padding if you use a CLCLU or
MVCLU instruction with B2= 0 ?

26.6.6.(3) In Figure 250 on page 446, what changes to the first LA instruction would be
needed if the translate table at MapTbl starts with the DBCS character corresponding to the
DBCS character with representation X'4040'?

26.6.7.(2)+ Suppose one of the four TRxx instructions is used with the optional operand set to
1. Can GR0 be used for the R2 operand?

26.6.8.(2) Can TRTT be used to simulate TROO? Explain why or why not.

26.6.9.(2)+ Suppose you are given a string of bytes in UTF-8 format, and you must start at
some arbitrary position in the string. How can you locate the starting byte of the nearest valid
UTF-8 character? What is the maximum number of bytes you could skip before finding that
valid starting byte?

26.6.10.(3) It is claimed that a binary sort of UTF-8 character strings gives the same ordering as
a binary sort of UTF-16 scalar values, so long as there are no surrogates. Create examples to
show that this is or is not true.

26.6.11.(2) GR5 contains a halfword value that is to be sought in a table of halfwords starting
at HWList. Write a sequence of instructions using SRSTU to locate the entry in the table that
matches the halfword in GR5.

26.6.12.(4) Create a translation table for mapping “Assembler EBCDIC” code page 037 to
UTF-16. Which instruction would you use?

26.6.13.(5) Many programs convert strings of bytes to pairs of EBCDIC characters representing
the hexadecimal digits of each byte. (Exercise 15.6.5 is a typical example.) Using a single DC
statement, create a translate table to be used by a TROT instruction like

LA 1,PH Address of 1-to-2 translation table
LA 2,Target Address of target string
LA 3,L'Source Length of source string
LA 4,Source Address of source string

Repeat TROT 2,4,1 Translate each byte to two
JO Repeat Repeat if incomplete

that converts source bytes to their representative pairs of EBCDIC characters. For example, the
table should start with the characters C'00010203' (that is, X'F0F0F0F1F0F2F0F3'), and end with
the characters C'FCFDFEFF' (that is, X'C6C3C6C4C6C5C6C6').

26.6.14.(2) Suppose the CU24 and CU42 instructions did not exist. How could you translate
between UTF-16 and UTF-32?

26.6.15.(2) Show how the bit patterns of the first UTF-8 byte can be used to determine how
many following bytes are part of the same Unicode character.

26.6.16.(2) Suppose you have a large table of 8-bit signed binary integers in a string of bytes
starting at B, whose length is defined by the EQUated symbol NB. Create a translation table
starting at TBH that can be used by a TROT instruction to convert the signed bytes into a table
of NB signed halfword binary integers starting at H having the same values.

Chapter VII: Bit and Character Data 449

26.7. Translate and Test Extended

Table 188. Translate and Test Extended instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B2BF TRTE R R F Translate and Test Extended B2BD TRTRE R R F Translate and Test Reverse
Extended

Both instructions have the same operand format.

Mnemonic R1,R2[,M3]

The operand assignments are:

R1 The address of the first character of the string of characters to be tested. (The specific
meaning of “character” in this context will be described below.) The R1 register must
be even.

R1 + 1 The length of the first operand in bytes (not characters!).

R2 When a first-operand character matches a nonzero function code from the function-
code (“translate”) table, that code is placed in the R2 register.

GR1 The address of the function-code table.

 Warning!

The table must be on a doubleword boundary, because the instructions
ignore the three-low-order bytes of this address. If your table isn't
doubleword aligned, your results will likely be very incorrect.

M3 The optional 4-bit M3 operand assigns names A, F, and L to the first three bits; the
rightmost bit should be zero, as shown. If M3 is omitted, the M3 field is set to zero.

┌─────┬─────┬─────┬─────┐
│ A │ F │ L │ /// │
└─────┴─────┴─────┴─────┘

They have these meanings:

A 0: Argument characters are 1 byte.
1: Argument characters are 2 bytes, and the argument string length in R1+1 must
be even.

F 0: Function codes are 1 byte.
1: Function codes are 2 bytes.

L 0: The full range of argument and function codes allowed; the range depends on
the lengths of the argument and the function codes.
1: If an argument value is greater than 255, the function code is assumed to be
zero.

The various combinations of the A, F, and L bits mean that the function-code table will have
different sizes, as shown in Table 189. (A table entry “—” means that the bit can have value 0 or
1 without affecting the table size.)

Table 189. Function-code table sizes for TRTE, TRTRE

A F L Table size (bytes)

0 0 — 256

0 1 — 512

1 0 0 65536

1 1 0 131072

1 0 1 256

1 1 1 512

450 Assembler Language Programming for IBM System z™ Servers Version 2.00

In the two cases where L=1, the fact that A=1 means that argument characters are two bytes
long, potentially meaning that they could correspond to function codes that are also two bytes
long if F=1 also. Because L=1, any argument value greater than 255 (that is, with a nonzero
value in the left byte) is ignored, and the instructions treat the function code as being zero.

For TRTE, the argument string is scanned from left to right, so the R1 address is simply set to
the address of the first byte in the string. Depending on the A bit, arguments are scanned one byte
at a time (A=0) or two bytes at a time (A=1).

For TRTRE, the argument string is scanned from right to left. If the A bit is zero, the R1
address points to the rightmost byte of the argument string (the last “character”). If however the
A bit is one, meaning that argument characters are two bytes long, the R1 address points to the
next to last byte of the string: that is, to the last character of the string.

The Condition Code settings for TRTE and TRTRE are shown in Table 190.

Table 190. Condition code settings for TRTE, TRTRE

A simple example of TRTE is shown in Figure 255. Assume you must scan an integer
expression encoded in Unicode UTF-16 characters, with operators and parentheses. Because
L=1, we need only 256 table entries; and all the Unicode characters being sought have values less
than X'0040'.

CC Meaning

0 All first operand bytes processed; all function bytes were zero

1 A nonzero function byte was found

3 First operand partially processed; try again

A Equ 1 (Argument character length) -1
F Equ 1 (Function code length) +1
L Equ 1 Ignore argument characters >255
M3 Equ 8*A+4*F+2*L M3 mask field value

LAY 4,String Address of characters to scan
LHI 5,L'String Length to scan
XR 6,6 For inserted function code
LAY 1,Tbl Address of function code table

Scan TRTE 4,6,M3 Scan the string
JO Scan Repeat of nothing found yet
LAY 0,Process Address of start of process code
ALR 6,0 Form branch address
BR 6 Branch to select processing routine
- - -

Tbl DC 0D,(X'28')AL2(0) Ignore uninteresting characters
DC AL2(LP-B) Left parenthesis
DC AL2(RP-B) Right parenthesis
DC AL2(M-B) * (Multiplication)
DC AL2(P-B) + (Addition)
DC AL2(0) Ignored character
DC AL2(S-B) - (Subtraction)
DC AL2(0) Ignored character
DC AL2(D-B) / (Division)
DC 10AL2(N-B) Numeric digit
DC (X'FF'-X'39')AL2(0) Ignored characters

Figure 255 (Part 1 of 2). Example of using TRTE

Chapter VII: Bit and Character Data 451

Process DC 0F Branch to process routines
B B Nothing Nothing interesting found
P B Plus + operator
S B Minus - operator
N B Numeric Numeric digit
M B Mult * operator
RP B RParen Right parenthesis
D B Div / operator
LP B LParen Left parenthesis

* Processing routines follow...

Nothing DC 0H ... Processing in case nothing found
Numeric DC 0H ... Processing for digit
Plus DC 0H ... Processing for +
Minus DC 0H ... Processing for -
Mult DC 0H ... Processing for *
Div DC 0H ... Processing for /
RParen DC 0H ... Processing for)
LParen DC 0H ... Processing for (

String DS XL4096 String to be scanned
Figure 255 (Part 2 of 2). Example of using TRTE

The technique of using offsets to the processing routines as function-code values allows you to
arrange the table of branch instructions in any order you like (except that the “not found” case
must be first).

Exercises

26.7.1.(1)+ What size should the function-code table be if you are translating 2-byte characters,
and have set L = 1? Why?

26.7.2.(4) Suppose the three symbols A, F, and L in the M3 mask have been defined as abso-
lute symbols with values 0 or 1. Suppose also that you must reserve space for a function-code
table with size depending on the values of A, F, and L, as illustrated in Table 189 on page 450.
Write an EQU statement defining a symbol TL that will contain the length of the reserved area
for the table.

26.7.3.(3) Compare TRT and TRTE with respect to these characteristics (making a table may
help).

1. Operand length range
2. How operand length is specified
3. How the first operand is addressed
4. How the function-code table is addressed
5. Where a nonzero function code is placed, and what happens to the rest of that register
6. Where the address of the corresponding argument character is placed
7. The length and alignment of the function-code table
8. Condition Code settings and the conditions they represent

26.7.4.(3) Repeat Exercise 26.7.3 for TRTR and TRTRE.

26.7.5.(2) Consider the possible combinations of argument characters and function codes for
TRTE in Table 189 on page 450. Which of those combinations are related to the four
instructions TROO, TROT, TRTO, and TRTT? In what ways are they related and not
related?

26.7.6.(3) Modify the function-code table definion in Figure 255 on page 451 so that the size
of each entry in the table depends only on the value of the F bit. That is, you need only change
the EQU statement defining F and reassemble.

452 Assembler Language Programming for IBM System z™ Servers Version 2.00

26.8. Byte Reversal and Workstation Data

All our previous examples using binary data have assumed that the most significant bits are found
in the byte with the lowest address, with significance decreasing at higher addresses. Some other
processor architectures store numeric data in the opposite direction: the byte with the least signif-
icant bits are at the lowest address, and significance increases in the bytes at higher addresses.

The significance of bits within a byte is the same in either case: the high-order bit has the greatest
significance.173

The choice of byte order for binary data is sometimes called the “Endian” question.174 Because
System z stores the most significant bits at the lowest address, it is called a “Big-Endian”
processor (i.e., “big end first”). Many early microprocessors could handle only 4 bits or a single
byte at a time, and because bits are added starting with the least significant, it was more econom-
ical to address the (numerically) lowest-order byte (i.e., “little end first”). Many personal com-
puters and workstations are “Little-Endian”.

For example, if a word containing X'87654321' is stored in a Big-Endian processor memory
starting at address A, we would see the bytes in storage as in Figure 256:

 A A+1 A+2 A+3 �── Addresses
┌────┬────┬────┬────┐
│ 87 │ 65 │ 43 │ 21 │
└────┴────┴────┴────┘

Figure 256. Big-Endian storage representation of X'87654321'

However, on a processor storing data with the least significant bits at the lowest address (a
“Little-Endian” processor) we would see the bytes in storage as in Figure 257:

 A A+1 A+2 A+3 �── Addresses
┌────┬────┬────┬────┐
│ 21 │ 43 │ 65 │ 87 │
└────┴────┴────┴────┘

Figure 257. Little-Endian storage representation of X'87654321'

When your program manipulates multi-byte data, you'll want to know where it originated.

26.8.1. Byte-Reversing Instructions

The byte-reversing instructions are listed in Table 191. They are provided because System z
processors must often exchange data with workstations and personal computers that store some
types of data in byte-reversed order.

Table 191. Byte-reversing load and store instructions

Op Mnem Type Instruction Op Mnem Type Instruction

E31E LRV RXY Load Reversed (32) B91F LRVR RRE Load Register Reversed (32)

E30F LRVG RXY Load Reversed (64) B90F LRVGR RRE Load Register Reversed (64)

E31F LRVH RXY Load Halfword Reversed (16) E33F STRVH RXY Store Halfword Reversed (16)

E33E STRV RXY Store Reversed (32) E32F STRVG RXY Store Reversed (64)

173 But be careful: data on some processors sometimes numbers bits from right to left, rather than the System z conven-
tion from left to right. Right-to-left numbering has the advantage that a bit's number is the same as the power of 2 it
represents.

174 The term “Endian” was taken from Jonathan Swift's Gulliver's Travels, where the kingdoms of Lilliput and Blefuscu
were permanently at war over the correct way to eat a boiled egg. The Lilliputian “Little-Endians” insisted on
opening the egg at the sharp end, and the Blefuscudian “Big-Endians” insisted on the rounded end.

Chapter VII: Bit and Character Data 453

They behave like normal Load and Store instructions, except that the left-to-right order of the
bytes is reversed. This is illustrated in Figure 258 on page 454.

┌────────┬────────┬────────┬────────┐
│ byte 0 │ byte 1 │ byte 2 │ byte 3 │ R1
└────────┴────────┴────────┴────────┘

� � � �
└────────┼────────┼───────┼┐
┌────────┼────────┼───────┘│
│ └────────┼┐ │
│ ┌────────┘│ │
� � � �

┌────────┬────────┬────────┬────────┐
│ byte 3 │ byte 2 │ byte 1 │ byte 0 │ Word in memory or R2
└────────┴────────┴────────┴────────┘

Figure 258. Byte reversal by LRV, LRVR, and STRV instructions

These instructions convert two, four, or eight bytes between “Big-Endian” and “Little-Endian”
format quickly and efficiently for processing. For example, suppose the word in Figure 256 on
page 453 is stored at A. Then, executing

LRV 0,A c(GR0) = X'21436587'

will load GR0 with the pattern shown in Figure 257 on page 453. Byte reversal can also be done
when storing the contents of a general register into memory:

L 0,=X'12345678' c(GR0) = X'12345678'
STRV 0,Rev c(Rev) = X'78563412'

The LRVR instruction is similar to LRV, except that the second operand comes from GR R2
rather than from memory.

The LRVH and STRVH instructions are similar to LRV and STRV, except that only the two
rightmost bytes of GR R1 are involved. This is illustrated in Figure 259.

┌────────┬────────┬────────┬────────┐
│ byte 0 │ byte 1 │ byte 2 │ byte 3 │ R1
└────────┴────────┴────────┴────────┘
 �── unchanged ── � �

└──────┼┐
┌───────┘│
� �

┌────────┬────────┐
│ byte 3 │ byte 2 │ Halfword in memory
└────────┴────────┘

Figure 259. Byte reversal by LRVH and STRVH instructions

For example:

LRVH 1,=X'1234' c(GR1) = X'xxxx3412'

where xxxx is the original data in the two high-order bytes of GR1.

LRVH is unusual in this respect: unlike the other Load Halfword instructions, it does not propa-
gate the sign bit of the leftmost bit of the (reversed) halfword just loaded. Thus, it might better be
thought of as the “Insert Halfword Reverse” instruction, because the rest of the R1 register is
unchanged.

The 64-bit instructions LRVG, LRVGR, and STRVG are the 64-bit equivalents respectively to
LRV, LRVR, and STRV: the operands are 8 bytes long rather than 4. Otherwise, their operation
is the same.

Processing halfword, word, and doubleword data with these instructions is straightforward.

454 Assembler Language Programming for IBM System z™ Servers Version 2.00

If the fields in a data item do not align neatly on byte boundaries, processing “Endian” data can
be much more difficult. Suppose a word in memory containing four different binary integers has
the format shown (in Big-Endian format) in Figure 115 on page 249. As before, the bits are
lettered, but now we must number the individual bits of the integers A, B, C, and D, as in
Figure 260 on page 455. The 9 bits of A are numbered A0-A8; the 4 bits of B are numbered
B0-B3; the 13 bits of C are numbered C0-Cc; and the 6 bits of D are numbered D0-D5.

9 bits 4 bits 13 bits 6 bits
┌────────────────┬──┬─────────┬──────┬───────────────┬────┬─────────────┐
│ A A A A A A A A A │ B B B B │ C C C C C C C C C C C C C │ D D D D D D │
│ 0 1 2 3 4 5 6 7 8 │ 0 1 2 3 │ 0 1 2 3 4 5 6 7 8 9 a b c │ 0 1 2 3 4 5 │
└────────────────┴──┴─────────┴──────┴───────────────┴────┴─────────────┘
 �─ first byte ─ �── second byte ── �─ third byte─ �─ fourth byte ──

Figure 260. Four integers packed in a Big-Endian 32-bit word

Thus, the first byte contains bits A0-A7; the second byte contains bits A8, B0-B3, and C0-C2; the
third byte contains bits C3-Ca; and the fourth byte contains bits Cb-Cc and D0-D5.

Suppose these four bytes are reversed and sent to a Little-Endian processor; the data would then
look like this:

┌─────────────────┬─────────────────┬─────────────────┬─────────────────┐
│ C C D D D D D D │ C C C C C C C C │ A B B B B C C C │ A A A A A A A A │
│ b c 0 1 2 3 4 5 │ 3 4 5 6 7 8 9 a │ 8 0 1 2 3 0 1 2 │ 0 1 2 3 4 5 6 7 │
└─────────────────┴─────────────────┴─────────────────┴─────────────────┘

first byte second byte third byte fourth byte
Figure 261. The same four integers packed in a Little-Endian 32-bit word

You can imagine the difficulties a program on a Little-Endian processor might have in extracting
the four integer values. Conversely, if your program receives a Little-Endian word in which over-
lapping bit fields are specified as in Figure 260, your System z program would see the word in
Figure 261.

Something to Check

Before processing data, be sure you know its “Endianness”, as well as its
character representation.

Exercises

26.8.1.(2) Suppose the two rightmost bytes of GR2 contain a 2-byte Little-Endian integer.
What will these two instructions do?

LRVR 2,2
SRA 2,16

What will happen if the SRA instruction is replaced by SRL?

26.8.2.(3) Suppose the data shown in Figure 260 is actually in Little-Endian format, so you
find it on your System z processor in the word at OddData in the form shown in Figure 261.
Write a sequence of instructions to extract the four (unsigned) integers, and store them in
halfwords named A, B, C, and D.

26.8.3.(1) Put the 4 bytes of the word at DPG into GR1 in reverse order. (See Exercise 17.2.5.)

26.8.4.(2)+ An 80-byte character string is stored at InRec. Write a loop using byte-reversing
instructions (not using MVCIN) to reverse the bytes and store them at RevRec.

26.8.5.(3) Suppose you have a string of bytes starting at ByteStr whose length, stored at SLen,
is known to be a multiple of two. Write a loop using byte-reversing instructions (as in Exercise
26.8.4) to store the reversed bytes at RevStr executing as few instructions as possible. For

Chapter VII: Bit and Character Data 455

example, you might reverse as many groups of 8 bytes as possible using the 8-byte instructions,
then handle the remainder as efficiently as you can.

26.9. Summary

The extended instructions for Unicode are summarized in Table 192.

Table 192. Extended instructions for Unicode data

The Unicode-based translation instructions are summarized in Table 193.

Table 193. Unicode-based translate instructions

The Unicode format conversion instructions are summarized in Table 194.

Table 194. Unicode format conversion instructions

The byte-reversing instructions are summarized in Table 195.

Table 195. Summary of byte-reversing instructions

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Function Instruction Stop Conditions

Move MVCLU End of first operand

Compare CLSTU End of longer operand,
or unequal comparison

Search SRSTU End of second operand,
or stop character found

Function
Operand 1 1 byte 2 bytes

Operand 2 1 byte 2 bytes 1 byte 2 bytes

Translate TROO TRTO TROT TRTT
Translate and Test Extended TRTE TRTE
Translate and Test Reverse

Extended TRTRE TRTRE

Function
Operand 1 1 byte 2 bytes 4 bytes

Operand 2 2 bytes 4 bytes 1 byte 4 bytes 1 byte 2 bytes

Convert Format CU21
CUUTF CU41 CU12

CUTFU CU42 CU14 CU24

Function
Operand1 4 bytes 8 bytes

Operand2 2 bytes 4 bytes 8 bytes

Load (from memory) LRVH LRV LRVG

Load (from register) LRVR LRVGR
Store STRVH STRV STRVG

456 Assembler Language Programming for IBM System z™ Servers Version 2.00

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

CLCLU EB8F LRV E31E STRVG E32F

CU12,
CUTFU

B2A7 LRVG E30F STRVH E33F

LRVGR B90F TROO B993
CU14 B9B0 LRVH E31F TROT B992
CU21,
CUUTF

B2A6 LRVR B91F TRTE B9BF

MVCLU EB8E TRT0 B991CU24 B9B1
SRSTU B2BE TRTRE B9BDCU41 B9B2
STRV E33E TRTT B990CU42 B9B3

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

B2A6 CU21,
CUUTF

B992 TROT E30F LRVG

B993 TROO E31E LRV
B2A7 CU12,

CUTFU B9B0 CU14 E31F LRVH

B9B1 CU24 E32F STRVGB2BE SRSTU
B9B2 CU41 E33E STRVB90F LRVGR
B9B3 CU42 E33F STRVHB91F LRVR
B9BD TRTRE EB8E MVCLUB990 TRTT
B9BF TRTE EB8F CLCLUB991 TRT0

Terms and Definitions
ASCII

American Standard Code for Information Interchange, an 8-bit encoding.

BCD
Binary Coded Decimal. (1) A 4-bit encoding of the decimal digits 0-9 used in packed decimal
arithmetic. (2) A 6-bit character encoding used on many data processing systems prior to
System/360's introduction of an 8-bit byte with EBCDIC encoding.

Big-Endian
A representation of numbers in which the value of the digits at successively higher addresses
have lower significance; the digits have decreasing significance from left to right. The repre-
sentation used on System z.

Code Page
A defined encoding of characters and control codes.

DBCS
See “Double-Byte Character Set”.

Double-Byte Character Set
A 16-byte EBCDIC encoding of a character set having many more characters than can be
accommodated in 8 bits.

EBCDIC
Extended Binary Coded Decimal Interchange Code, an 8-bit encoding of characters and
control codes.

Chapter VII: Bit and Character Data 457

Glyph
The printed or displayed form of a character that can be formed with various properties. For
example, the glyphs A, A, A, A, A are representations of the character “A”, in upper case
forms (normal, italic, bold, bold italic, and “small caps”).

Little-Endian
A representation of numbers in which the value of the digits at successively higher addresses
have greater significance; the digits have increasing significance from left to right.

SBCS
See “Single-Byte Character Set”.

Shift-In
An X'0F' byte code in a stream of DBCS byte pairs indicating that the following single bytes
are SBCS-encoded.

Shift-Out
An X'0E' byte code in a stream of SBCS bytes indicating that the following pairs of bytes are
DBCS-encoded.

Single-Byte Character Set
An 8-bit encoding of a character set.

Syntactic Character Set
A set of 82 characters with the same encodings across all EBCDIC Code Pages.

Unicode
An international standard encoding of (almost) all characters, represented as groups of 8-bit
bytes (UTF-8), one or two byte pairs (UTF-16), or 32-bit units (UTF-32).

458 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter VIII: Zoned and Packed Decimal Data and Operations

VV VV IIIIIIIIII IIIIIIIIII IIIIIIIIII
VV VV IIIIIIIIII IIIIIIIIII IIIIIIIIII
VV VV II II II
VV VV II II II
VV VV II II II
VV VV II II II
VV VV II II II
VV VV II II II
VV VV II II II
VV VV II II II
VVVV IIIIIIIIII IIIIIIIIII IIIIIIIIII
VV IIIIIIIIII IIIIIIIIII IIIIIIIIII

The four sections of this chapter discuss the zoned and packed decimal number representations
and typical operations on each.

• Section 27 discusses the zoned and packed decimal representations and instructions that
convert between them.

• Section 28 gives an overview of the principles of packed decimal arithmetic, to help you under-
stand the operation of the instructions in Sections 29 and 30.

• Section 29 describes the instructions that perform packed decimal arithmetic operations.

• Section 30 describes instructions used to convert data between packed decimal and binary, and
between packed decimal and character strings.

The other System z decimal data format, decimal floating-point, will be discussed in the next
chapter.

Chapter VIII: Zoned and Packed Decimal Data and Operations 459

27. Zoned and Packed Decimal Representations

2222222222 777777777777
222222222222 777777777777
22 22 77 77

22 77
 22 77

22 77
22 77

22 77
22 77

22 77
222222222222 77
222222222222 77

In this section we examine the zoned decimal and packed decimal representations of data, which
are useful in applications requiring decimal arithmetic, compactness, selectable precision, and sim-
plicity. (Packed decimal is different from decimal floating-point, which is discussed in the next
chapter.) We'll start with the instructions in Table 196.

Table 196. Basic packed and zoned decimal instructions

Op Mnem Type Instruction Op Mnem Type Instruction

D1 MVN SS Move Numerics D3 MVZ SS Move Zones

F2 PACK SS Pack F3 UNPK SS Unpack

E9 PKA SS Pack ASCII EA UNPKA SS Unpack ASCII

E1 PKU SS Pack Unicode E2 UNPKU SS Unpack Unicode

The zoned and packed decimal data representations of System z provide simple and economical
ways to store decimal data that will not take on a large range of values. There are no instructions
that perform arithmetic with zoned decimal data; its main use is as an intermediate step between
the internal packed decimal representation (with which arithmetic is possible), and an external
representation such as character data.

27.1. Zoned Decimal Representation

First, two definitions. The two hexadecimal digits of a byte are known as the “zone” (high-order)
digit and the “numeric” (low-order) digit, represented by Z and n in Figure 262.

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ Z n │ Z n │ Z n │ Z n │ Z n │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Figure 262. Zone and numeric digits of a byte

The MVN and MVZ instructions are almost identical to MVC: rather than moving entire bytes,
they move only the numeric digits or only the zone digits, respectively. To illustrate, suppose we
define a string of bytes at the constant named RandomF and move the numeric and zone digits to
byte strings named Numerics and Zones respectively.

460 Assembler Language Programming for IBM System z™ Servers Version 2.00

MVN Numerics,RandomF Move numeric digits
MVZ Zones,RandomF Move zone digits
- - -

RandomF DC XL8'FEDCBA987654321F' Source operand
Numerics DC XL8'0' Numerics
Zones DC XL8'0' Zones
Figure 263. Example of MVN and MVZ instructions

Then, the contents of the two byte strings will be

c(Numerics) = X'0E0C0A080604020F'
c(Zones) = X'F0D0B09070503010'

The two following examples illustrate some simple uses.

1. Convert the non-negative halfword integer at N to a string of five EBCDIC characters begin-
ning at NDec, which give the decimal representation of the contents of the halfword at N.

LH 1,N Number to be converted in odd reg
LA 2,L'NDec Use GR2 to count number of digits

XXX SR 0,0 Clear high-order (even) register
D 0,=F'10' Generate a digit
STC 0,NDec-1(2) Store digit in output string
BCT 2,XXX Count and branch until done
MVZ NDec,=(L'NDec)X'FF' Attach zones for EBCDIC
- - -

NDec DS CL5 Converted result
N DC H'12345' Number to convert

We could have used literals such as =5C'0' or =5C'9' in the MVZ instruction, with the same
results, as would any literal with X'F' in the zone digit.

2. Convert the five-digit decimal number in EBCDIC form at NDec to a fullword binary integer,
and store it at MM.

RW EQU 0 Work register for inserting digits
RNum EQU 1 Value accumulated in GR1
RC EQU 2 Count digits in GR2
RDP EQU 3 Digit pointer

MVN Temp,NDec Move numeric portions of digits
LA RDP,Temp Address of current digit in RDP
LA RC,L'NDec Number of digits to be processed
SR RW,RW Clear RW for digits
SR RNum,RNum And RNum for number being generated

Mult MH RNum,=H'10' Multiply accumulated part by 10
IC RW,0(,RDP) Insert digit from input, unzoned
AR RNum,RW Add to partial sum
LA RDP,1(,RDP) Increment digit address
BCT RC,Mult Count and loop
ST RNum,MM Store result
- - -

NDec DC C'12345' Value to be converted
Temp DC XL(L'NDec)'0' Zones pre-zeroed, digits moved in
MM DS F Binary result

As we will see, the CVD and CVB instructions considerably simplify the conversion of
numbers between binary and decimal formats.

These instructions are sometimes used in processing packed decimal data.

Calling the left and right hex digits of a byte the “zone” and “numeric” digits might seem to limit
the use of MVZ and MVN to packed and zoned decimal data. However, they simply move the
left or right digits of a string of bytes, no matter what data type they represent.

Chapter VIII: Zoned and Packed Decimal Data and Operations 461

The zoned decimal representation actually differs little from the familiar EBCDIC representation
for characters. For example, the EBCDIC representation of the decimal characters 12345 is

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ F 1 │ F 2 │ F 3 │ F 4 │ F 5 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

The only difference between the zoned decimal and EBCDIC representations of the digits 12345 is
in the treatment of the zone digit of the rightmost byte. In the EBCDIC representation, the zone
digit is X'F', as illustrated above. In the zoned decimal representation, however, this digit may be
any of the six hexadecimal digits A, B, C, D, E, or F; they are treated as the sign of the zoned
number, as indicated in Figure 264.

┌────────────┬──────┐
│ Sign Digit │ Sign │
├────────────┼──────┤
│ A │ + │
│ B │ − │
│ C │ + │
│ D │ − │
│ E │ + │
│ F │ + │
└────────────┴──────┘

Figure 264. Zoned decimal sign conventions

Of the six possible sign digits, the preferred values are X'C' for “+” and X'D' for “ −”. Thus, the
zoned decimal representation of +12345 is

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ F 1 │ F 2 │ F 3 │ F 4 │ C 5 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Table 197 contains some some examples of zoned decimal constants. As these examples illus-
trate, leading zeros may appear in a zoned decimal number without affecting its value.

Table 197. Examples of zoned decimal data

If these byte strings are printed, the last character in each will be a letter!

Figure 265 gives a pictorial representation of a zoned decimal number, where “Z” represents a
zone digit, “S” represents a sign digit, and “d” represents a numeric (decimal) digit.

Value Representation

+12345 X'F1F2F3F4C5'

-12345 X'F1F2F3F4D5'

+003 X'F0F0C3'

-0999 X'F0F9F9D9'

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ Z d │ Z d │ Z d │ Z d │ S d │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Figure 265. A zoned decimal number

All of the decimal characters we saw in previous sections used X'F' for their zone digits Z. Other
zone digits are used for ASCII and Unicode numeric character data.

462 Assembler Language Programming for IBM System z™ Servers Version 2.00

27.1.1. Why Zoned Decimal Is The Way It Is (*)

The reason for the choice of preferred zones comes from the days of punched cards. To save
space in the card column containing the last character of a numeric field, by convention a hole
corresponding to the desired digit and another zone punch appeared in one of the two top rows of
the same card column.

For example, a punched card containing two 10-character fields containing the right-adjusted
numbers +12345 and −67890 would appear as shown in Table 198:

Table 198. Punched-card image of two numbers, +12345 and − 67890

The technique of using the top two unnumbered “rows” of the card indicated both the end of a
field of digits, and the sign of the number: if the number was positive, the 12-row (top row) of the
card column containing the numeric digit punch was also punched, and if the number was nega-
tive the 11-row (the next to top row) was punched. This meant that +5 appeared as the letter
“E” (with hex representation X'C5'), and −9 appeared as the letter “R” (with hex representation
X'D9'). When “numbers” in this representation are read into memory as EBCDIC characters, the
presence of a sign punch over the last digit automatically gives the zoned decimal representation
of the number. (If a sign is prefixed to the digits, a + sign is a single punch in the 12-row, and a
− sign is a single punch in the 11-row.)

Exercises

27.1.1.(2)+ In Figure 263 on page 461, why are Numerics and Zones defined with explicit
length 8? Show the results if they had been defined instead by

Numerics DC 8X'0'
Zones DC 8X'0'

27.1.2.(1)+ What will be the result of executing these two instructions?

MVN Target,Source
MVZ Target,Source

27.1.3.(3) Write an instruction sequence using TRT to test the validity of the digit and sign in
the rightmost byte of the zoned decimal number at ZTest. If the digit portion is invalid, branch
to BadDigit; if the sign portion is invalid, branch to BadSign; and if both are invalid, branch to
BadByte. If you can also determine the sign of a valid byte, branch to ZPlus for a plus sign and
to ZMinus for a minus sign.

27.1.4.(2)+ Write an instruction sequence using TRT to test the validity of all but the rightmost
byte of the zoned decimal number at ZTest. If any byte is invalid, branch to BadZDig with
GR1 containing the address of the invalid byte.

27.1.5.(1) In Table 197 on page 462, what will be printed for the rightmost byte of each item?

�
�

0000000000000000000�00
11111�11
222222�222
3333333�33
44444444�444
555555555�55
666666666666666�66
7777777777777777�777
88888888888888888�88
999999999999999999�99IBM5081

Chapter VIII: Zoned and Packed Decimal Data and Operations 463

27.1.6.(2) Find the EBCDIC punched card code for the + and − characters. Now, do the same
for the BCD punched card codes.

27.1.7.(1)+ After example 1 of using the MVZ instruction (on page 461), it was stated that the
literals =5C'0' and =5C'9' could have been used. Explain why this is so.

27.1.8.(2) Consider the MVZ instruction in the same example as in Exercise 27.1.7. Could the
statement have been written in any of the following forms? Explain why or why not.

MVZ NDec,=XL5'FF'
MVZ NDec,=(NDec)X'FF'
MVZ NDec,=XL(L'NDec)X'FF'
MVZ NDec,=(L'NDec)X'FF'

27.2. Zoned Decimal Constants

Zoned decimal constants are defined with a DC statement with type “Z”. Each digit in the con-
stant is translated into a single byte in storage and the Assembler assigns the preferred sign code
to the rightmost byte. For example, the constants in Table 197 on page 462 could be defined
with either of these statements:

ZoneA DC Z'12345',Z'-12345',Z'+003',Z'-0999'
ZoneB DC Z'12345,-12345,+003,-0999'
Figure 266. Zoned decimal constants with implied lengths

When the length of the constant is implied (as in Figure 266), the length of the constant is the
same as the number of digits in the nominal value. As usual, the length attribute of the name-
field symbol is that of the first constant in the first operand.

A decimal point may be placed anywhere in a zoned decimal constant. Its presence is ignored,
and it does not appear in the generated constant.175 Thus, both

DC Z'12345.' and
DC Z'.12345'

generate X'F1F2F3F4C5', but their Integer and Scale attributes are 5 and 0, or 0 and 5, respectively.
(See Exercise 27.2.8.)

To specify an explicit length, use a length modifier. If the value of the length modifier is less than
the number of digits, the constant will be truncated at the left end to the required length:

DC ZL3'12345' Truncated constant = X'F3F4C5'

If the value of the length modifier is greater than the number of digits, the Assembler will pad
with high-order (zoned, EBCDIC) zeros, with representation X'F0':

DC ZL5'123' Padded constant = X'F0F0F1F2C3'

The maximum length of a zoned decimal constant is 16 bytes.

The constants in Table 197 on page 462 could also be defined with explicit lengths:

ZoneC DC ZL5'12345',ZL5'-12345',ZL3'3',ZL4'-999'
Figure 267. Zoned decimal constants with explicit lengths

Scale and exponent modifiers, and decimal exponents, are not supported for Z-type constants.

175 The position of the decimal point is reflected in the integer and scale attributes of the symbol, which are useful mainly
in macro instructions. They are rarely if ever used with zoned constants.

464 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

27.2.1.(1)+ What data would be generated if we wrote the constants in Figure 266 on page 464
as

ZoneD DC ZL5'12345,-12345,+3,-999' ?

Is anything different? If so, what and why?

27.2.2.(1) Show the generated data for these zoned decimal constants:

(1) Z'-1' (2) Z'+0' (3) Z'-042' (4) ZL2'5'

27.2.3.(1) What decimal value is represented by the following zoned decimal constants?

(1) X'F0B9' (2) X'F2' (3) X'F0F0A7' (4) X'B0'

27.2.4.(1) Show the generated data for these zoned decimal constants:

(1) ZL16'123456.789' (2) Z'123456789012345678'
(3) ZL5'.654321' (4) ZL20'2.20'

27.2.5.(2)+ How many valid zoned decimal values can be represented in a single byte?

27.2.6.(2)+ What data would be generated if we wrote the constants in Figure 266 on page 464
as

ZoneD DC CL5'12345,-12345,+3,-999' ?

What is different? Why?

27.2.7.(1)+ What are the length attributes of the symbols in Figure 266 on page 464?

27.2.8.(2)+ If a zoned decimal number is N digits long, write expressions relating N and the
Length, Integer, and Scale Attributes.

27.3. Packed Decimal Representation

The packed decimal representation is often used when computing speed is less important than
economy of storage space, and we want speed and simplicity of conversion to and from character
form. Also, because humans calculate in decimal, operations like rounding are more intuitive
than if the same calculation is done using binary data, and can be more accurate than the same
computations in binary.

As its name implies, data is more closely “packed” than in the zoned decimal representation. The
basic data element is the binary coded decimal (BCD) digit176 represented by four bits; these BCD
digits can be packed two to a byte. The six bit combinations corresponding to the hex digits A
through F are invalid data digits in the packed decimal representation. If an invalid data digit
appears in an arithmetic operation, the CPU will generate an interruption for invalid Decimal
Data.

The rightmost digit position of a packed decimal number is reserved for its sign, which obeys the
conventions shown in Figure 264 on page 462. As with zoned decimal data, the preferred values
for the sign digit are X'C' for “+”, and X'D' for “ −”.

Using the “pictorial” representation of Figure 265 on page 462, a packed decimal number will
appear in storage as shown in Figure 268 on page 466. Note that there are no zone digits in a
packed decimal number.

176 This representation, where a decimal digit is encoded in four bits, is often called “binary coded decimal”. To avoid
confusion with the 6-bit character code that was also called “Binary Coded Decimal” (see Section 26.1.1 on page 429
and Table 170 on page 430), we will use the terms “packed decimal digit” or “decimal digit” instead.

Chapter VIII: Zoned and Packed Decimal Data and Operations 465

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ d d │ d d │ d d │ d d │ d d │ d S │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

Figure 268. Representation of a packed decimal number

Packed decimal numbers look more like numbers we are familiar with, and the sign being at the
right end is a small adjustment for us to make. Some examples are shown in Table 199.

Table 199. Examples of packed decimal
data

Any extra digits at the left end will be set to zero. Because the sign always occupies one digit
position, an N-byte packed decimal number in memory always has an odd number of digits,
2N-1. Packed decimal data may be up to 16 bytes long, so it is possible to have 31-digit numbers;
however, some operations on decimal data require shorter operands.

The packed decimal representation has an unusual feature: unlike two's complement binary, it is
possible to have a negative sign digit and all zero data digits. Thus, packed decimal is a sign-
magnitude representation. In most cases, a zero result of an operation is given a positive sign
digit, but it is also possible to generate negative zeros in special cases. Thus it is not possible (as is
possible in the two's complement binary representation) to determine that a number is strictly
negative by examining its sign digit.

There is also an unsigned packed decimal representation used in conjunction with decimal floating
point; we'll investigate it in Section 35.

Exercises

27.3.1.(2)+ A packed decimal number contains N digits; give a formula for the number of bytes
required to hold it in memory.

27.3.2.(2) How many valid packed decimal values can be represented in a single byte?

27.3.3.(4) Test the packed decimal number at Pack for validity with a single TRT instruction
and a suitable translate table. If the number is valid and nonzero branch to PPlus or PMinus
depending on its sign. Otherwise,

• if the sign is invalid branch to BadSign
• if a byte contains an invalid digit branch to BadDigit
• if a byte contains both an invalid sign and digit branch to BadByte

with the address of the byte containing the invalid data in GR1.

27.3.4.(2)+ Suppose you must force the sign of the packed decimal number at SomeVal to be
positive. Show you you can do this with one instruction.

27.3.5.(3) A packed decimal operand is known to have a bad numeric digit. Create a translate
table that can be used with a TRT instruction to identify both the byte with the bad digit, and
whether the first or second digit is invalid.

27.3.6.(3) Suppose you must force the sign of the packed decimal number at SomeVal to be
negative. Can you do this with one instruction? (Compare to your answer for Exercise 27.3.4.)

Value Representation

+12345 X'12345C'

-0012345 X'0012345D'

+3 X'3C'

-09990 X'09990D'

39 X'039C'

466 Assembler Language Programming for IBM System z™ Servers Version 2.00

27.4. Packed Decimal Constants

Packed decimal constants are defined using a DC statement with type “P”. For example, we
could define the constants in Table 199 on page 466 with these statements:

PackA DC P'12345',P'-0012345',P'+3',P'-9990',P'39'
PackB DC P'12345',-012345,3,-09990,39'
Figure 269. Packed decimal constants with implied lengths

When the lengths are implied, the Assembler generates exactly the number of bytes needed to
contain the constant, and no more. Remember that the number of packed decimal digits is
always odd, so that a value with an even number of digits will have an extra high-order zero digit
supplied by the Assembler. As with Z-type constants, the maximum length of a packed decimal
constant is 16 bytes, or 31 decimal digits.

Explicit lengths are assigned to packed decimal constants in the usual way, with padding and trun-
cation being performed at the left end of the constant. The constants in Figure 269 could be
specified with explicit lengths, as shown in Figure 270.

PackC DC PL3'12345',PL4'-12345',PL1'3',PL3'-9990',PL2'39'
Figure 270. Packed decimal constants with explicit lengths

As with zoned decimal constants, scale and exponent modifiers are not allowed. An optional
decimal point may be placed within a constant, but its presence is ignored in forming the con-
stant. This means that we can write constants such as

YourPay DC P'947.24' Stored value = 94724C
MyPay DC P'13.07' Stored value = 01307C

and the decimal point can help you to understand an intended use of the data.

Because the position of the decimal point doesn't affect the generated constant, we can write con-
stants like these, all of which generate the same data:

DC P'1307.' Stored value = 01307C
DC P'130.7' Stored value = 01307C

MyPay DC P'13.07' Stored value = 01307C
DC P'1.307' Stored value = 01307C
DC P'.1307' Stored value = 01307C

Unfortunately, this means that you must remember where the decimal point lies. Programming
financial applications involving fractional quantities like currency and interest rates in packed
decimal can be quite difficult if you must know the position of the decimal point for the operands
of each arithmetic operation.

Similarly, the same value can have multiple representations:

DC P'1307.' Stored value = 01307C
DC PL4'1307' Stored value = 0001307C
DC PL5'1307' Stored value = 000001307C
DC PL6'1307' Stored value = 00000001307C

We will see in Section 35 on page 680 that decimal floating-point arithmetic is much simpler.

27.4.1. Scale Attributes and Packed Decimal Constants (*)

Although a generated packed decimal constant ignores any decimal point in the nominal value,
the Assembler assigns Scale and Integer Attributes to any symbol naming the constant. The
value of the scale attribute is the number of decimal digits to the right of the decimal point. For
example:

Chapter VIII: Zoned and Packed Decimal Data and Operations 467

MyPay DC P'13.07' Scale Attribute = 2, Integer Attribute = 2
MyPayA DC P'130.7' Scale Attribute = 1, Integer Attribute = 3
MyPayB DC P'.0013' Scale Attribute = 4, Integer Attribute = 0
MyPayC DC P'1.200' Scale Attribute = 3, Integer Attribute = 1
MyPayD DC P'1307' Scale Attribute = 0, Integer Attribute = 4

You can retrieve the scale attribute of a symbol using the S' operator, just as the L' operator
retrieves its length attribute. Note that the sum of the Integer and Scale attributes is the number
of digits in the constant. (See Exercise 27.4.15.)

Scale attributes can be very helpful in complex calculations involving numbers with fractional
values, but the necessary techniques usually require some practice.

Exercises

27.4.1.(2)+ For each of the following zoned and packed decimal constants, state which ones are
invalid, and why. For the valid constants, show (in hex) the generated bytes.

Z1 DC Z'2147483648'
Z2 DC ZL9'2147483647'
P3 DC PL6'-99999999999'
P4 DC P'+123,456,789'
Z5 DC ZL20'500',PL20'500'
P6 DC P'3.1415926535'
P7 DC PL1'40',ZL1'40'
Z8 DC Z'1,20,400,80000,1600000000'

27.4.2.(1)+ For each of the DC statements in Exercise 27.4.1, determine the length attribute of
each symbol that names a valid constant.

27.4.3.(1)+ What sort of constant is generated by the DC operand PL2' −1000'? (Try it with the
Assembler.)

27.4.4.(2) Both of these constants will be truncated, since more digits are specified than the
explicit length allows.

DC PL2'0000437'
DC ZL3'-000904'

However, the truncated digits are all zeros; should this condition be considered an error by the
Assembler?

27.4.5.(2) The nominal values of the constants PackA and PackB in Figure 269 on page 467 are
different, but they generate the same machine language data. How is this possible?

27.4.6.(3) The packed decimal number at P is from 1 to 4 bytes long. Write instructions to
“load” the number into GR6 to form a valid 4-byte packed decimal number. For example, if
c (P) =X'123C', the result in GR6 should be X'0000123C'.

27.4.7.(3) Repeat Exercise 27.4.6, now assuming the packed operand at P can be from 1 to 8
bytes long, and that it should be “loaded” into GG6.

27.4.8.(2) A four-byte area of memory contains the bit pattern X'4040405C'. What is repres-
ented by that pattern?

27.4.9.(5) Write (and test!) a single DC statement that generates all 1000 two-byte packed
decimal constants from X'000C' through X'999C', representing 000+ through 999 + .

27.4.10.(5) Write (and test!) a single DC statement that generates all 1000 three-byte zoned
decimal constants from X'F0F0C0' through X'F9F9C9'.

27.4.11.(1) Determine the scale attribute of each of these constants:

468 Assembler Language Programming for IBM System z™ Servers Version 2.00

A DC P'1.4142135'
B DC P'002471.360'
C DC P'16777216.5'
D DC P'186.3541'
E DC P'2236067977'

27.4.12.(3) The Assembler assigns an Integer Attribute to symbols naming packed decimal data.
Its value is the number of decimal digits to the left of the decimal point, and the value can be
retrieved with the I' operator.

Given the L' (Length) and S' (Scale) attribute values of a symbol X naming a packed decimal
constant, derive a formula for the value of its Integer Attribute.

27.4.13.(2) Using your results from Exercise 27.4.12, determine the Length, Integer, and Scale
Attributes of the symbols in Exercise 27.4.11.

27.4.14.(2) Using the definitions in Exercise 27.4.12, given the L' and S' attribute values of a
symbol X naming a zoned decimal constant, derive a formula for the value of its Integer Attri-
bute.

27.4.15.(1)+ If a packed decimal number is N digits long, create expressions relating its Length,
Integer, and Scale attributes.

27.5. Converting Between Packed and Zoned

Because packed decimal data is often used in applications needing conversion between external
(character) and internal forms, System z provides two instructions that simplify this process.

The PACK instruction converts data from zoned to packed decimal, and the UNPK instruction
converts packed decimal data to zoned. (There are two other powerful instructions for converting
from packed decimal to character form, ED and EDMK; we'll discuss them in Section 30.) Both
PACK and UNPK are SS-type instructions, as illustrated in Table 9 on page 53.

The Assembler Language syntax for these two instructions is shown in Figure 271:

mnemonic D1(N1,B1),D2(N2,B2)
Figure 271. Format of typical two-length SS-type instructions

Compared to Figure 196 on page 366, which has only one length field, these have two, N1 and
N2; and, unlike the SS-type instructions described in Section 25 (compare Table 152 on
page 404), the length specification byte requires two four-bit length fields, as in Table 200.

Table 200. Format of two-length SS-type instructions

The Encoded Length digits L1 and L2 take values between 0 and 15, specifying operand lengths
N1 and N2 of 1 to 16 bytes. (Section 24.1 on page 365 explains the reasons for the differences
between N, N1, N2, and L, L1, L2: the “L” values the CPU sees are one less than the “N” values
you specify.)

Because there are six operand-dependent components in these instructions, the operand field of
the machine instruction statements may take a great variety of forms. Each operand may have
the same form as the first operand of the one-length SS-type instructions discussed in Section 25;
that is, both length and address may be implied or explicit for each operand.

The possible forms of either operand are summarized in Table 201 on page 470. Though the
quantities S1, B1, D1, and N1 refer to the first operands, the possible forms of the second operand
are identical.

opcode L1 L2 B1 D1 B2 D2

Chapter VIII: Zoned and Packed Decimal Data and Operations 469

Table 201. Operands of two-length SS-type instructions

These examples illustrate the four forms of a first operand:

PACK A,B Implied address and length
PACK A(7),B Implied address, explicit length
PACK 24(,9),B Explicit address, implied length
PACK 24(7,9),B Explicit address and length

The form of the first operand in the third example is rarely used, because the implied length of the
absolute first operand will usually be 1, the length attribute of the term used for the displacement
D1.

If the length of an operand is implied, the value assigned to the Program Length Expressions N1
and N2 is the length attribute of the leftmost term in the expressions S1, S2, D1 or D2, as appro-
priate.

As we saw in Section 24 for the one-length SS-type instructions, the number the Assembler places
into the Encoded Length digits L1 and L2 is actually one less than the value of the corresponding
Program Length Expressions N1 and N2, whether implied or explicit. As with other SS-type
instructions, an explicit Length Expression N of value zero is assembled as a zero length digit.

To illustrate, suppose the symbols AA and BB have length attributes 2 and 11, respectively. Then
the following statements would be assembled as shown. Only the length digits L1 and L2 are
important for this example; ignore the bddd base and displacement fields. (The operation codes
X'F2' and X'F3' are for PACK and UNPK respectively, as shown in Table 196 on page 460.)

Implied Length Explicit Length

Implied Address S1 S1(N1)

Explicit Address D1(,B1) D1(N1,B1)

* Instruction Assembled Form
*

PACK AA(5),BB(5) F244 bddd bddd N1=5,N2=5 L1=4,L2=4
UNPK BB,AA F3A1 bddd bddd N1=11,N2=2 L1=10,L2=1
PACK 0(16,9),65(,2) F2F0 bddd bddd N1=16,N2=0 L1=15,L2=0
PACK AA(0),BB(0) F200 bddd bddd N1=0,N2=0 L1=0,L2=0
UNPK BB-AA(,9),BB(L'AA) F3A1 bddd bddd N1=11,N2=2 L1=10,L2=1
PACK AA,BB+11(3) F212 bddd bddd N1=2,N2=3 L1=1,L2=2
- - -

AA DS PL2
BB DS ZL11
Figure 272. Examples of assembled PACK and UNPK instructions

In each case the L value is one less than the N value, but if the N value is zero, the L value is
also zero.

This illustrates another reason why the Encoded Length byte L (in one-length SS-type
instructions), and the Encoded Length digits L1 and L2 (in two-length SS-type instructions), are
one less than the values given for the Length Expressions in machine instruction statements. To
obtain the addresses of the starting bytes of the operands of a PACK or UNPK instruction, the
CPU simply adds the length specification digits to the Effective Addresses derived from the
addressing halfwords.

The PACK and UNPK instructions, unlike many of the SS-type instructions we have discussed,
process data from right to left. Neither sets the Condition Code.

Even though we're describing PACK and UNPK in the context of zoned and packed decimal
data, the instructions are not sensitive to data types: they simply move data in prescribed ways,
whatever their type.

470 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

27.5.1.(1)+ In Figure 272 on page 470, determine the bddd values for every explicit address.

27.6. The PACK Instruction

The PACK instruction (and the UNPK instruction to be described in Section 27.7) have the
machine instruction format shown in Table 200 on page 469, and the operands of its assembler
instruction statements take any of the forms shown in Table 201 on page 470.

PACK converts data from zoned to packed form. Its operation is easily visualized by writing a
number in both representations. We'll use +12345 again, which has these zoned and packed
forms:

┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐ ┌───┬───┬───┬───┬───┬───┐
│ F 1 │ F 2 │ F 3 │ F 4 │ C 5 │ │ 1 2 │ 3 4 │ 5 C │
└───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘ └───┴───┴───┴───┴───┴───┘

Figure 273. Zoned and packed forms of +12345

If we interchange the digits of the rightmost byte of the zoned form, we obtain the rightmost byte
of the packed form. The remaining digits are extracted in right-to-left order from the numeric
portion of each zoned byte, and placed into the proper positions in the packed operand. This is
illustrated in Figure 274.

┌─────┬─────┬─────┬─────┬─────┐
│ Z d │ Z d │ Z d │ Z d │ S d │ Zoned (second) operand
└───┬─┴───┬─┴───┬─┴───┬─┴─┬─┬─┘

� � � � � �
│ │ ┌─┘ │ │ │
│ │ │ ┌─────┘ │ │
└───┐ │ │ │ ┌─────┼─┘

│ │ │ │ │ ┌───┘
� � � � � �

┌─────┬─────┬─────┐
│ d d │ d d │ d S │ Packed (first) operand
└─────┴─────┴─────┘

Figure 274. PACK instruction operation

If the zoned and packed operands were named ZonOp and PackOp respectively, we could perform
the operation pictured in Figure 274 with this instruction:

PACK PackOp,ZonOp From zoned to packed
- - -

ZonOp DC Z'12345' Zoned operand, length = 5 bytes
PackOp DS PL3 Packed operand, length = 3 bytes
Figure 275. Converting from zoned to packed decimal using PACK

No checking is done for invalid data digits in the packed operand; the instruction just moves data
as illustrated. But, you should ensure that valid packed operands are generated if they are to be
used for arithmetic.

In the operation illustrated in Figure 274, the operands were chosen to contain exactly the right
number of digits. However, either operand of a PACK instruction might be too long for the
other. The rules for such cases are

1. If the first (packed) operand is completed before the zoned operand is exhausted, the rest of
the zoned operand is ignored.

Chapter VIII: Zoned and Packed Decimal Data and Operations 471

2. If the second (zoned) operand is exhausted before the packed operand is completed, the
remaining high-order digits of the packed operand are filled with zeros. (If this was not done,
the high-order digit positions of the packed operand might contain unknown values.)

The PACK operation is therefore controlled by the length of the first operand; the result always
has the specified length. The second (zoned) operand is unmodified (assuming no overlap).

To illustrate, suppose we execute some PACK instructions with operands of various lengths, as in
Figure 276. The result of each operation is shown in the comment field of the statement defining
the first operand.

PACK P1,Zone(4) Lengths 1, 4
PACK P2,Zone Lengths 2, 5
PACK P3,Zone(2) Lengths 3, 2
PACK P5,Zone Lengths 5, 5
- - -

Zone DC Z'12345' Zoned operand = X'F1F2F3F4C5'
P1 DS PL1 Result = X'4F'
P2 DS PL2 Result = X'345C'
P3 DS PL3 Result = X'00012F'
P5 DS PL5 Result = X'000012345C'
Figure 276. Examples of the PACK instruction

Note especially the result at P1: because the length of the second operand in the first PACK
instruction was explicitly specified as 4 (rather than the correct implied length of 5, as in the
second PACK instruction), the rightmost byte of the second operand is X'F4' You must be
careful to specify correct lengths for the operands of PACK instructions because significant data
digits can easily be lost, or undesired or unexpected values may be generated.

The first and second operands of a PACK instruction could overlap. While such uses are almost
always accidental, this programming trick might be useful in special cases.

• If overlap occurs with PACK operands, the CPU will store the completed first operand
(packed) byte after fetching the next two second operand (zoned) bytes (or the next one byte,
if that will exhaust the second operand).

We saw in Figure 274 on page 471 that the two hex digits of the rightmost byte are interchanged.
We can use this property of PACK to swap the digits of any byte:

PACK A,A Swap digits of A
- - -

A DC X'12' Result = X'21'
Figure 277. Digit swap using PACK

Exercises

27.6.1.(1)+ Suppose a zoned decimal operand containing NZ bytes is to be converted to packed
decimal form. Give a formula for NP, the minimum number of bytes required for the packed
decimal operand.

27.6.2.(2) Suppose you execute this PACK instruction:

PACK PData,XXX
- - -

PData DS PL6

Show the contents of the field at PData if the data at XXX is defined as follows:

1. XXX DC F'-9'
2. XXX DC C'Hello, World!'
3. XXX DC CA'Hello, World!'

472 Assembler Language Programming for IBM System z™ Servers Version 2.00

27.6.3.(4) Write a program segment which will simulate the action of the PACK instruction.
Assume that the packed and zoned operands are stored at POP and ZOP respectively, and that
the length attributes of those symbols are the correct operand lengths. That is, the code should
produce the same result as:

PACK POP,ZOP From zoned to packed

Without using a PACK instruction, of course!

27.6.4.(3) Suppose a PACK instruction specifies operands that overlap. Where must the right-
most byte of the first (target) operand be placed relative to the first byte of the second (source)
operand, so that the correct result will be obtained in all cases?

27.6.5.(2)+ For the zoned decimal constant named ZData, show the result of executing each of
the following PACK instructions.

ZData DC Z'2468',Z'1357'
- - -
PACK P1(2),ZData
PACK P2(3),ZData
PACK P3(1),ZData+1(2)
PACK P4(6),ZData+2(6)
PACK P5(5),ZData(L'ZData+3)

27.6.6.(3)+ Suppose a zoned decimal operand is packed “onto itself”. That is, the first and
second operands of a PACK instruction are identical. What is the maximum length of the
operand such that the result will be correct? The minimum length?

27.6.7.(3) Give the contents of the storage area named DATA after executing the following
PACK instruction.

PACK DATA,DATA
- - -

DATA DC X'123456789ABCDEF'

27.6.8.(2)+ A common programming convention is that an all-blank field on a data record
should be interpreted as a zero value. What will be the result of PACKing a string of blank
characters? Need anything be done to the result? If so, what?

27.6.9.(2) Suppose we start with a zoned decimal operand at Zone having length N bytes, and
execute the instruction

PACK PackOp,Zone(K)

where the length K is always less than or equal to N. Consider possible lengths for the first
operand PackOp: under what conditions will a valid packed result be obtained?

27.6.10.(2) Suppose you need to pack some zoned data at ZData by EXecuting this PACK
instruction:

PACK PackData(*-*),ZData

The length of the packed decimal field at PackData is contained in GR2, and does not exceed
16. Write a sequence of instructions to do this.

27.6.11.(1)+ Suppose you execute this PACK instruction:

PACK P,P Pack a field onto itself
- - -

P DC X'ABCDEF'

What result will be at P?

Chapter VIII: Zoned and Packed Decimal Data and Operations 473

27.6.12.(2) Suppose you execute this PACK instruction:

PACK Q,P Pack a field onto itself
- - -

Q DS XL3 Result field
ORG Q+1 Source field starts at Q+1

P DC X'ABCDEF' Source field

What result will be at Q?

27.6.13.(2) Suppose you execute this PACK instruction:

PACK Q,P Pack a field onto itself
- - -

Q DS XL3 Result field
ORG Q-1 Source field starts at Q-1

P DC X'ABCDEF' Source field

What result will be at Q?

27.6.14.(1)+ When you PACK a zoned decimal field, what will be different in the result if the
numeric digits are preceded by blanks or by leading zeros?

27.6.15.(2)+ Suppose you execute this PACK instruction

PACK Packed,Source

for each of the following Source constants. In each case, show the result at Packed, and state
whether the result is or is not a valid packed decimal number, and if not, why it is invalid.

(1) Source DC C'34567'
(2) Source DC C'ABCDE'
(3) Source DC C'****0'
(4) Source DC C'$2.98'
(5) Source DC C' '
(6) Source DC C'VWXYZ'

27.7. The UNPK Instruction

The UNPK instruction performs the inverse of PACK: it transforms a packed decimal operand
into zoned decimal form. Like PACK, the UNPK instruction

• does not set the Condition Code,
• does not check for valid data or sign digits in the packed operand, and
• is controlled by the length of the first (zoned) operand.

The digits of the low-order byte of the second (packed) operand are switched, and the result
becomes the rightmost byte of the first (zoned) operand. Successive digits are then taken in right-
to-left order from the packed operand and placed into the numeric-digit positions of successive
bytes in the zoned operand, with X'F' placed in each zone digit.

474 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌─────┬─────┬─────┐
│ d d │ d d │ d S │ Packed (second) operand
└─┬─┬─┴─┬─┬─┴─┬─┬─┘
� � � � � �

┌───┘ │ │ │ │ └───┐
│ │ │ │ └─────┼─┐
│ │ │ └─────┐ │ │
│ │ └─┐ │ │ │
� � � � � �

┌─────┬─────┬─────┬─────┬─────┐
│ Z d │ Z d │ Z d │ Z d │ S d │ Zoned (first) operand
└─────┴─────┴─────┴─────┴─────┘

Figure 278. Operation of the UNPK instruction

Figure 279 shows how to convert the packed value +12345 to zoned form.

UNPK ZonOp,PackOp From packed to zoned
- - -

ZonOp DS ZL5 Zoned operand, length = 5 bytes
PackOp DC P'12345' Packed operand, length = 3 bytes
Figure 279. Example of an UNPK instruction

In the PACK operation, the zone digits of the zoned operand were discarded. For the UNPK
operation, the zone digits are supplied by the CPU.177

When the lengths of the two operands do not correspond exactly, rules like those for PACK
apply to UNPK:

1. If the first (zoned) operand is completed before the packed operand is exhausted, the rest of
the packed operand is ignored.

2. If the second (packed) operand is exhausted before the zoned operand is completed, the
remaining high-order bytes of the zoned operand are completed with zoned zeros.

To illustrate the operation of the UNPK instruction, the result of unpacking a packed decimal
number is shown in the comment field of each statement.

UNPK Z5,Pack Data lengths 5, 3
UNPK Z7,Pack Data lengths 7, 3
UNPK ZB,Pack Data lengths 3, 3
UNPK ZA,Pack(2) Data lengths 3, 2
UNPK Z4,Pack(1) Data lengths 4, 1
- - -

Pack DC P'12345' 3-byte packed operand, X'12345C'
Z5 DS ZL5 Result = X'F1F2F3F4C5'
Z7 DS ZL7 Result = X'F0F0F1F2F3F4C5'
ZB DS ZL3 Result = X'F3F4F5'
ZA DS ZL3 Result = X'F1F243'
Z4 DS ZL4 Result = X'F0F0F021'
Figure 280. Examples of UNPK instructions

If you study the results at ZA and Z4 you will understand the need for care in specifying the
lengths of the operands, since possibly invalid zoned decimal results can be generated; we saw
similar incorrect results in Figure 276 on page 472.

177 On System/360 CPUs, the zone digits were determined by the setting of the “A” bit in the PSW, which is no longer
used. If the “A” bit was zero, the CPU assumed that EBCDIC characters are desired, and automatically supplied a
zone digit X'F' where needed; if the “A” bit was 1, the CPU assumed that characters in the USASCII representation
are desired, and supplied X'5' for the zone digits. (This is different from the current definition of ASCII, where the
zone digits are X'3'.)

Chapter VIII: Zoned and Packed Decimal Data and Operations 475

As was done with the PACK instruction in Figure 277 on page 472, we can use UNPK to swap
the hex digits of a byte:

UNPK A,A Swap digits of A
- - -

A DC X'12' Result = X'21'
Figure 281. Digit swap using UNPK

The first and second operands of an UNPK instruction could overlap. While such uses are
almost always accidental, this behavior might be useful in special cases.

• If overlap occurs with UNPK operands, the CPU processes the operands by storing two result
bytes immediately after the necessary source operand byte has been fetched for the next step.

In Section 30.3 on page 536 we'll see how the powerful ED and EDMK instructions make it easy
to format packed decimal data for printing and display.

Exercises

27.7.1.(1)+ In Figure 275 on page 471, what will be the contents of the memory area named
PackOp after executing the PACK instruction? In Figure 279 on page 475, what will be at ZonOp
after executing the UNPK instruction?

27.7.2.(2) Suppose the CPU executes this UNPK instruction:

UNPK ZData,YYY
- - -

ZData DS ZL9

Show the contents of the field at ZData if the data at YYY is defined as follows:

1. YYY DC F'-9'
2. YYY DC C'Hello, World!'
3. YYY DC CA'Hello, World!'

27.7.3.(3) Determine the result of executing an UNPK instruction instead of the PACK instruc-
tion in Exercise 27.6.7.

27.7.4.(4) Write a program segment like that in Exercise 27.6.3, except that the instruction

UNPK ZOP,POP From packed to zoned

should be simulated.

27.7.5.(4) Suppose the operands of an UNPK instruction overlap, and assume that the address
of the last byte of the packed decimal operand is greater than or equal to the address of the last
byte of the zoned operand. What rule or rules can you state that will guarantee the same results
as if there were no operand overlap? For example, in this sketch the address of the last byte of
the packed operand is greater than the address of the last byte of the zoned operand.

┌─────────────┐
│ │ packed operand

┌───────┴─────────┬───┘
│ │ zoned operand
└─────────────────┘

27.7.6.(2)+ For the given packed decimal constant below, show the result of executing each of
the following UNPK instructions.

476 Assembler Language Programming for IBM System z™ Servers Version 2.00

PData DC P'123456'
- - -
UNPK Z1(6),PData
UNPK Z2(7),PData
UNPK Z3(2),PData
UNPK Z4(6),PData+2(2)
UNPK Z5(4),PData(3)
UNPK Z6(2),PData+3

27.7.7.(3) Do the same as in Exercise 27.6.6, but now consider unpacking a packed decimal
operand “onto itself” using an UNPK instruction with identical operands.

27.7.8.(2) Suppose a packed decimal operand NP bytes long is to be converted to zoned
decimal form. Give a formula for NZ, the minimum number of bytes required for the zoned
operand. Is your formula the same (aside from algebraic rearrangement) as the result you
obtained in Exercise 27.6.1? If not, why not?

27.7.9.(3) In the PACK and UNPK instructions, the operation is controlled by the length spec-
ification digit for the first operand, namely L1. Why not use L2? What would happen if the
longer length were chosen? The shorter?

27.7.10.(5) In Exercise 27.7.5 you considered the situation where the operands of an UNPK
instruction overlap, and the address of the rightmost byte of the second (packed) operand was
not less than the address of the first (zoned) operand. Now, suppose the operands overlap, but
the address of the rightmost byte of the packed operand is less than the address of the rightmost
byte of the zoned operand: what rule or rules can you state for the relations between operand
lengths and addresses that will guarantee the same results as if there were no operand overlap?
For example, in this sketch the address of the last byte of the packed operand is less than the
address of the last byte of the zoned operand.

┌─────────┐
│ │ packed operand

┌────┴─────────┴──┐
│ │ zoned operand
└─────────────────┘

27.7.11.(4) Repeat Exercise 27.7.3, but now assume you execute the UNPK instruction twice in
succession. What will be in the field named Data when the second instruction completes exe-
cution?

27.7.12.(2) Figure 276 on page 472 and Figure 280 on page 475 illustrate how invalid results
can be generated when the length supplied for the second operand of the PACK and UNPK
instructions is not the same as the length of the datum. Give a general guideline which will
generate a valid result in such cases.

27.7.13.(3) Write program segments to perform the functions described in Exercises 27.7.10 and
27.7.11 using shifts, loops, and no translate instructions.

27.7.14.(2) Suppose you execute this UNPK instruction:

UNPK U,P Unpack P operand to U
- - -

U DC XL6'0' U initialized to 6 zero bytes
Org U+2 Position P at third byte of U

P DC X'123456' Three bytes of second operand P

What result will appear at U?

Chapter VIII: Zoned and Packed Decimal Data and Operations 477

27.7.15.(3) Suppose you execute this UNPK instruction:

UNPK U,P Unpack P operand to U
- - -

U DC XL6'0' U initialized to 6 zero bytes
Org U+3 Position P at fourth byte of U

P DC X'123456' Three bytes of second operand P

What result will appear at U?

27.7.16.(3) Suppose you execute this UNPK instruction:

UNPK U,P Unpack P operand to U
- - -

U DC XL6'0' U initialized to 6 zero bytes
Org U+4 Position P at fifth byte of U

P DC X'123456' Three bytes of second operand P

What result will appear at U?

27.7.17.(2)+ If you execute this UNPK instruction, what will be the result at Answer?

UNPK Answer,Start
- - -

Answer DS ZL7
Start DC P'76543'

27.8. Packing and Unpacking ASCII and Unicode Data (*)

Unlike the PACK and UNPK instructions, the packed decimal operand of the last four
instructions in Table 196 on page 460 is always 16 bytes long, and the Length Expression of the
instruction gives the length of the “zoned” operand. However, ASCII and Unicode numeric char-
acters are not “zoned” in the same sense as zoned decimal data; there is no special sign code in
the rightmost byte.

Overlapping operands always generate unpredictable results.

As with PACK and UNPK, the ASCII pack and unpack instructions are not sensitive to data
types; they simply move data fields in a prescribed way. Both process data from right to left.

27.8.1. Packing ASCII and Unicode Data

The PKA and PKU instructions convert numeric characters to packed decimal format. PKA is
simpler: like PACK, it extracts the numeric digits from the second operand and packs them into
the first operand. Both PKA and PKU have the format shown in Table 202; note that the
Encoded Length L refers to the second operand. Because there is no “zone” sign on the low-
order character, the CPU automatically inserts a X'C' plus sign. It's up to you to know whether
the value should actually have a minus sign.

This format is the same as many of the SS-type instructions we've seen. However, the assembler
instruction statement format is different: the Length Expression N is specified in the second
operand:

mnemonic D1(B1),D2(N,B2)

Neither PKA nor PKU changes the Condition Code.

Table 202. Format of PKA and PKU instructions

opcode L B1 D1 B2 D2

478 Assembler Language Programming for IBM System z™ Servers Version 2.00

Figure 282 on page 479 shows an example of packing the ASCII characters at AChars into 16
bytes starting at PDecA.

PKA PDecA,AChars
- - -

PDecA DS PL16 Packed decimal result (16 bytes)
AChars DC CA'1234567890123' ASCII numeric characters (13 bytes)
* Result at PDecA = X'00000000000000000001234567890123C'
Figure 282. Packing ASCII characters

If the zoned operand has too few digits to fill all 31 digit positions of the packed operand, the
remaining high-order digits are set to zero, as in Figure 282 where the ASCII operand contains
only 13 digits.

PKU operates in much the same way. Since “Unicode” means UTF-16 here, the “zoned”
operand is pairs of bytes. Each numeric digit is extracted from the rightmost four bits and placed
into the packed operand. For example, if the Unicode operand is the two UTF-16 characters 47,
or X'00340037', the packed decimal result would contain X'00...0047C'. Figure 283 shows how
you could pack Unicode characters:

PKU PDecU,UChars Pack Unicode characters
- - -

PDecU DS PL16 Packed decimal result (16 bytes)
UChars DC CU'1234567890123' Unicode numeric characters (26 bytes)
* Result at PDecU = X'00000000000000000001234567890123C'
Figure 283. Packing Unicode characters

To avoid the possibility that the zoned operand could be too long, its length is limited:

• For PKA, the zoned operand length N may be at most 32 bytes (0≤ L≤ 31)

• For PKU, the zoned operand length N may be at most 64 bytes (0≤ L≤ 63)

It may seem strange to allow the zoned operand to contain one more character than will fit into
the 31-digit packed operand, but if the maximum length is specified the CPU simply ignores the
leftmost “zoned” character.

27.8.2. Unpacking ASCII and Unicode Data

The UNPKA and UNPKU instructions convert packed decimal data to ASCII and Unicode
characters, respectively. Like PKA and PKU, the packed operand is always 16 bytes long; and
unlike them, these unpack instructions set the Condition Code — but in a rather strange way, as
we'll see.

The Assembler Language syntax of these two instructions is

mnemonic D1(N,B1),D2(B2)

where the Length Expression N is part of the first operand.

The length field of UNPKA and UNPKU holds L, the Encoded Length of the first operand, as
shown in Table 203:

Table 203. Format of UNPKA and UNPKU instructions

As with PKA and PKU, the length of the first operand is limited:

• For UNPKA, the zoned operand length N may be at most 32 bytes (so 0≤ N≤ 32 and
0≤ L≤ 31).

• For UNPKU, the zoned operand length N may be at most 64 bytes (so 0≤ N≤ 64 and
0≤ L≤ 63).

opcode L B1 D1 B2 D2

Chapter VIII: Zoned and Packed Decimal Data and Operations 479

Because there is no “zoned sign” for ASCII and Unicode characters, the sign digit of the packed
operand is used only to set the Condition Code. Instead of the EBCDIC X'F' zones inserted by
UNPK, the CPU inserts X'3' digits for UNPKA, and inserts X'003' digits for UNPKU.

The unpacking operation proceeds from right to left, and is controlled by the length of the first
operand, so portions of the packed second operand may be ignored. For example:

UNPKA AChars,PDec Convert to ASCII characters
UNPKU UChars,PDec Convert to Unicode characters
- - -

PDec DC PL16'98765432' 31 packed decimal digits
AChars DS CL12 Space for 12 ASCII characters
UChars DS CL24 Space for 12 Unicode characters
Figure 284. Unpacking to ASCII and Unicode characters

In this case, the results at AChars and UChars will be

X'30 30 30 30 39 38 37 36 35 34 33 32'
and

X'0030 0030 0030 0030 0039 0038 0037 0036 0035 0034 0033 0032'

where spaces were inserted for readability.

However, if the first operand field is not long enough to contain all significant digits, no indication
is given.

UNPKA AChar2,PDec Convert to ASCII characters
UNPKU UChar2,PDec Convert to Unicode characters
- - -

PDec DC PL16'98765432' 31 packed decimal digits
AChar2 DS CL7 Space for 7 ASCII characters
UChar2 DS CL14 Space for 14 Unicode characters

In this case, the results at AChar2 and UChar2 will be

X'38 37 36 35 34 33 32'
and

X'0038 0037 0036 0035 0034 0033 0032'

The Condition Code settings after UNPKA and UNPKU are given in Table 204.

Table 204. CC settings after UNPKA, UNPKU instructions

 Warning

Every other instruction that tests a numeric result sets the Condition
Code to zero for a zero result. These two instructions set Condition Code
zero for a positive operand. If your program depends on the CC setting
after these instructions, be very careful.

CC Meaning

0 Packed operand sign is + (X'A, C, E, F')

1 Packed operand sign is − (X'B, D')

3 Packed operand sign is invalid.

480 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

27.8.1.(2) Show the generated packed decimal data at APack after you execute this PKA instruc-
tion:

PKA APAck,AChars
- - -

AChars DC CA'1234567890ABCDEFGHIJKLM'
APack DS PL16 Packed operand

(See the ASCII encodings in Table 172 on page 433.)

27.8.2.(2) What will be the result at PA of this PKA instruction?

PKA PA,A(30)
- - -

A DC 10X'ABCDEF' Zoned operand
PA DS PL16 Packed operand

27.8.3.(2) What will be the result at PU of this PKU instruction?

PKU PU,U(60)
- - -

U DC 20X'ABCDEF' Zoned operand
PU DS PL16 Packed operand

27.8.4.(2) In Figure 282 on page 479, what will happen if PDec is shorter than 16 bytes?

27.8.5.(2)+ How should the Condition Code settings after UNPKA and UNPKU have been
set?

27.8.6.(2) In Figure 284 on page 480, show the representation of the packed decimal operand
at PDec.

27.8.7.(2)+ In Figure 284 on page 480, what will be the Condition Code setting after the
UNPKA and UNPKU instructions?

27.9. Printing Hexadecimal Values

Beside its uses in converting from packed to zoned decimal, the UNPK instruction can also help
convert a string of hexadecimal digits to “spread hex”, the EBCDIC characters which represent
them. (See Figures 207 and 208 on page 381.) Suppose the 8 hex digits in the 4 bytes in memory
at Data are to be converted to the 8-byte character string at Chars. Now, we cannot immediately
write something like this:

UNPK Chars(8),Data(4) Spread hex, first (incorrect) attempt
- - -

Chars DS CL8 Space for character result
Data DC X'1234ABCD' Initial data
Figure 285. Unpacking hex digits (incorrectly)

because Chars would contain

X'F0F1F2F3F4FAFBDC'

The two digits in the rightmost byte of the second operand (at Data+3) were simply switched and
placed in the byte at Chars+7; the remaining six digits were given zones, and the high-order char-
acter contains X'F0'. But X'FAFBDC' does not correctly represent the hex digits “ABCD” in char-
acter form.

Chapter VIII: Zoned and Packed Decimal Data and Operations 481

To solve these problems, we supply an extra byte after each operand.

UNPK Chars(9),Data(5) Spread hex, second (correct) attempt
- - -

Chars DS CL8,C Space for result and 1 extra byte
Data DC X'1234ABCD' Data to be unpacked

DS X The extra “source” byte, X'xy'
Figure 286. Unpacking hex digits (correctly)

Now, Chars will contain

X'F1F2F3F4FAFBFCFD',X'yx'

where the rightmost (extra) byte contains uninteresting data of some sort, as indicated by X'yx'.
These two digits are the switched digits from the byte at Data+4, following the right end of the
bytes at Data.

The result shown is not yet in EBCDIC form, because the characters generated for the hex digits
A through F have incorrect zones and numerics. For example, the hex digit A produces X'FA'
instead of X'C1'. To complete the conversion, these bytes can be converted using a TR instruc-
tion (described in Section 24.9 on page 379). We don't need a 256-byte translate table because all
the result bytes have X'F' zones. We need only a 16-byte table, as shown in Figure 287.

UNPK Char(9),Data(5) Convert to partial EBCDIC
TR Char(8),TRTab-X'F0' Translate to true EBCDIC
- - -

Char DS CL8,CL1 Space for result and a junk byte
Data DC F'-5026' Data to be spread
TRTab DC C'0123456789ABCDEF' Translate table
Figure 287. Converting hex data to printable characters

This technique is used in many situations when diagnostic information is printed in hexadecimal.

Exercises

27.9.1.(2)+ In Figure 287, why is the second operand of the TR instruction written
TRTab-X'F0'?

27.9.2.(2)+ In Figure 287, what will appear in the “extra byte” at Char+8 after the instructions
are executed?

27.9.3.(3)+ Using the technique illustrated in Figure 287, convert the 16 hex digits in the
doubleword at DW to a string of 16 EBCDIC characters representing the original value.

27.9.4.(2) Explain the appearance of the quantity X'F0' in the leftmost byte of the result shown
following Figure 285 on page 481.

27.9.5.(3) In Figure 287, we assumed that the expression TRTab-X'F0' in the second (TR)
instruction is addressable. What should be done if it is not?

27.9.6.(5) Suppose you want to print the contents of a byte as eight EBCDIC zero and one
characters representing the bits. (This could be called “spread binary”.) For example, a byte
containing X'5B' would be converted to the eight characters 01011011. The technique used in
Section 27.9 for printing hexadecimal values can be extended, so that instead of a single UNPK
and TR, you can use three UNPK instructions and two TR instructions. Use a translate table
whose last 16 bytes contain

X'00010405101114154041444550515455'

First, work through an example to show that your method works for all byte values. Then,
write a instruction sequence a to convert the byte at Byte to eight “spread binary” characters
starting at BinaryCh.

482 Assembler Language Programming for IBM System z™ Servers Version 2.00

27.9.7.(5) Suppose you want to convert strings of eight EBCDIC ones and zeros to a bit
pattern in a single byte, as represented by the characters. For example, the characters 01011011
would be converted to X'5B'. Write an instruction sequence using three PACK and two TR
instructions which will convert the eight characters at BinaryCh to a single byte at Byte. The
translate table needed is 86 bytes long, and not all of it contains necessary data.

27.10. Summary

The move instructions we've discussed in this section are summarized in Table 205.

Table 205. Instructions for moving numeric and zone digits

The packing and unpacking instructions we've discussed in this section are summarized in
Table 206.

Table 206. Instructions for packing and unpacking data

Terms and Definitions
ASCII numeric characters

ASCII characters with representations between X'30' and X'39'.

numeric digit
The rightmost 4 bits of a byte.

preferred sign code
For packed and zoned decimal numbers, there are six valid sign codes: X'A', X'C', X'E', and
X'F' indicate + , and X'B' and X'D' indicate − . The preferred codes are X'C' and X'D'; these
are the sign codes generated by packed decimal arithmetic operations.

Unicode numeric characters
Unicode characters with representations between X'0030' and X'0039'.

zone digit
The leftmost 4 bits of a byte.

Programming Problems

Problem 27.1.(2)+ Write a program that will “dump” itself, without using the DUMPOUT macro.
That is, the program should print the hexadecimal contents of each byte in the area of memory
it occupies.

Problem 27.2.(2) Write a program that will read hexadecimal “numbers” as EBCDIC characters
in “spread hex” from 80-byte records, and convert them to internal hex values. Store them in a
table, and then dump out the table area to verify your conversions. For example, if two charac-
ters of an input record are C1, the corresponding table entry will be the byte X'C1'.

Function Numeric digits Zone digits

Move MVN MVZ

Function Zoned EBCDIC Zoned ASCII Zoned Unicode

Pack PACK PKA PKU
Unpack UNPK UNPKA UNPKU

Chapter VIII: Zoned and Packed Decimal Data and Operations 483

28. Packed Decimal Arithmetic

2222222222 8888888888
222222222222 888888888888
22 22 88 88

22 88 88
22 88 88
22 88888888

 22 88888888
22 88 88

22 88 88
22 88 88
222222222222 888888888888
222222222222 8888888888

In this section we will examine the methods used by the CPU to perform packed decimal arith-
metic.

Because we are all familiar with decimal arithmetic, it may seem strange to investigate the way it
is done by the CPU. While the broader features of decimal arithmetic are simple, its implementa-
tion on a binary machine leads to some unexpected subtleties.

In this and the following sections, we will use a simple notation for numbers in the packed
decimal representation. Instead of “ −123” we will write “123 −”, because this form is closer to the
internal decimal representation of −123, namely X'123D'. Thus, if a number is written with a
trailing sign, its representation in memory can be visualized by substituting the hex digits C and D
for the + and − signs, respectively.

For convenience, we will refer to the packed decimal representation simply as “decimal” whenever
“packed decimal” is clearly meant.

Writing zoned and packed decimal values

Because the sign of zoned and packed decimal numbers is always in the
rightmost byte, it is convenient write such values with the sign on the
right, as in 12345+ or 09990− .

28.1. General Rules

Before examining decimal arithmetic, we will state some general rules applying to decimal oper-
ations and operands.

1. The result of a decimal arithmetic operation (other than comparison) always replaces the first
operand, so it has the same length as the first operand. (Packed decimal division fits both the
quotient and the remainder in the first operand field.) Neither the second operand in
memory (assuming no overlap) nor the contents of the General Registers are modified.

484 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. For System z processors, the preferred EBCDIC signs (X'C' and X'D') are always attached
to results.178

3. Because decimal operands have finite length, results might overflow the allotted space: a
decimal overflow exception will occur, and the Condition Code is set to 3.

By setting a bit in the Program Mask (described in Section 16.2.1 on page 234), you can
direct the CPU to ignore the exception condition for a decimal overflow. If the interruption
does occur, the Interruption Code is set to 10 (X'000A'); the CC is still set to 3.

4. Because each decimal digit is represented by four bits, the CPU must guard against the possi-
bility that a decimal digit position might contain one of the six invalid bit configurations.
Similarly, a numeric digit may not occur as the lowest order hex digit (the sign digit) of an
operand. If either error condition is detected, a Data Exception interruption occurs, and the
Interruption Code is set to 7.179

This interruption might seem to be an unnecessary nuisance, but it is actually very helpful.
Almost all other arithmetic operations don't (or can't) check for invalid operands, and can
generate meaningless results from invalid data. Because packed decimal operands are vali-
dated, your program is more likely to produce valid results, and can take corrective action
when it's needed.

28.1.1. Precision and Accuracy

Packed decimal values are precise, because all values are integers. Their accuracy depends on the
validity of the data used for each operation, and the care taken to preserve the inherent accuracy
of the data. Inadequate precision can degrade accuracy, so be sure to specify enough digits so
that significant digits won't be lost.

Exercises

28.1.1.(1) If you execute these instructions, what result is stored at PWord? Is it a valid packed
decimal number? If so, what is its value?

XR 1,1 Set GR1 to zero
AHI 1,12 Add 12
ST 1,PWord Store the result
- - -

PWord DS F

28.2. Decimal Addition and Subtraction

Because the CPU works from right to left in adding or subtracting decimal operands, excess digits
are lost at the left, or high order, end of the operand.

The rules for adding and subtracting numbers in the packed decimal representation are the usual
and familiar rules of arithmetic. There are three minor matters to be considered:

1. If the second operand is shorter than the first, then during its internal arithmetic the CPU
will extend the second operand with enough high-order zeros so that its length matches that
of the first operand. These extra zero digits are generated internally during the operation; the
second operand in memory is never modified.

2. A decimal overflow condition occurs after an addition or subtraction if the first operand field
is too short to hold all significant digits of the result. This can be due to one of two causes:

178 In System/360, the USASCII sign digits (X'A' and X'B') were used if the “A” bit in the PSW was 1.
179 The Data Exception Code (DXC) is also set to X'00'. For now, the DXC is unimportant; we'll see more about it in

Section 35 when we discuss decimal floating-point.

Chapter VIII: Zoned and Packed Decimal Data and Operations 485

• If one operand is longer than the other, high-order zeros are supplied internally to extend
the shorter operand. For example, 3+ added to 999+ becomes 003+ + 999+, and the sum
1002+ overflows either operand used to hold the sum.

• If the resulting sum or difference causes a nonzero digit or a carry to be lost because the
first operand field is too short, an overflow has occurred. For example, 6+ added to 7+
yields 13+ which overflows either operand used to hold the sum.

3. The CPU always attaches a + sign to a valid non-overflowed zero result of addition or sub-
traction.

• The resulting sign might be − in case of overflow! If the rightmost portion of an over-
flowed result has a negative sign and enough low-order zero digits to fill the first operand
field, the CPU will generate a negative zero result. For example, adding two one-byte
operands such as (5 −) + (5 −) will yield 0− , and a decimal overflow exception is indicated.

The Condition Code is set to reflect the status of the result, as shown in Table 207.

Table 207. CC settings for decimal addition and sub-
traction

To illustrate these rules, suppose we add the following two operands:

00006+ (1st operand)
+ 23497+ (2nd operand)

The result, 23503+, replaces the first operand. If the two operands were

23497+ (1st operand)
+ 6+ (2nd operand)

then the result would be the same. But if the two operands had been defined as

 006+ (1st operand)
+ 23497+ (2nd operand)

then the result at the first operand location would be 503+, and an overflow exception would indi-
cate the loss of significant digits due to truncation. Unlike adding binary integers in the general
registers, decimal addition or subtraction overflow can depend on the order of the operands.

Be Careful!

The results of packed decimal addition may depend on the order of the
operands.

Addition of two operands of unlike sign follows the same rules. For example, suppose we add
04006+ and 01005− , the result would be 03001+ as expected. (We will see shortly that this result,
while expected, is not as easy to obtain). Suppose now that we wish to add these quantities:

006+ (1st operand)
+ 01005- (2nd operand)

The result, 999− , replaces the first operand. Even though there are nonzero digits in the second
operand corresponding to the “internal extension” digit positions in the first operand, no overflow
occurs because the result has become short enough to fit into the first operand field.

CC Indication

0 Result is zero

1 Result is less than 0

2 Result is greater than 0

3 Decimal overflow

486 Assembler Language Programming for IBM System z™ Servers Version 2.00

The rule for subtraction of decimal operands is simple: invert the sign of the second operand, and
then add. The change of sign is done internally by the CPU during the subtraction; the second
operand is never modified in memory.180 Thus, the subtraction operation

04006+ (1st operand)
- 01005- (2nd operand, to be subtracted)
05011+

is internally identical to the addition operation

04006+ (1st operand)
+ 01005+ (2nd operand, negated and added)
05011+

As noted in Section 16.2.1, we can use the SPM instruction to mask off a decimal overflow inter-
ruption. The result will be the same whether or not an interruption occurs, and the CC will be set
to 3.

Exercises

28.2.1.(1)+ In Section 2.10, we saw that no overflow was possible in adding fixed-point binary
operands if their signs differed. Why is it possible to cause a decimal overflow exception when
adding decimal operands of unlike sign?

28.2.2.(2)+ For each of the following pairs of numbers, the first operand is given first. Deter-
mine (1) the resulting sum or difference, (2) the resulting CC setting, and (3) whether or not an
overflow condition will occur.

(1) (2147483647+) + (2147483648+)
(2) (99999+) + (00002+)
(3) (99999−) + (00002+)
(4) (7−) − (97+)
(5) (45+) − (66−)
(6) (4−) − (4−)
(7) (745−) + (255−)
(8) (2+) − (99999+)

28.2.3.(3)+ Each of the following pairs of numbers is taken from the same operand in memory;
that is, the low-order bytes of both operands coincide. Determine in each case (1) the resulting
sum or difference, (2) the CC setting, and (3) whether or not an overflow condition will occur.

(1) (12345+) + (345+)
(2) (345+) − (12345+)
(3) (000−) + (0−)
(4) (729+) + (729+)
(5) (476692543−) − (6692543−)
(6) (12345+) − (12345+)

28.3. Decimal Comparison

Comparing two decimal operands is simply an internal subtraction; the setting of the Condition
Code indicates the result, as shown in Table 208 on page 488. As in addition and subtraction, all
digits and signs are checked for validity.

180 If the operands overlap, either could be modified.

Chapter VIII: Zoned and Packed Decimal Data and Operations 487

Table 208. CC setting after decimal comparison

The sign of a zero operand doesn't matter: 0 − is considered equal to 0+ .

Comparison is actually somewhat simpler than subtraction, because all arithmetic is internal. As
many high-order zeros are supplied for the operands as necessary, and no overflow condition is
recognized. Thus, comparing 99999+ and 2 − leads to an internal subtraction

99999+ (1st operand)
- 2- (2nd operand)

which becomes, after adding extra digit positions and making the necessary sign changes, an addi-
tion operation:

 0099999+ (1st operand)
+ 0000002+ (2nd operand)

Because the internal result is positive, the CC will be set to 2 to indicate that operand 1 is greater
than operand 2. This result would not have been obtained by directly subtracting the two oper-
ands (see Exercise 28.3.1).

Exercises

28.3.1.(1) Give two reasons why the result of comparing 99999+ and 2- would not have been
obtained by performing a subtraction instead (aside from the fact that one operand would be
modified).

28.3.2.(1) Suppose you compare these two packed decimal operands using a CLC instruction:

CLC PDP,PDM Compare operands
- - -

PDP DC P'+0'
PDM DC P'-0'

What will be the resulting CC setting?

28.3.3.(2)+ Suppose the operations of addition and subtraction in Exercise 28.2.2 are replaced
by comparison operations. Determine the CC setting in each case.

28.3.4.(2)+ Suppose the data in Exercise 28.2.3 is used in a comparison operation. Determine
the CC setting in each case.

28.3.5.(2)+ By considering possible operand lengths and addresses for decimal addition, sub-
traction, and comparison, give a rigorous rule for the conditions under which the two operands
may safely overlap.

28.3.6.(2)+ Compare the two 4-byte constants 1234 + to 2345 − in both zoned and packed
decimal representations, using CP and CLC instructions each time. What are your results?

CC Meaning

0 Operand 1 = Operand 2

1 Operand 1 < Operand 2

2 Operand 1 > Operand 2

488 Assembler Language Programming for IBM System z™ Servers Version 2.00

28.4. Decimal Multiplication

The rules for multiplication of decimal operands obey the usual rules of algebra concerning signs.
The product of the first operand (the multiplicand) and the second operand (the multiplier)
replaces the first operand, which must be long enough to contain the digits of the result.
Remember that the product of a number N1 digits long and another number N2 digits long is at
most N1 +N2 digits long.

The following rules apply to decimal multiplication:

1. All digits and signs are verified; any invalid digits will cause a decimal data exception, and the
Interruption Code will be set to 7.

2. To ensure that the product will fit into the first operand field without overflow, there must be
as many leading zero bytes in the first operand as the number of bytes in the second operand.
Violating this requirement causes a data exception.

• The length of the first (multiplicand) operand must be greater than the length of the
second (multiplier) operand.

3. The System z architecture imposes an additional condition: the length of the second operand
must not exceed 8 bytes, or 15 digits. If this or the previous condition is not met, a specifica-
tion exception will occur, and the Interruption Code will be set to 6.

Rules 2 and 3 avoid a potential multiplication overflow that could corrupt the product (mul-
tiplicand) field if the overflow was detected late in the multiplication process. We can usually
choose the order of the two operands so that the rules are satisfied, because multiplication is
commutative (independent of operand order).

4. The sign of the result is determined from the rules of algebra, even if one or both operands is
zero. Thus, (2 +)×(0 −) will generate a minus zero.

Because the CPU takes great care to check the validity of both operands, no multiplication over-
flow can occur. This saves time and avoids data damage, because the multiplication need not be
partially executed only to discover that the result is invalid. As with other System z multiply
instructions, the CC setting is unaffected.

To illustrate a decimal multiplication, suppose we wish to multiply 126+ and 213+ (the oper-
ands we used in describing binary multiplication in Section 18.4):

0000213+ (operand 1) (multiplicand, with 2 high-order zero bytes)
× 126+ (operand 2) (multiplier, 2 bytes long)
0026838+ (product)

In this example, the operand lengths were chosen to have the minimum number of bytes needed
to contain the given quantities, and still satisfy the above rules. However, the product still con-
tains an “excess” high-order byte of zeros; this is a typical result in decimal multiplication. Multi-
plying 005+ and 5+ generates the result 025+, and shows that at least one leading zero digit is
always found in the product. (See Exercise 28.4.2.)

Be Careful!

The results of packed decimal multiplication may depend on the order of
the operands.

Exercises

28.4.1.(2) In decimal multiplication rule 2, why require the number of leading zero bytes in the
first operand to be at least as many bytes as in the second operand?

28.4.2.(3) Show that the requirement that the number of leading zero bytes in a decimal multi-
plicand be no less than the number of bytes in the multiplier leads to at least one leading zero
digit in the product.

28.4.3.(1) Give a reason why the System z architecture requires the second operand of a
decimal multiplication to be no more than 8 bytes long.

Chapter VIII: Zoned and Packed Decimal Data and Operations 489

28.4.4.(1) What is the largest packed decimal number that can be generated by a single multipli-
cation?

28.4.5.(3)+ Determine the products of each of the following pairs of decimal numbers,
assuming that the first number is the multiplier. Then do the same, assuming that the second
number is the multiplier. Add enough leading zeros to each multiplicand so that the product
will be valid.

(a) (9+) × (9 −)
(b) (72 −) × (7+)
(c) (44+) × (44+)
(d) (15 −) × (55+)
(e) (107+) × (107+)
(f) (28+) × (3 −)

28.4.6.(2)+ What result will be generated if you multiply (007+) and (009 −)?

28.5. Decimal Division

Dividing two decimal numbers is more complicated than multiplying, since the result field must
contain both the quotient and the remainder. The dividend (the first operand) is divided by the
divisor (the second operand); the quotient and remainder then replace the dividend.

The method used is essentially the same as our familiar process of long division: the divisor is
subtracted from the leftmost portion of the dividend, and the number of successful subtractions
becomes the first quotient digit. The divisor is then shifted one digit position to the right, and the
subtractions continue. This process ends when the rightmost digit of the divisor is aligned with
the rightmost digit of the dividend, and no further subtractions can be performed. It is therefore
natural that the remainder appears at the right end of the dividend (first operand) field, and the
remainder has the same length as the divisor. The quotient is placed in the leftmost portion of
the dividend field.181

Figure 288 illustrates how the operands and results appear in packed decimal division.

┌─────────────────────┬─┐ ┌──────────┬─┬─────────┬─┐
Before: │ dividend │s│ After: │ quotient │s│remainder│s│

└─────────────────────┴─┘ └──────────┴─┴─────────┴─┘
┌─────────┬─┐ ┌─────────┬─┐
│ divisor │s│ │ divisor │s│
└─────────┴─┘ └─────────┴─┘

Figure 288. Operands for packed decimal division

Suppose 027+ (the dividend) is divided by 4+ (the divisor); the result that replaces the first
operand is 6 +3+ . That is, the quotient is 6 + and the remainder is 3 + . Note that both operands
are signed; this means that there must be enough space in the first operand field for the quotient
and remainder digits, and two sign digits.

Now, suppose 00787 − is divided by 094+ . We see that the result will be 8 −035 − ; the quotient is
8− and the remainder is 035 − . If we invert the signs of the dividend and the divisor and divide
00787+ by 094 − , the result is 8 −035+ .

The rules for decimal division may be summarized as follows:

1. The sign of the quotient is determined from the usual rules of algebra, and the remainder sign
always agrees with the dividend sign. (These rules apply even when the quotient or remainder
is zero.)

181 This is different from the process described for binary division in Section 18.8, where we visualized the process as
shifting the dividend “across” the divisor; here, the divisor is shifted “under” the dividend.

490 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. The operands in a successful division always satisfy the relation

dividend = (quotient × divisor) + remainder,
and the magnitude of the remainder is less than the magnitude of the divisor.

3. The length of the divisor is the length of the remainder, which is found at the right end of the
first operand field.

4. The length of the divisor must be less than the length of the dividend so that there will be
enough room for both quotient and remainder. Also, the System z architecture requires that
the length of the divisor be 8 bytes or less. If either of these conditions is not met, a specifica-
tion exception occurs.

5. If the divisor is zero, or if the quotient is too large to fit into the available space, the opera-
tion is suppressed: the dividend in memory remains unchanged, and a decimal divide inter-
ruption always occurs. The Interruption Code is set to 11.

6. Decimal overflow cannot occur, and the Condition Code remains unchanged.

Here is a simple test to determine whether a divide exception will occur: align the divisor and
dividend so that the leftmost divisor digit is under the next-to-leftmost dividend digit. If the
newly-positioned divisor is now less than or equal to the dividend, the division is improper and a
decimal divide interruption will occur. For example, in dividing 00787+ by 094+, if we align the
two operands as shown,

00787+ (dividend)
094+ (divisor)

we see by comparing leading digits that 09 is greater than 007, so the division is proper. Con-
versely, if we divide 123456789+ by 987+, the alignment

123456789+ (dividend)
987+ (divisor)

shows that the division is improper, since 9 is less than 12. Thus, the dividend must contain at
least one leading zero digit.

The next two topics will concern some fairly technical aspects of packed decimal addition and
subtraction on a binary processor. You may safely skip them if you are satisfied that the
processor gets its results “somehow”, but the methods don't interest you.

Exercises

28.5.1.(2)+ Give examples which show how to generate a negative zero (1) as a sum, (2) as a
product, (3) as a quotient, and (4) as a remainder.

28.5.2.(3) Determine the quotient and remainder for each of the following dividend-divisor
pairs, and state any error conditions that might arise.

(1) (0009999+) ÷ (088+)
(2) (09999+) ÷ (099+)
(3) (0271828182845+) ÷ (4 −)
(4) (0192519200513+) ÷ (370+)
(5) (012345678+) ÷ (321 −)

28.5.3.(2)+ Explain why the result of dividing 00787 − by 094+ cannot be 08 −35 − , rather than
8−035 − .

Chapter VIII: Zoned and Packed Decimal Data and Operations 491

28.6. True Decimal Addition (*)

The term “true addition” means the addition of two operands of like sign; we will discuss “com-
plement addition”, the addition of two operands of unlike sign, in Section 28.7. True addition is
simpler because the sign of the result is known in advance.

We will omit sign digits in the following examples, and assume that the sign digit of the first
operand is left in memory as the sign of the final result.

Suppose we add two decimal digits using the four-bit binary representation for each decimal digit.
A sum such as

2 0010
+ 5 + 0101
7 0111

gives the desired result both in decimal and in binary. However, if we add two digits whose sum
exceeds 9, the decimal sum is correct, but the binary sum B'1100'= X 'C' is not a valid packed
decimal digit:

5 0101
+ 7 + 0111
12 1100

Because we are using four bits to represent a decimal digit, the six bit combinations X'A'-X'F'
must remain unused. A simple solution to this difficulty is to add 6 to the binary sum whenever
it exceeds 9. In the above example, this “correction” process would be done as follows:

0101 hex 5
+ 0111 hex 7
1100 hex C = 12 decimal, > 9

+ 0110 hex 6 Correction
1 0010 hex 12

The two BCD digits in the result X'12' are the correct packed decimal representation of the sum,
12.

There is an obvious problem: how do we know when to add 6? In the first example, it would have
been wrong to add 6, because the sum of 2 and 5 did not exceed 9. Furthermore, it will be diffi-
cult for the CPU to compare each sum digit to 9 (to see if a correction is needed), since a com-
parison implies a subtraction. Instead of correcting after adding, we do the following:

1. Add the digits of the two operands, and a corrector digit 6, at each digit position.

2. Note which digit positions generate a carry; the carry should be propagated.

3. In the digit positions from which no carry occurred, correct the sum by subtracting 6 (that is,
by adding 10 = B'1010', the two's complement of 6) without propagating carries.

Here are some examples of this method. Let us add 2 and 5 again, including an extra high-order
digit.

02 0000 0010 first operand
05 0000 0101 second operand

 + 66 + 0110 0110 corrector digits
6D 0110 1101 intermediate sum, no carries occurred

 + AA + 1010 1010 re-correction, add without carrying
07 0000 0111 final sum

In this example, there were no carries out of either digit position in forming the intermediate sum,
so that 6 had to be subtracted from both digit positions to arrive at the final sum.

Adding 95 and 87 (=182) would be done as follows:

492 Assembler Language Programming for IBM System z™ Servers Version 2.00

095 0000 1001 0101 first operand
087 0000 1000 0111 second operand

 + 666 + 0110 0110 0110 add corrector digits
782 0111 1000 0010 intermediate sum, two carries

c c

At this point, carries have occurred out of both of the low-order hex digit positions but not from
the high-order digit; the final correction therefore involves a subtraction in only the leftmost digit:

782 0111 1000 0010 intermediate sum
 + A00 + 1010 0000 0000 add complement of 6

182 0001 1000 0010 final sum

Remember that carries are not propagated during the final re-correction step; otherwise, the sum
would have been 1182 instead of 182.

Exercises

28.6.1.(3) Show by appropriate examples that true decimal addition can be performed as
follows:

1. Perform a true binary addition, propagating carries.
2. In those digit positions from which no carry occurred, add 6, propagating carries.
3. In those digit positions from which no carry occurred in the second addition, subtract 6.

28.6.2.(2) Using the rules for true decimal addition given in this Section, perform the following
sums, showing all the intermediate steps:

(1) (007) + (007)
(2) (007) + (009)
(3) (00987) + (00789)
(4) (00885) + (00595)

Signs were omitted because true addition involves like signs.

28.7. Complement Decimal Addition (*)

Complement addition of two decimal operands is more complicated than true addition, since the
result may be of either sign. We will review the rules for complement addition first, and then give
some examples.

1. The sign of the first operand is saved as the tentative sign of the result. The shorter operand
is extended internally with high-order zeros to the length of the longer operand.

2. The numeric digit portion of the second operand (that is, everything but the sign digit) is
complemented: this is the usual two's complement, obtained by inverting each bit, and
adding a 1-bit in the low-order position.

3. The two operands are added. Carries are propagated from each 4-bit digit to the next, and
whether or not a carry occurred is noted for each digit position.

4. To correct the result of the addition in step 3, subtract 6 (that is, add 10 = B'1010', the
two's complement of 6), in each digit position where no carry occurred in step 3. Carries out
of a 4-bit group are not propagated to the next digit position during this decimal correction
process.

5. If there was a carry out of the high-order digit position in step 3, the result is now complete.
(We say that the result is in true form.)

6. If there was no carry out of the high-order digit position in step 3, the result is said to be in
complement form. To obtain a correct result, invert the sign of the first operand (it was saved
at step 1).

Chapter VIII: Zoned and Packed Decimal Data and Operations 493

7. Form the two's complement of the result by inverting each bit and adding a 1-bit in the low-
order digit position. In propagating the carries from this added 1-bit, note which 4-bit groups
produce a carry and which do not.

8. This result is decimally corrected by subtracting 6 (adding binary 1010) to those digit posi-
tions from which no carry occurred during step 7. Carries generated in this correction process
are not propagated.

We will now look at some examples of complement addition in which the result after step 5 is in
true form; cases requiring recomplementation will be examined shortly. First, suppose we add 5 +
and 2 − . After saving the plus sign for the result, we proceed as follows:

5 0101 first operand
 + E + 1110 2's complement of second operand
 c 3 c 0011 sum, with carry indicated by ″c″

Since a carry occurred out of each digit position, no decimal correction is required; and since a
carry occurred out of the high-order digit position, the result is in true form. Thus the final result
is 3+, as expected.

To give an example in which a decimal correction (but no recomplementation) is needed, suppose
we add 043+ and 019 − . Saving the + sign for the result, we first form the two's complement of
the second operand:

1111 1110 0110 invert all bits of second operand (019)
+ 1 add 1 in low-order position
1111 1110 0111 two's complement of second operand

Now, we add this to the first operand:

043 0000 0100 0011 first operand
 + FE7 + 1111 1110 0111 2's complement of second operand

02A 0000 0010 1010 uncorrected sum, high-order carry
c c carries

Since no carry occurred out of the rightmost hex digit position, we must decimally correct by
subtracting 6 (adding binary 1010), without carrying:

02A 0000 0010 1010 uncorrected sum
 + 00A + 0000 0000 1010 add correction, no propagation

024 0000 0010 0100 final true sum

The final sum is 024+ , as expected.

To illustrate complement decimal additions in which a final recomplementation is required, we
use the same two examples, but reverse the order of the operands. Thus, suppose we start by
adding 2 − and 5 + . The tentative sign of the result is − , the sign of the first operand. We then
proceed as before:

2 0010 first operand
 + B + 1011 2's complement of second operand

D 1101 uncorrected sum, no carry

Because no carry occurred out of any digit position, we must add a decimal correction:

D 1101 uncorrected sum
 + A + 1010 decimal correction

7 0111 sum, in complement form

The carry generated during the correction process is ignored. The result is known to be in com-
plement form because there was no carry from the high-order (and only) digit position during the
first addition. Thus, we invert the minus sign being saved for the result, and set it to a plus sign.
To perform the final recomplementation, we first form the two's complement of the above result:

494 Assembler Language Programming for IBM System z™ Servers Version 2.00

1000 invert each bit of result
+ 1 add 1 in low-order position
1001 uncorrected 2's complement of result

Now, to obtain the final result, we observe that there was no carry out of the digit during the
complementation process; we therefore add −6 to obtain the final sum:

9 1001 uncorrected recomplemented result
 + A + 1010 decimal correction

3 0011 final corrected result

As noted, the carry generated during the final decimal correction is ignored, so the result is 3+ , as
expected.

As our final example, we add 019 − and 043+ . After saving the minus sign for the result, we take
the two's complement of the second operand:

1111 1011 1100 invert all bits
+ 1 add a low-order 1-bit
1111 1011 1101 2's complement of second operand

Now, we can do the first addition:

019 0000 0001 1001 first operand
+ FBD + 1111 1011 1101 2's complement of second operand
FD6 1111 1101 0110 initial sum

Since there was no carry from the high-order digit position, we know the result is in complement
form, and we invert the sign of the result to a plus sign. A carry occurred only out of the right-
most digit position, so we must add a decimal correction to the two leftmost digit positions:

FD6 1111 1101 0110 uncorrected initial sum
 + AA0 + 1010 1010 0000 decimal correction digits

976 1001 0111 0110 sum in complement form

This is the result in complement form. To obtain the final result, we take the two's complement,
and correct it by adding −6 in any position where no carry occurred during complementation:

0110 1000 1001 bit-wise complement of 976
+ 1 add low order 1-bit

68A 0110 1000 1010 complemented uncorrected result: no carries
+ AAA + 1010 1010 1010 decimal correction digits
024 0000 0010 0100 final result

As expected, the final result is 024+ .

Exercises

28.7.1.(2) The three “signs” in an add or subtract operation are (1) the operation (+) or (−),
(2) the first operand sign, and (3) the second operand sign. Make a table of the eight possible
combinations of signs and verify that an even number of minus signs indicates a true addition,
and an odd number of minus signs indicates a complement addition.

28.7.2.(5) Decimal numbers are sometimes represented in binary machines in the “excess-3”
representation, whereby each decimal digit is represented by a hex digit whose value is larger by
3. For example, the number 280+ would be represented by 5B3+. Give rules like those in
Sections 28.6 and 28.7 for true and complement addition in the excess-3 representation.

28.7.3.(3) Using the rules for complement decimal addition given above, perform each of the
following operations.

(1) (004+) + (004 −)
(2) (004 −) + (004+)
(3) (0391 −) + (1715+)
(4) (4837+) − (5537+)

Chapter VIII: Zoned and Packed Decimal Data and Operations 495

28.7.4.(2) Assuming that recomplementation takes extra time, how could a list of decimal
numbers of mixed signs be ordered to reduce the number of recomplementations and the time
needed to compute their sum?

28.7.5.(3) In decimal complement addition, a result in complement form must be recomple-
mented and decimally corrected. During recomplementation, carries may or may not occur out
of a 4-bit group. Show that in the low-order positions, a carry may occur only out of zero
digits.

28.7.6.(2) Give examples of the possible combinations of digits to show that the addition
scheme described above gives a correct decimal sum.

28.7.7.(3) Show by appropriate examples that the final correction of the sum (by subtracting 6
in certain digit positions) cannot cause a “borrow” from the next high-order digit.

28.7.8.(3) Examine the rules for true and complement decimal addition, and determine a general
rule for the conditions under which carries are and are not propagated during the various inter-
mediate addition steps.

28.7.9.(3) Determine the maximum number of additions required to add two one-byte decimal
operands of any sign.

Terms and Definitions
complement decimal addition

The addition of packed decimal operands of unlike sign.

decimal divide exception
An exception condition caused by a packed decimal quotient being too large for the available
space in the first operand field. A Program Interruption occurs, with Interruption Code
X'000B'.

decimal overflow exception
An exception condition caused by a packed decimal sum or difference being too large for the
receiving first operand field. The Condition Code is set to 3. If the Program Mask bit is set
to 1, a Program Interruption occurs with Exception Code X'000A'.

decimal data exception
An exception condition caused by invalid numeric or sign digits in a packed decimal operand,
or by a packed decimal multiplication or division specifying incorrect lengths for one or both
operands. A program Interruption occurs with Exception Code X'0007' and Data Exception
Code (DXC) X'00'.

non-overflowed zero
The addition or subtraction of packed decimal operands that generates a zero result always
assigns a + sign

order dependence
Results of a packed decimal operation can depend on the order in which the operands are
specified.

overflowed zero
The addition or subtraction of packed decimal operands that overflows can generate a zero
result with a − sign

true decimal addition
The addition of packed decimal operands of like sign.

496 Assembler Language Programming for IBM System z™ Servers Version 2.00

29. Packed Decimal Instructions

2222222222 9999999999
222222222222 999999999999
22 22 99 99

22 99 99
22 99 99
22 999999999999

22 999999999999
22 99

22 99
22 99 99
222222222222 999999999999
222222222222 9999999999

Table 209 lists the decimal arithmetic instructions in this section. MVO has rather specialized
uses, and is not used often since SRP was introduced. Except for TP, each instruction has the
format of a two-length SS-type instruction, as shown in Table 200 on page 469.

Table 209. Packed decimal arithmetic instructions

Op Mnem Type Instruction Op Mnem Type Instruction

FA AP SS Add Decimal FB SP SS Subtract Decimal

FC MP SS Multiply Decimal F D DP SS Divide Decimal

F9 CP SS Compare Decimal F8 ZAP SS Zero and Add Decimal

F0 SRP SS Shift and Round
Decimal

F1 MVO SS Move with Offset

EBC0 TP RSL Test Decimal

The previous section sketched how the CPU does packed decimal addition, subtraction, multipli-
cation, division, and comparison. Now, we'll examine the corresponding instructions.

All decimal operations process their operands from right to left. The operands should not
overlap, or (in some cases) their rightmost bytes should coincide. If the operands overlap in any
way, the CPU will store the result byte from one step of an operation before fetching the operand
bytes to be used in the next step, or it will fetch the byte(s) for the next step before storing the
result byte — in such cases, be sure to consult the z/Architecture Principles of Operation first.

 Note!

All packed decimal arithmetic is integer arithmetic. Section 29.10 shows
how you can do packed decimal arithmetic with mixed integer-fraction
data (like 123.456×4.07).

Chapter VIII: Zoned and Packed Decimal Data and Operations 497

29.1. TP Instruction

The TP instruction checks its packed decimal operand for validity. The Assembler Language
syntax of a TP instruction is shown in Figure 289.

TP D1(N,B1)
Figure 289. Assembler Language syntax of the TP instruction

where the Length Expression N is the length of the packed decimal operand. The valid forms of
the Assembler Language statement operand are shown in Table 210.

Table 210. Operand formats for TP instruction

The format of the assembled machine instruction is illustrated in Table 211.

Table 211. Format of the TP instruction

You will remember from Sections 24.2 and 27.5 that the Encoded Length L is one less than the
Length Expression N.

TP sets the Condition Code as shown in Table 212.

Table 212. CC settings for the TP instruction

Some of the examples and exercises in previous sections showed other ways to test the validity of
a packed decimal operand. The TP instruction is generally much simpler; its only shortcoming is
that it doesn't indicate which digit(s) or byte(s) may be invalid.

For example, we can test several operands:

TP T0 Test operand T0; CC=0
TP T1 Test operand T1; CC=1
TP T2 Test operand T2; CC=2
TP T3 Test operand T3; CC=3
- - -

T0 DC X'123456789D' Valid operand
T1 DC X'1234567890' Invalid sign code
T2 DC X'12345C789C' Invalid digit
T3 DC X'12345C7890' Invalid sign and digit

Exercises

29.1.1.(2)+ For each of these operands, what will be the CC setting after testing it with a TP
instruction?

Explicit Length Implied Length

Explicit Address D1(N,B1) D1(,B1)

Implied Address S(N) S

EB L B1 D1 C0

CC Meaning

0 All digit codes and the sign code are valid.

1 The sign code is invalid.

2 At least one digit is invalid.

3 The sign code and at least one digit are invalid.

498 Assembler Language Programming for IBM System z™ Servers Version 2.00

(1) Z'330'
(2) P'-1945'
(3) X'567890'
(4) H'255'
(5) P'31415926535897914142135326607977277059'
(6) C'good!'

29.1.2.(2) Is there a way to use TP to detect the first of several possible invalid digit codes in a
packed decimal operand?

29.1.3.(2) Suppose you know that a packed decimal operand has an invalid digit in the byte at
BadByte. Write a short instruction sequence to test whether the left or right digit was bad, and
branch to BadLeft or BadRight accordingly.

29.2. ZAP Instruction

The ZAP instruction182 moves decimal data from the second operand to the first operand field.
Its Assembler Language and machine instruction formats are the same as for PACK and UNPK,
described in Section 27.

As the name implies, ZAP can be considered as equivalent to (1) setting the first operand field to
0+, and (2) adding the second operand to the newly-zeroed first operand.183 That is, only the
second operand must be a valid packed decimal number.184 The first operand field may actually
contain anything, and is not checked for validity.

• If the second (source) operand is exhausted before the first operand field has been filled, the
CPU supplies extra high-order zeros until the first operand is complete.

• If significant (nonzero) high-order digits are lost because the first operand field is too short, a
decimal overflow exception is recognized.

• If you use ZAP to initialize a field, sign codes of the second operand are converted in the first
operand to the preferred signs, X'C' and X'D'.

• The sign of a zero result is + , unless there is an overflow; in that case, the zero result has the
sign of the second operand.

ZAP isn't fussy about operand overlap, so long as the rightmost byte of the first (target) operand
is not at a lower address than the rightmost byte of the second (source) operand.

ZAP sets the Condition Code as shown in Table 213.

Table 213. CC settings by the ZAP, AP, and SP instructions

Remember that a potential interruption for a decimal overflow condition can be masked off using
the SPM instruction described in Section 16.9 on page 234.

CC Indication

0 Result is zero.

1 Result is less than zero.

2 Result is greater than zero.

3 Decimal overflow.

182 The Principles of Operation calls it just “Zero and Add”, rather than “Zero and Add Decimal”. The “P” in the
mnemonic helps to classify ZAP with other packed decimal instructions.

183 The name “Zero and Add” is slightly confusing, because the instruction does not actually zero the first operand and
then add the second to it. Initially subtracting the first operand from itself might fail if it's not a valid packed decimal
number!

184 Anything else will cause a data exception interruption.

Chapter VIII: Zoned and Packed Decimal Data and Operations 499

The following statements show the effect of executing several ZAP instructions, where we use
literals for the second (source) operands.

2nd Operand Result
ZAP X,=PL1'1' X'1C' c(X) = 001+, CC = 2
ZAP X,=P'-9' X'9D' c(X) = 009-, CC = 1
ZAP X,=P'1234' X'01234C' c(X) = 234+, CC = 3 (overflow!)
ZAP X,=P'0234' X'00234C' c(X) = 234+, CC = 2
ZAP X,=P'0' X'0C' c(X) = 000+, CC = 0
ZAP X,=X'1234' X'1234' Data Exception (invalid sign, '4')
ZAP X,=X'ABCD' X'ABCD' Data Exception (invalid digit, 'C')
- - -

X DS PL2 First operand, two bytes long
Figure 290. Examples of the ZAP instruction

• The third ZAP instruction illustrates a decimal overflow due to the loss of significant high-
order digits. The digits lost in the fourth statement are both zero, so no overflow occurs.

• The sixth ZAP instruction fails because the final digit 4 is not a valid sign, one of A-F.

• The last ZAP instruction fails because the first three digits are not numeric, one of 0-9;
because data is accessed from right to left, the invalid digit X'C' in the first byte (X'CD') causes
the decimal data exception.

If the first and second operand fields have the same length, it may be simpler to use an MVC
instruction, assuming the second operand is valid.

To give some examples of the use of ZAP, suppose we must initialize a table of 50 three-byte
packed decimal numbers starting at Dec. Each number in the table is three bytes long, and we
must set them to zero. We'll use the “Branch on Count” (BCT) instruction (described in Section
22.4 on page 334) to control the loop:

NDec Equ 50 Number of elements
LA 1,NDec Initialize loop counter
LA 2,Dec Point to first element

Loop ZAP 0(L'Dec,2),=P'0' Zero an element
AHI 2,L'Dec Step pointer to next element
BCT 1,Loop Perform ZAP 'NDec' times in all
- - -

Dec DS (NDec)PL3 Table of 3-byte elements
Figure 291. Using ZAP to initialize a table of packed decimal operands

where the ZAP instruction first operand has D1= 0 , N 1=3 (so L1=2), and B1= 2 .

In this example, every number in the table has the same length and the entire table is only 150
bytes long, so we could also use an MVC instruction instead of executing a loop:

NDec Equ 50 Number of table elements
ZAP Dec,=P'0' Initialize the first element
MVC Dec+L'Dec((NDec-1)*L'Dec),Dec Propagate the zero
- - -

Dec DS (NDec)PL3
Figure 292. Initializing a table of decimal numbers using MVC

where the ZAP instruction uses an implied length, the length attribute of Dec. If the length of the
elements starting at Dec changes, we won't need to update the MVC instruction. Note also that
N=(NDec−1)*L'Dec is the number of bytes at Dec after the first element.

This technique may be limited by the size of the table, and can't be used if the elements have
different lengths.

500 Assembler Language Programming for IBM System z™ Servers Version 2.00

ZAP is often used to move a shorter operand into a longer field; for example, ZAP is typically
used to set up the first operand (the multiplicand) for decimal multiplications.

Exercises

29.2.1.(1)+ In Figure 290 on page 500, show the contents of the second byte of each ZAP
instruction.

29.2.2.(1)+ Under what circumstances would it be useful to execute this instruction statement?

ZAP A,A

29.2.3.(2)+ Suppose X is the name of a packed decimal operand two bytes long with value zero.
Determine the effect of executing the instruction

ZAP X,Y

if Y is the name of each of the following DC operands:

(1) PL5'-123'
(2) CL2' *'
(3) H'13'
(4) P'0000753'
(5) X'F00000123C'
(6) X'000123'

29.2.4.(2) Write one or more instructions to invert the sign of the packed decimal value at
PackVal.

29.2.5.(1) As suggested following Figure 290 on page 500, you could use MVC instead of ZAP
to initialize a packed decimal operand. Can you think of any reasons to avoid this technique?

29.2.6.(2) In Figure 292 on page 500, what is the maximum value of NDec for which the
program segment will work correctly?

29.2.7.(2)+ Write instructions to replace the packed decimal number at SomeVal by its absolute
value (that is, force the sign to be +), ensuring that the sign is the preferred sign, X'C'.

29.2.8.(3)+ Draw a detailed flowchart that describes the digit-by-digit action of ZAP. Take care
to check the validity of sign and digits, set the CC and final sign, detect length incompatibilities,
possible overflows, and operand overlap. (You will appreciate the complexities of implementing
the instruction!)

29.3. AP and SP Instructions

Adding and subtracting decimal numbers is straightforward. The sum or difference replaces the
first operand, and the usual CC setting (shown in Table 213 on page 499) reflects the status of
the result.

AP and SP have the same machine instruction formats as ZAP, PACK, and UNPK, shown in
Table 200 on page 469, and the assembler instruction statement operand formats shown Table in
201, both on page 469.

Unlike binary addition in the general registers, the results of decimal addition may depend on the
order of the operands if the first operand field is too small. For example, adding 9+ to 123+ gives
132+ , but adding 123 + to 9 + creates a decimal overflow:

AP PD123,PD9 Result = 132+
AP PD9,=P'+123' Result = 2+, with decimal overflow
- - -

PD123 DC P'+123' Packed decimal 123+
PD9 DC P'+9' Packed decimal 9+

Chapter VIII: Zoned and Packed Decimal Data and Operations 501

The same consideration applies to subtraction, particularly for operands with opposite signs.

To illustrate the AP and SP instructions, Figure 293 assumes that the initial contents of the first
operand field at XX is 143+ for each instruction (the instructions are not executed in sequence!).
The result of executing each instruction is shown in its comment field.

2nd Operand Result
AP XX,XX X'143C' c(XX) = 286+, CC=2
SP XX,XX X'143C' c(XX) = 000+, CC=0
SP XX,XX+1(1) X'3C' c(XX) = 140+, CC=2
AP XX,=P'-555' X'555D' c(XX) = 412-, CC=1
SP XX,=P'-555' X'555D' c(XX) = 698+, CC=2
AP XX,=P'1136' X'01136C' c(XX) = 279+, CC=3 (overflow)
SP XX,=P'1136' X'01136C' c(XX) = 993-, CC=1
- - -

XX DC PL2'143' Initial contents for all cases
Figure 293. Examples of the AP and SP instructions

In the third example, the second operand is one byte long, and starts at the second byte of XX.

The operands of SP and AP may overlap only if their rightmost bytes coincide, as in the first,
second, and third instructions above. SP is rarely used to clear a field to 0 + as in the second
instruction above, because ZAP (or MVC) are simpler and usually faster.

Suppose the table of decimal numbers at Dec that we zeroed in Figure 291 on page 500 now
contains 50 data values, and that we wish to add them and place the sum at SumDec.

NDec Equ 50 Number of table elements
ZAP SumDec,=P'0' Initialize sum to zero
LA 0,NDec Counter for number of summations
LA 1,Dec Pointer to first table element

Loop AP SumDec,0(L'Dec,1) Add an element to sum
LA 1,L'Dec(,1) Step pointer to next element
JCT 0,Loop Branch until loop is complete
- - -

SumDec DS PL4 Accumulated sum
Dec DS (NDec)PL3 Table of 3-byte numbers
Figure 294. Adding a table of 50 packed decimal numbers

where the second operand of the AP instruction has D2= 0 , N 2=3 (so L2=2), and B2= 1 .

Because each table entry is at most 5 digits long, the space allocated for the sum at SumDec does
not have to be more than 7 digits (4 bytes) long. If the sum area is more than 4 bytes long, extra
time might be needed each time the AP instruction was executed. Unlike addition and sub-
traction in the general registers, the time required for decimal addition and subtraction depends on
the length of the operands.

Be Careful!

The results of packed decimal addition and subtraction may depend on
the order of the operands if there is any possibility of decimal overflow.

Exercises

29.3.1.(2) A devious programmer thought he could ensure his continued employment by
writing obscure code, such as this:

502 Assembler Language Programming for IBM System z™ Servers Version 2.00

PACK A,*(1) Do a packing task
PACK B,UNPK(1) Do another, too
AP A,B Add some things

UNPK UNPK C,A(3) Unpack the things
- - -

A DS CL2
B DS B
C DS XL4

First, what do these instructions place in the fields named A, B, and C? Then rewrite his
instructions without any obscurities, to show that you could easily take over his job.

29.3.2.(3)+ Suppose the two-byte field at XX initially contains 364+, and that the instruction

AP XX,XX+1(1)

is executed repeatedly until a decimal overflow occurs. How many times will the AP be exe-
cuted?

29.3.3.(1) Compare the use of SP and XC (with identical first and second operands) for setting
a decimal field to zero.

29.3.4.(3) Repeat Exercise 29.3.2 assuming that the field at XX initially contains 365+.

29.3.5.(1) Can a decimal overflow be caused by subtracting one operand from another, if both
have the same sign?

29.3.6.(3) In Figure 293 on page 502, the third instruction uses an SP instruction with overlap-
ping fields to zero a part of a packed decimal number. Devise other ways to do this, making no
restrictive assumptions about the length of the operand or the amount of overlap.

29.3.7.(2)+ For the operands at A and B, show the result of executing these two AP
instructions, assuming the same initial values of the operands.

AP A,B Case 1
AP B,A Case 2
- - -

A DC P'0'
B DC X'075F'

29.3.8.(2)+ An instructor claimed185 that this information came from a program interruption.
Explain why the claim is false.

• Interruption Code = X'000A', Instruction Length Code = 1

29.3.9.(2)+ In Figure 294 on page 502, is the length of the SumDec field sufficient to hold the
sum without overflow?

29.4. CP Instruction

The Compare Decimal instruction CP has the same Assembler Language and machine instruction
formats as AP and SP.

Comparing two decimal operands only sets the CC, as shown in Table 214 on page 504. Over-
flow cannot occur.

185 On an examination, of course!

Chapter VIII: Zoned and Packed Decimal Data and Operations 503

Table 214. CC setting by the CP instruction

The CP instruction is illustrated in the following examples; the result of the comparison is shown
in the comment field of each statement.

CP XX,XX CC = 0 123+ = 123+
CP XX+1(1),XX CC = 1 3+ < 123+
CP XX,YY CC = 2 123+ > 70493-
CP YY,XX CC = 1 70493- < 123+
CP XX+1(1),YY+2(1) CC = 2 3+ > 3-
CP XX(1),YY(1) Interruption, invalid data
- - -

XX DC P'+123' (=X'123C')
YY DC P'-70493'

In the last CP instruction, only the first byte of each operand is accessed, and an interruption will
occur because neither byte contains a valid sign in its rightmost digit position.

To illustrate the CP instruction, suppose we must add the items in the same table of 50 decimal
numbers as in Figure 294 on page 502. Now, assume that the positive and negative terms must
be added separately, and the sums of their magnitudes are to be stored at SumPos and SumNeg
respectively.

CC Indication

0 Operands are equal.

1 First operand is low.

2 First operand is high.

NDec Equ 50 Number of table elements
ZAP SumPos,=P'0' Clear positive sum box
ZAP SumNeg,=P'0' And negative sum box
LA 0,NDec Initialize term counter
LA 1,Dec Point to start of table

Loop CP 0(L'Dec,1),=P'0' Check sign of an entry
JH Plus Branch to add + term
JE Next Skip if it's zero
SP SumNeg,0(L'Dec,1) It's -, accumulate negative sum
J Next And go count to next item

Plus AP SumPos,0(L'Dec,1) Accumulate positive sum
Next LA 1,L'Dec(,1) Step item pointer to next

JCT 0,Loop Repeat for the next item
- - -

SumPos DS PL4 Positive sum
SumNeg DS PL4 Magnitude of negative sum
Dec DS (NDec)PL3 Table of elements
Figure 295. Adding positive and negative items separately

This program segment is straightforward; the JE instruction might save a small amount of time if
zero elements are likely to appear in the table. The SP accumulates the magnitudes of the negative
terms by subtracting them from SumNeg.

As another example, suppose we want to scan the table to find which element is algebraically
largest, and leave its address at BigItemA.

504 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 0,NDec Initialize count
LA 1,Dec And table pointer

Compare CP Max,0(L'Dec,1) Compare current max to element
JH Next Branch if max is bigger
ZAP Max,0(L'Dec,1) Save element as new max value
ST 1,BigItemA And save address of that element

Next LA 1,L'Dec(,1) Step pointer to next element
JCT 0,Compare Count and loop
- - -

BigItemA DS A Address of largest element
Max DC PL3'-99999' Initial maximum is a minimum
Dec DS (NDec)PL3 Table of elements
Figure 296. Finding the largest item in a table

Using JH in the fourth instruction rather than JNL may cause extra work to be done, but it
guards against the remote possibility that all the table elements are equal to 99999 − .

Exercises

29.4.1.(1)+ Give two reasons why it might be useful to compare a decimal number to itself.

29.4.2.(2) Suppose the table in Figure 296 contains more than one occurrence of the maximum
value. Which one will the program find?

29.4.3.(2)+ Suppose you compare these two packed decimal operands using a CP instruction:

CP PDP,PDM Compare operands
- - -

PDP DC P'+0'
PDM DC P'-0'

What will be the resulting CC setting? Now, compare the same operands using a CLC instruc-
tion: what will be the resulting CC setting? How do the results depend on the sign codes of the
operands?

29.4.4.(3)+ Rewrite the instructions in Figure 296 to eliminate all uses of a field (like the one
named Max) in which the current maximum value is stored. Instead, set GR2 to the address of
the largest element.

29.4.5.(2)+ What will be the Condition Code after executing these two instructions?

CP =P'+10',=P'-20'
CLC =P'+10',=P'-20'

Explain your results.

29.4.6.(2)+ In Figure 296, can the ZAP instruction cause a data exception? Would there be any
difference if you replaced the ZAP instruction with

MVC Max,0(1) ?

29.4.7.(1) In the last CP example following Table 214 on page 504, what are the values of the
two operands being compared?

Chapter VIII: Zoned and Packed Decimal Data and Operations 505

29.5. MP Instruction

Two length digits are provided in the MP instruction. The first digit specifies the length of the
first (multiplicand) operand and of the product; the second digit specifies the length of the second
(multiplier) operand. The two Encoded (machine) Length digits must satisfy the relations

1 ≤ L1 ≤ 15, 0 ≤ L2 ≤ 7, L1 > L 2

and their Length Expressions must statisfy

2 ≤ N1 ≤ 16, 1 ≤ N2 ≤ 8, N1 > N 2

(Section 24.1 describing basic SS-type instructions on page 365 explains the reasons for the differ-
ences between N, N1, N2, and L, L1, L2: the “L” values the CPU sees are one less than the “N”
values you specify.)

It is important to remember that the number of bytes of high-order zeros in the first operand
must not be less than the length of the second operand, even though the first operand may already
contain enough high-order zeros.

Unlike binary multiplication in the general registers, these length restrictions mean that the results
of decimal multiplication depend on the order of the operands. For example, multiplying
0000123+ by 456+ gives 0056088+ , while multiplying 456+ by 0000123+ creates a specification
exception, because the product field is too short to contain the result.

MP PD123,PD456 Result = 0056088+
MP PD456,PD123 Specification exception
- - -

PD123 DC PL4'+123' 4-byte packed decimal operand
PD456 DC PL2'+456' 2-byte packed decimal operand

The first (multiplicand) operand field for a Multiply Decimal instruction is usually initialized with
a ZAP instruction. This automatically sets the high-order digits of the first operand to zero.
Thus, we could multiply 213+ by 126+ (as in Sections 18.4 and 28.4) as follows:

ZAP Prod,=P'213' Set up multiplicand
MP Prod,=P'126' Form product
- - -

Prod DS PL4 Space for product
Figure 297. Example of decimal multiplication

The CC is unchanged by the MP instruction; in this example it will have been set to 2 by the
preceding ZAP instruction to indicate the sign of the multiplicand.

To give a more elaborate example, suppose we wish to compute the square of each element of the
table of fifty 5-digit numbers at Dec and store them in the table starting at DecSq. Each element
of the table of products must be 6 bytes long, because there must be as many bytes of high-order
zeros in the multiplicand as there are bytes (3) in the multiplier.

506 Assembler Language Programming for IBM System z™ Servers Version 2.00

NDec Equ 50 Number of table elements
LD Equ 3 Length of input table elements

LA 0,NDec Initialize counter
LA 1,Dec Point to input table
LA 2,DecSq Point to output table

Set ZAP 0(2*LD,2),0(LD,1) Set up multiplier
MP 0(2*LD,2),0(LD,1) Form (2*LD)-byte product
LA 1,LD(,1) Step 'Dec' table pointer
LA 2,2*LD(,2) Step 'DecSq' table pointer
JCT 0,Set Count down and loop
- - -

Dec DS (NDec)PL(LD) Table of input data
DecSq DS (NDec)PL(2*LD) Squares of input elements
Figure 298. Using M P to square a table of decimal numbers

In this example, the number of table elements and the length of each element may be varied by
modifying the EQU statements.

The MP instruction is easy to use, but there are times when some of its restrictions are annoying.
For example, suppose we want to multiply the 4-byte operand 0001234 + by the 2-byte multiplier
101+ ; the result (0124634+) will fit quite comfortably in the four bytes provided by the original
operand. However, because there are not as many bytes of high-order zeros as there are bytes in
the multiplier, we must resort to schemes like this:

ZAP R,MPCand Move multiplicand
MP R,=P'101' Multiply by 101
- -

MPCand DC PL4'0001234' 4-byte multiplicand
R DS PL5 Result must be 1 byte longer
Figure 299. Using ZAP to set correct decimal multiplicand length

The result at R will be 000124634+ , but the extra byte of high-order zeros might not be needed
for whatever operations are performed next.

Suppose as before that we want to multiply 0001234 + by 101+ , but this time we reverse the order
of the operands.

ZAP R,=P'101' Lengthen the multiplicand
MP R,MPlier Now multiply by 0001234+
- - -

R DS PL6 Result at least 6 bytes long
MPlier DC PL4'1234' 4-byte multiplier
Figure 300. Using ZAP to set correct decimal multiplicand length

Because the multiplier is four bytes long, there must be four bytes of high-order zeros at R after
the multiplicand 101+ has been placed there. Thus the result field must now be six bytes long,
instead of the five required in Figure 299. Situations may arise where the order of the operands in
a decimal multiplication is important!186 Forgetting to allocate the necessary extra bytes for the
product will result in a data exception: a program interruption will occur, and the IC will be set to
7.

A final (but rarely troublesome) feature of decimal multiplication is that a negative zero result can
be generated as the product of positive and negative zero operands. This is unlikely to occur in
practice, because decimal addition and subtraction place a + sign on zero results (so long as no
overflows occur). The generation of a negative zero is illustrated in Figure 301 on page 508.

186 Mathematically, this means that the MP instruction is not commutative.

Chapter VIII: Zoned and Packed Decimal Data and Operations 507

MP X,Y Generate a negative zero product
- - -

X DC PL2'0' Positive zero
Y DC P'-0' Negative zero
Figure 301. Generating 0 − using M P

The product is X'000D', or 000 − .

Be Careful!

Successful decimal multiplication often depends on the order of the oper-
ands.

Exercises

29.5.1.(1)+ Determine the inequalities that must be satisfied by the two Length Expressions in
an MP machine instruction statement.

29.5.2.(1) What is the maximum value that may be assigned to the symbol LD in Figure 298 on
page 507?

29.5.3.(2)+ Show why we cannot directly multiply 0001234+ by 100+ using an MP instruc-
tion, even though the product would contain a high-order zero digit.

29.5.4.(2) What will happen if we write MP X,X ?

29.5.5.(4) Suppose the CPU performed decimal multiplication by fetching one operand byte at
a time, and storing a result byte as soon as it is generated. (It doesn't operate that way!) Under
what circumstances could the first and second operands of an MP instruction overlap?

29.5.6.(2)+ What result will appear at A after executing the MP instruction?

MP A,A+1(1)
- - -

A DC PL2'7'

29.5.7.(2)+ What result will appear at B after executing the MP instruction?

MP B,B+3(1)
- - -

B DC PL4'567'

29.5.8.(3) What result will appear at C after executing the MP instruction?

MP C,C+3(3)
- - -

C DC PL6'84567'

29.5.9.(1)+ Suppose you want to multiply 2 by 3, and write

MP A,B
- - -

A DC PL1'2'
B DC PL9'3'

What result will be at A?

508 Assembler Language Programming for IBM System z™ Servers Version 2.00

29.6. DP Instruction

As noted in Section 28.5, the results of a decimal division are found in the first operand field.
Unlike binary division in the general registers, however, the quotient of a decimal divide is found
in the left, or high-order, portion of the result, and the remainder is found in the right, or low-
order portion. Take care in specifying the lengths of the operands: the remainder has the same
length as the divisor, so the length of the quotient is the difference between the dividend and
divisor lengths.

(quotient length) = (dividend length) - (remainder length)
= (dividend length) - (divisor length)

To avoid a specification error, the Encoded Length digits in the second byte of the instruction
must satisfy the same inequalities as for MP:

1 ≤ L1 ≤ 15, 0 ≤ L2 ≤ 7, L1 > L 2

and similarly for the corresponding Length Expressions.

To illustrate, suppose we want to divide 162843 + by 762+ (as in Section 18.8) using packed
decimal division, as shown in Figure 302.

ZAP Dvnd,=P'162843' Initialize dividend
DP Dvnd,=P'762' Divide by 762+
- - -

Dvnd DS PL4 Quotient = 213+, remainder = 537+
Figure 302. Decimal division using D P

After the ZAP instruction is executed, the area named Dvnd will be initialized to 0162843+ .
Because the divisor is 762+ , the alignment test described in Section 28.5 will be satisfied, and a
valid quotient and remainder can be computed. After the DP instruction is executed, the four
bytes at Dvnd will contain 213+537+ , so the quotient is 213+ and the remainder is 537+ .

It's often easier to let the Assembler determine operand lengths by using Symbol Length Attribute
References, as shown in Figure 303.

ZAP Dvnd,=P'162843' Initialize dividend
DP Dvnd,Dvsr Divide by divisor
ZAP Quot,Dvnd(L'Dvnd-L'Dvsr) Move quotient...
ZAP Rem,Dvnd+L'Dvnd-L'Dvsr(L'Dvsr) ...and remainder
- - -

Dvnd DS PL4 Can be up to 16 bytes long
Dvsr DC P'762' Divisor
Quot DS PL5 Space for quotient 000000213C
Rem DS PL4 Space for remainder 0000537C
Figure 303. Decimal division using Length Attribute References for operands

In this example, the areas named Quot and Rem were purposely chosen to be longer than required,
to show that extra length makes no difference in the values that will be stored. So long as none
of the restrictions on operand lengths are violated, this instruction sequence will give correct
results.

As a final example, suppose we must calculate the average of the entries in a table of nonzero
9-digit packed decimal numbers stored beginning at Tbl, and that we don't know the length of the
table, only that the last entry is followed by a zero element.

Chapter VIII: Zoned and Packed Decimal Data and Operations 509

ELen Equ 5 Length of a table entry (9 digits)
LA 1,Tbl Point to origin of table
ZAP Sum,=P'0' Initialize sum box
ZAP Nbr,=P'0' Initialize element counter
ZAP Avg,=P'0' And set average to zero

Test CP 0(ELen,1),=P'0' Check for table end
JE Divide Found end, go compute average

AddUp AP Sum,0(ELen,1) Accumulate sum
AP Nbr,=P'1' And increment counter
LA 1,ELen(,1) Step pointer to next entry
J Test And loop

Divide CP Nbr,=P'0' Check for no data at all
JE Finish Give up if no entries
DP Sum,Nbr Perform division
ZAP Avg,Sum(L'Sum-L'Nbr) Move result

Finish - - -
- - -

Sum DS PL15 Accumulated total of entries
Nbr DS PL4 Count of entries being summed
Avg DS PL(ELen) Average value
Tbl DS 5000PL(ELen) Lots of room for data
Figure 304. Computing the average of a table of decimal numbers

Useful Rule of Thumb

The field into which you ZAP a dividend prior to a packed decimal divi-
sion should be at least as long as the length of the dividend plus the
length of the divisor. (The symbolic forms in Figure 303 on page 509
are helpful for valid divisions.)

Exercises

29.6.1.(2)+ Revise Figure 304 on the assumption that the end of the table is signaled by a zero
element with a negative sign. Positive zeros are permitted among the table entries.

29.6.2.(1)+ Determine the inequalities that must be satisfied by the Length Expressions in a DP
instruction statement.

29.6.3.(2)+ What will happen if we write DP X,X ?

29.6.4.(1) Give at least two methods for testing whether a packed decimal number is even or
odd.

29.6.5.(2) In Exercise 29.6.1, why can we not test for the terminating negative zero element with
this statement?

Test ZAP 0(ELen,1),0(ELen,1) Test for -0 element
JM NegZero Jump if -0

29.6.6.(2) It is possible to write DP and MP instruction statements that will specify L1 digits,
where L1 has value zero. If this is done, what will happen when the instructions are executed?

29.6.7.(4) Suppose the CPU performs decimal division by fetching one operand byte at a time,
and storing a result byte as soon as it is generated. (It doesn't operate that way!) Under what
circumstances could the first and second operands of a DP instruction overlap?

29.6.8.(2)+ What result will appear at A after executing this DP instruction?

DP A,A+3(1)
- - -

A DC PL4'67'

510 Assembler Language Programming for IBM System z™ Servers Version 2.00

29.6.9.(2)+ What result will appear at B after executing this DP instruction?

DP B,B+3(2)
- - -

B DC PL5'567'

29.6.10.(3) What result will appear at C after executing this DP instruction?

DP C,C+3(2)
- - -

C DC PL5'9567'

29.6.11.(1) Can you think of a reason why the designers of System z required the length of the
second operand of a decimal division to be 8 or fewer bytes?

29.6.12.(2)+ Explain why there must be at least one leading high-order zero digit in the divi-
dend of a decimal division.

29.6.13.(3) In a division process, the remainder may be chosen in (at least) three ways: (1) the
remainder has the same sign as the dividend, (2) the remainder has the same sign as the quo-
tient, and (3) the remainder is always nonnegative. In all cases, the magnitude of the remainder
is less than the magnitude of the divisor.

In System z, the first alternative is used. What modifications would have to be made to the
rules for decimal division if the second or third alternatives had been chosen instead?

29.6.14.(2)+ What will be the result at A of the following division?

DP A(5),A+5(2)
- - -

A DC XL7'3876543C047C'

29.7. SRP Instruction

The SRP instruction shifts its operand to multiply or divide a packed decimal number by a power
of 10, and to round the quotient of such a power of 10 “division”.

Before SRP was available, shifting a computed number of digit positions was complicated: dif-
ferent coding techniques had to be used for shifting left or right by an even or odd number of
digit positions.187 It was also difficult to use the EX instruction to specify the number of digits to
be shifted. The CPU architects rectified this unhappy situation by creating the SRP instruction,
which shifts in either direction with optional rounding for right shifts.

The Assembler Language statement format for an SRP instruction statement is shown in
Figure 305, where the first operand address is given by D1(B1), the Effective Address of the
second operand D2(B2) specifies the number of digits to be shifted, and I3 is the rounding digit.

SRP D1(N1,B1),D2(B2),I3
Figure 305. Assembler Language format of SRP machine instruction statement

Table 215 shows the assembled machine instruction. format of the SRP instruction:

Table 215. Format of the SRP instruction

F0 L1 I3 B1 D1 B2 D2

187 If you're interested, we'll see examples in Section 29.9.

Chapter VIII: Zoned and Packed Decimal Data and Operations 511

The SRP instruction format has several unusual features.

1. There is a single 4-bit length field, L1.

2. The immediate digit I3 is used for rounding only when shifting to the right. It must be a valid
decimal digit; if not, a decimal data exception occurs, and the IC is set to 7. (The value of
the I3 digit is not specified by nor inferred from the length of the second operand.)

3. The decimal number to be shifted is in memory at the Effective Address computed from the
first addressing halfword.

4. The Effective Address computed from the second addressing halfword determines both the
direction and the amount of the shift. It is not a memory address.

The L1 digit and the first addressing halfword provide the usual method for referring to a packed
decimal operand. The effective address computed from the second addressing halfword is evalu-
ated by the CPU, and (unlike binary shifts) its rightmost six bits are treated as a signed two's
complement integer. The number of digits to be shifted therefore lies in the range

B'100000' = −32 ≤ shift count ≤ + 3 1 = B'011111'

The shift is to the left if the shift count is positive, and to the right if the shift count is negative.
You can think of the shift count as the power of ten P by which the decimal operand will be
multiplied. A zero shift count may be specified, but it only causes the decimal operand to be
checked for validity, which is done at the start of every SRP operation.

If the shift is to the left, the CPU checks for nonzero high-order digits, and indicates a decimal
overflow condition if any are lost. If the shift is to the right, the I3 digit is added decimally to the
last digit shifted out of the first operand, and any carry is propagated into the remaining part of
the first operand. The I3 digit is considered to have the same sign as the decimal number being
shifted. For both left and right shifts, vacated digit positions are set to zero. The CC settings after
SRP are the familiar values shown in Table 213 on page 499.

You can specify the second-operand shift amount using the rules for the two's complement repre-
sentation: because the shift count is a number P between −32 and +31, its 6-bit two's comple-
ment representation is simply 26+P, or 64 +P. Thus, a right shift of two places with no rounding
is specified by this instruction statement:

SRP A,64-2,0 Shift right 2, no rounding

Similarly, a left shift of two places is specified by

SRP A,64+2,0 Shift left 2 digit positions

When shifting left, the value of the I3 digit is ignored (but it still must be a valid decimal digit!).
The extra factor of 64 in the shift count will be ignored when the rightmost 6 bits of the effective
second operand address are used; including the factor of 64 ensures that we won't forget it if it's
needed for right shifts.

Suppose we want to shift the operand 12345 + to the left three places, as in Figure 306.

SRP A,3,0 Left shift causes an overflow
- - -

A DC P'12345' Final contents = 45000+
Figure 306. Shifting a decimal operand left 3 places using SRP

The CC will be set to 3 to indicate the decimal overflow condition.

To shift the same operand to the right without rounding, we can use SRP as in Figure 307.

SRP A,64-2,0 Shift right 2 digits, no rounding
- - -

A DC P'12345' Final value = 00123+
Figure 307. Shifting a decimal operand right 2 places using SRP

512 Assembler Language Programming for IBM System z™ Servers Version 2.00

To illustrate rounding, let's shift 12345+ to the right one digit position with I3 rounding digit 9
(so that “rounding” will occur if the last digit shifted has any nonzero value). We set the
rounding digit to 9 to show that it may be any value, not just the value 5 normally used for
rounding.

SRP A,64-1,9 Shift right, rounding digit = 9
- - -

A DC P'12345' Final value = 01235+
Figure 308. Shifting a decimal operand right 1 place with rounding using SRP

An important property of SRP is that the rounding digit can be provided at execution time by an
EX instruction. For example, suppose the rounding digit is contained in the one-byte packed
decimal number at RndDigit and the shift amount is stored as a halfword binary integer at
ShiftAmt. We can then shift the operand as shown in Figure 309, where the shift amount is con-
tained in GR1, and the rounding digit in GR2 is ORed into the second byte of the SRP instruc-
tion in the Instruction Register as the target of EX.

LH 1,ShiftAmt Get shift amount
XR 2,2 Clear GR2 for rounding digit
IC 2,RndDigit Get rounding digit and its sign
SRL 2,4 Drop off sign code
EX 2,SRP Execute the SRP instruction
- - -

SRP SRP A,0(1),*-* Executed instruction
A DC PL16'59365' Operand to be shifted
RndDigit DC PL1'9' Rounding digit, packed decimal form
ShiftAmt DC H'-2' Shift amount
Figure 309. Shifting a decimal operand with an EXecuted SRP

In Section 29.9 we will see examples showing why SRP is such a useful decimal instruction.

29.7.1. Biased and Unbiased Rounding with SRP (*)

The rounding provided by SRP is slightly biased. To see why, suppose a bank pays daily interest
in cents, and the calculated amounts for four days are 1.5, 2.5, 3.5, and 4.5 cents. If these are
rounded to single cents using SRP with rounding digit 5 and a single right shift, the amounts
added to the account are 2, 3, 4, and 5 cents, or a total of 14 cents. But the true total of the
unrounded amounts is 12 cents, so the bank would be overpaying the customer.188

We may need to provide unbiased rounding for packed decimal results. Consider this example
with a single “rounding digit”, as in 337785+ , where the 5 is the digit to be rounded. Using a
single right shift and a SRP rounding digit 5, the biased result would be 33779+ . The rule for
unbiased rounding is:

If the value to be rounded lies exactly halfway between two possible rounded values, choose the
rounded value with an even low-order digit.

Thus, in this example, the unbiased rounded value is 33778+ . The unbiased rounded daily interest
values would be 2, 2, 4, and 4 cents (a total of 12 cents), and the bank would not be overpaying
its customer.

These instructions show one way to do unbiased rounding of a packed decimal number with a
single rounding digit:

188 Banks don't like to overpay their customers. (Of course, a bank could truncate the fraction part and keep the accu-
mulated “breakage”.)

Chapter VIII: Zoned and Packed Decimal Data and Operations 513

MVZ RDigit(1),PDVal+L'PDVal-1 Save rounding digit
CLI RDigit,X'50' Is the rounding digit exactly 5?
JNE RoundUp No, do a normal round up
TM PDVal+L'PDVal-2,1 Is the 'to-be-rounded' digit odd?
JO RoundUp If yes, round up to an even value
SRP PDVal(L'PDVal),64-1,0 No: round down to even
J Done Rounding completed

RoundUp SRL PDVal(L'PDVal),64-1,5 Round up to even
Done - - -
Rdigit DC X'00' Single rounding digit tested here
PDVal DC P'337785' Decimal value, single rounding digit

See Exercises 29.7.14 and 29.7.15 for general forms of unbiased rounding.

We'll see in Chapter IX that decimal floating-point provides many more forms of decimal
rounding, and requires many fewer instructions.

Exercises

29.7.1.(1)+ A programmer who wanted an SRP instruction to shift an operand two digits to
the right wrote the statement

SRP A,-2,0

and received a diagnostic message from the Assembler. Attempting to correct the statement, he
wrote

SRP A,0-2,0

and received the same diagnostic. Why did he receive these diagnostic messages? What is wrong
with these statements? What should be done to fix them?

29.7.2.(2)+ Prove that no overflow exception can occur when executing an SRP instruction
when the shift is to the right.

29.7.3.(2)+ In an SRP instruction performing a right shift, why is the I3 digit added decimally
to the last digit shifted out, rather than just added?

29.7.4.(2) What will happen if you execute this SRP instruction on each of the given operands?

SRP A,64-1,5
- - -

A DC X'123456' First sample operand
A DC X'ABCDEF' Second sample operand

29.7.5.(2) What will be the result at X1, X2, and X3 after executing these SRP instructions?

SRP X1,0,5
X1 DC P'998'

SRP X2,1,5
X2 DC P'95'

SRP X3,64-1,5
X3 DC P'95'

29.7.6.(1) What shift amount is specified by these instructions, and what resulting data will
appear at A?

LHI 2,-2 c(GR2) = -2
SRP A,1(2),3 Shift the data somehow
- - -

A DC PL3'-4567' Test data

514 Assembler Language Programming for IBM System z™ Servers Version 2.00

29.7.7.(2) After executing this SRP instruction, what result will appear at XX?

SRP XX,63,+5 Shift data at XX
- - -

XX DC PL3'-4567' Sample data

29.7.8.(2) In Figure 309 on page 513, what result will appear at A and what will be in the
rightmost 6 bits of GR1? Why is the shift amount in GR1 not reduced by 1, as is done for
EXecuted instructions like MVC?

29.7.9.(5) A program contains

1. a packed decimal operand at A whose length is given by its length attribute L'A,
2. a positive one-byte decimal number at RND satisfying 0 ≤ c(RND) ≤ 9, and
3. a halfword binary integer at SHFT satisfying −32 ≤ c(SHFT) ≤ +31.

Write a program segment (not using SRP) to simulate the action of SRP on the operand at A,
as illustrated in Figure 309 on page 513.

29.7.10.(2) SRP and the general-register shift instructions discussed in Section 17 all use the
low-order six bits of an Effective Address for the shift amount. Why do you think SRP treats
this amount as a signed number, while the binary shifts treat it as an unsigned number?

29.7.11.(1) If you thought SRP meant “Shift Right Packed” but found that was incorrect,
would you have any reasons to prefer that it be named SLRP, meaning “Shift Left or Right
and Round Decimal”? Why might this actually be a better choice?

29.7.12.(2) A careful programmer wanted to be certain that his SRP instruction would correctly
round a negative packed decimal operand, so he wrote

SRP NegData,64-1,-5 Round a negative operand correctly
- - -

NegData DC PL4'-72945' Negative operand to be rounded

What will this instruction do?

29.7.13.(2)+ What is the result at E of executing this SRP instruction?

SRP E,2,5
- - -

E DC X'075F'

29.7.14.(5) When 5 is used as the rounding digit in an SRP instruction, the rounded result is
slightly biased, because values exactly halfway between two possible rounded results are always
forced to the larger magnitude.

Write instructions that will round packed decimal numbers D digits long to R digits (where
R < D; that is, the number of digits to be discarded after rounding is D −R), in such a way
that initial values lying exactly half way between two possible rounded R-digit results always
give a result with an even low-order digit.

For example, if D=5 and R=3, two right shifts are required; if the source operand is 12550 +
then the rounded result will be 00126+ , but 12450+ will be rounded to 00124+ , not to 00125 +
as SRP would do.

29.7.15.(5) Suppose the packed decimal number at PDVal is B bytes long, and has R rounding
digits, where R < 2×B −1. (There will be 2×B −1−R digits left after rounding.) Write
instructions that will leave an unbiased rounded result at PDVal. For example, if there are R=3
rounding digits, and the number is 33778529+ , then the rounded result should be 00033779 + ;
but if the number is 33778500+ , the rounded result should be 00033778 + .

Chapter VIII: Zoned and Packed Decimal Data and Operations 515

29.7.16.(2) It is claimed that a rounded quotient can be formed this way:

1. Shift the dividend left one digit.
2. Divide.
3. Shift the quotient right one place, with rounding digit 5.

Prove or disprove this claim.

29.7.17.(2) Show at least four ways to generate a packed decimal negative zero.

29.8. MVO Instruction

MVO simply moves data from the second operand field to the first, with no validity checking and
no effect on the CC. Its Assembler Language syntax is

MVO D1(N1,B1),D2(N2,B2)

MVO moves hex digits from the second operand field to the first operand field in a way similar to
ZAP, with one very important difference: the sign digit of the first operand is left in place, and all
the digits (including the sign) of the second operand are placed to the left of the first operand sign.
Zeros are supplied in the high-order positions of the first operand if the second operand is
exhausted.

This process is illustrated in Figure 310, where the digits of the second operand are named “a”,
“b”, etc., and the sign digits of the first and second operands are named “s1” and “s2”.

┌─────┬─────┬─────┬─────┬─────┬─────┐ ┌─────┬─────┬─────┬─────┬─────┬─────┐
│ x x │ x x │ x s1 │ │ b c │ d e │ s2 s1 │ Operand 1
└─────┴─────┴─────┴─────┴─────┴─────┘ └─────┴─────┴─────┴─────┴─────┴─────┘
�──────────── Before ─────────────── �──────────── After ────────────────
┌─────┬─────┬─────┬─────┬─────┬─────┐ ┌─────┬─────┬─────┬─────┬─────┬─────┐
│ a b │ c d │ e s2 │ │ a b │ c d │ e s2 │ Operand 2
└─────┴─────┴─────┴─────┴─────┴─────┘ └─────┴─────┴─────┴─────┴─────┴─────┘
Figure 310. Operation of the MVO instruction

For most applications, the first and second operands will not overlap. We can visualize the
sequence of operations performed by the CPU in executing an MVO instruction this way:

1. Move the second operand to an internal work area, and shift it left (offset it) by one hex
digit.

2. Attach the sign digit of the first operand to the right end of this internal digit string, and place
as many high-order zero digits at the left end as may be needed to fill all bytes of the first
operand.

3. Move the resulting digit string to the first operand area, starting at the right-hand end. Excess
high-order digits are lost.

Figure 311 illustrates using MVO with nonoverlapping operands.

MVO A,B Move a shorter to a longer, and...
MVO C,D Move a longer to a shorter.
- - -

B DC P'678' Two-byte operand
A DC PL4'-5' Initial contents = X'0000005D',
* Final contents = X'000678CD'

- - -
D DC P'987654321' Five-byte operand
C DC PL3'555' Initial contents = X'00555C',
* Final contents = X'4321CC'
Figure 311. Two Examples of MVO results

516 Assembler Language Programming for IBM System z™ Servers Version 2.00

Figure 311 shows that the result of an MVO instruction can be an invalid decimal operand,
because the rightmost byte may contain two sign codes instead of one.

This example does not indicate the contexts in which an MVO instruction might normally
appear. The next section contains examples of its most common early application, decimal
shifting. You can of course perform a decimal “shift” by multiplying or dividing by an appro-
priate power of ten, just as a binary shift multiplies or divides by a power of two. However, SRP
is faster than the corresponding multiplication and division instructions.

While MVO is rarely used with overlapping operands, the result is as though bytes are processed
one at a time with each result byte being stored immediately after fetching the source bytes.

Some examples showing how MVO can be used for shifting are described in Section 29.9.

Exercises

29.8.1.(4) Given that N1 and N2 are the true lengths of the first and second operands, write
instruction sequences to simulate an MVO instruction assuming

1. N1 = N 2,
2. N1 < N 2, and
3. N1 > N 2.

29.8.2.(1)+ What will be the result (in hexadecimal) at New of executing this instruction, for
each of the source operands?

MVO New,Old
- - -

New DC C'12345*'

 1. Old DC X'123456'
 2. Old DC C'ABCD'
 3. Old DC F'123456'
 4. Old DC X'123456789ABC'

29.8.3.(2)+ What can you say about the number of numeric digits moved by an MVO instruc-
tion?

29.8.4.(2)+ If an MVO instruction results in truncated second-operand digits, what can you say
about the number of truncated digits?

29.8.5.(3)+ Draw a detailed flowchart that describes the digit-by-digit action of MVO. Be sure
you correctly handle operands of unequal lengths, and the possibility of operand overlap. (Can
you use the similarities between MVO and ZAP to combine this flowchart with the one you
drew for ZAP in Exercise 29.2.8?)

29.8.6.(2)+ You have now encountered several instructions which can be used to move indi-
vidual hex digits from byte to byte. Let the left and right hex digits of Byte1 be labeled 1L and
1R, respectively, and similarly for digits 2L and 2R of Byte2. Now, make a table which shows all
of the possible ways to move one or both digits from Byte1 to Byte2, and an instruction that
will perform the specified movement.

29.8.7.(3)+ A programmer suggested this technique for converting the bits of a byte to eight
printable 0 and 1 EBCDIC characters:

Chapter VIII: Zoned and Packed Decimal Data and Operations 517

MVC Out(1),Byte
MVC Out+1(7),Out
NC Out,Mask
MVO Work,Out(4)
MVC Out(4),Work
TR Out,=C'011111111'

Byte DC B'11010110'
Mask DC X'8040201008040201'
Work DC XL5'7777777777'
Out DC XL8'aaaaaaaaaaaaaaaa'

First, explain how it works. Then, explain why the literal is nine characters long.

29.8.8.(2)+ Assuming the lengths of the first and second operands of MVO are N1 and N2
respectively, (a) how many digits are lost if N1 ≥ N2, and (b) how many high-order zero digits
are supplied by the CPU if N2 < N1?

29.9. Decimal Shifting Using MVO (*)

When we need to multiply or divide packed decimal numbers by a power of ten, it's easiest to use
the SRP instruction. Unfortunately, the original architecture of System/360 provided no basic
instruction to shift decimal operands; you had to write an explicit instruction sequence for each
shift. We'll examine some techniques that can be used to shift packed decimal operands “the
hard way”.

You will appreciate the power of the SRP instruction by comparing it to what had to be done
when it was not available.

29.9.1. Shift Right an Odd Number of Digits

To perform a decimal right shift of an odd number of digit positions, only the MVO instruction
need be used. For example, to shift 12345 + to the right by three digit positions, we could write
instructions as in Figure 312.

MVO A,A(1) Shift right 3 decimal digits
- - -

A DC P'12345' Initial contents = 12345+
Figure 312. Shifting a decimal operand right an odd number of digits

Because the contents of the byte at A(1) is X'12', the final contents of the 3-byte memory area
named A would be 00012+ , as desired.

To illustrate this technique in greater generality, suppose an operand at A of length L bytes is to
be shifted right N decimal digit positions, and we know N is odd and that N < 2L −1. The
required MVO instruction can be written as in Figure 313:

MVO A(L),A(L-N/2+1) Shift right N decimal digits
Figure 313. Shifting a decimal operand right an odd number of digits

Although the first and second operands overlap, it's easy to see how this instruction works, since
the data is being shifted to the right: this is the “natural” direction for MVO.

518 Assembler Language Programming for IBM System z™ Servers Version 2.00

29.9.2. Shift Left an Odd Number of Digits

To perform a decimal left shift of an odd number of decimal places, we need more than one
instruction. If we want only to introduce an odd number of zeros at the right end of the number
without dropping off any digits at the left, this simple technique can be used. First, we move the
sign to the right N+1 digit positions, and then we move the digits themselves to the right one
digit position. This effectively introduces N vacant digits, which can then be set to zeros. To
illustrate, suppose the packed decimal operand 12345 + at A is to be shifted left 3 decimal digit
positions and placed at AShifted.

MVN A+4(1),A+2 Move sign 4 digits to right
MVO A(4),A(3) Shift digits right once
NC A+3(2),=X'000F' Remove unwanted digits
- - -

AShifted DS 0PL5 Result = 012345000+
A DC P'12345' Initial operand = 12345+

DS PL2 Space for 3 inserted zeros and sign
Figure 314. Shifting a decimal operand left an odd number of digits

The symbol AShifted is defined in such a way that we can refer to the shifted (and extended)
operand with the correct address and its new length attribute. (See Exercise 29.9.2.)

If the shifted operand must have the same length as the original operand, the code required is
slightly more complicated, unless only a single digit shift is required. This case can be done
simply, as illustrated in Figure 315. Suppose the initial operand is again 12345+ .

MVO A,A Shift left one decimal digit
NI A+L'A-1,X'0F' Set duplicated sign to zero
- - -

A DC P'12345' Final contents = 23450+
Figure 315. Shifting a decimal operand left by one digit

In this case the operands overlap completely. The rule used by the CPU to handle possible
memory conflicts is that any second operand bytes needed for any step of the operation are
fetched from memory just before storing the result byte of that step.

If the first and second operands must have the same length for odd left shifts of 3 or more digits,
then it is best to use a separate area for the first operand. To illustrate, suppose the packed
decimal operand 12345 + must be shifted left 3 places, and the result is stored at B. As in
Figure 306 on page 512, we'll shift the operand 12345+ to the left three places, as shown in
Figure 316.

MVN B+2(1),A+2 First, move sign digit
MVO B(2),A Move sign and two digits (45+x)
NC B+1(2),=X'000F' Set sign and extra digits to zeros
- - -

A DC P'12345' Initial contents = 12345+
B DS PL3 Final contents = 45000+
Figure 316. Shifting a decimal operand left by three or more digits

This technique can of course be used for single left shifts, but the method of Figure 315 is
simpler. (See Exercise 29.9.3.)

29.9.3. Shifting an Even Number of Digits

Shifting a decimal number an even number of digit positions is usually simpler than for the odd
shifts, because the digits retain their relative positions within each byte. Thus, we usually do even
shifts with the ordinary move and logical instructions. For example, to “multiply” 0001234 + by
100 (not by the packed decimal operand 100 +), we need only shift the digits left by two positions,
or one byte:

Chapter VIII: Zoned and Packed Decimal Data and Operations 519

0001234+ × 100 becomes 0123400+.

This result can't be obtained by using an MP instruction, because there are not enough high-
order zeros in the operand to be “shifted”.

29.9.4. Shifting Left an Even Number of Digits

To shift left using move and logical instructions, we can use the technique shown in Figure 317.

MVC A(3),A+1 c(A) = 01234+4+
NI A+3,X'0F' c(A) = 01234+0+
NI A+2,X'F0' c(A) = 0123400+, now 100 × greater
- - -

A DC PL4'1234' Initial data = 0001234+
Figure 317. Shifting a decimal operand left an even number of digits

In this example, the length of the operand is the same before and after the operation. If you need
a longer result, you can use the technique shown in Figure 318: instead of shifting the data to
the left, we shift the sign to the right.

MVN B+4(1),A+3 Move sign digit only
NI B+4,X'0F' Zero out the excess digit
NI B+3,X'F0' And the old sign position
- - -

B DS 0PL5 5-byte result = 000123400+
A DC PL4'1234' Initial value of number to shift

DS P Reserve one extra byte
Figure 318. Shifting a decimal operand left an even number of digits

As these two examples show, extra effort is needed to zero out the positions vacated by the
“shift”. It may be simpler in some cases to use an SS-type instruction to set the necessary digit
positions to zero, as in Figure 319.

MVC A(3),A+1 Move three bytes left by 1 byte
NC A+2(2),Mask Set 2 vacated digits to zero
- - -

A DC PL4'1234' Initial operand
Mask DC X'F00F' Mask for zeroing 2 vacated digits
Figure 319. Shifting a decimal operand left an even number of digits

This NC instruction does the same zeroing as the two NI instructions in Figure 318.

29.9.5. Shifting Right an Even Number of Digits

To shift right an even number of places, two techniques are used, depending on whether or not
the result must have the same length as the original operand. If the result may have a different
length, it is simplest to move the sign digit to the left, and leave the leftover data in place. For
example, suppose 12345 + is to be shifted right two digit positions, so 123+ is the desired result.

MVN A+1(1),A+2 Move sign 2 digits to left
- - -

B DS 0PL2 For referring to shifted result
A DC PL3'12345' Final contents = 123+5+
Figure 320. Shifting a decimal operand right an even number of digits

We must now refer to the result at B with its new name and length attribute, since the original
three-byte operand now contains an invalid digit. (See Exercise 29.9.4.)

520 Assembler Language Programming for IBM System z™ Servers Version 2.00

When the length of the original operand must be preserved (so that the desired number of high-
order zeros actually appears in the leftmost bytes), it is difficult to use the move instructions,
because they process data from left to right, rather than from right to left.

Surprisingly, it is easiest to shift right an even number of digit positions by doing two odd shifts!
To illustrate, we can shift 12345+ to the right by two digit positions using two MVO instructions,
as in Figure 321.

MVO A(3),A(2) Shift once, result = 01234+
MVO A(3),A(2) Shift again, result = 00123+
- - -

A DC P'12345' Original 3-byte operand = 12345+
Figure 321. Shifting a decimal operand right an even number of digits

As these examples show, SRP may be much simpler; it also provides protection against invalid
data and unexpected decimal overflow.

Exercises

29.9.1.(1)+ At the end of Section 29.9.3, the text states that we can't use the MP instruction to
multiply 0001234+ by 100+ . Explain why not.

29.9.2.(3) Generalize the instructions in Figure 314 on page 519 to handle an odd left shift of
N digit positions of the L-byte operand at A. State any restrictions that must be imposed on
the values of L and N.

29.9.3.(3) Generalize the instructions in Figure 316 on page 519 to an odd left shift of N digit
positions of the L-byte operand at A, leaving the shifted result at B. State any restrictions
imposed on the values of L and N.

29.9.4.(3) Generalize the technique illustrated in Figure 320 on page 520 to an L-byte operand
shifted right an even number N of digit positions. State any restrictions on N and L.

29.9.5.(2) In the discussion preceding Figure 313 on page 518 about using MVO to shift an
L-byte operand to the right by an odd number of digit positions N, we said that we required
N < 2L −1. Why can't this requirement be written N ≤ 2L −1 ?

29.9.6.(2) Write a sequence of instructions using the technique illustrated in Figure 315 on
page 519 to perform a single left shift of the L-byte packed decimal operand at A. If the shift
causes a decimal “overflow”, branch to Over after the shift is completed.

29.9.7.(3) The decimal operand at A has length L bytes, and is to be shifted left N digit posi-
tions, where N is an even number. Generalize the instruction sequence shown in Figure 319 on
page 520 to do the shift. State any restrictions that must be placed on N and L.

29.9.8.(3) Do the same as in Exercise 29.9.7, but branch to Over if significant high-order digits
are lost.

29.9.9.(3) Using the same conditions as in Exercise 29.9.7, generalize the instruction sequence of
Figure 318 on page 520, and state any necessary restrictions on N and L.

29.9.10.(3) Suppose we wish to multiply the decimal number at A by an even power of ten,
where the power of ten is defined in an EQU statement such as

N Equ 6 Multiply by 10**6

Write a sequence of instructions using the techniques illustrated in Figures 317 through 319 to
perform the desired multiplication. What restrictions must be placed on the value of N, and
how will it depend on the length of the number at A?

29.9.11.(5) Write instruction sequences not using SRP that will shift a decimal number to the
right N digit positions, and round the result properly. (Rounding should be done by adding 5 to
the most significant digit shifted out of the operand.)

Chapter VIII: Zoned and Packed Decimal Data and Operations 521

29.9.12.(3) Generalize the technique in Figure 321 to shift an L-byte operand to the right by an
even number N of digit positions. State any restrictions on L and N.

29.10. Scaled Packed Decimal Computations: General Rules

All previous examples of packed decimal arithmetic have assumed integer operand values. But
decimal arithmetic must often deal with numbers containing fractional parts, such as currency
values, percentages, and the like. Packed decimal arithmetic with such values requires some extra
considerations.

For example, adding two currency values like $123.45 and $234.56 is simple; we can treat them as
integers, and remember to insert the decimal point in the right place when the result is formatted
for printing or display.

$123.45
+ $234.56
$358.01

Similarly, multiplying a currency value by an integer can be done in much the same way:

$123.45
x 12
$1481.40

But if our data is more complex, we need to know more.

29.10.1. Precision and Scale

There are two senses of the word “precision”.

• In Assembler Language terms, precision refers to the number of digits a field or register can
hold. A 4-byte object can hold 32-bit integers, or 7 packed decimal digits, or 4 zoned decimal
digits. This is sometimes called “field” precision. We don't need to know the values stored in
those objects.

• In computational terms, precision refers to the number of significant digits in a number. A
value like 3.14159265358979 has 15 significant digits, so its precision is 15 digits. The number
3.12345678901234 is also precise to 15 digits.189

Because we may not know the precision of a value stored in a field at any given time, we must
work with the known maximum precision of the value: the precision of the field.

Overflows can also cause inaccuracy in precise values: the sum of two 32-bit integers that causes a
fixed-point overflow is still precise to 32 bits, but a very inaccurate representation of the true sum.

We must often do arithmetic with numbers having different numbers of digits before and after the
decimal point. For example, suppose we use an AP instruction to directly add two 3-digit packed
decimal numbers:

A DC P'123.' X'123C'
B DC P'.456' X'456C'

Because packed decimal arithmetic is integer arithmetic, irrespective of any decimal points you
may have put in the nominal values, we find that the sum P'579' has no correct digits. For a
correct sum, we must first define a field to hold 6 or more digits:

Sum DS PL4 Space for 7 digits

189 The first value is an approximation to pi that is also accurate to 15 decimal digits. However, the second value, as an
approximation to pi, is accurate to only two digits. There's a big difference between precision and accuracy!

522 Assembler Language Programming for IBM System z™ Servers Version 2.00

To account for the differences in decimal point positions, we must (1) align the operands and (2)
remember the position of the decimal point in the sum:

ZAP Sum,A c(Sum) = X'0000123C' = 123.
SRP Sum,64+3,0 c(Sum) = X'0123000C' = 123.000
AP Sum,B c(Sum) = X'0123456C' = 123.456
- - -

A DC P'123.'
B DC P'.456'
Sum DS PL4 Space for 7 digits
Figure 322. Ensuring decimal point alignment for packed decimal addition

It is up to you to write instructions that keep track of the position of the decimal in all mixed
integer-fraction calculations.190

We will use “I.F” as our notation for a number containing both integer and fraction values,
where I is the number of integer digits and F is the number of fraction digits.

29.10.2. General Rules: Addition and Subtraction

Consider adding these two numbers:

123.45
+ 994.7264
1118.1764

Because the sum may cause a carry from the high-order digit of the larger operand, the I value of
the result is one larger than the I value of the larger operand. (For subtraction, the result could
have fewer digits.)

If we call 123.45 the first operand, its I and F values are I1=3 and F1=2; for the second operand,
I2=3 and F2=4. We see that the result's I and F values are F=4 and I= 4 .

We can infer a general rule for addition and subtraction:

I = Max(I1,I2) + 1
F = Max(F1,F2)

That is, a sum or difference may have one more integer digit than the larger number of integer
digits of the operands, and it may have the larger number of fraction digits of the two operands.

29.10.3. General Rules: Multiplication

We'll use another example to illustrate a general rule. Suppose we multiply these two numbers:

432.45
x 6.0743
2626.831035

and we see that the product's number of integer and fraction digits is given by

I = I1 + I2
F = F1 + F2

These values are of course the largest possible; if we multiply 1.25×2.2=2.750 we see that I for
the product can be less than the maximum; and if we omit trailing zeros, F can also be less than
the maximum.

190 The Integer (I') and Scale (S') attributes of packed decimal operands can help; see the example in Section 29.11.4.

Chapter VIII: Zoned and Packed Decimal Data and Operations 523

29.10.4. General Rules: Division (*)

Division rules are more complicated than those for addition, subtraction, and multiplication. To
start, consider the simple division 4/3:

4./3. = 1.33...

We see that the number of integer digits is limited, but the unending fraction is a problem. So we
need a rule to give useful values of I and F. First, we'll consider I:

4./.3 = 13.33...
4./.03 = 133.33...
4./.003 = 1333.33...
4./.0003 = 13333.33...

so we see that the value of I is

I = I1 + F2
Depending on how many fraction digits we want to keep in the result, the length of the packed
decimal quotient field might need to be much larger than I to accommodate the quotient's frac-
tion digits.

As another example, suppose we divide 457.9 by 1.23. Since multiplying both terms by the same
number doesn't change the quotient, we can multiply both by 100 to eliminate the fraction parts,
so that the divisor (1.23) is now 123 and the dividend is now 45790:

45790/123 = 372.27642276422764227642276422764227642276...

where the underscore indicates that the group of those digits repeats endlessly.

The unending quotient is again a problem: how many fraction digits should we keep? Usually we
will round the result to a “reasonable” number of digits, being careful to keep correct numbers of
integer and fraction digits. But, what is the correct number of digits?

You can consider two ways to handle this question:

1. If the fraction digits aren't important, you can use the shortest valid lengths for divisor and
dividend. For example, in evaluating 4/3 we could write:

ZAP Num,=P'4' Set up dividend
DP Num,Den Divide by divisor
- - -

Num DS PL2 Minimum possible length!
Den DC P'3'

and the result at Num will be X'1C1C', with quotient 1 and remainder 1.

2. If, however, you want to retain (say, 5) digits of the fraction, you will first need to allocate a
longer area for Num and then multiply the dividend by 105:

ZAP Num,=P'4' Set up dividend
SRP Num,64+5,0 Scale up by 5 digits (* 10000)
DP Num,Den Divide by divisor
- - -

Num DS PL5 Space for quotient and remainder
Den DC P'3'

and the result at Num will be X'0133333C1C', with quotient 133333 and remainder 1. When
you format the result for printing or display, you will have to “unscale” the result by placing
the decimal point correctly. For example, you can use the ED (Edit) instruction (to be
described in Section 30):

MVC W(L'EdM),EdM Copy edit pattern
ED W,Num Edit the result
- - -

EdM DC X'4020214B2020202020' bds.ddddd 7 quotient digits
W DS CL9

and the result at W is C'••1.33333' (where • represents a space).

524 Assembler Language Programming for IBM System z™ Servers Version 2.00

As another example, suppose we want to print the quotient of 479.6/1.23, rounded to 2
decimal places. Now,

479.6/1.23 = 389.9186991869918699186991869918699...

so our final rounded result should be 389.92. First, we must multiply by 100 to change both
operands to integers, so the division becomes 47960/123, which has the same result. The
quotient and divisor both have 3 digits (which fit in 2-byte packed decimal numbers), so we
might try this:

ZAP Num,=P'47960' Set up dividend
DP Num,Den Divide by divisor
- - -

Num DS PL4 Space for quotient and remainder
Den DC P'123'

which gives a result at Num of X'389C113C', a quotient of 389 and remainder 113. But this
doesn't have enough digits for both the fraction and the remainder parts (we want 2 rounded
fraction digits), so we need at least one additional digit for rounding. So, we first multiply
the numerator by 1000, remembering that we must increase the length of the Num field by 2
additional bytes:

ZAP Num,=P'47960' Set up dividend
SRP Num,64+3,0 Scale up by 3 digits
DP Num,Den Divide by divisor
- - -

Num DS PL6 Space for quotient and remainder
Den DC P'123'

which gives a result at Num of X'0389918C086C'. The quotient, X'389918C', is ready for
rounding using an SRP instruction:

ZAP Num,=P'47960' Set up dividend
SRP Num,64+3,0 Scale up by 3 digits
DP Num,Den Divide by divisor
SRP Num(4),64-1,5 Shift right one digit and round
- - -

Num DS PL6 Space for quotient and remainder
Den DC P'123'

and the rounded result at Num is X'0038992C086C' (where the rounded digit 2 is underscored) ,
ready for printing to 5 significant digits.

The answer to our question “what is the correct number of digits?” depends on how many frac-
tion digits are required for a particular application. If we say that the total number of integer and
fraction digits needed is N=I+F, and we already know the value of

I = I1 + F2,

then for division the number of fraction digits F is simply

F = N - I

29.10.5. COBOL and PL/I Notations (*)

High-level languages like COBOL and PL/I keep track of these details for you. Each numeric
quantity is explicitly or implicitly declared with a number of integer and fraction digits, and the
compiler and its run-time library use that information to produce valid results whenever possible.

They use different terminology than the “I.F” described above:

• COBOL calls the number of integer digits integers and the number of fraction digits decimals.
Thus,

 01 Number Pic S9(4)V9(2) Packed-decimal Value +1234.56

declares Number to have 4 integers and 2 decimals.

Chapter VIII: Zoned and Packed Decimal Data and Operations 525

• PL/I assigns a precision p and a scale q to fixed-point values: p is the total number of digits the
field can hold, and q is the number of fraction digits. Thus,

Declare Number Decimal (6,2) Init (1234.56);

assigns p=6 and q=2 to Number. Thus for PL/I, I.F = (p−q).q.

Exercises

29.10.1.(2) Express the I and F values of the three symbols in Figure 322 on page 523 in PL/I
notation.

29.11. Example of a Packed Decimal “Business” Computation

To illustrate a “real” packed decimal application, suppose a wholesaler and a retailer complete an
order:

1. The retailer orders from the wholesaler 60 high-tech widgets at $74.65 each.
(60×$74.65 = $4479.00)

2. For this large order, the wholesaler discounts the price by 4.7%.
($4479.00×0.047 = $210.513, so the discounted price is $4479.00 −$210.51 = $4268.49)

3. The wholesaler adds 9.75% local sales tax, and a $4.00 per-item shipping charge.
(4268.49×1.0975 = 4684.67; the shipping charge is 60×$4.00 = $240.00, so the total is
$4684.67+$240.00 = $4924.67.)

4. The retailer's pre-payment of $1000.00 is deducted. The result is the wholesaler's bill to the
retailer.
($4924.67 −$1000.00 = $3924.67)

Then, the retailer calculates his necessary markup and the sale price:

5. The retailer calculates his base cost for each item.
($4924.67/60 = $82.07785 or $82.08)

6. He then applies his retail markup (about 37%), adjusted to a sale cost just below one dollar.
(The markup is $82.08×1.37 = $112.4496 or $112.45, and the adjustment is
$0.54+$112.45 = $112.99)

7. Each item a customer buys must include 9.25% sales tax and a $7.50 recycling fee.
(The price including sales tax is $112.99×1.0925 = $123.44; adding the recycling fee gives
the final customer cost: $123.44+$7.50 = $130.94)

8. After making the “cents” portion of the price 99 cents, the result is the final cost per item to
the customer.

9. The retailer's gross profit per item is (sale cost) − (base cost).
($112.99 −$82.08 = $30.91. The percent gross profit is $30.91/$82.08 = 0.376 or 38%)

We will now see how each step is calculated in packed decimal arithmetic.

29.11.1. The Wholesaler's Calculation

First, he creates data and work areas, choosing field lengths to hold values and results. The
parenthesized values are (I.F): the number of integer digits and the number of fraction digits.
Thus, the width of the field is I+F digits. (Remember that the number of bytes is (I+F)/2+1.).

526 Assembler Language Programming for IBM System z™ Servers Version 2.00

UnitCost DC PL3'74.65' Base cost per item (3.2)
WItems DC PL2'60' Number of wholesale items ordered (3.0)
Discount DC PL2'.047' Discount percentage for large order (0.3)
WhlseTax DC PL3'.0975' Sales tax at wholesaler location (1.4)
ShipChrg DC PL2'4.00' Shipping charge per item (1.2)
Prepaid DC PL5'1000.00' Retailer's prepayment (7.2)
WhlseNet DS PL5'00000.00' Net cost to retailer (7.2)
WWorkVal DS PL8 Work area for wholesaler calculations
ShipWork DS PL4 Work area for shipping charge
WDisc DS PL8 Work area for bulk-order discount
WSTax DS PL8 Work area for wholesale sales tax
Figure 323. A business calculation in packed decimal, part 1

Next, the wholesaler uses this data and the work areas to calculate the retailer's bill.

ZAP WWorkVal,UnitCost Set up unit cost X'000000000007465C' (13.2)
* (nnnnnnnnnnnnn.nn)

MP WWorkval,WItems Multiply by no.items ordered X'000000000447900C' (13.2)

Because the number of items is an integer, there was no change in the number of fraction
digits in the product.

ZAP WDisc,WWorkVal Copy base cost for bulk discount
MP WDisc,Discount Discounted cost X'000000021051300C' (13.5)
SRP WDisc,64-3,5 Rounded bulk discount X'000000000021051C' (13.2)
SP WWorkVal,WDisc Calculate discounted cost X'000000000426849C' (13.2)

The discount has 3 fraction digits, so the number of fraction digits in the product
increases to 5, so we shifted right 3 places and round to get the correct discount.

ZAP WSTax,WWorkVal Copy for calculating sales tax
MP WSTax,WhlseTax Wholesaler's sales tax X'000000416177775C' (11.6)

* (nnnnnnnnn.nnnnnn)
SRP WSTax,64-4,5 Calculate rounded sales tax X'000000000041618C' (13.2)
AP WWorkval,WStax Add wholesaler's sales tax X'000000000468467C' (13.2)

The sales tax has 4 fraction digits, so the number of fraction digits in the product
increases to 6, so we shifted right 4 places and round to get the correct tax amount.

ZAP ShipWork,ShipChrg Set shipping charge
MP ShipWork,WItems Times number of items X'0024000C' (5.2)
AP WWorkVal,ShipWork Add shipping charge X'000000000492467C' (13.2)
SP WWorkVal,PrePaid Subtract retailer's prepayment X'000000000392467C' (13.2)
ZAP WhlseNet,WWorkVal Now have net cost to retailer X'000392467C' (7.2)

Figure 324. A business calculation in packed decimal, part 2

Thus, the wholesaler's bill to the retailer is X'000392467C', or $3924.67. Note that the
instructions must keep track of the decimal point at each step.

29.11.2. The Retailer's Calculation

Now that the retailer has received the widgets and the bill from the wholesaler he must determine
what to charge as a retail price, and what his margin of profit will be for each widget he sells.

First, he creates data and work areas, choosing field lengths to hold values and results:

Chapter VIII: Zoned and Packed Decimal Data and Operations 527

WhlseChg DC PL4'4924.67' Charge for the full order (5.2)
NItems DC PL2'60' Number of items ordered (3.0)
BaseCost DS PL4'0' Base cost per item work area
RMarkup DC PL3'1.37' Basic retail markup margin (5.2)
Retail DS PL4 Retail advertised price per item
GrossPrf DS PL3'0' Gross profit per item sold
CustCost DS PL4 Final charge per item to customer
RWorkVal DS PL8 Work area for retail calculations
RetailTx DC PL3'.0925' Sales tax at retailer location (1.4)
Recycle DC PL3'7.50' Recycling charge per item (3,2)
ItemCost DS PL4 Total customer cost per item
Figure 325. A business calculation in packed decimal, part 3

As in the wholesaler's calculation, the (precision,scale) of each item are shown.

The retailer can now calculate the retail cost per widget and his expected rate of profit per item.

ZAP RWorkVal,WhlseChg Prepare to calculate base cost X'000000000492467C' (13.2)
DP RWorkVal,NItems Calculate base cost per item X'00000008207C047C' (9.2)

The retailer wants to round the base cost, but SRP won't work: only if twice the remainder is
greater than or equal to the number of items (the divisor) should the quotient be rounded.

AP RWorkVal+6(2),RWorkVal+6(2) Check remainder X'00000008207C094C' (1.2)
CP RWorkVal+6(2),NItems 2*Remainder < NItems?
JL NoRnd Branch if yes, no roundup
AP RWorkVal(6),=P'1' Round up base cost X'00000008208C' (9.2)

NoRnd ZAP RWorkVal,RWorkVal(L'RWorkVal-2) Drop remainder
ZAP BaseCost,RWorkVal Save the base cost per item X'0008208C' (5.2)
MP RWorkVal,RMarkup Find approximate retail price X'000000001124496C' (11,4)
SRP RWorkVal,64-2,5 Round off the two extra digits X'000000000011245C' (13.2)
NC RWorkVal+L'RWorkVal-2(2),=X'F00F' Delete 2 digits X'000000000011200C' (13.2)
AP RWorkVal,=P'99' Force price to end in .99 X'000000000011299C' (13.2)

He wanted the sales price to seem more “sale-like”, so he added .99 to force the
sales price upward to end in .99.

ZAP Retail,RWorkVal Save advertised retail price X'0011299C' (5.2)
MP RWorkVal,RetailTx Calculate retailer's sales tax X'000000010451575C' (9.6)
SRP RWorkVal,64-4,5 Round off to dollars/cents X'000000000001045C' (13.2)

Just as the wholesaler did, the retailer compensates for the four fraction digits in the sales tax
by rounding the tax to have two decimal digits.

AP RWorkVal,Retail Add the retail cost X'000000000012344C' (13.2)
AP RWorkVal,Recycle Add widget recycle charge X'000000000013094C' (13.2)
ZAP CustCost,RWorkVal Save customer cost/item X'0013094C' (5.2)
ZAP RWorkVal,Retail Calculate gross profit per item
SP RWorkVal,BaseCost Subtract base from retail X'000000000003091C' (13.2)
SRP RWorkVal,3,0 Position for % calculation X'000000003091000C' (10.5)
DP RWorkVal,BaseCost Percentage gross profit X'0000376C0004792C' (7.1)

Figure 326. A business calculation in packed decimal, part 4

The third and fourth instructions help calculate a rounded quotient; like binary division, packed
decimal quotients are unrounded. If 2×(remainder) ≥ divisor, we add 1 to round the quotient.

Finally: the advertised retail cost per widget is $112.99, and with sales tax and recycling charge,
total cost per widget to the customer is X'0013094C' = $130.94.

The retailer's gross profit per item is X'0003091C' = $30.91, and his profit margin is
X'0000376C' = 37.6%.

528 Assembler Language Programming for IBM System z™ Servers Version 2.00

29.11.3. Comments

As these examples illustrate, doing “realistic” calculations with packed decimal arithmetic can be
complicated; you must plan carefully to ensure that field lengths are correct and that edit patterns
(described in Section 30) produce correctly formatted results. This “business” calculation can be
done much more easily in Assembler Language using Decimal Floating-Point, as we'll see in
Section 35.13; but (for packed decimal arithmetic) many programmers prefer letting a high level
language like PL/I or COBOL worry about the details.

Preview of Coming Attractions

Having completed this section, you can understand the difficulties of
typical packed decimal arithmetic calculations. Chapter IX will describe
Decimal Floating-Point arithmetic and data, which greatly simplifies the
scaling problems inherent in packed decimal.

29.11.4. Using Integer and Scale Attributes (*)

The assembler can help with packed decimal data containing integer and/or fraction digits, using
the Integer Attribute (I') and the Scale Attribute (S') of a symbol. Consider the symbols in
Figure 322 on page 523:

ZAP Sum,A c(Sum) = X'0000123C' = 123.
SRP Sum,64+3,0 c(Sum) = X'0123000C' = 123.000
AP Sum,B c(Sum) = X'0123456C' = 123.456
- - -

A DC P'123.'
B DC P'.456'
Sum DS PL4 Space for 7 digits

The values of the symbol attributes are shown in Figure 327, where we see that I'A=3, S'A=0,
I'B=0, S'B=3, I'Sum=7 and S'Sum=0.

000000 123C 1 A DC P'123.'
000002 456C 2 B DC P'.456'
000004 3 Sum DS PL4

000008 0300 5 DC AL1(I'A,S'A)
00000A 0003 6 DC AL1(I'B,S'B)
00000C 0700 7 DC AL1(I'Sum,S'Sum)
Figure 327. Integer and Scale Attributes

We could use these values in the SRP instruction to determine the amount of the shift:

ZAP Sum,A c(Sum) = X'0000123C' (7.0)
SRP Sum,64+(S'B-S'A),0 c(Sum) = X'0123000C' (4.3)
AP Sum,B c(Sum) = X'0123456C' (4.3)

Figure 328. Using Scale Attributes in a SRP instruction

In practice, Integer and Scale attributes are used rather rarely, and then mainly in macro
instructions.

Exercises

Chapter VIII: Zoned and Packed Decimal Data and Operations 529

29.11.1.(2) Show the Integer and Scale Attributes of the following packed decimal data items:

1. P'1024.2048'
2. P'-0.98765'
3. P'+2235058.4'
4. P'72.3456'

29.12. Summary

Some properties of the instructions discussed in this section are summarized in Table 216.

Table 216. Summary of decimal instruction behavior

Terms and Definitions
biased rounding

A common type of rounding that introduces a small inaccuracy in the rounded results; typi-
cally caused by rounding decimal values by adding 5 to the last discarded digit.

offset
The MVO instruction shifts or offsets the second operand to the left by one hex digit before
appending it to the left of the sign digit of the first operand.

operand order dependence
The results of many packed decimal arithmetic instructions depend on the order of the oper-
ands. For example (007 +) + (7+) yields 014+ , but (7 +) + (007+) causes a decimal overflow.

precision
Precision can be defined in two ways. (1) The number of digits that can be held in a register
or memory field. (2) The number of significant digits in a numeric value.

scaled arithmetic
Methods for doing arithmetic with non-integer values, using fixed-point arithmetic
instructions such as binary integer and packed decimal.

unbiased rounding
A technique for avoiding the inaccuracies introduced by biased rounding, typically by
rounding results exactly half way between two representable results to the value with an even
low-order digit.

Programming Problems

Problem 29.1.(4) Rewrite your solution to Problem 25.2 on page 398 to do perfect shuffles
using packed decimal numbers throughout.

Mnemonic Generate pre-
ferred signs? Possible interruptions

AP Y Decimal overflow, decimal data

CP N Decimal data

DP Y Zero divide, decimal data, specification

MP Y Decimal data, specification

MVO N —

SP Y Decimal overflow, decimal data

SRP Y Decimal overflow, decimal data

TP N —

ZAP Y Decimal overflow, decimal data

530 Assembler Language Programming for IBM System z™ Servers Version 2.00

Problem 29.2.(1)+ In Section 28.2 on page 486, the text states that (5 −) + (5 −) will generate 0 − .
Write a short program to show that this is true.

Problem 29.3.(1)+ In Section 28.4 on page 489, the text states that (2+)×(0 −) will generate 0 − .
Write a short program to show that this is true.

Chapter VIII: Zoned and Packed Decimal Data and Operations 531

30. Converting and Formatting Packed Decimal Data

3333333333 00000000
333333333333 0000000000
33 33 00 00

33 00 00
33 00 00

3333 00 00
3333 00 00

33 00 00
33 00 00

33 33 00 00
333333333333 0000000000
3333333333 00000000

The instructions in Table 217 perform useful operations on packed decimal numbers. Along with
PACK and UNPK, they are used to convert data among binary, packed decimal, and character
formats.

Table 217. Instructions used for converting and formatting packed decimal

Op Mnem Type Instruction Op Mnem Type Instruction

4F CVB RX Convert to Binary (32) 4E CVD RX Convert to Decimal (32)

EB06 CVBY RXY Convert to Binary (32) E326 CVDY RXY Convert to Decimal (32)

E30E CVBG RXY Convert to Binary (64) E32E CVDG RXY Convert to Decimal (64)

DE ED SS Edit D F EDMK SS Edit and Mark

The only difference between CVB and CVBY, and between CVD and CVDY, is that the
instructions ending with “Y” have signed 20-bit displacements, while the other two have unsigned
12-bit displacements.

30.1. CVD, CVDY, and CVDG Instructions

The CVD and CVDY instructions convert a two's complement binary number in the rightmost
32 bits of general register R1 to packed decimal format and store it at the 8-byte191 second operand
in memory. To illustrate, suppose c(GR7)=X'00000087', or +135 in decimal. If we execute
either of the CVD or CVDY instructions

CVD 7,WorkArea Convert to packed decimal at WorkArea
CVDY 7,WorkArea Convert to packed decimal at WorkArea
- - -

WorkArea DS D Result = X'00000000 0000135C'

then the packed decimal result at WorkArea will have the value shown.

191 On System/360 CPUs, the second operand was required to be aligned on a doubleword boundary; if it wasn't, a
specification exception caused a program interruption. Like many other operand alignment requirements, it was
removed in System/370, but doubleword alignment is still a good practice.

532 Assembler Language Programming for IBM System z™ Servers Version 2.00

Because the second operand field can hold 15 decimal digits, there will always be at least five
high-order zeros in the result. The largest magnitude of the first operand is −2147483648, which
has ten significant digits. When converted to packed decimal, the result is X'000002147483648D'.

Similarly, CVDG converts the 64-bit binary integer first operand in GG R1 to a 16-byte packed
decimal second operand. Thus, if GG8 contains X'4000000000000000' (262),

CVDG 8,WrkArea2 Convert to 16-byte packed decimal
- - -

WrkArea2 DS 2D Result=X'00000000 00004611 68601842 7387904C'
Figure 329. Converting a 64-bit binary integer to packed decimal

then the packed decimal result at WrkArea2 has the value shown.

These three instructions may be thought of as “store” instructions, because the data “moves”
from the first operand (a register) to the second (in memory).

Suppose we use CVD to help produce printable decimal values, as in a program that prints a
multi-page listing with a page number on each page. Suppose the halfword integer at PgNum con-
tains the current page number, and we want to put that number (preceded by the characters
“Page”) into an area named PageNo.

NDigits Equ 5 Max number of digits in page number
LH 0,PgNum Get binary value of page number
CVD 0,WorkArea Convert to decimal
UNPK ZonePgN,WorkArea Unpack to zoned format
OI ZonePgN+L'ZonePgN-1,C'0' Set zone X'F' for last digit
- - -

WorkArea DS 0D,XL8 Conversion work area
PgNum DC H'345' Simulated page number
PageNo DS 0CL(5+NDigits) Length for 'Page nnnnn'

DC C'Page '
ZonePgN DS ZL(NDigits) Character form of page number
Figure 330. Using CVD to format page numbers

UNPK transfers the original sign of the packed operand to the zoned operand, which would be
X'C' in this example. Thus, the OI instruction sets the zone digit in the low-order character of the
field, for its correct EBCDIC representation.

This instruction sequence has a minor defect, however: if the number to be printed has fewer
significant digits than the size of the field, the result will contain leading zeros. A simple loop can
be written to change leading zeros to blanks, but the ED and EDMK instructions provide a more
elegant and powerful solution to this problem. (See Exercises 30.1.4 and 30.1.5.)

Exercises

30.1.1.(1)+ In Figure 329, the result at WrkArea2 has many leading zero digits. What is the
minimum number of zero hex digits in the result from a CVDG instruction?

30.1.2.(1) Why can the 8-byte second operand of a CVD instruction hold 15 digits?

30.1.3.(1) Suppose GR1 contains the maximum negative number X'80000000', and the instruc-
tion

CVD 1,X

is executed. Show the contents of 8-byte area named X.

30.1.4.(2)+ Suppose the OI instruction had been omitted in Figure 330. Explain what would
happen when the result at PageNo was printed, given that the page number at PgNum was first
29, then 30, and then 31.

Chapter VIII: Zoned and Packed Decimal Data and Operations 533

30.1.5.(2)+ Add a short loop to the instruction sequence in Figure 330 to blank the leading
zeros in the page number.

30.1.6.(2)+ For each of these values at Arg,

1. Arg DC F'-1'
2. Arg DC F'2147483321'
3. Arg DC X'77777783'
4. Arg DC C' *'

show the packed decimal result at DecVal after executing these instructions:

L 1,Arg
CVD 1,DecVal
- - -

DecVal DS 0D,XL8

30.1.7.(3)+ For each of these values at Arg2,

1. Arg2 DC FD'-1'
2. Arg2 DC FD'9223372036854775807'
3. Arg2 DC XL8'B7777783A60D93CA2'
4. Arg2 DC CL8'Ghastly!'

show the packed decimal result at DecVal2 after executing these instructions:

LG 1,Arg2
CVDG 1,DecVal2
- - -

DecVal2 DS 0D,XL16

30.1.8.(4) Write a sequence of instructions to simulate the operation of CVD.

30.2. CVB, CVBY, and CVBG Instructions

The CVB and CVBY instructions perform the inverse operation to CVD and CVDY; similarly,
CVBG does the inverse of CVDG. That is, the packed decimal number at the second operand
address is converted to two's complement binary form and the result is placed in general register
R1. Thus, they can be thought of as “load” instructions that “move” data from the second
operand (in memory) to the first (in a register).

To illustrate, suppose we execute this CVB instruction:

CVB 6,PackNum Result in GR6 = X'FFFFFF79'
- - -

PackNum DC PL8'-135' X'000000000000135D'

The result in GR6 is X'FFFFFF79', with value −135.

Similarly, if we execute this CVBG instruction

CVBG 9,PackNum2 Convert to 64 bits in GG9
- - -

PackNum2 DC PL16'-123456789012345'

The result in GG9 is X'FFFF8FB779F22087'.

All three instructions are subject to two possible program interruption conditions.

• If the second operand field does not contain valid decimal data, a decimal data exception
occurs and the Interruption Code is set to 7.

• If the value of the decimal operand is too large to fit in the first operand register, a fixed-point
divide exception occurs and the IC is set to 9.

534 Assembler Language Programming for IBM System z™ Servers Version 2.00

This situation is handled differently for CVB/CVBY and CVBG.

− For CVB and CVBY, the low-order 32 bits of the two's complement binary result are
placed into register R1.

− For CVBG, the operation is suppressed, and register R1 is unchanged.

Suppose an 80-byte record contains numeric data, and we must convert a number on the record
from character form to binary and place the result in GR5. Assume the characters are right-
justified in an 8-byte field of the record at offset DOff.

DLen Equ 8 Length of data field
DOff Equ 72 Offset of start of field

PACK DWork,Record+DOff(DLen) Pack data to decimal
CVB 5,DWork Convert to binary value in GR5
- - -

DWork DS 0D,XL8 Conversion area
Record DC CL75' ',C'45678' 80-byte input data record
Figure 331. Converting decimal characters to binary

This technique is adequate for unsigned numbers, or for zoned decimal data in which the sign is
“over-punched” in the last digit column of the input field. Greater care is needed when the digits
may be preceded by a sign. (See Exercise 30.2.6.)

Exercises

30.2.1.(1)+ What will happen if a CVB instruction specifies a second operand containing
X'000002147483648C'?

30.2.2.(2)+ Suppose we execute the following two instructions. What will happen, and what
results will be found at DWork and in GR0?

PACK DWork,Data
CVB 0,DWork
- - -

DWork DS D
Data DC C'123'

30.2.3.(2)+ What will happen in the instruction sequence of Exercise 30.2.2 if Data is defined
by

Data DC CL20'123' ?

30.2.4.(2)+ What will happen in the instruction sequence of Exercise 30.2.2 if Data contains
four blanks, such as

Data DC CL4' ' ?

30.2.5.(4) If the binary result of a CVB instruction is too large, an interruption occurs after the
low-order 32 bits of the result are put into the first operand register. This means that a certain
amount of internal arithmetic apparently had to be performed to a precision of more than 32
bits; what is the minimum number of internal bits required?

30.2.6.(3)+ Suppose the datum in the 8-column field in Figure 331 might be preceded by an
optional sign character, C'+' or C'−'. Modify the instruction sequence to place the correctly
signed binary result into GR5. (Assume that the number is well-formed: it contains no extra
signs, no embedded or trailing blanks, no invalid characters, etc.)

30.2.7.(1) Why do you think the designers of the CVB instruction chose to place the low-order
32 bits of the result into general register R1 even when the fixed-point divide exception indicates
that the result is not correct?

Chapter VIII: Zoned and Packed Decimal Data and Operations 535

30.2.8.(2) Show the resulting value in GR0 for each of these data values at PackData after exe-
cuting this instruction:

CVB 0,PackData

1. PackData DC XL8'FFFFFFFC'
2. PackData DC XL8'743915506D'
3. PackData DC XL8'AFFFFFFFFFFFFFFFD'
4. PackData DC XL8'999C'

30.2.9.(3) Write a sequence of instructions to simulate the operation of CVB.

30.2.10.(3) Repeat Exercise 30.2.6, but make no assumptions about correctly formed input data.
If an invalid character is found, branch to BadChar with its address in GR1.

30.3. Editing Overview

The ED and EDMK instructions are complex. They are related to UNPK: they convert the
packed decimal second operand to character form in the first operand. However, that is about all
that is similar between UNPK and the editing instructions! Editing can also suppress leading
zeros, insert special characters, and do other things that produce readable results.

The Assembler Language syntax for both instructions is

mnemonic D1(N,B1),D2(B2)
or

mnemonic Pattern(N),PackData

Both editing instructions are single-length SS-type instructions, as shown in Table 218.

Table 218. Format of the ED and EDMK instructions

The length field of these instructions refers only to the length of the first, or pattern, operand
(unlike other single-length SS-type instructions in which the lengths of the two operands are con-
sidered to be the same). The number of bytes taken from the second operand depends on the
contents of both operands.

Editing converts the signed or unsigned192 packed decimal second operand to character (zoned)
form under the control of a pattern provided by the first operand, as sketched in Figure 332. The
bytes of the pattern provide a picture showing what the edited result should look like: each byte in
the pattern represents one character of the result.

opcode L B1 D1 B2 D2

┌─────┬─────┬─────┬─────┐
│ d d │ d d │ d d │ d s │ Packed decimal operand
└─────┴─────┴─────┴─────┘

�
┌────────────────┐
│ Edit operation │
└────────────────┘

�
 ┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐ Pattern, replaced by
 │ Ch │ Ch │ Ch │ Ch │ Ch │ Ch │ Ch │ Ch │ Ch │ numeric and other
 └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘ characters
Figure 332. Sketch of an editing operation

192 We'll see more about unsigned packed decimal data when we discuss Decimal Floating-Point in Section 35.

536 Assembler Language Programming for IBM System z™ Servers Version 2.00

This picture is created from four types of information that tell the instruction how to convert the
packed decimal second operand into zoned characters. Each byte in a pattern contains one of
these five types of information:

1. a Fill Character (FC), the first byte of the pattern, which may have any value;

2. a Digit Selector (DS) character X'20';

3. a Digit Selector and Significance Start (SS) character X'21';

4. a Field Separator (FS) character X'22';

5. a Message Character (MC), which may have any value other than X'20', X'21', or X'22'. It
has no effect on the packed decimal second operand.

Each byte in a pattern is called a Pattern Character (PC).193

The editing process scans the pattern once from left to right, and takes action depending on

• which of the five kinds of pattern byte is encountered, and

• what has happened previously.

To remember what “happened previously”, the CPU uses a single internal bit called the Signif-
icance Indicator (SI).194

The Significance Indicator is not a part of any register or of the PSW, and its value is not acces-
sible to the program except as it influences the progress of an editing operation. It is set OFF at
the start of an editing operation, and then it is turned on and off by events that occur during the
edit. Its final setting may influence the Condition Code setting when the edit operation completes.

Visualizing patterns is difficult because the three non-message characters (with values X'20',
X'21', and X'22') have no printable representation. If we choose a printable character to represent
each of them, then we might confuse them with ordinary message characters, because any print-
able character in a pattern is normally a message character!

We will use this notation: the lower-case letters d, s, and f represent respectively the Digit
Selector (DS), Digit Selector and Significance Start (SS), and Field Separator (FS) characters. As
before, we'll use “•” to represent a blank space.

Thus, we might represent the pattern

X'402020202120C3D922202120' by C'•dddsdCRfdsd'
Figure 333. Representation of an editing pattern

The first byte in a pattern is the Fill Character (FC). The CPU saves a copy of this first pattern
character for the duration of the editing operation. It is used in various situations to replace other
pattern characters. A common choice for a fill character is a blank, as in Figure 333.

To summarize the features described thus far:

1. The first operand is a pattern containing the Fill Character, and one or more Digit Selector,
Digit Selector and Significance Start, Field Separator, and Message Characters.

2. The second operand is one or more packed decimal numbers to be converted to zoned
format in a manner controlled by (and pictured by) the pattern.

3. The result replaces (overwrites) the pattern with Message Characters, Fill Characters, and
zoned decimal digits. Thus the pattern is usually copied first to an editing area.

193 System z has had a “PC” since 1966.
194 In some older books and manuals, it was called the S-Trigger.

Chapter VIII: Zoned and Packed Decimal Data and Operations 537

Exercises

30.3.1.(2)+ For each of the following patterns, identify (1) the Fill Character, (2) Digit Selec-
tors, (3) Significance Start and Digit Selectors, (4) Field Separators, and (5) Message Characters.

1. X'40202020202120'
2. X'5C20202021204B2020'
3. X'5C4020202021202240E396A381937E20202021204B2020'

 4. C' Hello, World!'

30.3.2.(2) An early programming convention represented the DS, SS, and FS characters by ', (,
and) respectively. Rewrite the pattern of Figure 333 on page 537 using this convention, and
assess its readability.

30.4. Simple Examples of Editing

We begin by illustrating the simplest forms of the editing process with a “plausible” example, and
then give some more general rules. While the overall operation of ED and EDMK will turn out
to be fairly straightforward, it may be difficult initially to understand why and how things are
happening.

Suppose we are printing a report having titles and page numbers on each page, and we know
there will be at most 900 pages in a report. This means that the two-byte packed decimal number
at PgNo can hold the page number without overflow. We could use UNPK to produce a printable
character string of the form “Page nnn” with these instructions.

UNPK TtlPgN(3),PgNo(2) Convert to zoned format
OI TtlPgN+2,C'0' Set correct zone on last digit
- - -

PgNo DC PL2'7' 3-digit page number 007+
TtlP DC C'Page ' Start of page-number string
TtlPgN DS ZL3 Zoned page number
Figure 334. Convert a packed decimal integer to characters using UNPK

This has a defect: small page numbers will have leading zeros, as in “Page 007”. We can use the
ED instruction to both unpack the digits and suppress the leading zeros, as shown in Figure 335:

MVC TtlPgN(4),PgNPat Move a copy of pattern
ED TtlPgN(4),PgNo Convert to zoned format
- - -

PgNo DC PL2'7' Page number 007+
TtlP DC C'Page' Start of page-number string
TtlPgN DS CL4 Edited result = C'•••7'
PgNPat DC C' ',3X'20' Pattern = C' ddd'
Figure 335. Convert a packed decimal integer to characters using ED

Because we will want to print the page number more than once, we must use the MVC instruc-
tion to copy the unmodified pattern from PgNPat each time, where it will be replaced by the
edited result.

The ED instruction converts the packed operand at PgNo as follows:

1. The first character of the pattern (a blank) is saved as the Fill Character, and the Significance
Indicator is set OFF.

2. When the first Digit Selector character is encountered, the first digit of the second operand is
examined: if it is zero (as in this case) and the Significance Indicator is OFF, the Fill Char-
acter replaces the pattern character.

538 Assembler Language Programming for IBM System z™ Servers Version 2.00

3. The next pattern character and the next source digit are examined; because no significant
(nonzero) digits have been encountered, the Fill Character again replaces the pattern char-
acter.

4. Finally, the last pattern character and second operand digit are examined. Because the latter is
nonzero, it is converted to zoned format (X'F7'), and the zoned result replaces the pattern
character. The Significance Indicator is set ON to show that a significant digit has been
found.

The result C'•••7' contains three blanks: the first is the original Fill Character, and the other two
are the suppressed leading zeros.

Now, suppose the page number at PgNo is 700+ instead of 007+. When the ED instruction is
executed, the first digit examined is nonzero. The Significance Indicator will be set ON, and X'F7'
will replace the first Digit Selector character. When the second and third pattern characters are
examined, the status of the Significance Indicator shows that the zero digits from the second
operand are now significant. They are therefore zoned, and replace the pattern characters. The
result will be “Page 700” as desired.

From this simple example, we infer some simple rules about how editing works:

1. If the pattern character is a Digit Selector, the next decimal digit is taken from the second
operand.

2. If the Significance Indicator is ON, go to step 5.

3. If the SI is OFF, examine the decimal digit. If it is not zero, set the SI ON and go to step 5.

4. If the SI is OFF and the decimal digit is zero, replace the pattern character (DS) by the Fill
Character, and go to step 6.

5. Attach a zone to the decimal digit, and replace the (DS) pattern character with the result.

6. Step to the next pattern character and decimal digit, and repeat until the pattern is exhausted.

This description omits some important considerations, but it shows the basic features of the
editing process. The number of decimal digits examined from the second operand is exactly the
number of selector characters (DS and SS) in the pattern.

Suppose you now want to print any nonnegative 3-digit decimal number using the technique
shown in Figure 335 on page 538. Everything works unless you try to print 000+: in the figure
we assumed that page numbers start at 1, not at zero, so we didn't have to worry about this case.
From the above description it is clear that using the pattern X'40202020' to edit 000+ gives an
all-blank result! If we actually wanted to blank out a zero field, fine: we just discovered how to do
it (by accident).

You will normally want to print at least one zero character in such cases. The “Digit Selector and
Significance Start” (SS) character is used to force digit significance to begin.

The SS character works exactly like the DS character, except that it also turns the Significance
Indicator ON if it was not already on. However, the Significance Indicator is set ON after the
source digit has been examined, so significant digits will start (if they haven't already) in the next
digit position! Thus, the SS character actually indicates not the start of significance, but more
correctly the “end of insignificance”, the rightmost limit of zero suppression.

Step 4 of the preceding “simple rules” can be revised as follows:

4'. If the SI is OFF and the decimal digit is zero, replace the pattern character (DS or SS) by
the Fill Character. If the pattern character was SS, set the SI ON and go to step 6.

Suppose you need to print the value of the nonnegative binary integer fullword at Num. If the
value is zero, a single 0 digit should be printed. Since a fullword integer can be at most 10 decimal
digits long, we might plan to use an edit pattern with 10 digit selectors. With a fill character, the
pattern would be 11 bytes long.

However, after converting the binary value to packed decimal, we find that the 8-byte decimal
field (with 15 decimal digits) always contains at least 5 high-order zero digits that we want to

Chapter VIII: Zoned and Packed Decimal Data and Operations 539

ignore. We can adjust the second operand address to skip four of the leading zeros, but because
the digits taken by the editing instruction always start with the leftmost digit of the second
operand, the pattern must contain 11 digit selectors to account for the remaining leading zero.

L 0,Num Get nonnegative number
CVD 0,WorkArea Convert to packed decimal
MVC LineX,Pat Move pattern to print line
ED LineX,WorkArea+2 Start edit with high-order digits
- - -

Num DC F'1234567890' Number to be printed
WorkArea DS D 8-byte work area for CVD
Pat DC C' ',9X'20',X'2120' Pattern = C'•dddddddddsd'
Line DC C' Num=' Start of printable text
LineX DS CL12 Edited result here
Figure 336. Converting a 32-bit binary integer to characters

The pattern at Pat contains 11 digit selector bytes; the next-to-last also starts significance, so the
result will have at least one significant digit. The implied length (12) of the symbol LineX supplies
the length byte in the MVC and ED instructions.

Exercises

30.4.1.(2)+ In Figure 336, what result will appear at LineX if the pattern at Pat contains only
10 digit selectors?

30.4.2.(2) Suppose a pattern is L bytes long. What is the maximum number of bytes that might
be taken from the second operand? The minimum?

30.4.3.(2)+ Suppose we execute these instructions for each of the three indicated values of the
pattern. What results will be generated?

MVC Output,Pattern
ED Output,Work8+2
- - -

Work8 DC X'000000000729413C'
Output DS CL12

The patterns are defined by

1. Pattern DC C' ',11X'20'
2. Pattern DC C'*',X'21',10X'20'
3. Pattern DC C'*',3X'20',X'21',7X'20'

30.4.4.(2) In Exercise 30.4.3, what would have been generated if the second operand of the ED
instruction was Work8+1 instead?

30.4.5.(1) What will result in Figure 336 if c(Num) = 0?

30.4.6.(2)+ Which DS characters in the pattern in Figure 336 will always be replaced by the
Fill Character?

30.4.7.(2)+ What will happen if the length byte of an ED instruction contains 0 (the pattern is
1 byte long), and the pattern byte is not a DS or SS character, and the operand 2 address is
invalid? What will happen if the pattern is longer than one byte but still contains no digit selec-
tors?

540 Assembler Language Programming for IBM System z™ Servers Version 2.00

30.5. Single-Field Editing

Now that we have a general idea of how editing works, we can give a more detailed description.
We'll investigate the function of the Field Separator (FS) pattern character in Section 30.7.

Each step of an edit operation always gives one of three possible results:

1. a source digit from the second operand is zoned and stored into the pattern in place of a DS
or SS character; or,

2. the Fill Character replaces the pattern character; or,

3. the pattern character is left unchanged.

Which of these three results occurs depends on the state of the Significance Indicator and the type
of pattern character. If the pattern character is a Digit Selector of either type, the result also
depends on whether the source digit is zero.

Message Characters in the pattern are either left unchanged (if the SI is ON) or replaced by the
Fill Character (if the SI is OFF). They can be thought of as being “significant” or “not
significant” Message Characters.

Suppose we want to print the nonnegative fullword integer at Num as in Figure 336 on page 540,
and we want commas to separate every group of three digits (counting from the right). Thus, the
binary integer 1234567890 should be edited to form the characters 1,234,567,890. This is done
just as before, except that the pattern is now C'•dd,ddd,ddd,dsd'. (Remember that we use the •
character to represent a blank.)

L 0,Num Get number to be printed
CVD 0,WorkArea Convert to packed decimal
MVC LineX,Pat Move pattern to print line
ED LineX,WorkArea+2 Edit 11 decimal digits
- - -

Num DC F'1234567890' Number to be printed
WorkArea DS 0D,XL8 Work area for CVD
Pat DC C' ',3X'20206B20',X'2120' X'6B' is a comma
Line DC C' Num =' Start of printable text
LineX DS CL(Line-Pat) Edited result here
Figure 337. Editing a binary integer with separating commas

The Message Character “comma” was written in its hexadecimal form, X'6B'.

Until a nonzero source digit (or the SS pattern character) is encountered, the SI will be OFF, and
all pattern characters including the commas will be replaced by the Fill Character, a blank. Thus,
if the value at Num is 4095, the first two commas in the pattern will be suppressed, leaving 4,095
as the nonblank part of the result.

30.5.1. Editing Negative Values

We have deferred considering the sign of the second operand, assuming that it was always non-
negative. When the sign code at the end of the packed decimal operand is encountered, the Signif-
icance Indicator is set OFF if the sign code is + . This can be used to “fill” characters following
the last digit.

For example, suppose you must print the balance in a charge-card account. If the balance is
negative, indicating that the customer has a “credit” balance, you should print the word “CREDIT”
following the amount. Let the packed decimal number at Balance represent the account balance
in cents, so a decimal point must precede the last two digits of the edited result.

Chapter VIII: Zoned and Packed Decimal Data and Operations 541

MVC LinB,Pat2 Move pattern to print line
ED LinB,Balance Edit to printable form
- - -

Balance DC P'-0012345' Credit balance of $123.45
Pat2 DC C' ',X'20206B2020214B2020',C' CREDIT' Pattern
* Note: PAT2 = C'•dd,dds.dd•CREDIT'
PatX Equ * Used for defining length of Pat2
Line DC C' Your account balance is'
LinB DS CL(PatX-Pat2) Space for edited result
Figure 338. Editing a signed number

When the sign code at the end of the second operand is encountered, the SI will be ON because
nonzero digits were found in the second operand. Thus, the Message Characters following the last
DS in the pattern are significant, and they will not be replaced by the Fill Character. Using “•” to
represent a blank, the result would be

Your•Account•Balance•is••••123.45•CREDIT

Now, suppose the customer's balance is 0032109 + , where the + sign code indicates he owes that
amount: the word “CREDIT” should not be printed. In this case, the same instructions would
produce

Your•Account•Balance•is••••321.09•••••••

Finally, suppose the customer's balance is 0000002 − , indicating he has a credit of two cents. The
SS character in the pattern immediately preceding the decimal point (X'4B') sets the SI ON, so
the decimal point and the two following digits remain in the edited line. The printed result would
then be

Your•Account•Balance•is•••••••.02•CREDIT

30.5.2. Protecting High-Order Fields

When printing negotiable items like paychecks, it is important to “protect” the high-order portion
of the field. If we changed the contents of Line to read “Your pay is”, an enterprising pro-
grammer could run his paycheck through his own printer and insert some extra “significant” digits
to the left of the decimal point, perhaps to make it look like

Your•pay•is••$4,960.02•CREDIT

This is usually prevented by using a nonblank Fill Character such as * to protect the edited result.

MVC LPat,PayPat Move pattern to line
ED LPat,PayAmt Edit to protected print form
- - -

PayAmt DC P'0098765' Amount to print = 987.65
PayPat DC C'*',X'20206B2020214B2020' C'*dd,dds.dd'
Line DC C'Dollars ' Start of Amount area
LPat DS CL(Line-PayPat) Result = C'****987.65'
Figure 339. Using field protection with ED

and the printed result will be “Dollars•****987.65”.

Exercises

30.5.1.(1)+ Which Message Characters set the Significance Indicator ON? Which ones set it
OFF?

30.5.2.(1)+ In Figure 338, how would you modify the pattern to ensure that at least one digit
appears before the decimal point?

30.5.3.(2) If a packed decimal number is P bytes long, how many Digit Selector and/or Signif-
icance Start characters should be in the edit pattern used to format it?

542 Assembler Language Programming for IBM System z™ Servers Version 2.00

30.5.4.(4) Suppose a packed decimal operand is P bytes long, but you only want to edit N
digits. Determine

1. the number of d and s selectors that must be in the pattern, and
2. the offset D from the start of the packed decimal operand that should be specified in the

second operand of the ED instruction.

30.5.5.(2) What will result in Figure 337 on page 541 if c(Num) = 0? If c(Num) = 512, will
there be a leading comma in the result? Explain.

30.5.6.(1)+ The edited result in Figure 337 on page 541 would be C'••1,234,567,890'. Explain
why there are two blank characters.

30.5.7.(2)+ What would be the result in Figure 338 on page 542 if the value at Balance is 0+
instead?

30.5.8.(2)+ Do the same as in Exercise 30.5.7, but this time with the value at Balance now
being 0− .

30.6. The EDMK Instruction

It is often useful to know where the most significant digit of an edited result occurs. For example,
a minus sign customarily precedes negative results in integer arithmetic, and a currency symbol ($)
might be placed immediately before the first significant digit of a dollar amount. The EDMK
instruction may put the address of the first significant digit into general register 1, and then only if
the SI is OFF when the first significant digit is stored into the pattern. If the first significant digit
is stored after the first SS character in the pattern — that is, if significance is forced— register 1 will
remain unchanged. (The flow diagram in Figure 346 on page 548 may help.)

The example in Figure 340 shows one way to insert a currency symbol, but it is incomplete:

MVC LPat,PayPat Move pattern to Line
EDMK LPat,PayAmt Edit and Mark result
BCTR 1,0 Decrement GR1 (move left one byte)
MVI 0(1),C'$' Put $ sign before first digit
- - -

PayAmt DC P'0098765' Amount to print = $987.65
PayPat DC C' ',X'20206B2020214B2020' C'•dd,dds.dd'
Line DC C'Pay Exactly' Precedes the 'Amount:' area
LPat DS CL(Line-PayPat) Result = C'•••$987.65'
Figure 340. Edited result with a floating currency symbol

This example will not work the way we want if the packed decimal number at PayAmt is 99 or
less, because the pattern contains a Significance Start character just before the decimal point
which will force significance of the last three pattern characters. Because GR1 would then be
unchanged by the EDMK, we must preset its contents to the address of the byte following the
Significance Start pattern character, which will be the first significant result character if significance
is forced.

Chapter VIII: Zoned and Packed Decimal Data and Operations 543

MVC LPat,PayPat Move pattern to print area
LA 1,LPat+L'LPat-3 Point to 1st significant pat'n char
EDMK LPat,PayAmt Edit and mark result
AHI 1,-1 Move to left of 1st significant char
MVI 0(1),C'$' Put the $ in the result
- - -

PayAmt DC P'0000002' Two cents pay for all this work?
PayPat DC X'4020206B2020214B2020' Same pattern
Line DC C'Pay Exactly' Start of print line
LPat DS CL(L'PayPat) Result = C'••••••$.02'
Figure 341. Edited result with a properly placed floating currency symbol

If we want to print edited integer results with leading signs, we must know which of the “ +” and
“ −” characters to place before the first significant digit. This can be determined by testing the
Condition Code at the end of the edit:

Table 219. CC settings after ED, EDMK

The CC can be relied on to give a valid sign indication only if the last source byte taken from the
second operand contained a sign code in its right digit.

Suppose we now revise Figure 337 on page 541 to allow values of either sign, with the added
requirement that zero values are to be printed with no sign character. (The PrintLin macro is
described in “Appendix B: Simple I/O Macros” on page 1015.)

CC Meaning

0 All source digits 0, or no digit selectors in pattern

1 Nonzero source digits, and SI is ON (result < 0)

2 Nonzero source digits, and SI is OFF (result > 0)

L 1,Num Get number to be printed
CVD 1,WorkArea Convert to packed decimal
MVC LineX,Pattern Move pattern to print line
LA 1,LineX+L'LineX-1 Point to possibly forced digit
EDMK LineX,WorkArea+2 Edit and mark up to 11 digits
JZ Print If zero, print immediately
BCTR 1,0 Adjust to preceding byte
MVI 0(1),C'+' Assume result was +
JP Print Branch if the guess was right
MVI 0(1),C'-' Negative result, set - sign

Print PrintLin Line,(L'Line+L'LineX) Print result
- - -

Num DC F'-1234567890' Number to be printed
WorkArea DS D Doubleword work area for cvd
Pattern DC C' ',3X'20206B20',X'2120' Pattern
Line DC C' Num =' Start of printed output
LineX DS CL(Line-Pattern) Result = C'•-1,234,567,890'
Figure 342. Integer value with optional sign and separating commas

We use BCTR 1,0 here instead of AHI 1, −1 to decrement the address in GR1 because AHI
changes the Condition Code.

Exercises

30.6.1.(3) Packed decimal numbers can represent minus zero, but the CC setting after an
EDMK instruction only indicates that all source digits are zero. Write an instruction sequence
using EDMK to display a correctly signed 4-byte packed decimal number at PackVal even if its
value is zero.

544 Assembler Language Programming for IBM System z™ Servers Version 2.00

30.6.2.(2)+ What CC setting will result from editing the packed decimal operand 000 − with the
pattern X'C1212020'? What will be the result?

30.7. Editing Multiple Fields (*)

More than one edited result can be produced by a single execution of an ED or EDMK instruc-
tion. The fields of the result are separated in the pattern by the Field Separator (FS) character,
X'22'. The FS character (a) resets the zero-digits test that will be used to determine the final CC
setting (essentially, it resets the CC to 0), (b) sets the SI OFF, and (c) is replaced by the Fill
Character. Thus, each field of the pattern can be considered separately from the others; however,
only the last field can be “marked” by an EDMK instruction, since the address in general register
1 will refer to the last significant digit stored while the SI was OFF.

For example, suppose we want to edit two packed decimal values into a single field:

ED Pat2,PD2 Edit two packed decimal values
- - -

PD2 DC P'+024',P'-135' Two values
Pat2 DC X'402021204022202120' C'•dsdf•dsd'
Figure 343. Editing two packed decimal numbers into a single field

and the edited result is C'••24••123'.

As a more complex example, suppose there are three packed decimal numbers in successive fields
named Hours, Rate, and PayAmt to be edited into a single print line.

MVC LPat,Pat Move pattern to line
ED LPat,Hours Edit all 3 fields at once
- - -

Hours DC PL2'35.5' Hours worked, in tenths
Rate DC PL3'7.50' Pay rate in dollars/hour
PayAmt DC PL4'266.25' Pay amount = $266.25
Pat DC C' ',X'20214B20' C'•ds.d'

DC X'22',X'2020214B2020' C'fdds.dd'
DC X'22',X'20202020214B2020' C'fdddds.dd'

Line DC C' Hours Rate Pay' title line
LPat DS CL(Line-Pat) Space for edited pattern
Figure 344. Editing multiple values

The two lines would then contain

Hours Rate Pay
35.5 7.50 266.75

While we would like to use EDMK here to insert a “$” character before the first significant digit
of the “Pay” field of the result, this may not work. Suppose the amount to be paid is 99 cents or
less. Then the address in general register 1 would remain at the address of the first significant digit
of the last field in which significance was not forced, which would be the “3” in the “Rate” field
of the result!

Even if we had preset register 1 to the address of the decimal point in the last field of the pattern,
we could still find ourselves placing the $ sign in the wrong field. Thus, it is rare to use EDMK in
editing multiple fields with floating currency symbols unless you can guarantee that no such prob-
lems can arise.

Chapter VIII: Zoned and Packed Decimal Data and Operations 545

Exercises

30.7.1.(2)+ Suppose a pattern contains N digit selectors. What are the maximum and
minimum number of bytes that might be taken from the second operand?

30.7.2.(3) Suppose a Field Separator character is encountered in an edit pattern when the next
second operand digit to be examined is in the right half of a source byte. Will the next digit
selector in the pattern after the FS cause that source digit to be examined, or will the FS
pattern character cause the next source digit to come from the left half of the following second
operand byte? (You may want to consult the z/Architecture Principles of Operation!)

30.7.3.(2)+ Suppose you use EDMK to edit a multiple-field pattern. Under what conditions
can you assume that GR1 refers to a character in the last field only?

30.7.4.(2)+ In Figure 344 on page 545, what changes would happen to the output if we had
defined Hours with this value instead?

Hours DC PL2'5'

30.7.5.(2) Repeat exercise 30.7.4, but with these definitions:

Hours DC PL2'1'
Hours DC PL2'0.4'

30.7.6.(3)+ Repeat Exercises 30.7.4 and 30.7.5, this time with the edit pattern named by the
symbol Pat now containing this pattern?

Pat DC C' ',X'20204B20'

30.7.7.(3)+ In Figure 343 on page 545, what edited result would be created with the same
pattern but with packed decimal arguments defined by:

(1) Pack2 DC P'7',P'2468'
(2) Pack2 DC X'67891234'

30.7.8.(2) Suppose you edit the unsigned packed decimal value X'0123456789' using the
multiple-field pattern C'•sss•fss•fsssss'. What will be the result?

30.8. Summary Comments on Editing (*)

Before we give a complete summary of the actions of the ED and EDMK instructions, there are
two minor items to consider:

1. In the source bytes brought from the second operand, only valid decimal digits from 0 to 9
may appear in the left digit of a source byte. If a sign code appears in the left half of a source
byte, a program interruption will occur, and the Interruption Code will be set to 7. The con-
tents of the result field (and the contents of general register 1 if the instruction is EDMK) is
unpredictable.

2. There is no point in trying to overlap the first and second operand fields in an editing opera-
tion, because the results are quite unpredictable.

We will summarize the action of the editing instructions in three different ways:

1. Table 220 on page 547 shows what happens for each of the four different types of pattern
characters.

2. In a set of “logical” relations in Figure 345 on page 547.

3. In a flow diagram in Figure 346 on page 548.

The abbreviations used are the same as previously introduced, now including ZD (Zoned Digit)
and PC (Pattern Character).

546 Assembler Language Programming for IBM System z™ Servers Version 2.00

The actions caused by each of the four types of pattern character is described in Table 220 on
page 547, where SI=0 means OFF and SI=1 means ON.

Table 220. ED and EDMK treatment of pattern characters

Using the following logical symbols to represent logical operators:

Pattern Char-
acter (PC)

Get
Source
Digit?

SI Source
Digit Result Set

SI
Sign code in right
digit?

X'20' (DS) Yes

1 Any ZD 1 If + , set SI OFF;
otherwise, leave it
unchanged

0 Nonzero ZD 1

0 Zero Fill Char 0

X'21' (SS) Yes

1 Any ZD 1 If + , set SI OFF;
otherwise, leave it
unchanged

0 Nonzero ZD 1

0 Zero Fill Char 1

X'22' (FS) No — — Fill Char 0 No source byte is
examined

Other (MC) No
0 — Fill Char 0 No source byte is

examined1 — MC 1

Fill Character
(FC) No N/A — Fill Char 0 N/A

& ─ AND, | ─ OR, ¬ ─ NOT

we can write a simple set of “logical equations” that describe the action of the editing process in
this compact form, where SD means “Source Digit” from the second operand, and ZD means
“Zoned Digit”.

SI & MC ── MC

FS | ((¬ SI) & MC) ── FC

(DS | SS) & SD=0 & ¬ SI ── FC (insignificant zero)

((DS | SS) & SI) | SD=/0 ── ZD, SI=1 (significant digit)

Figure 345. Logical-operation description of the editing process

This compact notation does not describe the setting and resetting of the Significance Indicator,
but those actions were discussed in detail earlier.

A flow diagram of the editing process is given in Figure 346 on page 548.

Chapter VIII: Zoned and Packed Decimal Data and Operations 547

┌─────────────┐ ┌──────────┐
│ Set SI OFF, ├───────│ Get new │�──────────────────┐
│ 1st PC─FC │ │patt. char│ │
└─────────────┘ └─────┬────┘ │

� │
 ┌───┐ on┌───┐ DS,SS ┌───┐MC ┌───┐on │
┌───┤SD?│�─────┤SI?│�──────┤PC?├─────│SI?├─────┐ │
│0─9└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘ │ │
│ │A─F │off │FS │off │ │
│ │ │ � � │ │
│ │ │ ┌──────┐ ┌──────┐ │ │
│ │ │ │SI OFF├──│FC─PC├──│ │
│ � │ └──────┘ └──────┘ │ │
│ ┌─────┐ � � �
│ │Prog.│ ┌───┐ ┌───┐ ┌─────┐ │ │
│ │Int.,│�────┤SD?├──────│PC?├─────│SI ON│ │ │
│ │IC=7.│ A─F └─┬─┘ 0 └─┬─┘ SS └──┬──┘ │ │
│ └─────┘ │1─9 DS│ │ │ │
│ � │ � │ │
│ ┌─────┐ │ ┌──────┐ │ │
│ │SI ON│ └──────│FC─PC│ │ │
│ └──┬──┘ └─┬────┘ │ │
│ � │ │ │
│ ┌─────┐ yes ┌─────────┐ │ │ │
│ │EDMK?├────│A(PC)─R1│ │ │ │
│ └──┬──┘ └────┬────┘ │ │ │
│ no│�────────────┘ │ │ │
│ � � � │
│ ┌──────┐ ┌────────────┐no ┌─────┐ │
└──────────│ZD─PC├──────│Sign code in├───│Done?├──┘

└──────┘ │source byte?│ � └──┬──┘ no
└─┬──────┬───┘ │ │yes
│+ │− │ │
� � │ �

┌──────┐ ┌───────┐ │ ┌───────┐
│SI OFF├─│skip it├─┘ │Set CC │
└──────┘ └───────┘ └───────┘

Figure 346. ED and EDMK operation

Exercises

30.8.1.(2)+ Prepare a short summary showing when the Status Indicator is set ON and OFF.

Terms and Definitions
digit selector

One of two edit-pattern characters: a Digit Selector (DS) having representation X'20', or a
Digit Selector and Significance Starter (SS) having representation X'21'.

field separator
An edit pattern character (FS) having value X'22' indicating that a packed decimal value
from the second operand has been edited, and editing should continue with the following
packed decimal value.

fill character
The first byte of an edit pattern.

548 Assembler Language Programming for IBM System z™ Servers Version 2.00

message character
Any character in an edit pattern that is not a Digit Selector (DS), a Field Separator (FS), or
a Digit Selector and Significance Starter (SS).

pattern character
Any byte in an edit pattern.

significance indicator
An internal bit used by the CPU during ED and EDMK instructions to control subsequent
editing operations.

significance starter
An edit- pattern character (SS) having value X'21' that sets the Significance Indicator ON.
Also known as a “digit selector and significance starter” because it selects a digit if the Signif-
icance Indicator is already on.

zoned digit
An unpacked or edited packed decimal numeric digit.

Programming Problems

Problem 30.1.(3) Suppose you are writing a small Assembler in which space is very limited.
Your Assembler must store and manipulate 6-character alphanumeric symbols in a compact
representation that packs the symbol into a fullword, as follows:

1. The leftmost 12 bits of the fullword contain six pairs of “zone” bits. Each character in the
symbol is a letter or digit, its EBCDIC representation must lie between X'C1' and X'F9'.
Because the two leftmost bits are always B'11', we take the next two bits for the “zone”
portion of the character.

2. The rightmost 20 bits of the fullword contain the numeric portions of the six characters,
expressed as a binary number. (Since 220 > 106, there is enough room to contain the six
numerics.)

For example, the symbol A2N6Z8 (=X'C1F2D5F6E9F8') would be encoded as
220×B'001101111011' + 125698, or X'37B1EB02'.

3. Since symbols may be shorter than 6 characters in length, we can let the combination
B'00'+ 0 (X'C0') represent a blank.

Write a program that reads valid symbols from records to produce the fullword “packing” just
described. Then convert the “packed” format back to characters, and display the original
symbols and the unpacked result. What collating sequence is defined by this packing method?

Problem 30.2.(4) Repeat Problem 24.2 (the “perfect shuffle” program), using packed decimal
data to represent the card values, and an ED or EDMK instruction to format the output.

Problem 30.3.(2)+ You can convert a string of numeric characters to binary by multiplying and
adding. For example, the characters 345 can be converted to binary by evaluating
((3×10)+4)×10)+5. Write a program that reads records containing a string of decimal charac-
ters, and convert them to 32-bit binary. Display the original characters and the converted results
in any convenient way to verify your conversion. If any value represented by the numeric char-
acters won't fit in 32 bits, display the word “Overflow” instead of the converted value.

Problem 30.4.(3)+ Revise your solution to Problem 18.6 to read records containing a Year as a
string of decimal digits. If the year lies outside the range (1583,9999), print an error message and
read the next input record. Otherwise, calculate the date of Easter, and print the result in a
format like this:

Easter in year 2010 is on Sunday April 4.

Problem 30.5.(3)+ Write a program to read records containing one or more unsigned integers in
character form, separated by one or more blanks. Display the value of each in character,
decimal, hexadecimal, and binary formats in aligned columns. Print appropriate messages if an
input string is invalid.

Chapter VIII: Zoned and Packed Decimal Data and Operations 549

Problem 30.6.(2)+ Write a program to read records containing an optionally signed integer in
character form, and print a message stating whether or not its value is a power of two.

Problem 30.7.(2)+ Write a program to calculate the Fibonacci numbers, defined by the relations

F(N) = F(N-1) + F(N-2)

up to the largest value representable as a 32-bit binary number. Start with initial values F(0)=0
and F(1)=1, so that the values will be F(1)=1, F(2)=1, F(3)=2, etc. Display them as decimal
characters without leading zeros, and without using either ED or EDMK; that will be in
Problem 30.8. (This is a variation on Problem 16.8.)

Problem 30.8.(3)+ Write a program to calculate the Fibonacci numbers, defined by the relations

F(N) = F(N-1) + F(N-2)

up to the largest value representable as a 32-bit binary number. Using an ED instruction to
format the results, print the values with commas inserted between every three digits, as in
1,234,567. Start with initial values F(0)=0 and F(1)=1, so that the values displayed will be
F(1)=1, F(2)=1, F(3)=2, etc.. (This is a variation on Problems 17.4 and 30.7.)

Problem 30.9.(3)+ Suppose you are given a set of data records that contain a name in columns
1-20, and an amount (in cents) in columns 21-28 (that is, there is an assumed decimal point
between columns 26 and 27). Write a program which will read any number of such data
records, and produce as output a list of totals, names, and numbers of records with that name.
Thus, the input data

Smith 1798
Jones 10000
Smith 125

would produce output something like

Name Total Items

Smith 19.23 2
Jones 100.00 1

Your program should be able to read any number of sets of data records; devise some means of
separating them from one another.

550 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter IX: Floating-Point Data and Operations

IIIIIIIIII XX XX
IIIIIIIIII XX XX

II XX XX
II XX XX
II XX XX
II XXXX
II XXXX
II XX XX
II XX XX
II XX XX

IIIIIIIIII XX XX
IIIIIIIIII XX XX

The sections of this chapter discuss floating-point number representations and their uses.

• Section 31 introduces the basic concepts of scaled fixed-point and floating-point data, including
the hexadecimal, binary, and decimal floating-point data types supported by System z. Then it
describes the floating-point registers and some basic instructions for moving floating-point
operands.

• Section 32 describes some general principles of floating-point arithmetic.

• Section 33 examines the hexadecimal floating-point representation of numbers, and describes
hexadecimal arithmetic and instructions.

• Section 34 discusses the binary floating-point representation and instructions for doing binary
floating-point arithmetic.

• Section 35 discusses the decimal floating-point representation and instructions for doing
decimal floating-point arithmetic.

• Section 36 summarizes the three System z floating-point representations, and describes some
important differences between mathematical “real” arithmetic and floating-point arithmetic.

Chapter IX: Floating-Point Data and Operations 551

31. Floating-Point Numbers: Introduction

3333333333 11
333333333333 111
33 33 1111

33 11
33 11

 3333 11
 3333 11

33 11
33 11

33 33 11
333333333333 1111111111
3333333333 1111111111

Why was floating-point arithmetic invented? How did programmers handle data with both integer
and fraction parts when only fixed-point binary arithmetic was available? Before we investigate
floating-point numbers and arithmetic, a bit of background may help.

31.1. Scaled Fixed-Point Arithmetic

Up to now, most of our examples involving binary arithmetic have used mostly unscaled integer
values, as illustrated in Figure 347.

 �─────────── data size ────────────
┌────────────────────────────────────┐
│ integer value .│
└────────────────────────────────────┘

�
radix point

Figure 347. A data item containing an integer value

As we saw in Section 29.10 on page 522, packed decimal arithmetic may frequently need to
manipulate values with both integer and fraction parts, as illustrated in Figure 348, where the
decimal point is implied (not actually present).

Similarly, with fixed-point binary instructions, you can use numbers with fractional parts by
assuming that a number is part integer and part fraction, with the position of the implicit radix
point defined to be somewhere “inside” the number, as in Figure 348.

 �────────── data size ─────────────
┌────────────────────────────────────┐
│ integer part . fraction part │
└────────────────────────────────────┘

�
radix point

Figure 348. A data item containing integer and fraction parts

552 Assembler Language Programming for IBM System z™ Servers Version 2.00

We call these quantities fixed-point data. You can write instructions that take account of this
scaling (the position of the radix point) when doing arithmetic with such quantities. For example,
when we process financial data, amounts are often stated in dollars and cents, Euros and cents,
and the like: the assumed decimal point lies to the left of the two rightmost decimal digits.

Pure fraction Pure Integer
┌───────────────────┐ ┌──────────────────┐

. │ Fraction part │ │ Integer part │ .
└───────────────────┘ └──────────────────┘

� �
 radix point radix point
Figure 349. Values with radix point outside the digits

31.2. Mixed Integer-Fraction Representation

Early computers provided only integer representations and arithmetic, so values with integer and
fraction parts were approximated by scaled fixed-point numbers. Programmers had to keep track
of the radix point for each variable, and programmed shifts or other corrections for re-scaling after
each operation.

For example, suppose an importer has received a shipment valued at $11749.49, and import tax
must be paid at a rate of 5.147 percent. Your job is to calculate the amount of tax to be paid.
(Remember, government auditors will be verifying your work!)

First, you calculate the product of the two numbers:

$11749.49 × 5.147% = $604.7462503
But the actual calculation using fixed binary or packed decimal arithmetic would be

1174949 × 5147 = 6047462503

Knowing that there are two fraction digits in $11749.49 and five fraction digits in 0.05147 (the
percent rate), you know that there will be seven fraction digits in the product:

$604.7462503

You would then round this to the nearest cent:

$604.7462503
+ 5
$604.75

This is fairly easy to program on a processor with instructions that do decimal arithmetic. For
example, you can multiply, shift, and round with just a few packed decimal instructions, as in
Figure 350.

ZAP PDProd,PDAmt Copy amount to work area
MP PDProd,PDTax Multiply by tax rate
SRP PDProd,64-5,5 Convert to cents and round
- - -

PDAmt DC P'11749.49' Amount to be taxed
PDTax DC P'.05147' Tax rate
PDProd DS PL8 Resulting product
Figure 350. Calculating a tax amount in scaled fixed decimal arithmetic

The result can then be formatted for printing. (See Programming Problem 31.1.)

But what will you do if your CPU supports only fixed binary arithmetic? This difficulty faced
many early programmers.

Chapter IX: Floating-Point Data and Operations 553

Our little tax example is relatively easy to solve with fixed-point binary arithmetic. We treat all
quantities as integers (noting that the product is more than 31 bits long), and remember how
many powers of 10 to divide by to give a quotient that is fewer than 32 bits long. Thus, we could
use binary arithmetic as in Figure 351.

L 1,Amount Put amount in cents in GR1
M 0,Percent Multiply by integer-ized percent
AL 1,Round Add a rounding factor
JC 12,NoCarry Skip if no carry occurred
AHI 0,1 Propagate the carry bit

NoCarry D 0,Correct Divide by some power of 10
- - -

Amount DC F'...' Cost of shipment
PerCent DC F'...' Percentage to multiply by
Round DC F'...' Rounding factor
Correct DC F'...' Correction for scaling
Figure 351. Calculating a tax amount in scaled fixed binary arithmetic

The quotient in GR1 can then be converted to decimal and formatted.

The actual values of the four constants are for you to determine: first, solve Exercise 31.2.1 and
then do Programming Problem 31.2.

31.2.1. Scaled Fixed-Point Binary Arithmetic (*)

Obscure topic

Scaled fixed-point binary arithmetic is rarely used today; it has occasional
application to calculating time differences using the CPU clock.

The import-tax example above is fairly straightforward. A common problem with mixed integer-
fraction data is choosing the scaling to maximize precision while retaining the maximum range of
represented values. When we must do arithmetic with scaled numbers of the form Int.Frac (with
FD fraction digits), we need to know two things:

1. the largest magnitude of Int, and

2. the number of bits needed to represent Frac to FD significant decimal digits.

The number of bits needed to represent Int is

log2(Int)+1

and the number of bits needed for Frac is

log2(FD)+1

where the logarithm values have been truncated to an integer, which accounts for the +1 in each
case. Reserving an additional single bit for the sign, the word length used to represent a signed
value like Int.Frac must satisfy

word length ≥ log2(Int)+log2(FD)+3

This inequality sometimes limits the range or precision of values that can be used in fixed-point
arithmetic.

Now, consider a more difficult problem: suppose you must calculate the square root of 2
(1.414213562...) using fixed binary or packed decimal arithmetic, to 8 significant decimal digits (1
integer and 7 fraction digits). This can be done using a “Newton-Raphson” iteration. Let A be
the number whose square root x is desired; if the initial estimate for x is reasonable, the value of
x' will converge rapidly to the square root of A:

x' = x + (A/x − x)/2
We can use 1 as our initial estimate.

554 Assembler Language Programming for IBM System z™ Servers Version 2.00

Because there is only a single digit to the left of the decimal point, we can use a binary represen-
tation with just a few bits to the left of the binary point, leaving the remaining bits to represent
the fraction. For example, if the leftmost four bits of a word are the integer part, the remaining 28
bits will hold the fraction. The number 2 in this representation will be X'20000000', and the
initial estimate 1 will be X'10000000'. (See Programming Problem 31.3.)

A problem like finding the square root of a small number like 2 is relatively straightforward,
because all quantities have the same scaling. More often, the operands have different scale factors,
so it takes more effort — as we saw for packed decimal arithmetic — to manage the operands while
preserving enough precision in the intermediate and final results.

The need to manage problems like this led to the development of floating-point data and arith-
metic, which maximizes precision and manages scaling automatically.

31.2.2. Scaled Fixed-Point Binary Constants (*)

The Assembler can do some scaling for you. For example, the values of A and x in the Newton-
Raphson iteration can be written as scaled fixed-point constants:

A DC FS(28)'2' 2, scaled by 2**28 X'20000000'
X DC FS(28)'1' 1, scaled by 2**28 X'10000000'
Figure 352. Two binary constants scaled by 2**28

where the letter S following the constant type asks the Assembler to scale the result by shifting the
nominal value to the left 28 bits. Other values used in the calculation are then scaled accordingly.
In effect, we are defining two constants of this form:

 �─4─ �────────── 28 ──────────────
┌────────────────────────────────────┐
│ Int . Frac │
└────────────────────────────────────┘

�
radix point

Suppose we want to do scaled binary arithmetic with numbers having integer parts between 0 and
1000, which will need about 10 bits. And because we might add two numbers near 1000, we'll
allocate 11 bits for the integer value and one bit for a sign. This leaves 20 bits for the fraction
part.

How should the constant +123.4567 be represented?

1. The integer part of the constant is 123, or X'07B', so we know that the first twelve bits of the
constant will be X'07B'. (The sign bit is 0 for + .)

2. Following the steps in Section 31.3 for converting fractions, we find that
0.456710 = X'74EA4A8C...'. Because only 20 bits are allocated to the fraction, we must
round this to five hex digits, giving X'74EA5'

3. Combining the integer and fraction parts, we find that the constant is X'07B74EA5'.

The main problem is keeping track of the scaling of intermediate quantities during the iterations,
and formatting the decimal digits of the result's fraction part. (See Programming Problem 31.3.)

In addition to scaled fixed-point binary constants like those in Figure 352, you can also define
scaled constants where the radix point lies outside the constant! For example, suppose you want
to represent 1012 in a 32-bit word. But 1012 is greater than 231, so it might seem impossible. But
because there are 12 low-order zero bits in 1012, we can ask the Assembler to create a constant
without those 12 zero bits; we must then remember to compensate for them when doing arith-
metic with the constant:

TenTo12 DC FS(-12)'1E12' 10**12 scaled by -12 bits, X'0E8D4A51'
Figure 353. Defining a scaled binary constant 10**12

Chapter IX: Floating-Point Data and Operations 555

where the negative scale factor −12 means that the Assembler will shift the binary constant to the
right by 12 bits before generating the machine language constant. Effectively, you will generate a
constant of this form:

 �─────────────── 32 ─────────────── �─── 12 ───
┌────────────────────────────────────┐
│ Integer │ .
└────────────────────────────────────┘

�
radix point

If we want to multiply the scaled constant 2 in Figure 352 on page 555 by the scaled constant
1012 in Figure 353 on page 555, we can use instruction like these:

L 1,A c(GR1) = 2×2**28
M 0,TenTo12 Multiply by 10**12×2**(-12)
SRDA 0,16 Compensate for both scale factors
- - -

TenTo12 DC FS(-12)'1E12' 10**12 scaled by 12 bits
Figure 354. Multiplying two scaled binary numbers

and the 64-bit result in c(GR0,GR1) will be 2×10**12, or X'000001D1 A94A2000'. If this value will
be used in later arithmetic, it will once again need to be scaled by 2**(−12) so that it will fit in a
single register: X'1D1A94A2'.

Programming on processors with only fixed-point arithmetic isn't easy!

Exercises

31.2.1.(2) Write DC statements to define the values named Amount, Percent, Round, and
Correct in Figure 351 on page 554.

31.2.2.(2) What machine language constant will be generated by the DC statement in
Figure 353 on page 555?

31.2.3.(1) What machine language constants will be generated for the two packed decimal con-
stants in Figure 350 on page 553, and how long must the work area named PDProd be?

31.2.4.(3) Convert these decimal values to hexadecimal, giving at most six significant fraction
digits:

1. 6.3725
2. 987.603
3. 314.1592654

31.2.5.(1) With signed 32-bit words, how many different integer-fraction representations can be
created? With unsigned 32-bit words?

31.2.6.(2) Referring to the import-tax example in “31.3. Converting Fractions Between Bases
(*)” on page 557, what is the minimum number of bits needed to represent the integer portion
of the signed quantity +604.7462503?

31.2.7.(2) Given π=3.14159265359, what is its hexadecimal representation as a 32-bit scaled
fixed-point binary number with 28 fraction bits?

31.2.8.(4) The binary representation of each power of 10 has as many trailing zero bits as the
power. For example, 102 = X'64' = B'1100100'.

Determine the largest scaled power of 10 that can be held in a 32-bit and a 64-bit signed two's
complement constant. Then, determine the largest unsigned values for both lengths.

556 Assembler Language Programming for IBM System z™ Servers Version 2.00

31.2.9.(2)+ What would happen if you had written the constant TenTo12 in Figure 354 this
way?

TenTo12 DC FS(-12)'10E12' 10**12 scaled by 12 bits

31.2.10.(3)+ Given a scaled binary constant at Value representing the decimal value 98.234567,
convert its value to EBCDIC characters with 5 digits after the decimal point, and with the last
digit rounded.

31.3. Converting Fractions Between Bases (*)

In “2.3. Converting Integers from One Base to Another (*)” on page 19 we converted integers
from one base to another by successive divisions, generating digits in the new base from least to
most significant. For fractions, we do the reverse, using successive multiplications to generate digits
from most to least significant.

Let the string of digits

0 . d1 d2 d3 ... dn

be the representation in some base D of the fraction X: that is,

X = SUM(k=1 to n) (dk × D− k)
= d1×D−1 + d2×D−2 + ... + dn×D− n.

For example, the decimal fraction 0.1234 is

0 . 1×10−1 + 2×10−2 + 3×10−3 + 4×10−4

Now, suppose we want to convert X from its known representation in base D to its represen-
tation in a new base B: that is,

X = SUM(k=1 to m) (bk × B− k)
= b1×B−1 + b2×B−2 + ... + bm×B− m.

We know the old and new bases D and B, and the digits dk of the old representation. To find the
digits bk in the new representation, we do the following:

1. Multiply X by the new base B. Save the fraction part of the result, and the integer part is b1.
This can be seen by writing the product as

B × X = b1 + [b2×B−1 + b3×B−2 + ... + bm×B(−m + 1)]

2. Multiply the saved fraction part (the term in square brackets) by B again, and save the new
fraction part. The generated integer part will be the second digit b2.

3. Repeat the process until you have generated as many digits as you need, or until the saved
fraction part is zero. Note that the digits are produced in order of decreasing significance.

There is no automatic terminating condition for fractions as for integers, because there are finite-
length fractions in one base which do not have finite representations in another; the decimal rep-
resentation of the fraction 1/3 is a well-known example. But if the saved fraction part becomes
zero, the conversion terminates and the representation in the new base has a finite number of
digits. Here are some examples.

1. Give the base two representation of the decimal fraction 0.375.

 .375 .75 .5
× 2 × 2 × 2
0.750 1.50 1.0
b1=0 b2=1 b3=1

Since the fraction part after three multiplications is zero, the binary representation of 0.375
terminates, and we know that 0.375 (base 10) = 0.011 (base 2).

2. Give the base 16 representation of the decimal fraction 0.1.

Chapter IX: Floating-Point Data and Operations 557

 0.1 0.6 0.6
× 16 × 16 × 16
 1.6 9.6 9.6
b1=1 b2=9 b3=9

In this case, repeated multiplication will continue to generate “9” digits, and the base 16 rep-
resentation will not terminate. We can therefore write

0.1 (base 10) = 0.19999... (base 16) = 0.19 (base 16) = X'0.19',

where the underscore indicates that the underscored digit (or group of digits) should be
repeated indefinitely.195 Thus, 2/3 (base 10) = 0.6 (base 10), 0.1 (base 3) = 0.3 (base 10),
and 0.1 (base 10) = 0.00011 (base 2).

When we represent such numbers in a computer we must settle on enough digits to represent
the number. This means it is very likely there will be some necessary inaccuracy in the result.

3. Give the decimal representation of X'0.FA'. First, we note that

X'0.FA' = 15/16+10/256 = 250/256 = 0.9765625

Now, we do the conversion arithmetic in base 16; if we do it in decimal we must convert the
fraction to base 10 first, which is the object of the conversion!

0.FA 0.C4 0.A8 0.9 0.A 0.4 0.8
× A × A × A × A × A × A × A
9.C4 7.A8 6.90 5.A 6.4 2.8 5.0
b1=9 b2=7 b3=6 b4=5 b5=6 b6=2 b7=5

so that 0.FA (base 16) = 0.9765625 (base 10), as expected. Converting between decimal
and hexadecimal fractions like these can sometimes be done using the tables in the Appendix
at “Conversion Tables for Hexadecimal Fractions” on page 1011.

Exercises

31.3.1.(3)+ Perform the indicated conversions. For number bases greater than 10, use the
hexadecimal “digits” A, B, C... corresponding to 10, 11, 12....

1. Convert 0.1 (base 10) to bases 2 and 16.
2. Convert 0.3142 (base 10) to bases 3 and 14.
3. Convert 0.BBBBB... (base 16) to bases 10 and 15.
4. Convert 3.6 (base 8) to bases 10 and 16.

31.3.2.(2)+ Convert the following fractions from base 16 to base 10, giving the result to at most
7 decimal digits:

1. X'0.DEFACE'
2. X'0.5'
3. X'0.C2854'
4. X'0.333333'
5. X'0.BEEF'

31.3.3.(2) Convert these decimal fractions to hexadecimal, giving at most six significant digits:

1. 0.063725
2. 0.0001
3. 0.987603
4. 0.000005

31.3.4.(1) What is the binary representation of the fraction 1/3?

195 The more common mathematical notation for repeated groups of digits is an over-bar (called a vinculum), but the
software formatting these notes insists on unnatural acts to print over-bars.

558 Assembler Language Programming for IBM System z™ Servers Version 2.00

31.3.5.(2)+ Convert the decimal fractions 0.1 through 0.9 in increments of 0.1 to base-8 (octal)
format.

31.4. Why Use Floating-Point Numbers?

Floating-point arithmetic originated primarily to satisfy the needs of scientific cimputation. It
sometimes seems unusual (or even frightening) compared to fixed-point arithmetic. It is also
sometimes thought to be prone to errors; but it is no different in that respect from fixed-point
arithmetic — and sometimes, better. The examples of computing import tax in Figures 350 and
351 on page 554 actually introduced errors, because the results had to be rounded and presented
to less than full precision.

But you will want to be careful. Most floating-point computations are reliable, simple, fast, and
accurate, while others can give misleading (or even wrong!) answers.

Because actual data can take many magnitudes, the floating-point number representation helps us
manage data of widely varying values. Figure 355 has examples of various constants:

6022 00000 00000 00000 00000. Avogadro's Number
9 46000 00000 00000. meters/light-year

2997 76000. meters/sec (light)
33136. cm/sec (sound)
745.7 Watts/horsepower
440. hertz (Concert A)
16.3872 cc/cubic inch
3.14159 26535 8979 π

kilometers/mile 1.60935
 ln 2 .69314 71805 59945
Coulombs/electron .00000 00000 00000 00016
Planck's const (Joule-sec) .00000 00000 00000 00000 00000 00000 00066 26

Figure 355. Examples of data with widely ranging values

Managing these widely varying magnitudes with fixed point binary arithmetic is rather difficult.
Like most results in fixed-point arithmetic, we are mainly concerned with the most significant
digits, and we use a power of some base such as 2, 10, or 16 by which those digits should be
multiplied.

Thus, floating-point data and arithmetic have many advantages:

• Because the most significant digits are retained, values have more uniform precision. Scaled
fixed-point representations may need to use less precision for the fraction part of a number so
they can correctly represent the largest values of their integer part.

• Our scaled fixed-point examples used 32-bit fullwords, but they were very limited in the range
of values they could represent. Floating-point variables give up some bits of precision in order
to support a much greater range.

• Precision losses involve the least significant digits, which is how we normally do arithmetic
with numbers with many digits.

• Floating-point manages scaling automatically; the CPU keeps track of the radix point for you.

For many problems, floating-point arithmetic is by far the simplest approach.

Chapter IX: Floating-Point Data and Operations 559

31.4.1. Precision and Accuracy

 Suggestion

You may want to review the discussion of precision and accuracy for
fixed-point data in Section 29.10.1 on page 522.

Unlike the precision of packed decimal and binary integer values, floating-point values can be
imprecise if the number of significant digits exceeds what the representation can provide. Because
of the much greater range of floating-point values, they can sometimes retain greater accuracy.

Exercises

31.4.1.(1) In Figure 355 on page 559, represent Avogadro's Number and Planck's constant as
numbers with one integer digit and several fraction digits, multiplied by a power of 10.

31.4.2.(2) Suppose you must represent both Avogadro's Number and Planck's constant in a
fixed-point integer-fraction representation. Estimate the number of bits required.

31.5. Floating-Point Representations

A typical floating-point number representation has four elements: a sign, an exponent, its signif-
icant digits, and the base or radix used for the significant digits. Figure 356 shows a typical
arrangement:

• one bit for the sign of the number (0 = + , 1 = −)

• some bits representing the exponent

• the remaining bits for the significant digits of the number, usually known as the significand.196

┌────┬──────────┬───┐
│sign│ exponent │ significant digits │
│ s │ e │ (significand) │
└────┴──────────┴───┘
Figure 356. A typical floating-point representation

These fields need not be arranged in the order shown in Figure 356, but all System z floating-
point representations use this basic format.

Designers of floating-point representations must then make several choices:

1. What base or radix should be used for the significant digits?

2. How should the significant digits be represented? Should they be digits of the radix (like the
digits 0-9 for radix 10) or should they be encoded in some way?

3. Should a number like 12.34 be stored as the fraction 0.1234 with an exponent +2, or as the
integer 1234 with an exponent −2, or with a single integer digit as in 1.234 with an exponent
+1, or as 12.34 with a zero exponent?

4. Must all of the significant digits be present in the “significant digits” field, or can some of
them be assumed, or combined with other fields?

5. If different data lengths are supported (such as 32 and 64 bits), should the same or different
exponent widths be assigned to each?

6. How large a field should be allotted to the exponent? (A larger exponent field means less
room for the significant digits.)

196 The significand was sometimes called the “mantissa”, but that word had long been used for logarithms, where the
meaning is quite different.

560 Assembler Language Programming for IBM System z™ Servers Version 2.00

7. Should the exponent's value be represented in binary or some other radix? (The answer
seems always to have been “binary”.)

8. How should the sign of the exponent be represented?

System z supports three sets of answers to these questions: hexadecimal, binary, and decimal,197

which we'll investigate in Sections 33, 34, and 35.

To illustrate some possible choices, consider a floating-point representation of a number X, using
4 significant decimal digits. (We'll ignore what to do about the exponent for a moment.)

First, suppose the significant digits are stored as integers, with the radix point understood to
follow the rightmost digit. In Figure 357, X is the value represented, and k is the exponent, a
power of 10.

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ 0 1 2 3.│ │ 2 3 4 0.│ │ 0 0 7 3.│ │ 0 0 7 3.│ │ 0 0 7 3.│
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘
k = 0 k = -1 k = 0 k = 2 k = -3
X = 123 X = 234 X = 73 X = 7300 X = 0.073

Figure 357. An example of a floating-point representation using 4 decimal digits

Other digit strings and exponents can be used to represent the same value for X; for example,
X=123 could be represented by the digits 1230 and exponent −1.

31.5.1. Left Normalization

Now, suppose the significant digits are stored as fractions, with the radix point understood to
precede the leftmost digit. In Figure 358, X is again the value represented and k is the exponent
as a power of 10.

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│.1 2 3 0 │ │.0 1 2 3 │ │.7 3 0 0 │ │.0 7 3 0 │ │.0 0 7 3 │
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘
k = 3 k = 4 k = 2 k = 3 k = 4
X = 123 X = 123 X = 73 X = 73 X = 73

Figure 358. Another example of a floating-point representation using 4 decimal digits

The three representations of the number 73 show how the same number can have different repres-
entations.

Many floating-point representations viewing the significant digits as fractions expect the leftmost
fraction digit to be nonzero: this means that as many significant digits as possible are kept with
the number. We call this left normalization: the leftmost significand digit of a nonzero number is
nonzero; we call the corresponding representation a “Floating-Point Fraction” or “FPF”. Thus,
some values in Figures 358 and 359 are normalized and some are not.

Normalized Unnormalized Normalized Unnormalized Unnormalized
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│.1 2 3 0 │ │.0 1 2 3 │ │.7 3 0 0 │ │.0 7 3 0 │ │.0 0 7 3 │
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘
k = 3 k = 4 k = 2 k = 3 k = 4
X = 123 X = 123 X = 73 X = 73 X = 73

Figure 359. A floating-point representation showing left normalized and unnormalized values

197 Processor manufacturers previously created many different solutions (we'll see some in Section 36) but in recent years
this wide variety of floating-point formats has converged on a small set of possibilities.

Chapter IX: Floating-Point Data and Operations 561

Figure 359 on page 561 shows that unnormalization allows redundant representations. We'll see
that System z hexadecimal and decimal floating-point allow redundant representations, but binary
floating-point does not.

31.5.2. Right Normalization

Now, suppose the significant digits are stored as integers, with the radix point understood to
follow the rightmost digit. (We sometimes call this “right normalization”.) In Figure 360, X is
again the value represented and k is the exponent as a power of 10.

Unormalized Normalized Unnormalized Unnormalized Normalized
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ 1 2 3 0.│ │ 0 1 2 3.│ │ 7 3 0 0.│ │ 0 7 3 0.│ │ 0 0 7 3.│
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘
k = -1 k = 0 k = -2 k = -1 k = 0
X = 123 X = 123 X = 73 X = 73 X = 73

Figure 360. A floating-point representation showing right normalized and unnormalized values

The three representations of the number 73 show how the same number can have different repres-
entations. Right normalization was used on some early processors, but is not used for any
System z floating-point representation.

31.5.3. No Normalization

Now, suppose the significant digits are viewed as integers, but with the radix point understood to
to be “anywhere”, as specified by the exponent. (For our convenience, we'll call this represen-
tation ”Floating-Point NoNorm” or “FPN” for short.

In Figure 361, X is again the value represented and k is the exponent as a power of 10.

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ 0 1 2 3 │ │ 2 3 4 0 │ │ 7 3 0 0 │ │ 0 7 3 0 │ │ 0 0 7 3 │
└─────────┘ └─────────┘ └─────────┘ └─────────┘ └─────────┘
k = 1 k = -1 k = -2 k = -1 k = 0
X = 1230 X = 234 X = 73 X = 73 X = 73

Figure 361. A floating-point representation showing values without normalization

The three representations of the number 73 show how the same number can have different repres-
entations; in decimal floating-point terminology, any set of items with the same value but different
representations is called a “cohort”. We'll see how this works in Section 35.

31.5.4. Some Additional Details (*)

Interesting observations

This section will be interesting mainly to mathematically inclined readers.

Mathematically, floating-point numbers are a subset of the rational numbers: that is, they are a
subset of all possible fractions (including fractions like 123/1). A value X is represented by
± M×rk, where

M is an integer satisfying 0 ≤ M < rp, an unsigned p-digit integer

r is the radix (or base) of the significant digits of the representation

p is the precision of M (the number of base-r digits)

k is the exponent, the power of r by which M is multiplied, typically positive and negative
values of approximately equal ranges.

We sometimes say that the set of all such values is known as a floating-point system FP(r,p).

562 Assembler Language Programming for IBM System z™ Servers Version 2.00

We can also use a fraction for the significant digits, so that f = M÷ rp, and the fraction satisfies
0 ≤ f < 1.0. This puts the radix point at the left end of the digits; X is then represented by
± f×re, and the exponent e = k+p (k was the exponent we used for the “integer-format” repre-
sentation above). The normalization condition then becomes r −1 ≤ f < 1.0, so the most signif-
icant digit of f is nonzero.

System z uses both floating-point representations: hexadecimal and binary represent the signif-
icant digits as fractions, and decimal uses integers. To clarify which is being discussed, we'll use
FPF(r,p) to mean a left-normalized fraction representation, FPI(r,p) to mean a right-normalized
integer representation, and and FPN(r,p) to mean a non-mormalized integer representation.
Thus, Figure 357 on page 561 and Figure 360 on page 562 use the FPI(10,4) representation,
Figure 358 on page 561 uses the FPF(10,4) representation, and Figure 361 on page 562 uses the
FPN(10,4) representation.

For example, suppose our FPF(10,4) representation allows a single decimal digit for the decimal
exponent. The signed numbers +123 and + .0123 would be represented as in Figure 362:

┌─┬──┬─────────┐ ┌─┬──┬─────────┐
│+│+3│.1 2 3 0 │ and │+│-1│.1 2 3 0 │
└─┴──┴─────────┘ └─┴──┴─────────┘
Figure 362. Floating-point numbers with signed exponent

Another issue is rounding. If a number is not exactly representable in a given system, it should
be approximated by one of the two nearest198 representable values, preferably the value closest to
the exact value. Figure 363 shows some familiar approximations in FPI(10,4):

 Rounded Down Rounded Down Rounded Up
┌─────────┐ ┌─────────┐ ┌─────────┐
 │ 3 3 3 3.│ │ 6 6 6 6.│ │ 6 6 6 7.│
└─────────┘ └─────────┘ └─────────┘
k = -4 k = -4 k = -4
X = 1/3 X = 2/3 X = 2/3

Figure 363. Examples of approximate floating-point representations

where we chose an approximation from one of the two nearest 4-digit neighbors of the exact
value.

We saw in “31.2. Mixed Integer-Fraction Representation” on page 553 that decimal values like
0.1 cannot be converted exactly to binary or hexadecimal. So we must choose the best approxi-
mation of 0.1 in binary or hexadecimal floating-point. For example, if we use a hexadecimal
floating-point representation with 6 significant digits, and a binary floating-point representation
with 24 significant bits, the best resulting fraction values will be close, but not exact:

Most decimal fractions aren't representable precisely in base 2 or 16.

Exercises

31.5.1.(1) Using the FPF(10,4) representation in Figure 362 with a single signed decimal digit
for the exponent, how many redundant representations of zero are possible?

31.5.2.(1) In the floating-point systems FPF(10,4), FPI(10,4), and FPN(10,4), how many
representations are there of 4.7?

In FPF(16,6): 1677722/166 = 1677722/16777216 = 0.100 000 023 84
In FPF(2,24): 13421773/227 = 13421773/134217728 = 0.100 000 001 49

198 Some numbers are very difficult to convert accurately between bases. Modern conversions are almost always able to
choose one of the two nearest neighbors of the exact value. This was not true for many years, and was the source of
occasional unhappiness and confusion.

Chapter IX: Floating-Point Data and Operations 563

31.5.3.(2) In Figure 361 on page 562, sketch the position of the decimal point for each value of
X.

31.6. System z Floating-Point Representations

System z supports three different representations for floating-point numbers: hexadecimal,
binary, and decimal, with bases 16, 2, and 10.199 For each representation, three data lengths are
defined: 4 bytes, or short, 8 bytes, or long, and 16 bytes, or extended. Each has a sign bit, an
exponent field, and a significand field for all of the significant digits (hexadecimal) or all but one
of the significant digits (binary and decimal floating-point).

┌─────────────────┐
 4 bytes │ │ Short

└─────────────────┘
┌──────────────────────────────────┐

 8 bytes │ │ Long
└──────────────────────────────────┘
┌───┐

16 bytes │ │ Extended
└───┘

Figure 364. Three floating-point data lengths

The three System z floating-point number representations have different properties and ways of
representing the data. We'll explore them in Sections 33, 34, and 35.

31.7. System z Floating-Point Registers

System z uses a separate set of registers for floating-point operands and arithmetic. For many
years, the original System/360 and its successors supported only the four floating-point registers
shown in Figure 365.

�──────────────────── 8 bytes ──────────────────────
�─────── 4 bytes ───────
┌──────────────────────────┬───────────────────────────┐

FPR 0 │ │
├──────────────────────────┼───────────────────────────┤

FPR 2 │ │
├──────────────────────────┼───────────────────────────┤

FPR 4 │ │
├──────────────────────────┼───────────────────────────┤

FPR 6 │ │
└──────────────────────────┴───────────────────────────┘

Figure 365. Four floating-point registers

This figure raises several questions:

1. Why were there only four floating-point registers while there are 16 general registers?

2. Why were the floating-point registers numbered 0, 2, 4, and 6 rather than 0, 1, 2, and 3?

3. Why are separate floating-point registers used for floating-point operations, rather than using
the general registers?

4. The floating-point registers are 64 bits long; how can we access the rightmost 32 bits?

199 Historically, base 16 was supported first, then base 2, and then base 10.

564 Assembler Language Programming for IBM System z™ Servers Version 2.00

Here are some possible answers:

1. In System/360 days, registers were expensive. Because businesses were the primary computer
market, packed decimal data and operations were expected to satisfy most business needs.
The “Floating-Point Feature” could be ordered if floating-point data and arithmetic was
needed.

2. Because the floating-point registers are 64 bits long, their similarity to 32-bit general register
pairs made it natural to number them the same way.

3. The general registers are needed for base registers and for address and integer arithmetic, so it
seemed best to provide separate registers for floating-point operations.

4. Hexadecimal was the only floating-point representation supported for many years; short
hexadecimal operands used just the leftmost 32 bits, while long operands used all 64 bits.
There was rarely any need to access only the rightmost 32 bits of the floating-point register.

Later, IBM added the remaining 12 floating-point registers; all modern CPUs have 16.

Unlike the general registers, the floating-point registers are addressed only by their leftmost
portions. The low-order portion of the register is not separately addressable.

In Figure 364 on page 564, extended-precision operands are shown as being 16 bytes long;
because the floating-point registers are only 8 bytes long, a pair of registers is used.200 The eight
valid register pairs are (0,2), (1,3), (4,6), (5,7), (8,10), (9,11), (12,14), and (13,15), as illustrated by
the “bracketing” in Figure 366 on page 566.

 Remember!

Each 64-bit floating-point register is not a pair of 32-bit registers.

200 We've already seen general register pairing for double-length integer products and dividends.

Chapter IX: Floating-Point Data and Operations 565

┌──────────────────────────┬───────────────────────────┐
FPR 0 │ │─┐

├──────────────────────────┼───────────────────────────┤ │
FPR 1 ┌─│ │ │

│ ├──────────────────────────┼───────────────────────────┤ │
FPR 2 │ │ │─┘

│ ├──────────────────────────┼───────────────────────────┤
FPR 3 └─│ │

├──────────────────────────┼───────────────────────────┤
FPR 4 │ │─┐

├──────────────────────────┼───────────────────────────┤ │
FPR 5 ┌─│ │ │

│ ├──────────────────────────┼───────────────────────────┤ │
FPR 6 │ │ │─┘

│ ├──────────────────────────┼───────────────────────────┤
FPR 7 └─│ │

├──────────────────────────┼───────────────────────────┤
FPR 8 │ │─┐

├──────────────────────────┼───────────────────────────┤ │
FPR 9 ┌─│ │ │

│ ├──────────────────────────┼───────────────────────────┤ │
 FPR10 │ │ │─┘

│ ├──────────────────────────┼───────────────────────────┤
 FPR11 └─│ │

├──────────────────────────┼───────────────────────────┤
 FPR12 │ │─┐

├──────────────────────────┼───────────────────────────┤ │
 FPR13 ┌─│ │ │

│ ├──────────────────────────┼───────────────────────────┤ │
 FPR14 │ │ │─┘

│ ├──────────────────────────┼───────────────────────────┤
 FPR15 └─│ │

└──────────────────────────┴───────────────────────────┘
Figure 366. All sixteen floating-point registers, showing register pairings

The high-order half of an extended operand is in the lower-numbered register, and the low-order
half is in the register number two higher.

 Remember!

floating-point register pairs are Rn and Rn+2, not Rn and Rn+1, as with
general register pairs.

It may help to visualize floating-point register pairing this way:

566 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌─────────────────────────────┐┌─────────────────────────────┐
FPR 0 │ ││ │ FPR 2

└─────────────────────────────┘└─────────────────────────────┘
┌─────────────────────────────┐┌─────────────────────────────┐

FPR 1 │ ││ │ FPR 3
└─────────────────────────────┘└─────────────────────────────┘
┌─────────────────────────────┐┌─────────────────────────────┐

FPR 4 │ ││ │ FPR 6
└─────────────────────────────┘└─────────────────────────────┘
┌─────────────────────────────┐┌─────────────────────────────┐

FPR 5 │ ││ │ FPR 7
└─────────────────────────────┘└─────────────────────────────┘

... ...
┌─────────────────────────────┐┌─────────────────────────────┐

FPR13 │ ││ │ FPR15
└─────────────────────────────┘└─────────────────────────────┘

You may want to be careful when referencing floating-point registers on a very old CPU that has
only the four original registers. A specification exception would be generated by any instruction
which tries to refer to any but FPR0, FPR2, FPR4, and FPR6.201

Exercises

31.7.1.(1) Why do you think the floating-point registers are not paired in the same way as the
general registers? For example, (0,1), (2,3), etc.

31.7.2.(2) Suppose the CPU has the number of a floating-point register to be used in an
extended precision operation. What is an easy way to derive the number of the paired floating-
point register?

31.8. Floating-Point Constants

The Assembler's DC statement lets you define floating-point constants of the three standard
lengths, with these default alignments:

Type Length
E 4 bytes, fullword aligned
D 8 bytes, doubleword aligned
L 16 bytes, doubleword aligned

and all three representations, hexadecimal, binary, and decimal, specified by these subtypes:

Subtype Data Representation
H or none Hexadecimal floating-point
B Binary floating-point
D Decimal floating-point

These are described in Sections 33, 34, and 35, discussing each type of representation and arith-
metic.

201 The Assembler can help by checking register references at assembly time. By default, all 16 registers are valid, but if
you want to be sure your program references only those four, see the “AFPR” topic in the Assembler's Language
Reference manual.

Chapter IX: Floating-Point Data and Operations 567

Exercises

31.8.1.(1) What DC constant type (and subtype, if any) would you specify for floating-point
constants of these types?

• Long decimal
• Short binary
• Extended hexadecimal
• Extended decimal

31.9. Representation-Independent Floating-Point Instructions

While many of the floating-point instructions depend on the representation of the data they
manipulate, some work for all three.202 That is, you can put any string of bits in a floating-point
register; just be careful not to do arithmetic with them!

Worth remembering

These instructions do not depend on the representation of the data in the
floating-point registers.

31.9.1. Register-Storage Instructions

The instructions in Table 221 move data between memory and the floating-point registers for
data in all three System z floating-point representations. They do the same operations for
floating-point register data as do the related instructions (like L, ST) for general register data. The
CC is unchanged.

Table 221. Basic floating-point instructions

Op Mnem Type Instruction Op Mnem Type Instruction

78 LE RX Load (Short) ED64 LEY RXY Load (Short)

68 LD RX Load (Long) ED65 LDY RXY Load (Long)

70 STE RX Store (Short) ED66 STEY RXY Store (Short)

60 STD RX Store (Long) ED67 STDY RXY Store (Long)

There are no register-memory instructions to load or store an extended operand into or from a
floating-point register pair, and no instructions that load or store multiple floating-point registers.

31.9.2. Register-Register Instructions

Table 222 lists the instructions for moving floating-point operands among the floating-point regis-
ters:

Table 222. Instructions copying data between FPRs

Op Mnem Type Instruction Op Mnem Type Instruction

38 LER R R Load FPR from FPR
(Short)

28 LDR R R Load FPR from FPR
(Long)

B365 LXR RRE Load FPR from FPR
(Extended)

B373 LCDFR RRE Load Complement (Long) B371 LNDFR RRE Load Negative (Long)

B370 LPDFR RRE Load Positive (Long)

202 The z/Architecture Principles of Operation refers to them as “radix-independent” or “Floating-Point Support”
instructions.

568 Assembler Language Programming for IBM System z™ Servers Version 2.00

You may have noticed that “Load and Test” doesn't appear among these representation-
independent instructions; we'll see why such instructions depend on the format of the operands.

LER and LDR are similar to LR and LGR: both LR and LER move only 4 bytes, and LGR
and LDR move 8 bytes. LXR moves all 16 bytes, and requires both operands to refer to the
lower-numbered register of a floating-point register pair.203

There are two important differences between LR and LER:

1. While LR copies the low-order 4 bytes of one general register to another, LER copies the
high-order 4 bytes of one floating-point register to another. For example:

LG 0,=X'0123456789ABCDEF' Load GG0
LG 2,=X'FEDCBA9876543210' Load GG2
LR 0,2 c(GG0)=X'0123456776543210'

LD 0,=X'0123456789ABCDEF' Load FPR0
LD 2,=X'FEDCBA9876543210' Load FPR2
LER 0,2 c(FPR0)=X'FEDCBA9889ABCDEF'

The rightmost 4 bytes of GG0 are changed, but the leftmost 4 bytes of FPR0 are changed.

2. There is no way to reference the 4 low-order bytes of a floating-point register separately from
its high-order 4 bytes.

The LCDFR, LNDFR, and LPDFR instructions in Table 222 on page 568 are different from
many similar instructions (such as LCR, LNR, and LPR for binary integers, and LCER, LNER,
and LPER for hexadecimal floating-point), because they don't set the Condition Code. There are
other representation-dependent instructions like these that do set the CC.

31.9.3. Load-Zero Instructions

Before these instructions were introduced, setting a floating-point register to zero was awkward:
either a zero had to be loaded from memory (which is relatively slow), or the register's content
had to be subtracted from itself, which could also be slow (and sometimes cause other undesired
side-effects). The three instructions in Table 223 simply set the designated operand register(s) to
zero, and do not change the Condition Code.

Table 223. Floating-point Load Zero instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B374 LZER RRE Load Zero (Short) B375 LZDR RRE Load Zero (Long)

B376 LZXR RRE Load Zero (Extended)

The LZER instruction probably isn't needed, because LZDR will clear the full 8 bytes of the
floating-point register; and because you can't refer separately to the low-order 4 bytes of the reg-
ister, there seems to be little gain in clearing only the high-order 4 bytes.

31.9.4. GPR-FPR Copying Instructions

Transferring data between general registers and floating-point registers on System/360 required
using an intermediate storage area in memory. As CPUs have become much faster relative to
memory speeds, those two memory accesses can cause program delays.

The two instructions in Table 224 on page 570 transfer data directly between general and
floating-point registers.

203 Previously, two LDR instructions were needed to copy an extended-precision operand from one floating-point reg-
ister pair to another.

Chapter IX: Floating-Point Data and Operations 569

Table 224. Instructions moving data between FPRs and GPRs

Op Mnem Type Instruction Op Mnem Type Instruction

B3C1 LDGR RXY Load FPR from GPR
(Long)

B3CD LGDR RXY Load GPR from FPR
(Long)

As the instruction names indicate, these two instructions move 64-bit operands. For example:

LDGR 4,13 Copy c(GG13) to c(FPR4)
LGDR 1,6 Copy c(FPR6) to c(GG1)

31.9.5. Sign-Copying Instruction

The Copy Sign instruction is unusual: the second operand is copied to the first operand (as for
LDR), but with the sign bit of the third operand!

Table 225. Copy Sign instruction

Op Mnem Type Instruction

B372 CPSDR R R F Copy Sign (Long)

The instruction format is

CPSDR R1,R3,R2

The second operand (in R2) is copied to the first operand (in R1) with the sign of the third
operand (in R3). Only the long format is supported; but you can use CPSDR for short operands,
and for extended operands if you remember to copy the low-order half from the second operand's
higher-numbered register to the higher-numbered register of the first operand.

Thus, you could write

CPSDR 1,5,8 Copy FPR8 to FPR1 with FPR5's sign

to avoid having to write an LDR instruction followed by other Load and Test and Load Comple-
ment instructions to set the correct sign.

Exercises

31.9.1.(1) Write three different short instruction sequences to swap the contents of FPR0 and
FPR4.

31.9.2.(1) In Exercise 19.5.1, you showed how the contents of two general registers could be
exchanged using logical operations. Show another way to do this without referencing memory
or by using logical operations.

31.9.3.(1) If you designed register-memory instructions to load and store extended floating-point
operands, or to load and store multiple floating-point registers, what mnemonics might you
assign to those four instructions? What possible exception conditions might they recognize?

31.10. Summary

This section has described scaled fixed-point arithmetic, and shown why its difficulties led to the
introduction of floating-point.

The representation-independent instructions useful in programs handling floating-point operands
are listed in Table 226 on page 571.

570 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 226. Basic Load/Store instructions for floating-point operands

The two instructions in Table 227 transfer data between floating-point registers and general regis-
ters.

Table 227. Instructions moving operands between GPRs and FPRs

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Operation
Operands

4 bytes 8 bytes 16 bytes

Load
(memory)

LE
LEY

LD
LDY

Load
(register)

LER LDR
LCDFR
LNDFR
LPDFR

LXR

Zero
(register)

LZER LZDR LZXR

Copy Sign
(register)

CPSDR

Store
(memory)

STE
STEY

STD
STDY

Instruction Operand 1 Operand 2

LGDR 8-byte GPR 8-byte F P R

LDGR 8-byte F P R 8-byte GPR

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
CPSDR B372 LER 38 LZDR B375
LCDFR B373 LEY ED64 LZXR B376
LD 68 LGDR B3CD STD 60
LDGR B3C1 LNDFR B371 STDY ED67
LDR 28 LPDFR B370 STE 70
LDY ED65 LXR B365 STEY ED66
LE 78 LZER B375

The instruction opcodes and mnemonics are shown in the following table:

Chapter IX: Floating-Point Data and Operations 571

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
28 LDR B370 LPDFR B3C1 LDGR
38 LER B371 LNDFR B3CD LGDR
60 STD B372 CPSDR ED64 LEY
68 LD B373 LCDFR ED65 LDY
70 STE B374 LZER ED66 STEY
78 LE B375 LZDR ED67 STDY
B365 LXR B376 LZDR

Terms and Definitions
exponent

The power of the radix by which the significand of a floating-point number must be multi-
plied to determine its value.

floating-point
A data representation with a sign, an exponent, and a set of significant digits.

floating-point system FP(r,p)
A floating-point data representation with a specified radix and number of significant digits,
denoted FPF(r,p) or FPI(r,p).

floating-point system FPF(r,p)
A floating-point system with radix r and p digits of precision, in which the significant digits
are represented as fractions.

floating-point system FPI(r,p)
A floating-point system with radix r and p digits of precision, in which the significant digits
are represented as integers.

mantissa
An old term for the significant digits of a floating-point number.204

radix
The base in which the significant digits of a floating-point number are represented.

significand
The numerically significant digits of a floating-point number, whether explicitly or implicitly
represented.

Programming Problems

Problem 31.1.(1) Write a program using packed decimal arithmetic to solve the import-tax cal-
culation described in Section 31.3, and print the formatted result.

Problem 31.2.(2) Write a program using fixed binary arithmetic to solve the import-tax calcu-
lation described in Section 31.3, and print the formatted result.

Problem 31.3.(4) Write a program using fixed binary arithmetic to evaluate and print the square
root of 2 using the Newton-Raphson iteration described in Section 31.3.1, with initial estimate
1. (The hardest part of this problem will probably be formatting the fraction part of the result.)

204 This term should be avoided because it can be confused with the mantissa of a logarithm, which is quite different.

572 Assembler Language Programming for IBM System z™ Servers Version 2.00

32. Basic Concepts of Floating-Point Arithmetic

3333333333 2222222222
333333333333 222222222222
33 33 22 22

33 22
33 22

3333 22
3333 22

33 22
33 22

33 33 22
333333333333 222222222222
3333333333 222222222222

In this section we examine the basic behavior of floating-point arithmetic, and some factors that
you (and CPU designers) must consider. For the following examples, we'll use a floating-point
format where the significant digits are decimal fractions: the radix point is at the left end of the
most significant digit. We'll start with floating-point multiplication.

32.1. Floating-Point Multiplication

Suppose we want to multiply two floating-point numbers A and B, where A = a×10Ea and
B = b×10Eb. Their product is

A×B = (a×b)×10(Ea +Eb)

That is, we multiply the significant digits and add the exponents.

For example, suppose A is 3300 (33×102) and B is 0.029 (29×10−3). Multiplying, we find that

A×B = (33×29)×10(2 + (−3)) = 957×10−1 = 95.7

If we represent A and B in FPF(10,4) as four-digit base-10 floating-point values with normalized
fractions, A = 0.3300×104 and B = 0.2900×10−1. Multiplying gives

A×B = (0.3300×0.2900)×10(4 + (−1)) = 0.0957×10+ 3 = 95.7

The result is numerically correct, but the product fraction 0.0957 is not normalized. To generate a
normalized result, the fraction must be shifted left one digit position to form 0.9570; and because
this increases the fraction by 10, we must reduce the exponent by 1 to compensate. The normal-
ized result is then 0.9570×102.

This final multiplication correction is called post-normalization, and may be needed if the leading
digit of the product fraction is zero. For example, if we multiply the decimal fractions 0.2 and
0.3, the product fraction 0.06 must be shifted left once to obtain a normalized result. If the post-
normalizing shift is performed, the exponent is reduced by 1 to account for the shift having multi-
plied the fraction by 10.

This example shows that multiplication using FPF(r,p) may require a post-normalization shift.
The same product using integer values in FPI(10,4) would give

A×B = (0033.×102)×(0029.×10−3) = 0957.×102 + (−3) =
0957.×10−1 = 95.7

Chapter IX: Floating-Point Data and Operations 573

and no post-normalizing shift is needed.

The products in these examples have had few enough digits that we haven't had to worry about
excess low-order (or high-order) digits. We'll investigate what can be done about them in Section
32.3.

Exercises

32.1.1.(2) In FPF(10,4) using 4-digit internal arithmetic, what are the normalized values of
these products?

1. (0.7654×1012)×(0.1235×10−8)
2. (0.7655×102)×(0.7655×102)
3. (0.0333×102)×(0.0321×101)

32.2. Pre-Normalization of Fraction Operands

Our examples assumed that the operands of a product in an FPF(10,4) representation were nor-
malized, so that at most a single post-normalizing shift is needed. But what if the operands are not
normalized? If the numbers A and B had been represented by the unnormalized values
A = 0.0033×106 and B = 0.0029×101, the product will be

A×B = (0.0033×0.0029)×106 + 1 = 0.00000957×107

If we had retained only the first 4 digits of this product, all significance would have been lost.
This product fraction has five leading zeros, so something must be done to preserve the accuracy
of the result. This is called pre-normalization: before the operands are multiplied the CPU inter-
nally normalizes them and adjusts their exponents; the product fraction is then 0.0957, which
needs only a single post-normalizing shift.

Because most floating-point operands are already normalized, the cost of pre-normalization is
very low relative to the other steps needed to complete the instruction. Also, if the operand frac-
tions are pre-normalized, we know that at most one post-normalization shift may be needed.

Exercises

32.2.1.(2)+ In FPF(r,p), what is the largest number of pre-normalizing shifts required for a
nonzero operand?

32.2.2.(2) Show the normalized results in FPF(10,4) of each product, with and without pre-
normalized operands.

1. (0.0147×102)×(0.0070×103)
2. (0.0073×104)×(0.0071×101)

32.3. Floating-Point Rounding

We learned to round decimal results by adding 5 to the first digit to be “lost”, propagating any
carries. This is sometimes called “arithmetic rounding” or “round half-up” (among other names).
It is one of many ways to round a more precise value to a less.

Arithmetic rounding is “biased” in the sense the sums may be slightly too large. For example,
suppose you are calculating the sum of the exact decimal values .11115, .11125, .11135, .11145,
and .11155, and each exact value must be rounded to four significant digits before final summa-
tion. With arithmetic rounding, the intermediate values are .1112, .1113, .1114, .1115, and .1116
and their sum is .5570. But the sum of the 5-digit intermediate values is .55675, which we would
round to 4 significant digits as .5568.

574 Assembler Language Programming for IBM System z™ Servers Version 2.00

In hexadecimal floating-point, arithmetic results are truncated (“rounded toward zero”). Then, our
five truncated intermediate decimal values would be .1111, .1112, .1113, .1114, and .1115, and
their sum would be .5565.

An important rounding that reduces bias is “round half-even” (sometimes called “banker's
rounding”). If the value to be rounded lies exactly half way between two closest neighboring
numbers in the less-precise representation, we choose the value whose low-order digit is even.
With half-even rounding, our five intermediate values would be .1112, .1112, .1114, .1114, and
.1116, and their sum is .5568; and this is also the rounded (half-even or arithmetic rounding) value
of the exact sum.

Starting with the exact value, we can summarize our examples of these three types of rounding:

• .55675 = exact
• .5565 = truncated (rounded toward zero)
• .5570 = arithmetic (half-up) rounding
• .5568 = half-even rounding

This shows how arithmetic results can depend on the type of rounding used. System z supports
some other types of rounding, especially for binary and decimal floating-point arithmetic. We
noted above that hexadecimal floating-point arithmetic truncates: its sum would be .5565.

As we'll see in Section 32.4, the guard and rounding digits are used only internally, and are not a
part of any accessible register. This means that these two digits are not available on completion of
an operation, and their values are not carried over from one instruction to the next. You can
think of them as being set to zero at the beginning of the operation.

Exercises

32.3.1.(2)+ Given the two FPF(10,4) numbers X=.1000×101 (=1.000) and Y=.5555×100

(=.5555), show the results of four iterations of the calculation

X = (X+Y)-Y

using (1) round to zero, (2) round half-up, and (3) round half-even arithmetic for each iteration.

32.4. Guard and Rounding Digits (*)

Let's try other examples of multiplication in FPF(10,4) with normalized operands. First, consider
1×1 = (.1000×101)×(.1000×101). The intermediate product is .0100×102, which after normaliza-
tion becomes .1000×101.

Now, consider 1×1.234 = (.1000×101)×(.1234×101). Since our products are 4 digits long, the
intermediate product is .0123×102, or .1230×101 after normalization. But this is unacceptable: we
want to believe that 1×A for any A always yields A.

The solution to this unfortunate situation205 is to use a guard digit, a single extra digit used inter-
nally for intermediate results. With a guard digit, the intermediate product is .0123[4], where the
guard digit is shown in square brackets []. The post-normalizing shift shifts the intermediate
product including the guard digit left by 1 digit position, and the final product is .1234×101 as
required.

Another example can reinforce the importance of a guard digit. If we have two positive numbers
A and B with A < B, then multiplying both by A should (according to the rules of algebra)
mean that A2 < AB. Now, suppose A = .9999×100 and B = .1000×101, so A < B. Without
a guard digit, the products are A2 = .9998×100, and AB = .9990×100, which means that

205 It happened to IBM in 1966, because the very first System/360 processors omitted the guard digit for long
hexadecimal arithmetic. The oversight was quickly corrected, along with some other hexadecimal floating-point
inconsistencies.

Chapter IX: Floating-Point Data and Operations 575

A2 > AB instead! With a guard digit, the products are A2 = .9998×100 and AB = .9999×100,
preserving the required inequality.

A guard digit is needed not only to improve the precision of a result. It might seem that the differ-
ence between the results with and without a guard digit is small (and especially so with fractions
having many digits), and is therefore negligible. As we saw in the previous two examples, the
important observation is not that the answer is slightly incorrect, but that an expected ordering
relationship between the operands might be destroyed. It's quite difficult to write reliable pro-
grams if you can't assume that inequalities between operands behave normally.

Suppose we multiply 509×151; the product is 76859. In FPF(10,4), (.5090×103)×(.1510×103)
gives an intermediate product .0768[5]9×106, and post-normalization gives the result
.7685×105 = 76850. But a much better approximation in FPF(10,4) is .7686×105 = 76860. To
produce this more accurate result, a second internal digit is needed, a rounding digit.

To round, we first post-normalize the intermediate result and then add 5 to the digit (if any) after
the last significant digit (propagating carries, of course). The rounded intermediate product frac-
tion .0768[5]9 becomes

.76859 (normalized)
 + 5

.76864

The rounding digit is then discarded, giving .7686×105, as desired.

If no post-normalizing shift is needed, the guard digit is used as the rounding digit.

In System z processors, hexadecimal floating-point arithmetic provides a guard digit but no
rounding digit. Special instructions can round longer results (extended and long) to shorter (long
and short), but very few hexadecimal floating-point instructions round their results.

However, System z binary and decimal floating-point arithmetic instructions let you specify
several rounding modes, both generally and for individual instructions. We'll explore the
instructions and rounding modes when we discuss binary and decimal floating-point.

Exercises

32.4.1.(2) Without a guard digit, what types of operand A in FPF(10,4) will cause 1×A to be
unequal to A?

32.4.2.(2) For these pairs of FPF(10,4) operands, show their products (a) with no guard or
rounding digit, (b) with a guard digit but no rounding digit, and (c) with both guard and
rounding digits.

1. 155×165 (=25575)
2. 45×2469 (=111105)
3. 21×1117 (=23457)
4. 127×137 (=17399)

32.4.3.(3) For these pairs of FPF(10,4) operands, show their products (a) with no guard or
rounding digit, (b) with a guard digit but no rounding digit, and (c) with both guard and
rounding digits.

1. 509×101 (=51409)
2. 509×555 (=282495)
3. 509×550 (=279950)
4. 407×515 (=209605)

32.4.4.(2) Repeat Exercise 31.1.1, assuming the operands are pre-normalized. Show the results
(a) with a guard digit, and (b) with guard and rounding digits.

32.4.5.(3) Construct three examples of products using FPF(10,4) operands that show differences
between rounding before post-normalization and rounding after post-normalization.

576 Assembler Language Programming for IBM System z™ Servers Version 2.00

32.4.6.(2)+ Suppose you must multiply these two floating-point numbers (represented as three
decimal fraction digits): 0.124 and 0.456. You must then test whether their product is greater
than 0.0562. Show the results of the comparison if the multiplication is done (a) without a
guard digit, and (b) with a guard digit.

32.5. Integer-Based Representations (*)

Integer-based floating-point representations raise a different set of questions. Using the FPI(10,4)
notation of Figure 357 on page 561, we can consider several representations of the number 73:

┌─────────┐ ┌─────────┐ ┌─────────┐
│ 7 3 0 0.│ │ 0 7 3 0.│ │ 0 0 7 3.│
└─────────┘ └─────────┘ └─────────┘
k = -2 k = -1 k = 0
X = 73 X = 73 X = 73

Figure 367. Integer-based representation of 73 in FPI(10,4)

All three representations have the same value, but only the third “looks like” the integer 73,
because its exponent is zero (so the lowest-order digit is multiplied by 100).

Now, suppose we multiply 73 by 730, both represented as integers with exponent zero. then
(0073.×100)×(0730.×100) is 53290.×100. But there are five digits in the product, so to preserve pre-
cision we must shift the result one digit to the right, giving 5329.×101. The result no longer has
the original integer representation, because the lowest-order digit has effectively been multiplied by
101. Because the discarded digit was zero, we didn't worry about rounding. Thus, the product is

┌─────────┐
│ 5 3 2 9 │ 0.
└─────────┘
k = +1
X = 53290

and the decimal point lies beyond the precision of the representation.

Now, consider the product 127×137 = 17399. If we start with integer values with exponent
zero, the product again has too many digits and must be shifted right once to fit in the 4-digit
significand field. Because the digit to be discarded is nonzero, the remaining digits should be
rounded, so the result will be 1740.×101.

Integer-based floating-point representations are not “normalized” either by requiring the highest-
order digit to be nonzero (as in fraction-based representations), nor by requiring the lowest-order
digit to be nonzero. Integer-based floating-point is used in System z only for decimal floating-
point, which we'll explore in Section 35.

Exercises

32.5.1.(2) In FPI(r,p), what advantage might there be if you pre-normalize the nonzero oper-
ands of a multiplication “to the right” so that the lowest-order digit is nonzero?

Chapter IX: Floating-Point Data and Operations 577

32.6. Floating-Point Division

If we calculate the quotient Q of two floating-point operands S and T, Q = S÷ T, where
S = s×10Es and T = t ×10Et, the quotient S÷ T will be

S ÷ T = (s ÷ t)×10(Es −Et)

To illustrate, suppose we use the same FPF(10,4) representation for S and T as for A and B
above (in Section 32.4): four fractional base-10 digits and an exponent, and let S = 3300
(0.3300×104) and T = 6 (0.6000×101), so the quotient will be 550. Then

S ÷ T = (0.3300 ÷ 0.6000)×10(4−1) = 0.5500×103 = 550

In this case, the quotient fraction is properly normalized.

Now, suppose we divide 0.5 by 0.2, ignoring exponents. The result “fraction” is 2.5, which is
greater than 1, so the result requires a corrective right shift.206 Because shifting the fraction right by
one digit position is the same as dividing it by 10, the exponent of the result is increased by 1 to
compensate for the shift. This is illustrated in Figure 368:

┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│.5 0 0 0 │ ÷ │.2 0 0 0 │ = 2│.5 0 0 0 │ ──� │.2 5 0 0 │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

k = 0 k = 0 k = 0 k = 1
Figure 368. Illustrating floating-point division corrective right shift

Division operand fractions are pre-normalized, as for multiplication. If they weren't, we might
divide 0.95 by 0.0005, giving 1900. for the (very unnormalized) quotient! This could cause extra
work to produce a correctly normalized result; possibly, the CPU designers would avoid designing
the extra circuits and simply indicate an error.

If the divisor T is zero, the division is improper and the CPU generates a floating-point divide
exception. If the dividend S is zero, the result can be set to zero immediately.

Exercises

32.6.1.(2) Ignoring exponents, which of the following division operations will require a correc-
tive right shift for the 4-digit quotient? Show the rounded 4-digit quotient fraction.

1. .1428 ÷ .7142
2. .6667 ÷ .6666
3. .1277 ÷ .3456
4. .3456 ÷ .1275
5. .9999 ÷ .9999

32.7. Floating-Point Addition and Subtraction

Adding and subtracting floating-point numbers is more complicated than multiplying and
dividing. We don't need to consider subtraction separately: to subtract, the CPU needs only to
invert the sign bit of the second operand and then add. Thus, we consider adding operands with
like signs or unlike signs.207

One major difference between division and multiplication on the one hand, and addition on the
other, is that in addition neither operand needs to be pre-normalized. This is because

206 This corrective right shift is not a post-normalizing shift in same sense as for multiplication, because “normalization”
is usually understood to imply a left shift of the fraction to eliminate leading zero digits.

207 The CPU treats addition of operands with unlike signs as just another name for subtraction.

578 Assembler Language Programming for IBM System z™ Servers Version 2.00

• there is no guarantee (as was the case for multiplication and division) that at most one correc-
tive shift will be needed when the addition is completed, and

• some calculations are simplified by not pre-normalizing; some of these will be illustrated when
we discuss hexadecimal floating-point in Section 33.

To illustrate floating-point addition, we'll again use decimal operands to add 124 and 3. In
FPF(10,4), these are represented as 0.1240×103 and 0.3000×101 respectively. Now we can't
simply add the fractions directly, since the true positions of the decimal points don't correspond
to the same leading digit positions: that is, adding

0.1240 + 0.3000 =(?) 0.4240

is clearly not correct. To add the fractions correctly, we must compare the exponents of the oper-
ands: if they are equal, the fractions can be added immediately. If the exponents are not equal, the
fraction part of the number with the smaller exponent is shifted right by a number of digit posi-
tions equal to the difference between the exponents. Because each right shift means that the
smaller exponent is increased by 1, it will eventually be equal to the larger.

Thus, the CPU must unnormalize the fraction of the operand with the smaller exponent until the
exponents of the two operands are equal. The fraction parts can then be added directly; in our
example we would find after shifting the fraction 0.3 to the right by 3 −1 = 2 places and adding,
that the result fraction is

Before After
.1240 × 103 .1240 × 103

+ .3000 × 101 + .0030 × 103

 ????? × 10? .1270 × 103

The result exponent is 3, the exponent of the larger operand, and the value to which both expo-
nents were adjusted.

As another decimal example of adding operands with like signs, suppose we want to add 62 and
77, which would be represented as .6200×102 and .7700×102. The exponents are equal, so the
fraction parts may be added directly, giving 1.3900×102.

.6200 × 102

+ .7700 × 102

 1.3900 × 102, or +.1390 × 103.

This “fraction” is not less than one in magnitude, so a single corrective right shift is needed; the
exponent is increased by one to account for the right shift. Thus, the result is + .1390×103, as
desired.

When adding two normalized numbers of like signs, the only post-addition correction that may be
needed is a possible right shift of the fraction by one digit position, with an accompanying
increase of the exponent or characteristic by one.

What happens if the operands have exponents with a larger difference? Suppose we add .1234 and
.00008, which in FPF(10,4) have representations .1234×100 and .8000×10−4. Because the expo-
nent difference is 4, we must shift the smaller operand right 4 places:

 .1234 × 100

+ .00008 × 100

 .12348 × 100

As with multiplication, discarding the extra rightmost digit would give a less accurate result; some
types of floating-point arithmetic use the extra digit position to round the result to .1235×100.

If the exponent difference is large enough, the smaller operand would be shifted so far to the right
that its digits can't contribute to the sum. Thus, the CPU can compare exponents to quickly
determine that it can deliver the larger operand as the result without doing any arithmetic.

Adding numbers with unlike signs proceeds the same way: the fraction part of the operand with
the smaller exponent is right-shifted a number of digit positions equal to the difference of the
exponents. The subtraction (“negative addition”) of the two fractions is then performed, and the
sign of the result is noted.

Chapter IX: Floating-Point Data and Operations 579

Since the result fraction can be smaller in magnitude than the larger of the two original operands,
we may find some leading zero digits in the result. If a normalized result is desired, the fraction
digits are shifted left (post-normalized) and the exponent is decremented by the number of left
shifts performed. (Sometimes it's useful to retain the unnormalized result; we'll see examples
when we discuss hexadecimal floating-point.)

For example, suppose we add +72 (+ .7200×102) and −67 (− .6700×102). Because the exponents
are equal, no operand shift is needed. Then, the steps of the addition are these:

+ .7200 × 102

- .6700 × 102

+ .0500 × 102

This example shows that adding numbers of unlike signs can generate an unnormalized result. If
a normalized result is required, the result would be + .5000×101, as expected. Similarly, we can
subtract 99 (.9900×102) from 102 (.1020×103). After shifting the operand with the smaller expo-
nent to the right by one digit position, the steps are shown in this example:

+ .1020 × 103

- .0990 × 103

+ .0030 × 103, or .3000 × 101.

and two shifts are needed to normalize the result.

Exercises

32.7.1.(2) For each of these differences in FPF(10,4) arithmetic, show the result (a) without
guard and rounding digits, (b) with a guard digit but no rounding digit, and (c) with both
rounding and guard digits.

1. (.7435×103) − (.9621×101)
2. (.7435×101) − (.6994×101)
3. (.1043×105) − (.9527×104)
4. (.1000×100) − (.9992×10−2)

32.7.2.(1) In describing addition with unlike signs, the text above states “... the result fraction
can be smaller in magnitude than the larger of the two original operands...”. Why does it not
state “... the result fraction is smaller in magnitude...”?

32.7.3.(2)+ In FPF(10,4), show the intermediate steps and the results in calculating the fol-
lowing quantities. (1) 9*9, (2) 9 −9, (3) 643 −552, (4) 2/3, (5) 28 −32.

32.8. Floating-Point Precision

You may have learned in a mathematics class about what mathematicians call “real” numbers
that have unlimited precision208 and magnitude. But in our “realistic” world, we must deal with
numbers having finite precision — limited numbers of digits. This is familiar to us; the import-tax
example in Section 31.3 on page 557 is typical of everyday calculations.

Floating-point arithmetic is necessarily “realistic” because data items have finite numbers of digits.
When we want to know the precision of a floating-point number, we need to know the precision
p of its representation.

We'll use values in FPF(10,4) to illustrate. Ignoring exponents for the moment, consider the frac-
tion .1000: we might say it has a precision of 4 decimal digits. The next larger value is .1001; the
relative difference between the two is .0001 ÷ .1000, or 10−3. Somehow, our four digits of preci-
sion has become three!

208 If you ever had to follow a mathematics proof using “deltas” and “epsilons”, you'll remember that they can be
arbitrarily tiny.

580 Assembler Language Programming for IBM System z™ Servers Version 2.00

The relative size of a one-digit change in the rightmost digit of a floating-point number is some-
times called a “Unit in the Last Place”, or an “ulp” for short. An ulp is defined by

ulp(x) = successor(x) - x

where the successor of a floating-point number is the next larger value.209 This is the “spacing”
between neighboring values.

Because the size of an ulp depends on the size of the number, it may be more useful to know its
relative size. The relative size of an ulp is

ulp(x) ÷ x
This is the relative weight of the low-order digit of the number x.

In FPF(10,4), ulp(.1000×106) is 102, and ulp(.1000×10−6) is 10−10; but the relative size of both
ulps is about 10−3.

But now consider the fraction .9998: its successor (the next larger value) is .9999, so their relative
difference is .0001 ÷ .9998, or almost 10−4. So, the relative size of an ulp can vary by as much as
a factor of 10, the radix of the representation.

This behavior applies to any floating-point representation using radix r: the relative size of an ulp
can vary between r− p and r− (p −1), so its size can vary by as much as r.210 Thus the relative preci-
sion of a floating-point representation is best described as r− (p −1), and the precision of a p-digit
decimal fraction is not 10− p, but 10− (p −1).

As we saw for values in FPF(10,4), the precision of a floating-point number is sometimes esti-
mated (incorrectly) as the relative value of its lowest-order digit. For example, in FPF(16,6) a
short hexadecimal floating-point number has six hexadecimal digits, so the relative value of its
rightmost digit is

16−6 = 0.000000059604644775390625 ≈ 5.96×10−8

This has sometimes led people to say that a short hexadecimal floating-point number can accu-
rately represent seven decimal digits. However, the precision of the low-order digit may be
smaller:

16−5 = 0.00000095367431640625 ≈ 9.54×10−7

It's much safer to say that only six decimal digits can be accurately represented.

The question “How many decimal digits does this floating-point number represent?” also involves
issues of converting between decimal and the floating-point radix; we'll discuss this topic more
fully in Section 36.

Exercises

32.8.1.(2) Estimate the largest relative size of an ulp in each floating-point representation:

1. FPF(16,14)
2. FPF(2,24)
3. FPF(10,34)

209 It's more usual, and somewhat more correct, to define

ulp(x) = min[successor(x)-x , x-predecessor(x)]
where the predecessor is the number with the next smaller value.

210 This effect is sometimes called “wobbling precision”.

Chapter IX: Floating-Point Data and Operations 581

32.9. Floating-Point Range

We will use positive numbers in the FPF(10,4) representation to illustrate limits on the size of
floating-point data. It may help to refer occasionally to Figure 369 on page 583, where the
results of the following examples are indicated by “keys” like this: �1�

We will also use [exponent║fraction] to represent a floating-point value, where the exponent is a
signed decimal digit. We'll call the maximum allowed exponent “Emax”, and the minimum
allowed exponent “Emin”. In these examples, Emax= +9 and Emin= −9. This means that the
largest normalized value is [+9║+ .9999] (called “Max” or “MaxReal” �6�), and the smallest nor-
malized value is [−9║+ .1000] (called “Min” or “MinReal” �7�).

Floating-point numbers with too-large exponents can't be represented. These exponent range vio-
lations are called exponent overflow (the exponent is positive, and its value is greater than Emax)
and exponent underflow (the exponent is negative, and its value is less than Emin).

1. The very large number [+9║+ .5000] multiplied by itself gives [+18║+ .2500], which generates
an exponent overflow �1� because the exponent +18 is greater than Emax.

2. Similarly, the very small number [−9║− .5000] multiplied by itself gives [−18║+ .2500], which
generates an exponent underflow because the exponent is less than Emin. �2�

These two examples show that products and quotients of “normal” numbers can generate
results with double the allowed exponent range.

3. Adding the very large number [+9║+ .9000] to itself generates [+10║+ .1800]. The result has
an exponent one larger than Emax, which shows that the exponents of sums of “normal”
numbers can overflow Emax by 1. �3�

4. Subtracting the very small number [−9║+ .1000] from its next larger value [−9║+ .1001] gen-
erates [−12║+ .1000]. Because our precision “p” is 4, this example shows that differences of
“normal” numbers can generate exponents as small as Emin − (p −1). �4�

5. Although this normalized result has caused exponent underflow, some floating-point systems
support operations that generate unnormalized results for some arithmetic operations. If
[−12║+ .1000] is denormalized by shifting the fraction right three places and adding 3 to the
exponent, the resulting value is [−9║+ .0001]. �5�

This is the smallest nonzero value in our FP(10,4) representation. This denormalized
minimum value is sometimes called “DMin”.

Multiplying [−5║+ .5000] by itself generates [−10║+ .2500]. The normalized result has created
an exponent underflow, but denormalizing the fraction by one digit creates the representable
value [−9║+ .0250].

The two values [−9║+ .0001] and [−9║+ .0250] have valid exponents but unnormalized frac-
tions; they are sometimes called “denormal” or “subnormal” numbers.

Exponent overflow and underflow are serious conditions, and it's important to handle them care-
fully. Operations on overflowed values are difficult to manage. Sometimes the exponent of the
result has been adjusted to lie between Emin and Emax, so you must be careful not to continue
calculations with the adjusted value.

Sometimes overflowed results may be set to values like MaxReal, MinReal, a bit pattern repres-
enting infinity, or zero, and underflows may be set to zero.

MaxReal is sometimes mistakenly called “infinity”, but MaxReal is very different from the math-
ematical concept of ∞ :

• ∞ / 2 = ∞ , but MaxReal/2 is finite

• ∞ × 0 is meaningless, but MaxReal×0 = 0

582 Assembler Language Programming for IBM System z™ Servers Version 2.00

Unrepresentably Large Values
�
│

2Emax ├───
│ � Products, Quotients
│ │
│ │ Overflow Range �1�
│ │
│ │

 Emax+1 │─ ─ � ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ Sums �3�
 Emax ├─── Overflow Threshold

│ � MaxReal �6�
│ │
│ │
│ │
│ │

0 ├─ │ Normal Range
│ │
│ │
│ │
│ │
│ � MinReal �7�

 Emin ├─── Underflow Threshold
│ � Subnormal Range �5�

 Emin-p+1 │─ ─ ┼ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ Differences �4�
│ │
│ │ Underflow Range �2�
│ │
│ � Products, Quotients

2Emin ├───
│
�

Unrepresentably Small Values

�─
──
──
──
──
──
──
──
──
──
──
──
──
──
──
 E
xp
on
en
t
Va
lu
es
 ─
──
──
──
──
──
──
──
──
──
──
──
──
──
──
──

�─
──
──
─
Re
pr
es
en
ta
bl
e
Va
lu
es
 ─
──
──
─

Figure 369. Exponent range of representable and computable values

Exercises

32.9.1.(2) Using our FPF(10,4) representation with a single signed decimal digit for exponent,
create three pairs of numbers such that dividing the first number by the second generates

1. an overflowed result with exponent 2×EMax,
2. an underflowed result with exponent 2×Emin, and
3. an underflowed result that can be denormalized to have exponent Emin.

32.9.2.(3) Show the results of these operations in FPF(10,4), and indicate whether the result is
normal, overflowed, underflowed, or can be denormalized to have exponent EMin. Assume a
single signed decimal digit for an exponent, and that both guard and rounding digits are used.

 1. [+8║+ .4946] + [+8║+ .5429]
 2. [+8║+ .4946] − [+8║+ .5429]

Chapter IX: Floating-Point Data and Operations 583

32.10. Exponents and Characteristics

The examples above used exponents with a sign and a single decimal digit having values from −9
to +9. If the sign and digit were represented in binary on a “real” computer, we would need one
bit for the sign and 4 bits for the digit. But with the same 5 bits, we can represent signed binary
numbers from −16 to +15. This greater range of exponent values shows why floating-point data
representations use binary exponents.

All System z floating-point systems use a form of exponent representation called a characteristic.
Because exponents can take both positive and negative values, internal arithmetic involving the
exponent is simplified by adding a bias that makes the characteristic an unsigned number.

This eliminates the problems of dealing with two different signed values in a single number (the
significand's + and the exponent's −) and makes it easier to handle and detect both normal and
abnormal conditions. When we multiply two numbers, one bias value is subtracted and then the
characteristics are added; if a carry is detected after the characteristic addition, we know that an
exponent overflow has occurred, and if the result would be negative we know that an exponent
underflow has occurred.

Similarly, in division we add one bias value and subtract the characteristic of the divisor; and for
addition and subtraction, the difference in characteristics determines the number of places the
smaller operand must be shifted.

To illustrate, suppose we decide to restrict our decimal exponent to a single unsigned digit. If we
choose Emax = +4 and Emin = −5, we need to add a +5 bias for unsigned characteristic
values between 0 and 9. The number 100 previously represented as [+3║+ .1000] in this new
FPFa(10,4) representation would be [+8║+ .1000]. Similarly, the true MaxReal [+9║+ .9999]
would be represented as [+4║+ .9999] and the true MinReal [0║+ .1000] would be represented as
[−5║+ .1000].

If we multiply this proposed MaxReal by itself, the characteristic of the intermediate result would
be +18 −5, or +13, corresponding to an exponent +8. Because Emax = +4, an exponent over-
flow condition would be recognized. Similarly, if we add this MaxReal to itself, the intermediate
result would be [+10║+ .1000] because the rounded fraction was shifted right one position and the
characteristic was incremented by one. The characteristic +10 corresponds to an exponent +5,
which exceeds Emax by 1.

The choice of a bias value not only determines the range of representable values, but influences
arithmetic using those values. For example, suppose we divide 1 by this proposed MinReal: if we
use true exponents for a moment, we find

[+1║+.1000] ÷ [-5║+.1000] = [+7║+.1000]

But this number is about 100 times larger than MaxReal!

The solution to this “range asymmetry” is to choose the bias to be 4 instead of 5. Now, in this
updated FPFb(10,4) representation, +MaxReal would be [+5║+ .9999] and +MinReal would be
[−4║+ .1000]. Now, if we divide 1 by the new MinReal, the result (again using true exponents) is

[+1║+.1000] ÷ [-4║+.1000] = [+6║+.1000]
and this result is just a tiny bit larger than MaxReal.

These examples show how the choice of bias can influence the range of computable results. The
bias is usually chosen to try to minimize range asymmetries.

Exercises

32.10.1.(2) Short hexadecimal floating-point is a FPF(16,6) representation with EMax= +63
and EMin= −64, with characteristic bias +64. Show the hexadecimal values of MaxReal and
MinReal.

32.10.2.(2) Using the same representation as in Exercise 32.9.1, estimate its range asymmetry.

584 Assembler Language Programming for IBM System z™ Servers Version 2.00

32.10.3.(3) Review Exercise 32.9.1. Then, estimate the range asymmetry if the same exponent
range is used with characteristic bias +65. Also, estimate the values of MaxReal and MinReal.

32.11. Summary

This has been a brief overview of floating-point arithmetic. The examples we've seen represent
the behavior of the three floating-point representations used in System z, although each has its
variations on the themes described in this section.

Terms and Definitions
bias

A fixed value added to an exponent so that the exponent field always contains a nonnegative
value, the characteristic.

characteristic
The true exponent plus the bias.

denormalization
A process of shifting the result fraction of a floating-point number to the right by enough
digit positions so the exponent will lie in a desired representable range.

exponent overflow
A condition arising when the exponent of a calculated result is too large to be contained in
its floating-point representation.

exponent underflow
A condition arising when the exponent of a calculated result is too small to be contained in
its floating-point representation.

guard digit
An extra internal digit used to increase the accuracy of a calculated floating-point result.

MaxReal
The largest representable floating-point magnitude, also called Max.

MinReal
The smallest representable floating-point magnitude. If normalized, it is also called Min; if
denormalized, it is also called DMin.

normalization
A process of ensuring that the most significant digit in a fraction-based floating-point repre-
sentation is nonzero.

pre-normalization
A process of normalizing the operand or operands before operating on it or them.

post-normalization
A process of normalizing the result operand after operating on it.

rounding digit
An extra internal digit used to help correctly round a calculated floating-point result.

ulp
An abbreviation for “unit in the last place”, a measure of the relative precision of a floating-
point number.

Chapter IX: Floating-Point Data and Operations 585

33. Hexadecimal Floating-Point Data and Operations

3333333333 3333333333
333333333333 333333333333
33 33 33 33

33 33
33 33

3333 3333
3333 3333

33 33
33 33

33 33 33 33
333333333333 333333333333
3333333333 3333333333

This section examines the hexadecimal floating-point (“HFP”) representation and the instructions
for hexadecimal floating-point arithmetic. Hexadecimal floating-point was introduced with the ori-
ginal System/360, and is the oldest of the three System z floating-point representations.

33.1. Hexadecimal Floating-Point Data

The hexadecimal floating-point representation uses hexadecimal fraction digits and a binary expo-
nent representing a power of 16. All significant digits are present; none are implied. A number X
in hexadecimal floating-point form is

X = f × 16e

where “f” is a fraction with value less than one, and “e” is a positive or negative binary integer
exponent with value between −64 and +63, so that

−64 ≤ e ≤ +63
For example, the number 1 can be represented in decimal as 100×10−2, 1.00×100, and 0.0001×104,
and in hexadecimal as X'100'×16−2, X'1'×160, and X'0.0001'×164. The normalized short
floating-point form is X'.100000'×161.

Figure 370 on page 587 shows the three hexadecimal floating-point formats. The sign bit S is 0
for positive numbers and 1 for negative numbers. The exponent is represented as an unsigned
characteristic in two's complement form, obtained by adding a bias 64 to the exponent:

characteristic = exponent + 64 = exponent + X'40'

Thus, the characteristic satisfies

0 ≤ characteristic ≤ 127
The sign and seven-bit characteristic occupy the first byte of the number, and the magnitude of
the fraction is carried in the remaining bytes, as shown in Figure 370 on page 587.

586 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌─┬──────┬─────────────────────┐
│S│ char │ 6 digit fraction │ Short: 4 bytes
└─┴──────┴─────────────────────┘ FPF(16,6)
 0 8 31

┌─┬──────┬──┐
│S│ char │ 14 digit fraction │ Long: 8 bytes
└─┴──────┴──┘ FPF(16,14)
 0 8 63

┌─┬──────┬──┐
│S│ char │ first 14 fraction digits... │ Extended:
├─┼──────┼──┤ 16 bytes
│/│//////│ ...remaining 14 fraction digits │ FPF(16,28)
└─┴──────┴──┘
 0 8 63

Figure 370. Hexadecimal floating-point number representations

The short-format fraction has 6 hexadecimal digits, the long-format fraction has 14, and the
extended-format fraction has 28. The high-order byte of the second portion of the extended
format is ignored.211

To illustrate a short hexadecimal floating-point representation, consider the value +123.4567 that
we converted to scaled fixed-point binary in Section 31.3.

1. The integer value 123 = X'7B', giving the first two digits of the hexadecimal fraction.
Because the significand is a fraction, 123 must be represented as X'.7B'×16+ 2. Thus, we know
that the exponent is +2 and the characteristic is 66 = X'42'.

2. The fraction value .4567 = X'.74EA48A...', which rounds to X'.74EA'.

3. We now combine the parts:

• The sign is + , so the first bit is zero.

• The characteristic is X'42'

• The hexadecimal fraction is X'.7B74EA'

• The converted representation is X'427B74EA'

Table 228 summarizes the properties of hexadecimal floating-point numbers. The column headed
“Precision” gives the number of hexadecimal digits in the fraction.

Table 228. Hexadecimal floating-point data representations

Byte
length

Char.
(bits)

Min
exp.

Max
exp.

Char.
Bias

Pre-
cision

Max Norm.
(Max)

Min Norm.
(Min)

Min Denorm.
(DMin)

4 7 −64 +63 +64 6 7.2×10+75 5.4×10−79 5.1×10−85

8 7 −64 +63 +64 14 7.2×10+75 5.4×10−79 1.2×10−94

16 7 −64 +63 +64 28 7.2×10+75 5.4×10−79 1.7×10−111

These rules determine a unique representation for a normalized number X:

 1. If f = 0, and e = −64, then X is a true zero; that is, everything except possibly the sign bit
S is zero.

 2. If f = 0 and e > −64, then X is a pseudo-zero (the characteristic is nonzero).

 3. If 1.0 > f ≥ 1/16, then X is said to be normalized (the most significant fraction digit is
nonzero).

211 The unused bits of the extended format were used to greatly extend the exponent range in a special form called the
“Extended Exponent Range Representation”, or “XEXP”. It was implemented only in software.

Chapter IX: Floating-Point Data and Operations 587

However, the representation of X could be unnormalized:

 4. If 1/16 > f > 0, then X is unnormalized (there is at least one leading zero digit in the frac-
tion).

A number X has a unique normalized representation, and may have several unnormalized repres-
entations with the same value. For example, we can represent the number 1.0 in several ways;
only the first is normalized:

41100000 42010000 43001000 44000100 45000010 46000001

If the value is not an integer, the unnormalized forms may not have the same value as the nor-
malized form. For example, if we chose to represent the decimal fraction 0.1 as an unnormalized
short floating-point number, it might appear to have the following equivalent representations:

4019999A 4101999A 4200199A 4300019A 4400001A 45000002

The values represented become less accurate as the amount of unnormalization increases.

4019999A 4101999A 4200199A 4300019A 4400001A 45000002
.100000023 .100000381 .100006104 .100097656 .101562500 .125000000

In the last case, the value of the number is not 0.1 (base 10) but 0.125, which would be unaccept-
ably different for most applications. Thus, normalized floating-point numbers offer the greatest
precision: they contain more digits with reliable values. This is not the same as saying that nor-
malized results are more accurate, because there may be other errors in a calculation which cause
the results to be incorrect even though all six digits are always retained in the answer.

Table 229 shows some unnormalized numbers in short hexadecimal floating-point format, and
their corresponding normalized forms:

Table 229. Unnormalized and normalized short hexadecimal floating-point
numbers

Table 230 shows some examples of short hexadecimal floating-point numbers: Their representa-
tions are fairly simple because all the quantities are multiples of powers of two.

Table 230. Short hexadecimal floating-point numbers

Consider the representation of +1000/1024:

• First, 1000.10 = X'3E8.' = B'0011 1110 1000.'

• Dividing by 1024 shifts this value right 10 bits, giving X'.FA' = B'.1111 1010 0000'

Unnormalized Normalized

40030000 3F300000

41003000 3F300000

620AB128 61AB1280

4300009E 3F9E0000

CB00FACE C9FACE00

03000123 00123000

Value Fraction-exponent
representation

Short floating-point
representation

1 +1×161 41100000
1 + .0001×164 44000100

256 + .000001×168 48000001
7/8 + E×160 40E00000

−5/4 − .14×161 C1140000
1/1024 + .4×16−2 3E400000

1000/1024 + .FA×160 40FA0000

588 Assembler Language Programming for IBM System z™ Servers Version 2.00

• The result has exponent 0 and characteristic X'40', giving X'40FA0000' as the hexadecimal
floating-point representation.

Long floating-point numbers are 8 bytes long; Table 231 shows some typical examples.

Table 231. Long hexadecimal floating-point numbers

An extended-precision number is 16 bytes long, and is represented by a pair of long-precision
numbers, the high-order and low-order halves. The high-order half contains the sign, the charac-
teristic, and the most significant 14 hex digits of the fraction of the extended number. The sign
and characteristic of the low-order half are ignored, and the fraction part of the low-order half
contains the least significant 14 digits of the fraction.212 (By convention, the characteristic of the
low-order half is set to 14 less than the characteristic of the high-order half.) Thus, an extended
number has a precision of 28 hexadecimal digits, equivalent to about 32 decimal digits.

Table 232 shows some examples of extended hexadecimal floating-point numbers.

Table 232. Extended hexadecimal floating-point numbers

Exercises

33.1.1.(2) A four-byte area of memory contains the bit pattern X'4040405C'. What is repres-
ented by that pattern? (You should now be able to describe five different possibilities.)

33.1.2.(2) How many redundant values are there for these short HFP numbers? (a) 25, (b) 1,
(c) 0.25, (d) 0. How many redundant values for long numbers?

33.1.3.(1)+ 25.5. Determine if each of the following seven short HFP numbers is a pseudo-zero,
a true zero, is normalized, or is unnormalized.

1. X'45678900'
2. X'FFFFFFFF'
3. X'00000001'
4. X'80000000'

Value Fraction-exponent
representation

Long floating-point
representation

1 +1×161 41100000 00000000
0.1 + .1×10−1 40199999 9999999A

−256 −1×163 C3100000 00000000
1000 +1000.0×103 433E8000 00000000
7/8 + E×160 40E00000 00000000

−5/4 − .14×161 C1140000 00000000
1/1024 + .4×16−2 3E400000 00000000

1000/1024 + .FA×160 40FA0000 00000000

Value Fraction-exponent
representation Extended floating-point representation

0.1 0.1×100 40199999 99999999 32999999 9999999A
π .314159...×10+ 1 413243F6 A8885A30 338D3131 98A2E037
e .271828...×10+ 1 412B7E15 1628AED2 33A6ABF7 158809CF

.000000000001 .1×10−11 37119799 812DEA11 29197F27 F0F6E886

212 The two halves of an extended-precision hexadecimal floating-point number are not treated as independent values, as
is done on some other systems supporting “double-double” precision.

Chapter IX: Floating-Point Data and Operations 589

5. X'00FF00FF'
6. X'40000000'
7. X'C400C1D4'

33.1.4.(3) The “XEXP” representation mentioned in the footnote on page 587 stated that the
unused bits of the low-order characteristic were used to extend the exponent range of extended-
precision numbers. Assuming that the sign bit was reserved and the remaining 7 bits were used
to extend the high-order characteristic, what would be the resulting exponent range?

33.1.5.(2)+ Given the quantities Z, A, B, C, D, E, and D as in Exercise 2.8.5, give their repres-
entations in short hexadecimal floating-point form.

33.1.6.(2) Given a short precision hexadecimal floating-point number S, write fixed-point
instructions to calculate short floating-point numbers with (a) the largest power of 16 ≤ S, and
(2) the smallest power of 16 ≥ S. Store the results at S1 and S2. Ignore the possibility of expo-
nent underflow or overflow.

For example, if S=X'42280000'= 4 0 10, then the result at S1 is X'42100000'= 1 6 1 and the result
at S2 is X'43100000'= 1 6 2.

33.1.7.(2) Can you extend the instructions you wrote in solving Exercise 33.1.6 for long and
extended precision operands? Why or why not?

33.2. Writing Hexadecimal Floating-Point Constants

As mentioned in Section 31.8, the basic lengths of all floating-point constants are determined by
types E (short), D (long), and L (extended). The default length and alignment are word,
doubleword, and doubleword. The default alignment in memory of an extended-precision
number is only to a doubleword boundary, not to a 16-byte “double-doubleword” or
“quadword” boundary.

The syntax of DC assembler instruction statements for HFP constants is

DC [dup_factor]type[modifiers]'value[dec_exponent]'

Like many other numeric constants, you can provide several value[dec_exponent] values sepa-
rated by commas.

where

• the duplication factor [dup_factor] is optional,
• the type is required,
• the [modifiers] are optional,
• a value is required, and
• the decimal exponent [dec_exponent] is optional.

This constant has all five items:

DC 2EL4S1E-2'7.73E8'

The duplication factor is 2, the type is E, the three modifiers are “L4“, “S1”, and “E −2”;, the
value is 7.73, and the decimal exponent is E8.

Table 233 on page 591 gives some examples of simple floating-point constants. For extended-
precision constants, the Assembler gives the same signs to the high-order and low-order halves,
and the characteristic of the low-order half is 14 less than the characteristic of the high-order half.
The CPU does the same for the results of extended-precision arithmetic operations.

590 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 233. Assembled hexadecimal floating-point constants

Consider the second constant: 22 = X'16', and .75 = 12/16 = X'.C'. Putting these two parts
together we get 22.75 = X'16.C' or X'.16C'×16+ 2. (Remember, the significand is represented as
a hexadecimal fraction!) So the characteristic is +2+6 4 = X'42', and the entire 8-digit constant is
therefore X'4216C0000'.

Then consider the last constant: the characteristic of the second half is much larger than the char-
acteristic of the first half. This is because the low-order characteristic is the high-order character-
istic -X'14': X'06'-X'14' (modulo 128), or X'78'.

The Assembler's decimal to hexadecimal floating-point conversion is rounded, but hexadecimal
floating-point arithmetic performed by the CPU is almost always unrounded.

33.2.1. Decimal Exponents

If a constant has many leading or trailing zeros, it is inconvenient to have to write out all the
digits; the operand E'10000000000000' is an awkward way to define the constant 1013. To sim-
plify writing such constants, two different methods may be used, both of which specify a power of
ten by which the value must be multiplied: one is to use a decimal exponent with the nominal
value, and the other is to use an exponent modifier.

As we saw for F and H-type binary constants in “12.1. F-Type and H-Type Constants” on page
146, a decimal exponent is written as the letter “E” followed by a positive or negative integer
which specifies the power of ten by which the constant is to be multiplied. It is written imme-
diately following the value of the constant. For instance, we could write a DC statement operand
to define four constants of value 1013 like this:

DC E'1E13',E'1.0E13',E'100E11',E'10.E+12'

Table 234 shows some examples of constants with decimal exponents.

Table 234. Hex floating-point constants with decimal exponents

The previous rules for using literals also apply to hexadecimal floating-point literals.

DC Operand Assembled Constant

E'1000' 433E8000

E'22.75' 4216C000

D'3.142' 413245A1 CAC08312

E'100.04' 42640A3D

D'.0000923' 3D60C897 B3E64BFA

D'729' 432D9000 00000000

E'-55' C3370000

D'-7088.263' C41BB043 53F7CED9

L'1.0' 41100000 00000000
33000000 00000000

L'0.1E-70' 0611AB20 E472914A
786BEAF3 890FCB47

DC Operand Assembled Constant

D'.1E+4' 433E8000 00000000

D'.1E+3' 42640000 00000000

D'.1E-1' 3F28F5C2 8F5C28F6

D'.1E-2' 3E418937 4BC6A7F0

D'.1E-3' 3D68DB8B AC710CB3

D'.1E-4' 3CA7C5AC 471B4784

Chapter IX: Floating-Point Data and Operations 591

Exercises

33.2.1.(1) Some HFP constants have one or more trailing zero digits. Does the generated con-
stant for

DC E'1E13'

contain all the significant bits of the value 1013? How could you tell whether it does or does
not?

33.2.2.(2) Write a single DC statement that generates a table of 11 short HFP constants con-
taining the powers of 10 from 0 to 10.

33.2.3.(2) What is the largest power of 10 that can be stored precisely as (1) a short, (2) a long,
(3) an extended HFP number?

33.2.4.(1)+ Write statements to generate the nine hexadecimal floating-point constants for the
decimal fractions from 0.1 to 0.9 in steps of 0.1.

33.3. Modifiers

Hexadecimal floating-point constants allow three types of modifiers: Length, Scale, and Exponent.
If any are present, they must appear in that order.

33.3.1. Length Modifiers

As with other constants, you can use the L modifier to define explicit lengths; the generated con-
stants are not aligned. Truncation or padding takes place on the right. Thus, the DC operand
EL2'1' generates the constant X'4110', and DL3'0.1' generates X'40199A'. The Assembler rounds
the fraction to the specified length.

Length modifiers are rarely used with floating-point constants, and then mainly to cause unaligned
data in a tightly-packed data structure. Generating a shorter constant loses precision, as
Table 235 shows:

Table 235. Length-modified hexadecimal floating-point constants

Note that as each fraction grows shorter, the lowest-order digit is rounded to compensate for the
truncated portion that was removed. The Assembler issues an error message for the last case to
indicate that all precision has been lost.

33.3.2. Scale Modifiers (*)

Obscure topic

Because scale modifiers are used very rarely for floating-point constants,
feel free to skip this subsection.

Like the scale modifiers described in Section 31.3.2 for binary constants, a scale modifier is used
to generate an unnormalized HFP constant. It is written as the letter “S” followed by either a
decimal self-defining term or a nonnegative absolute expression enclosed in parentheses; the
decimal value or the parenthesized expression may be preceded by a “ +” sign if desired. The

DC Operand Generated Constant

EL4'2.71965' X'412B83B0'

EL3'2.71965' X'412B84'

EL2'2.71965' X'412C'

EL1'2.71965' X'41' (Error!)

592 Assembler Language Programming for IBM System z™ Servers Version 2.00

value of the scale modifier determines the number of leading zero digits in the fraction: the
number of hex digit positions the fraction is to be shifted to the right.

Scale modifiers larger than 5 for short, 13 for long, and 27 for extended operands will cause all
significant digits to be lost, so the Assembler considers this an error.213 The characteristic of the
generated number is adjusted upward by the number of hex digits shifted, so that the value of the
constant remains the same, subject to the possible loss of accuracy caused by the right shift. For
example:

DC ES0'1.0' Generates X'41100000'
DC ES1'1.0' Generates X'42010000'
DC ES2'1.0' Generates X'43001000'
DC ES3'1.0' Generates X'44000100'
DC ES4'1.0' Generates X'45000010'
DC ES5'1.0' Generates X'46000001'
DC ES5'15.999' Generates X'47000001' (rounded!)

The Assembler rounds the remaining portion of the fraction to account for the part that was
shifted off; if after rounding there is a carry into a zeroed digit position, the fraction is shifted right
once more, and the characteristic is adjusted accordingly.

33.3.3. Exponent Modifiers

Unlike a decimal exponent, an exponent modifier appears before the nominal value of the con-
stant or constants. It is written as the letter E followed by either a decimal self-defining term or
an absolute expression enclosed in parentheses. A sign may precede the decimal value or the
parenthesized expression.

We can write the constant 1013 as EE13'1', EE6'100E5', EE-2'1.0E15', EE-(3-1)'1.E+15' or
EE17'1E-4', where the exponent modifier is indicated by a bold-face E and the decimal exponent
by an underscored E, as in E15. The modifying power of ten applied to each constant is the sum
of the decimal exponent and the exponent modifier.

Either method is accepted for a given constant, so you might ask why both methods are used.
One possibility is that you might want to specify multiple constants in a single operand, as in

DC EE2'1,20,3E3,4E22' Four short HFP constants

where the exponent modifier 2 applies to all the constants generated, while each decimal exponent
affects only the value to which it is appended. The values of the third and fourth operands are
affected by both an exponent modifier and a decimal exponent.

The allowed range for exponents is such that the sum of the decimal exponent and the exponent
modifier must lie between −85 and +75.

The constants in Table 236 on page 594 will be assembled as shown, where we assume the abso-
lute expression (B −A) has value +4.

As noted following Table 235 on page 592, the characteristic is adjusted to compensate for shifts
due to scaling.

213 If the scale modifier is equal to the fraction length, the assembler notes that precision is lost; if the modifier exceeds
the fraction length, it is considered invalid.

Chapter IX: Floating-Point Data and Operations 593

Table 236. Hexadecimal floating-point constants with modifiers

Exercises

33.3.1.(2) What would you expect the Assembler to generate for these hexadecimal floating-
point constants?

A DC EL1'25'
B DC EL2'.1'
C DC DL2'999'
D DC DL1'1'
E DC EL2'1000'

33.3.2.(1) What decimal values are represented by these constants?

W DC DE5'3.7E-2'
X DC EE-25'1.0E80'
Y DC LE2'8.8E-2'
Z DC EE9'4E9'

DC Operand Assembled Constant

EL5E1'10' 4264000000

EL3S1E1'10' 430640

DS13'.5' 4E000000 00000008

ES1E1'1' 420A0000

E'.999999' 40FFFFEF

EE-((8+4)/6)'1E15' 4B9184E7

EL(B-A)S(B-A)E(B-A)'4' 4800009C

ES5'31' 47000002

2EL4S1E-2'7.73E8' 47075F3547075F35

33.4. Subtypes Q and H (*)

Hexadecimal floating-point constants allow two subtypes, Q and H.

33.4.1. LQ-Type Constants

The Q subtype is used only with type L, and its only effect is to align the generated constant on a
quadword (16-byte) boundary. For example:

DC L'0.1' Doubleword aligned
DC LQ'0.1' Quadword aligned
- - -
DS 0LQ Align to quadword boundary
DC CL32'Characters!' Quadword-aligned character string

Figure 371. Quadword aligned constants and data

To be sure your constants and data are correctly aligned on quadword boundaries when your
program is loaded into memory for execution,

1. use the Assembler's SECTALGN(16) option to request that all control sections214 begin on
quadword boundaries, and

214 More about control sections in Section 38.

594 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. verify that the linker and loader of your operating system support quadword alignment.

33.4.2. Subtype H

Specifying subtype H for hexadecimal floating-point constants lets you specify

• more precise rounding
• value suffixes to choose a rounding mode
• symbolic operands (Max), (Min), and (DMin) with optional signs

Without the H subtype, the Assembler rounds HFP constants by adding 1 to the first “lost” bit
position, just as we do decimal rounding by adding 5 to the first “lost” decimal digit. When you
specify subtype H, five rounding modes can be specified by adding “Rn” at the end of the
nominal value, where the number “n” selects a rounding mode shown in Table 237. mode shown
in Table 237.

Table 237. Hexadecimal floating-point rounding modes with subtype H

The rounding-mode suffix must follow the value of the constant, including any decimal exponent.

Figure 372 gives some examples of HFP constants using rounding-mode suffixes.

Mode Rounding

R1 Add 1 to the first lost bit (this is the default mode).

R4 Round the exact value to the nearest representable machine value.
If the exact value is exactly half-way between two machine
numbers, choose the one with a zero low-order bit.

R5 Round toward zero: truncate by discarding any extra bits.

R6 Round toward the maximum positive value (“toward + ∞ ”)

R7 Round toward the maximum negative value (“toward − ∞ ”)

DC EH'0.1R1' generates X'4019999A'
DC EH'0.1R4' X'4019999A'
DC EH'0.1R5' X'40199999'
DC EH'0.1R6' X'4019999A'
DC EH'0.1R7' X'40199999'
DC EH'1048576.5R1' X'46100001' rounded up
DC EH'1048576.5R4' X'46100000' rounded down to even
DC EH'1048577.5R1' X'46100002' rounded up
DC EH'1048577.5R4' X'46100002' rounded up to even

Figure 372. Hexadecimal floating-point constants with rounding suffixes

The value 1048576.5 has hexadecimal representation X'100000.8', exactly halfway between
X'100000' and X'100001'. Standard rounding (R1) rounds the “lost” bit up, while “Round to
Even” (R4) rounds to the nearest number with a low-order zero bit, X'100000'. Similarly, the
representation of 1048577.5 is X'100001.8'; in this case, “Round to Even” rounds up to
X'100002'.

The difference between these two rounding modes is sometimes important when you create data
for floating-point arithmetic.

Table 238 on page 596 shows the symbolic operands and their generated constants.

Chapter IX: Floating-Point Data and Operations 595

Table 238. Symbolic hexadecimal floating-point constants

33.4.3. Difficult Numbers (*)

Obscure topic

This section will be interesting mainly to mathematically inclined readers.

In addition to symbolic operands and rounding modes, H subtypes are converted using greater
internal precision, so certain “difficult” numbers may be slightly more accurate.

“Difficult” numbers are those whose exact values lie very close to half way between two repre-
sentable numbers, so extra precision is needed to determine how they should be rounded. Not
only are they difficult to convert accurately, it's difficult to find them! Here are some examples:

Table 239. “Difficult” hexadecimal floating-point conversion values

Exercises

33.4.1.(5) Find another “difficult” number.

33.4.2.(2) Write and assemble the third (E-type) difficult number as an L-type constant. What
property does the generated constant have that makes it “difficult”?

33.4.3.(2) The hexadecimal floating-point value of 10−3 to many digits is

3E418937 4BC6A7EF 9DB22D0E 56041893 74BC6A7E F9DB22D0 E5604189 ...

If this is rounded to long format using rounding-mode suffixes R1, R4, and R5, what will be
the generated results?

33.4.4.(5) Choose a number from Table 239 and try to generate its value to a high enough
precision, to understand why it's “difficult” to round correctly.

Constant Type DC
Operand

Generated Constant

Maximum Magnitude
EH'(Max)'
DH'(Max)'
LH'(Max)'

X'7FFFFFFF'
X'7FFFFFFF FFFFFFFF'
X'7FFFFFFF FFFFFFFF 71FFFFFF FFFFFFFF'

Minimum Normalized
Magnitude

EH'(Min)'
DH'(Min)'
LH'(Min)'

X'00100000'
X'00100000 00000000'
X'00100000 00000000 72000000 00000000'

Minimum Denormal-
ized Magnitude

EH'(DMin)'
DH'(DMin)'
LH'(DMin)'

X'00000001'
X'00000000 00000001'
X'00000000 00000000 72000000 00000001'

DC Operand Without H Subtype With H Subtype

D'.303325544866797714604E-10' X'382159DA E5B7B6BD' X'382159DA E5B7B6BE'
D'.185240322463448422373E-23' X'2D23D4A8 0F402692' X'2D23D4A8 0F402693'
E'.1053771313464019060319004056804E-41' X'1E177FF8' X'1E177FF9'

L'.8031692147E-10' X'38584F34 1F25338E
2A9D527E 34864A16'

X'38584F34 1F25338E
2A9D527E 34864A17'

596 Assembler Language Programming for IBM System z™ Servers Version 2.00

33.5. Basic Hexadecimal Floating-Point Instructions

We will be concerned mainly with instructions for multiplying, dividing, adding, and subtracting
hexadecimal floating-point operands. We'll describe some details of their operation, but you
don't need to fully understand these details to use them.

For these instructions, the CPU

• uses a single hexadecimal guard digit, and

• truncates all results without rounding.

Later in this section we'll see some instructions that round their results.

In most operations on extended-precision numbers, the CPU gives the same signs to the high-
order and low-order halves, and the characteristic of the low-order half will be 14 less than the
characteristic of the high-order half.

33.6. Hexadecimal Floating-Point RR-Type Data-Movement Instructions

Some instructions used for all types of floating-point operands were described in Section 31.9.
The instructions in Table 240 are specifically for hexadecimal operands.

Table 240. Data-moving hexadecimal floating-point instructions

Op Mnem Type Instruction Op Mnem Type Instruction

32 LTER R R Load and Test (Short) 33 LCER R R Load Complement (Short)

31 LNER R R Load Negative (Short) 30 LPER R R Load Positive (Short)

22 LTDR R R Load and Test (Long) 23 LCDR R R Load Complement (Long)

21 LNDR R R Load Negative (Long) 20 LPDR R R Load Positive (Long)

B362 LTXR RRE Load and Test (Extended) B363 LCXR RRE Load Complement (Extended)

B361 LNXR RRE Load Negative (Extended) B360 LPXR RRE Load Positive (Extended)

The register-to-register “Load and Test”, “Load Positive”, “Load Negative”, and “Load
Complement” instructions are similar to the corresponding general register instructions:

• Load and Test sets the Condition Code to indicate the sign of a value
• Load Positive sets the sign to +
• Load Negative sets the sign to − for nonzero values
• Load Complement inverts the sign for nonzero values.

For hexadecimal floating-point, there are a few differences:

1. Negation only needs to invert the sign bit, and not complement all the other bits. Thus, no
overflow is possible when complementing an operand, and the characteristic and fraction are
unmodified.

2. In instructions that set the Condition Code, an operand is treated as zero if its fraction part is
zero. A pseudo-zero is treated as a zero even though its characteristic is nonzero.

3. If short operands are specified, only the left half of the register is involved. This means that in
testing the contents of the result register R1 in order to set the Condition Code, the low-order
half of the register is ignored. For example, if

c(FPR2) = X'42000000 12345678'

the instructions “LTER 2,2” and “LTDR 2,2” yield CC settings of 0 and 2 respectively.

4. Because only the sign bit is manipulated, it is possible to generate a “minus zero”, a number
with all zero bits except for sign. It still behaves like a true zero.

5. Operands are not normalized.

Chapter IX: Floating-Point Data and Operations 597

The CC settings after floating-point arithmetic are the same as for the GPR instructions: 0 for a
zero fraction, 1 for a negative result, and 2 for a positive result. These instructions do not set
Condition Code 3.

For example:

LD 0,=DH'(Max)' Initialize FPR0
LTDR 0,0 CC = 2
LCDR 6,0 CC = 1
LPDR 6,6 CC = 2

*
LE 4,=X'46000000' Pseudo-zero in FPR4
LTER 4,4 CC = 0, c(FPR4)=X'46000000'
LCER 2,4 CC = 0, c(FPR2)=X'C6000000'

Figure 373. Examples of hexadecimal floating-point instructions

These extended-precision instructions have an additional behavior: for nonzero fractions, the
high-order and low-order signs are made equal, and the low-order characteristic is set to the high-
order characteristic minus 14, modulo 128.

LD 4,=X'4A123456789ABCDE' Initialize FPR4
LD 6,=X'00EDCBA987654321' ..and FPR6
LTXR 0,4 c(FPR0,2)=X'4A123456789ABCDE..

* ..3CEDCBA987654321', CC=2
Figure 374. Example of LTXR instruction

If the source operand is a pseudo-zero, the result characteristic and fraction are set to zero, and
the sign bits of the high-order and low-order halves are made identical.

LZXR 4 Set c(FPR4,6) to zero
LD 4,=X'CE00000000000000' Negative pseudo-zero in FPR4
LTXR 0,4 c(FPR0,2)=X'8000000000000000..

* ..8000000000000000', CC=0
LCXR 0,4 c(FPR0,2)=X'0000000000000000..

* ..0000000000000000', CC=0
Figure 375. Examples of extended-precision hexadecimal R R instructions

Exercises

33.6.1.(1) If you execute these instructions:

LD 4,=X'50123456789ABCDE'
LD 6,=X'FEDCBA9876543210'
LTXR 0,4

What will be in the register pair (FPR0,FPR2), and what will be the CC setting?

33.6.2.(2) Suppose c(FPR0)=X'0A123456789ABCDE' and c(FPR2)=X'42857196DBB93310'. Show
the CC setting and the contents of the result register or registers after executing each of the
following instructions:

(1) LPER 4,2
(2) LTDR 2,2
(3) LCXR 4,0
(4) LCDR 4,2

598 Assembler Language Programming for IBM System z™ Servers Version 2.00

33.7. Hexadecimal Floating-Point Multiplication

Table 241 lists the hexadecimal floating-point multiplication instructions. None of them affect
the Condition Code.

Table 241. Hexadecimal floating-point Multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED37 MEE RXE Multiply (Short×Short to
Short)

B337 MEER RRE Multiply (Short×Short to
Short)

7C ME,
MDE

RX Multiply (Short×Short to
Long)

3C MER,
MDER

R R Multiply (Short×Short to
Long)

6C MD RX Multiply (Long×Long to
Long)

2C M D R R R Multiply (Long×Long to
Long)

67 MXD RX Multiply (Long×Long to
Extended)

27 MXDR R R Multiply (Long×Long to
Extended)

26 MXR R R Multiply (Ext.×Ext. to Ext.)

Multiplication is the simplest HFP operation. Suppose we need to find the product z of two
numbers w and y. From the usual rules of algebra, we know that if w = Fw × 16Ew and
y = F y × 16Ey then

z = (Fw × Fy) × 16(Ew +Ey)

so that Fz = Fw × Fy and Ez = Ew + Ey.

The CPU sets the result to a true zero immediately if either fraction is zero. Otherwise, the char-
acteristic Cz of the result is computed from

Cz = Cw + Cy − 64 = Cw + Cy − X'40'
where X'40' is subtracted so that Cz is biased only once. (See Exercise 33.7.7.)

The two fractions are pre-normalized, and the result characteristic is adjusted internally to account
for both shifts. The CPU then multiplies the two fractions to obtain the result fraction Fz. Since
Fx and Fy were pre-normalized and both are nonzero, we must have a value for Fz in the range

1.0 > Fz ≥ 16−2

so it may be necessary to shift Fz left one digit to post-normalize the result fraction.

The sign of the result is determined from the rules of algebra, which means that an XOR is per-
formed between the sign bits of the original operands. The result is placed in the floating-point
register specified by the first operand of the instruction.

Suppose we multiply w = 5 and y = 7. Then, Cw = X'41', Cy = X'41', Fw = X'.500000',
and Fy = X'.700000'. The result characteristic Cz is

Cz = X'41' + X'41' − X'40' = X'42'
and the result fraction is X'.230000', which requires no post-normalization. Thus, in short
floating-point form, we find that z = X'42230000'. The instructions in Figure 376 do this:

LE 2,W Put W in FPR2
MEE 2,Y Multiply by Y
STE 2,Product Store the result
- - -

W DC E'5' X'41500000'
Y DC E'7' X'41700000'
Product DS E Result = X'42230000'
Figure 376. Short hexadecimal floating-point multiplication

Figure 377 on page 600 shows the contents of the two floating-point registers.

Chapter IX: Floating-Point Data and Operations 599

FPR2 Before Operation FPR2 After
┌──────────┬──────────┐ ┌──────────┬──────────┐
│ //////// │ //////// │ LE 2,W │ 41500000 │ //////// │
├──────────┼──────────┤ ├──────────┼──────────┤
│ 41500000 │ //////// │ MEE 2,Y │ 42230000 │ //////// │
└──────────┴──────────┘ └──────────┴──────────┘
Figure 377. Floating-point registers used for hexadecimal floating-point multiplication

To illustrate a typical use of hexadecimal floating-point multiplication, suppose we must calculate
Z(i)=X(i)×X(i)×Y(i) for values of i from 1 to 10, where X(i), Y(i), and Z(i) are short floating-
point numbers in tables at XX, YY, and ZZ respectively.

XR 5,5 GR5 contains index
LH 2,Count Counter in GR2

Loop LE 0,XX(5) Load X(i) in FPR0 (short)
MEER 0,0 X(i)*X(i) in FPR0
MEE 0,YY(5) Multiply by Y(i)
STE 0,ZZ(5) Store short result Z(i)
LA 5,L'XX(,5) Increment index by operand length
JCT 2,Loop Count down and loop
- - -

XX DC E'1,2,3,4,5,6,7,8,9,10' Values of X(i)
Count DC Y((*-XX)/L'XX) Count of X(i) entries
YY DC 5E'3.14159,2.71828' 2 YY(i) values, copied 5 times
ZZ DS 10E Results Z(i)
Figure 378. Calculating a table of short hexadecimal floating-point products

Note that we use the length attribute of the symbol XX twice: once as an increment in the loop,
and once in defining the symbol Count. If new entries are added to the X(i) table, or if the X(i)
entries are updated to long precision, the value at Count will be updated automatically when you
reassemble the program.

The general registers provide addressing and indexing; all floating-point arithmetic uses FPR0. If
the same calculation is done with long operands, the program segment would appear as in
Figure 379.

XR 5,5 Initialize index to zero
LH 2,Count Number of elements (10)

Loop LD 0,XX(5) Load X(i) in FPR0 (long)
MDR 0,0 X(i)*X(i) in FPR0
MD 0,YY(5) Multiply by Y(i)
STD 0,ZZ(5) Store long result Z(i)
LA 5,L'XX(,5) Increment index by operand length
JCT 2,Loop Count down and branch
- - -

XX DC 10D'27' Some values for X(i)
Count DC Y((*-XX)/L'XX) Count of X(i) entries
YY DC 10D'-263E-17' And for Y(i)
ZZ DS 10D Space for results
Figure 379. Calculating a table of long hexadecimal floating-point products

Here, the length attribute of the symbol XX is 8; in both figures, the increment in the loop and the
number of elements at Count are determined automatically by the Assembler.

The hexadecimal floating-point multiply instructions in Table 241 on page 599 generate products
of different lengths, as summarized in Table 242 on page 601. None of them set the Condition
Code.

600 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 242. Summary of hexadecimal floating-point multiplication results

MEE and MEER generate the same short product as the high-order four bytes of the product
generated by MDE and MDER. You can think of ME and MER as the HFP equivalents of M
and MR, because both generate double-length products of single-length operands. Similarly,
MEE and MEER are equivalent to MS and MSR, because both generate single-length products
of single-length operands.215

To show how ME differs from MEE, suppose we revise Figure 377 on page 600 as shown in
Figure 380:

Operand 1 Operand 2 Product Instructions Result

Short Short Short MEE, MEER
Truncated to 6 digits;
right half of FPR R1
unchanged

Long Long Long MD, MDR Truncated to 14 digits

Extended Extended Extended MXR Truncated to 28 digits

Short Short Long MDE (ME), MDER (MER) Exact product

Long Long Extended MXD, MXDR Exact product

FPR2 Before Operation FPR2 After
┌──────────┬──────────┐ ┌──────────┬──────────┐
│ //////// │ //////// │ LE 2,W │ 41500000 │ //////// │
├──────────┼──────────┤ ├──────────┼──────────┤
│ 41500000 │ //////// │ ME 2,Y │ 42230000 │ 00000000 │
└──────────┴──────────┘ └──────────┴──────────┘
Figure 380. Floating-point registers used for hexadecimal floating-point multiplication

In this case, the product is a long hexadecimal floating-point value.

There are no hexadecimal floating-point multiply instructions that use one short and one long
operand.

When you use MXD and MXDR, remember these considerations:

• Because the first operand's register pair will contain the extended product, R1 must be the low-
numbered register of a floating-point register pair.

• The fraction part of the low-order half of an extended result is not necessarily normalized
(because the 28-digit fraction is normalized in the high-order half). Its characteristic is 14 less
than the characteristic of the high-order half, except that 128 is added if the low-order charac-
teristic becomes negative. No exponent underflow is indicated if the low-order characteristic
becomes negative.

To form the long product of the long operand in FPR0 by itself, we write

MDR 0,0

To form the extended product of the same long operand by itself, we would write

MXDR 0,0

and the original contents of FPR2 are replaced by the low-order half of the extended result. To
illustrate the use of MXD, suppose we wish to store at XPrd the extended product of the two long
operands stored at DA and DB.

215 The ME and MER mnemonics were defined for System/360 and are still valid. MDE and MDER are recommended
because they more clearly indicate that multiplying two short operands yields a long product.

Chapter IX: Floating-Point Data and Operations 601

LD 0,DA Load first operand into FPR0
MXD 0,DB Form extended product in FPR(0,2)
STD 0,XPrd Store high-order half of product
STD 2,XPrd+8 Store low-order half of product

33.7.1. Exponent Overflow and Underflow.

Two error conditions can arise if the result characteristic lies outside the range

0 ≤ Cz ≤ 127.

If the left inequality is not satisfied (the result characteristic is negative), an exponent underflow
occurs; if the right inequality is not satisfied (the result characteristic exceeds 127), an exponent
overflow occurs. These two conditions are sometimes known as exponent or characteristic spill.
In both cases an interruption condition is recognized, and the quantity left in the result register
has the correct sign and fraction, but the characteristic field contains the rightmost seven bits of
the true characteristic. This treatment of the characteristic is called “characteristic wraparound”, in
the sense that 0 follows 127 for overflows, and 127 follows 0 for underflows.

To illustrate, if we multiply X'70800000' by itself, the product fraction is X'400000'. The result
characteristic is

X'70' + X'70' − X'40' = X'A0' (= X'80' + X'20'),
which is the same as X'20' when the rightmost seven bits are retained. The result is then
X'20400000', with an overflow interruption.

Similarly, if we multiply X'10800000' by itself, the result is X'60400000'. The result characteristic
is found from

X'10' + X'10' − X'40' = −X'20' = −X'80' + X'60'.

By retaining a result which is incorrect only by a fixed power of 16 (16128), you can take steps to
continue a calculation and still get a correct final result despite intermediate exponent spills.

Uninterrupted calculation of some results can depend on the order of the operations. Suppose
you must multiply the three numbers 1650, 1640, and 16−60. The product of the first two
numbers creates an overflow, and multiplying that product by the third number creates an under-
flow. But, multiplying the first and third numbers and then multiplying by the second generates
no interruptions. It helps to know the magnitudes of your operands!

Because exponent underflow means the result has become small enough to be considered negli-
gible in certain circumstances, you can set the HFP Exponent Underflow bit (shown in Table 76
on page 235) in the Program Mask to zero to request that if an exponent underflow occurs, the
result should be set to a true zero and no interruption should occur. If the bit is 1, an interruption
due to exponent underflow does occur, and the Interruption Code is set to 13 (X'D'). An inter-
ruption for exponent overflow cannot be suppressed; the Interruption Code is set to 12 (X'C').

Exercises

33.7.1.(3) Using short operands, modify Figure 378 on page 600 to show how to benefit from
a 12-digit product of the operands at XX to generate long results at ZZ.

33.7.2.(1) What two things can you say that are true for all products generated by ME and
MER?

33.7.3.(2) If the ME and MEE instructions rounded their results, could the four high-order
bytes be different if they multiply the same operands?

33.7.4.(2) Write a program segment that will compute a table of the cubes of the first 100 inte-
gers, and store them as short hexadecimal floating-point numbers starting at Cubes.

33.7.5.(2) What result will be in FPR0 after executing these instructions?

602 Assembler Language Programming for IBM System z™ Servers Version 2.00

LD 0,=X'4111111199999999'
MEER 0,0

33.7.6.(3) Consider the product of any floating-point number with fraction part X'.uvwxyz' and
1.0, which has representation X'41100000'. Show that without a guard digit, the product frac-
tion would be X'.0uvwxy', which after post-normalization becomes X'.uvwxy0'. What does this
mean for multiplication by 1?

33.7.7.(1) Show an easy way for the CPU to subtract X'40' from the sum of two characteristics.

33.8. Hexadecimal Floating-Point Division

Table 243 lists the five hexadecimal floating-point divide instructions. The sign of the quotient is
set to the XOR of the operand signs. The CC is not changed by a divide instruction.

Table 243. Hexadecimal floating-point Divide instructions

Op Mnem Type Instruction Op Mnem Type Instruction

7D DE RX Divide (Short) 3D DER R R Divide (Short)

6D DD RX Divide (Long) 2D D D R R R Divide (Long)

B22D DXR RRE Divide (Extended)

Suppose we want to calculate z = w/y. If the divisor fraction Fy is zero, the division is
improper and a HFP divide exception is initiated; the resulting program interruption sets the
Interruption Code to 15 (X'F'), and the dividend operand in the first-operand register is
unchanged. If the dividend fraction Fw is zero, the result is set to zero immediately. Otherwise,
both fractions are pre-normalized, and the result characteristic

Cz = Cw − Cy + X'40' = Cw − Cy + 64

is adjusted to account for the normalizing shifts. The result fraction Fz = Fw / Fy is then com-
puted. Since we must have a value for Fz that satisfies the inequalities

16 > Fz ≥ 1/16,
a single corrective right shift may be needed for a proper fractional result; the characteristic is
increased by 1 to account for the shift if it is performed, as we saw in Section 32.6.

Unlike fixed-point binary division where the remainder is in the even register and the quotient is
in the next higher-numbered odd register, no floating-point remainder is provided by the CPU.
We'll see how to calculate a hexadecimal floating-point remainder in Section 33.15.

To give another example of hexadecimal floating-point division, suppose we divide w=3 by y=5.
Then,

Fw = X'.3', Fy = X'.5',
Cw = Cy = X'41'
Cz = X'41'−X'41'+X'40' = X'40'.

We know that the result fraction in decimal is 0.6; to convert this to hexadecimal we use the
method described in Section 31.2. on page 553:

0.6
× 16
9.6

so the first hexadecimal fraction digit is 9. But the next decimal digit is 6 again, so that
0.610 = X'.9999999...' and Fz = X'.999999'.

In short floating-point form, the quotient z is X'40999999'. This result is not rounded; the
rounded result would have been X'4099999A'. Thus,

Chapter IX: Floating-Point Data and Operations 603

LE 0,=E'3' Load FPR0 with 3 (X'41300000')
DE 0,=E'5' Divide by 5 (X'41500000')

leaves the unrounded quotient X'40999999' in FPR0.

The hexadecimal floating-point divide instructions DE, DER, DD, and DDR are similar to the
four multiply instructions, except that the divisor, dividend, and quotient fractions are all 6 digits
long for short operand division, 14 digits for long operand division, and 28 digits long for
extended division.

No attempt is made to provide an “inverse” to the short multiply instructions by dividing a short
divisor into a long dividend. The low-order part of the register is ignored in short HFP division,
and is not replaced by a remainder.

If you're not dividing by zero, the quotient is computed; if a corrective right shift of the result
fraction is needed, the extra digit at the right end is lost and the quotient then replaces the divi-
dend. Characteristic wraparound also applies to division: if we divide X'60200000' by X'10400000'
the quotient is X'10800000' with an exponent overflow indicated, and if we divide X'16600000' by
X'79200000', the result is X'5D300000' with a (maskable) exponent underflow condition indicated.

Figure 381 illustrates floating-point divide instructions. Suppose we again have two arrays at XX
and YY of ten short hexadecimal floating-point operands X(i) and Y(i), and wish to store
Z(i)= |X(i) |/Y(i)2 in the array at ZZ.

XR 7,7 Set index in GR7 to zero
LA 2,10 Initialize counter in FR2 to 10

Loop LE 2,XX(7) Load X(i) in FPR2
LPER 4,2 Place absolute value in FPR4
LE 6,YY(7) Get Y(i)
MER 6,6 Square it in FPR6
DER 4,6 Form quotient in FPR4
STE 4,ZZ(7) Store Z(i)
LA 7,4(,7) Increment index
JCT 2,Loop Count and loop

Figure 381. Example of hexadecimal floating-point divide instructions

It was unnecessary to use FPR4 as an intermediate register. Figure 382 shows another way to do
the same calculation. (It might run slightly slower because more divide instructions are used and
more memory accesses are required for the operands.)

XR 1,1 Initialize index
LA 2,10 And counter

Loop LE 0,XX(1) X(i) in FPR0
LPER 0,0 Abs(X(i)) in FPR0
DE 0,YY(1) Abs(X(i))/Y(i)
DE 0,YY(1) Abs(X(i))/Y(i)/Y(i)
STE 0,ZZ(1) Store Z(i)
LA 1,4(,1) Increment index
JCT 2,Loop Count down and branch

Figure 382. Example of hexadecimal floating-point divide instructions

33.8.1. The Halve Instructions (*)

The two instructions in Table 244 divide an operand by 2 by doing a single binary shift, saving
the cost of a more expensive multiplication or division instruction. The first operand is replaced
by a number whose value is one-half that of the second operand. The Condition Code is
unchanged.

Table 244. Hexadecimal floating-point Halve instructions

Op Mnem Type Instruction Op Mnem Type Instruction

34 HER R R Halve (Short) 24 H D R R R Halve (Long)

604 Assembler Language Programming for IBM System z™ Servers Version 2.00

The fraction part of the second operand is shifted right by one bit position. The bit shifted off the
right end moves into the guard digit, which was initialized to zero. If the fraction is still normal-
ized, the instruction is complete; otherwise a normalizing (hexadecimal) left shift is done, and the
characteristic is decreased by 1 for each shift. The result is not rounded.

For example:

LE 0,=E'10' c(FPR0) = X'41A00000'
HER 0,0 Result = X'41500000' (no shift)

LE 0,=E'1.0' c(FPR0) = X'41100000'
HER 0,0 Result = X'40800000' (normallized)

Figure 383. Example of a hexadecimal floating-point halve instruction

The only possible exception is an exponent underflow, as illustrated in Figure 384.

LE 0,=EH'(Min)' c(FPR0) = X'00100000'
HER 0,0 Result = X'7F800000' with underflow

Figure 384. Hexadecimal halve instruction causing underflow

For short operands (using the HER instruction), the low-order part of the register is unchanged,
and does not contain the lost bit when no post-normalization is performed. If the fraction part of
the second operand is zero, a true zero replaces the first operand.

Exercises

33.8.1.(1) In calculating the quotient 3/5, the result is given as X'40999999', and not the
rounded value X'4099999A'. How do we know what the rounded answer is?

33.8.2.(2)+ What is the result of executing

HER 0,0

if FPR0 contains each of these operands:

1. X'4013579B'
2. X'40013579'

33.8.3.(2)+ What is the result of executing

HDR 0,0

if FPR0 contains each of these operands:

1. X'42FB2690 5A66B73D'
2. X'C5774302 D4FB018F'

33.8.4.(2) What result will be in FPR4 after executing these instructions?

LE 0,=X'04000002'
HER 4,0

33.8.5.(1) What instructions involving the general registers might be thought of as the fixed-
point analogs of the floating-point Halve instructions HER and HDR?

33.8.6.(3) Write instructions to implement a rounded hexadecimal floating-point “halve” opera-
tion.

Chapter IX: Floating-Point Data and Operations 605

33.9. Hexadecimal Floating-Point Addition and Subtraction

There are two major groups of hexadecimal floating-point add and subtract instructions: those
that normalize their results, and those that do not. Both groups are listed in Table 245.

Table 245. Hexadecimal floating-point Add/Subtract instructions

Op Mnem Type Instruction Op Mnem Type Instruction

7A AE RX Add (Short) 3A AER R R Add (Short)

7B SE RX Subtract (Short) 3B SER R R Subtract (Short)

6A AD RX Add (Long) 2A ADR R R Add (Long)

6B SD RX Subtract (Long) 2B SDR R R Subtract (Long)

36 AXR R R Add (Extended) 37 SXR R R Subtract (Extended)

7E AU RX Add (Short) Unnormalized 3E AUR R R Add (Short) Unnormalized

7F SU RX Subtract (Short) Unnormal-
ized

3F SUR R R Subtract (Short) Unnormal-
ized

6E AW RX Add (Long) Unnormalized 2E AWR R R Add (Long) Unnormalized

6F SW RX Subtract (Long) Unnormal-
ized

2F SWR R R Subtract (Long) Unnormal-
ized

Four distinctive properties of the hexadecimal floating-point add and subtract instructions are:

1. No initial tests are made for zero operands.

2. Neither fraction is pre-normalized.

3. The Condition Code is always set.

4. The operation code specifies whether or not the final result will be normalized.

The first step is to compare the characteristics of the operands. If the difference is such that the
fraction part of the operand with the smaller characteristic would have to be shifted to the right
by too many places so that no significant digits would be left, the result is the operand with the
larger characteristic. That is, the smaller operand is ignored in short arithmetic if the magnitude of
the characteristic difference is greater than 6, in long arithmetic if it exceeds 14, and in extended
arithmetic if it exceeds 28, because there could be no useful digit to add. In such cases, no shifted
digit could appear in the guard digit position.

For example, suppose we add the normalized short operands X'58123456' and X'52987654'. The
characteristic difference X'58'−X'52' = 6 means that the second fraction must be shifted right by
six digit positions, giving a fraction with six leading zero digits. Since the intermediate arithmetic
is performed with a precision of only seven digits, the second operand cannot possibly contribute
to the final result, so it is ignored. (Remember that the guard digit is initialized to zero!) To
visualize this process:

58123456(0) First operand, guard digit 0
+52987654 Second operand before shifts

58123456(0) First operand, guard digit 0
+58000000(9) Second operand after shifts
58123456 Sum

Figure 385. Example of hexadecimal floating-point addition

Because the sum need not be normalized, the guard digit is lost.

Subtraction can be different; consider the same two operands:

606 Assembler Language Programming for IBM System z™ Servers Version 2.00

58123456(0) First operand, guard digit 0
-52987654 Second operand before shifts

58123456(0) First operand, guard digit 0
-58000000(9) Second operand after shifts
58123455 Difference

In this case, the digit shifted into the guard digit position causes a “borrow” from the low-order
digit of the first operand. Thus, if the operation is a subtraction, an exponent difference equal to
the number of digits in the significand does not necessarily mean that the result will be the larger
operand.

For addition, if the characteristic difference is equal to 6, 14, or 28, and if the operand with the
larger characteristic is unnormalized, a digit from the operand with the smaller characteristic may
appear in the result. (See Exercise 33.9.14.)

If the registers were longer, the second operand could contribute to the sum, so short and long
arithmetic might yield different results from the same data. (See Exercise 33.9.1.)

Adding (or subtracting) two numbers that lead to a zero fraction produces different results,
depending on the setting of the Program Mask. If the intermediate result fraction including the
guard digit is zero, a HFP significance exception may be recognized, meaning there are no signif-
icant digits in the result, only the correct sign and characteristic.

As with exponent underflow, you can zero the HFP Significance bit in the Program Mask (shown
in Table 76 on page 235) to request that the CPU ignore the exception condition and set the
result to a true zero.216 If the interruption does occur, the result register will contain a pseudo-zero
with the correct characteristic, and the Interruption Code will be set to 14 (X'E').

For example:

LE 2,=X'456789AB'
AE 2,=X'C56789AB'

If the Program Mask bit is zero, c(FPR2)=X'00000000'; but if the Program Mask bit is one,
c (FPR2)=X'45000000' when the program interruption occurs.

The difference between a true zero is and a pseudo-zero is rarely important, so most applications
set the HFP-significance mask bit to zero so they don't have to worry about interruptions for
calculated zero results.

Suppose we must evaluate the expression

Z = T * (A + B) + 2C / (A + B)

where all operands are long and are found at memory locations with the same names.

LD 6,A Form sum first
AD 6,B (A+B) in FPR6
HDR 4,6 Save (A+B)/2 in FPR4
MD 6,T Multiply sum by T, giving T*(A+B)
LD 2,C Load C in FPR2
DDR 2,4 Divide by c(FPR4) giving 2C/(A+B)
ADR 2,6 Form Z in FPR2
STD 2,Z Store the long result at Z

Figure 386. Evaluating a hexadecimal floating-point expression

216 In practice, the Significance exception is rarely enabled because it would occur even when a calculated result should
be zero. The Program Mask bit is almost always set to zero. (You can change the bits in the Program Mask with the
SPM instruction, as described in Section 16.2.)

Chapter IX: Floating-Point Data and Operations 607

Suppose we must form the “inner product” of two linear arrays of twenty short-precision ele-
ments each, by evaluating the sum

Z = X(1)*Y(1) + X(2)*Y(2) + ... + X(19)*Y(19) + X(20)*Y(20),

where the arrays of the X(i) and Y(i) values are stored starting at XX and YY respectively. The
value of Z will be accumulated in long precision, and stored in short precision.

TLen EQU 20 Table length is 20
LZDR 2 Initialize sum in FPR2 to zero
XR 7,7 Initialize index to zero
LA 2,4 Increment = 4
LA 3,4*(TLen-1) Comparand = 76

Loop LE 0,XX(7) C(FPR0) = X(i)
ME 0,YY(7) C(FPR0) = X(i)*Y(i) (long result)
ADR 2,0 Add long product to retain accuracy
JXLE 7,2,Loop Increment index and branch
STE 2,Z Store short floating-point result

Figure 387. Evaluating a hexadecimal floating-point inner product

As a second example, suppose we want to evaluate the polynomial

Z = A(10)*Y10 + A(9)*Y9 + A(8)*Y8 + ... + A(1)*Y1 + A(0),

where the coefficients A(k) are stored in an array starting at AA in the order A(0), A(1), ..., A(10).
We will do the evaluation by writing the polynomial in “nested” form (sometimes known as
Horner's Rule):

Z = ((...((A(10) * Y) + A(9)) * Y + ... + A(1)) * Y + A(0))

Figure 388 shows an example using this method.

LE EQU 10 Highest coefficient number
LHI 3,-4 JXH increment and comparand in GR3
LA 2,4*(LE-1) Initial index points to A(9)
LE 6,AA+4*LE Initial polynomial term is A(10)
LE 4,Y Hold Y in FPR4, less memory access

Next MER 6,4 Multiply current sum by Y
AE 6,AA(2) Add next coefficient
JXH 2,3,Next Decrease index by 4 and loop
STE 6,Z Store short result

Figure 388. Evaluating a polynomial with hexadecimal floating-point arithmetic

For short polynomials it is simpler and faster to do the calculation without looping. If we want
only the quadratic portion (up to the second power in Y) of the same polynomial, we could use
the instructions in Figure 389:

LE 0,AA+8 Get A(2)
ME 0,Y *Y
AE 0,AA+4 +A(1)
ME 0,Y *Y
AE 0,AA +A(0)
STE 0,Z Store at Z

Figure 389. Evaluating a quadratic polynomial

and no loop-control “housekeeping” instructions are needed.

608 Assembler Language Programming for IBM System z™ Servers Version 2.00

33.9.1. Unnormalized Addition and Subtraction

Unnormalized addition and subtraction follow the same rules as the normalizing operations,
except that the result is not post-normalized. This leads to these conditions:

• The guard digit is ignored (it participates only if a post-normalization shift is needed to deliver
a normalized result).

• If the sum creates a carry out of the high-order digit, a corrective right shift is needed, so an
exponent overflow is possible. For example:

LE 0,=X'7FFE7654' Large number in FPR0
AU 0,=X'7EFEDCBA' Add another almost as large

generates an exponent overflow interruption, and the result in FPR0 is X'0010E641'.

• If there is no overflow, the characteristic of the result is that of the operand with the larger
characteristic (the fraction of the operand with the smaller characteristic will have been shifted
right).

• Because there is no normalizing left shift, no exponent underflow is possible.

• If the result fraction is zero, a HFP lost-significance exception is possible; if suppressed, the
result is set to +0. For example:

LE 0,=X'76543210' Initialize FPR0
SUR 0,0 Unnormalized subtraction

generates a significance-exception interruption, and the result in FPR0 is X'76000000'. If the
Program Mask bit is zero there is no interruption, and c(FPR0)=X'00000000'.

The test for a zero intermediate fraction includes the guard digit for normalized addition and sub-
traction, and excludes the guard digit for unnormalized addition and subtraction, because the
guard digit cannot appear in the final result. (See Exercise 33.9.9.)

33.9.2. Older Uses of Unnormalized Addition (*)

Some history

This section describes instructions that see relatively little use on modern
CPUs.

Before the instructions described in Section 33.14 on page 620 were available, unnormalized addi-
tion was needed to convert numbers between binary integers and HFP values. If we had to
convert 12345 from binary to hexadecimal floating-point we might have used the instructions in
Figure 390.

L 1,=F'12345' Binary integer to be floated
ST 1,Const+4 Store in right half of a constant
LD 0,=D'0' Clear FPR0
AD 0,Const Add the constant
- - -

Const DC 0D,X'4E',7X'0' Unnormalized constant
Figure 390. Converting a binary integer to hexadecimal floating-point

After the ST instruction, c(Const)=X'4E00000000003039'. Because its exponent is 14, the radix
point is at the right end of the constant; after executing the AD instruction to normalize the
result, c(FPR0)=X'4430390000000000'.

Converting in the other direction used a similar technique shown in Figure 391 on page 610, this
time with an unnormalized addition:

Chapter IX: Floating-Point Data and Operations 609

LD 0,=D'12345' Value to be converted to binary
AW 0,=X'4E00000000000000' Force unnormalization
STD 0,DTemp Store the result
L 1,DTemp+4 Binary integer now in GR1

Figure 391. Converting a hexadecimal floating-point number to a binary integer

After the AW instruction is executed, c(FPR0)=X'4400000000003039'. The L instruction finally
loads X'00003039'=12345 into GR1.

Newer instructions provide improved ways of converting between HFP and binary, as we'll see in
Section 33.14.

Exercises

33.9.1.(2) In Figure 385 on page 606, we considered adding the short operands X'58123456'
and X'52987654'. If these were the long operands X'5812345600000000' and
X'5298765400000000', what would be their sum?

33.9.2.(1) Suppose you execute these instructions:

LD 2,=D'1.0'
LD 6,=D'2.5'
AXR 2,6

What will be in FPR2?

33.9.3.(0) There is an engineer's pun among the mnemonics in Table 245 on page 606. Can
you find it?

33.9.4.(2)+ Given the following short hexadecimal floating-point operands:

A = X'41200000'
B = X'C0138762'
C = X'420A0000'
D = X'6B200000'
E = X'45000000'

Show (in hexadecimal) the appropriate contents of FPR0 and the setting of the Condition
Code after executing each of the following instruction sequences.

1. LE 0,E 2. LE 0,D 3. LE 6,E 4. LE 0,C
 SE 0,B MER 0,0 LTER 0,6 DE 0,D

33.9.5.(3)+ Given the following hexadecimal floating-point quantities:

A = X'C1200000'
B = X'4310000F'
C = X'03780000'
D = X'C400E000'
E = X'408279ED'

Show (in hexadecimal) the contents of FPR0 and the Condition Code setting after executing
each of the following instruction sequences:

1. LE 0,A 2. LE 0,E 3. LE 4,B 4. LE 0,B
AE 0,B AER 0,0 HER 0,4 DE 0,C

5. LE 0,C 6. LE 0,A
MER 0,0 AE 0,E

33.9.6.(3)+ Using the same quantities as in Exercise 33.9.5, and these additional hexadecimal
floating-point quantities:

610 Assembler Language Programming for IBM System z™ Servers Version 2.00

W = X'04100000'
X = X'0B012335'
Y = X'4600ABCD'

show (in hexadecimal) the contents of FPR0 and the Condition Code setting after executing
each of the following instruction sequences:

1. LE 0,A 2. LE 0,D 3. SER 0,0 4. LE 0,X
AU 0,C AU 0,B SU 0,X

5. LE 0,W 6. LE 0,Y
AU 0,X AUR 0,0

33.9.7.(2)+ Sometimes programs use data having the wrong type, as in this example. What
result will be in FPR0 after executing these instructions?

LE 0,=F'-3' Binary integer?
AER 0,0 Added to itself as floating-point??

33.9.8.(1) Show that if an exponent overflow occurs in executing an unnormalized add or sub-
tract instruction, the characteristic of the result must be zero.

33.9.9.(2)+ Suppose X'40FFFFFF' is subtracted from X'41100000' using (1) SE and (2) SU
instructions. What will be the result in each case?

33.9.10.(1) In Figure 388 on page 608, what conflicts might arise between the uses of LE as a
symbol and as a mnemonic?

33.9.11.(2) An array of short hexadecimal floating-point numbers is stored starting at Data, and
the number of elements in the array is in the fullword integer at NItems. Write instructions to
compute the average of the numbers and store the result at Average.

33.9.12.(2) Suppose you want to add 1000000 and 0.000001 using hexadecimal floating-point
arithmetic. What limitations should be imposed on the registers and operands if the result is to
be computed correctly?

33.9.13.(2)+ Suppose you add X'58023456' to X'52987654'. The difference in the characteristics
is 6; what is the result of the addition?

33.9.14.(2) Show the result in FPR0 after executing each of the following five pairs of
instructions:

(1) LE 0,=X'41100005'
AE 0,=X'40100005'

(2) LE 0,=X'41100005'
SE 0,=X'40800005'

(3) LE 0,=X'41100000'
SE 0,=X'38100000'

(4) LE 0,=X'41100000'
SE 0,=X'3A100000'

(5) LE 0,=X'40123456'
AE 0,=X'40100000'

A Suggestion

The next two subsections (33.10 and 33.11) explore some details of
implementing floating-point addition and subtraction. If you're not inter-
ested, they can be skipped with no loss in continuity.

Chapter IX: Floating-Point Data and Operations 611

33.10. Adding Operands of Like Sign (*)

Adding operands of like sign (or true addition) is straightforward; the sign of the result is known.
If the original operands are normalized, the result fraction cannot need any post-normalizing left
shifts because no leading zero digits can be generated, and at most one corrective right shift (with
an accompanying increment of the characteristic) can be needed. Thus, true addition is the only
case in floating-point addition where exponent overflow can occur. The guard digit is significant
in like-sign addition only if unnormalized operands are used, and if the instruction also requires
that the result be normalized. A few examples of adding short operands will illustrate these points.

Example 1: X'40111111' + X'40222222'

Because the exponents are equal, the fractions are added directly, with result X'40333333'.
The CC is set to 2 to indicate a positive result.

Example 2: X'40123456' + X'42456789'

After shifting the fraction part of the smaller first operand right by two places, the interme-
diate result is X'424579BD(5)', where the guard digit is parenthesized. The CC is again set to
2.

Example 3: X'42FEDCBA' + X'41456789'

After shifting the second fraction to the right by one place, the intermediate sum is
X'1.033332(9)' with a carry bit (so seven digits plus a guard digit are shown). After a correc-
tive right shift, the result is X'43103333'; both the guard digit and the low-order digit of the
intermediate sum are lost, and no rounding is done. The CC is set to 2.

Example 4: X'FF801020' + X'FF934567'

This case illustrates an exponent overflow: the result fraction is X'1.145587(0)', which after
right-shifting leads to characteristic X'80' and fraction X'.114558(7)'. The guard digit is lost,
and because of characteristic wraparound the result becomes X'80114558', and an exponent
overflow interruption is initiated. The CC is set to 1 indicating a negative result.

Exponent overflow during addition should be an infrequent occurrence, because the operands
involved must be quite large.

Example 5: X'43000123' + X'416789AB'

In this case the intermediate sum fraction X'.0068AC(A)' is unnormalized; if the result is nor-
malized, we obtain X'4168ACA0', and the guard digit is retained.

Example 6: X'02000012' + X'00023456'

After right-shifting the second fraction by two places, the intermediate sum is
X'02000246(5)'. On normalization, this gives X'7F246500', with an accompanying exponent
underflow exception condition.

If the Exponent Underflow mask bit is zero, no interruption occurs and the CC and the
result are set to zero. Otherwise, the result register is unchanged, the CC is set to 2 (the
result is positive), and an interruption occurs.

Exponent underflow can occur when adding numbers of like sign only if both operands are
unnormalized.

33.11. Adding Operands of Unlike Sign (*)

Adding operands of unlike sign (or complement addition) is more complicated.

1. No exponent overflow can be generated, because the difference of two operands is never
greater in magnitude than the larger of the original two.

2. Leading zeros can be generated in the fraction part of the intermediate result so that exponent
underflows can occur even with normalized operands.

612 Assembler Language Programming for IBM System z™ Servers Version 2.00

Suppose we add −5 (X'C1500000') and +121 (where 121 = X'79' = X'.79'×162 (X'42790000').
After shifting the first fraction to the right by one digit position and subtracting it from the second
fraction, the intermediate result is X'42740000(0)'. Since the result is now normalized and no
characteristic spill was generated, the result is X'42740000' and the CC is set to 2 indicating a
positive result. If we use the same operands with inverted signs, the same process generates
X'C2740000', with CC 1 indicating a negative result.

33.11.1. Hexadecimal Floating-Point Complement Addition (*)

It's easy in some cases to see what the result should be, by inspecting the operands: we observe
which is the larger, subtract the smaller, and use the sign of the operand with the larger magni-
tude.

But the CPU cannot compare the operands to see which has the larger magnitude without doing
a subtraction! It would have to duplicate much of its effort if a comparison indicated that the
subtraction should actually have been done in the opposite order. Thus, a technique similar to
that for fixed-point arithmetic is used, where subtraction was performed by adding the two's com-
plement of the second operand to the first.

We can't do the same with the fraction parts of the floating-point operands, because the sign bit is
not an extension of the fraction: that is, the fractions are represented in a sign-magnitude represen-
tation.

Though System z may not do complement addition exactly this way, we will describe a method,
using the short-arithmetic addition of −5 and +121.

1. Given operands X'C1500000' and X'42790000', determine whether one of them has a charac-
teristic larger than the other; call it the first operand. (Thus, X'42790000' is the first
operand.) If the characteristics are equal, simply choose one of the operands as the first.

2. As in true addition, if the characteristic difference exceeds 6 for short, 14 for long, or 28 for
extended operands, the intermediate result is the first operand.

3. As in true addition, shift the fraction part of the second operand to the right by a number of
places equal to the magnitude of the characteristic difference. In our example, the second
operand fraction is shifted once to produce X'.050000(0)', with the seventh digit being the
guard digit.

4. The sign of the intermediate result is assumed to be the same as the sign of the first operand
(“ +” in this example).

5. The two's complement of the second fraction from step 3, including its guard digit, is added
to the first fraction with its guard digit, with carries off the left being ignored. Thus, we add
X'.790000(0)' + X'.FB0000(0)', giving X'(1).740000(0)'. The carry bit has been explicitly
indicated, even though it doesn't appear in the result.

The two's complement of the second fraction is calculated this way:

.500000 original value

.050000(0) (step 3) shift right 1 digit; last digit becomes guard digit

.FAFFFF(F) ones' complement
 + .000000(1) add 1 to form two's complement

.FB0000(0) two's complement of fraction from step 3

6. Depending on the presence or absence of a carry, one of the following is performed:

a. if there is a carry, it is ignored and the intermediate result consists of the first operand
sign, the first operand characteristic, and the intermediate fraction to whatever precision
it was calculated.

b. if there is no carry, the intermediate result fraction is said to be in complement form. It is
then recomplemented, and the sign bit is inverted.

At this point the zero-fraction test for a significance exception is made; the guard digit does not
participate if an unnormalized result is to be generated. The intermediate result may be normal-
ized if required by the instruction.

Here are some further examples of adding operands, now with unlike signs.

Chapter IX: Floating-Point Data and Operations 613

Example 7: X'C2777444' + X'40121314'

The first operand is X'C2777444'; after shifting and then complementing the second operand
fraction, we do the following addition (where we show the parts of the intermediate result as
sign, characteristic, and fraction):

Sign Char Fraction
 - 42 .777444(0) first operand with guard digit

.FFEDEC(F) complemented 2nd operand fraction
 - 42 (1).776230(F) carry occurs

Thus the result is in true form, and we have the intermediate result X'C2776230(F)'. The
lowest-order digit of the second operand was lost in the shifting operation.

Example 8: X'C2000444' + X'40121314'

As before, we arrive at

- 42 .000444(0) first operand
.FFEDEC(F) complemented 2nd operand fraction

 - 42 .FFF230(F) no carry occurs

The result is in complement form, as indicated by the absence of a carry. After
recomplementation and sign inversion, we have

+ 42 .000DCF(1)

giving the intermediate result X'42000DCF(1)'. The guard digit will become significant if the
final result is normalized, when the result would be X'3FDCF100'.

Example 9: X'42111111' + X'C1111111'

The intermediate calculation would yield

+ 42 .111111(0)
.FEEEEE(F)

+ 42 (1).0FFFFF(F)

with a carry; thus we have the intermediate result X'420FFFFF(F)', and normalized result
X'41FFFFFF'.

Example 10: X'40123456' + X'C0123457'

The intermediate result would be found from

+ 40 .123456(0)
.EDCBA9(0)

+ 40 .FFFFFF(0)

with no carry; after recomplementation and sign inversion the intermediate result would be
X'C0000001(0)', as we would have guessed from inspecting the operands.

These last two examples illustrate an important consideration: if the original operands are nor-
malized, a single guard digit provides adequate protection against unexpected loss of precision.
This is because the difference of two normalized fractions with unequal characteristics can intro-
duce at most one leading zero digit in the intermediate result fraction (except in cases of severe
cancellation). Example 8 above illustrates that a single guard digit may be insufficient if unnormal-
ized operands are allowed. If the operands have the same characteristic (as in Example 10), the
possible loss of accuracy can be predicted but not prevented, so in this situation you are entitled
only to the digits left in the intermediate result and no more.

33.11.2. Implementing Hexadecimal Floating-Point Complement Addition (*)

Complement addition can be simplified by forming the ones' complement of the second fraction,
rather than the two's complement. Then, if a carry occurs after the fractions are added, it is
“carried around” to the low-order end of the intermediate sum and added there. This gives the
effect of having added the two's complement of the second operand initially. If there is no carry,
the recomplementation is also a ones' complement, which “retrieves” the low-order one-bit that
would have been added if the two's complement had been formed originally; that is, we have
effectively subtracted and then added back the low-order bit.

614 Assembler Language Programming for IBM System z™ Servers Version 2.00

A reason for using this technique is that the formation of the two's complement of a number is
an arithmetic operation requiring an addition (and therefore, time and hardware for the propa-
gation of carries), while ones' complementation requires only the simple and inexpensive logical
operation of inverting all the bits of an operand. (You might review the similar discussion at
“How Additions and Subtractions are Actually Performed” on page 34.)

Using this revision to the above addition scheme, Examples 9 and 10 above would appear as
shown in Examples 11 and 12 below.

Example 11: X'42111111' + X'C1111111'

The intermediate calculation gives

+ 42 .111111(0) first operand
.FEEEEE(E) ones' complement of 2nd fraction

(1).0FFFFF(E) carry occurs, so...
+ 1 add back at low-order end

 + 42 .0FFFFF(F) intermediate result

Example 12: X'40123456' + X'C0123457'

Remember that a guard digit is part of the second operand fraction, even though it is initially
zero. The intermediate calculation is

+ 40 .123456(0) first operand
.EDCBA8(F) ones' complement of 2nd fraction

 + 40 .FFFFFE(F)

The intermediate result fraction is in complement form; recomplementation (now using the
ones' complement) and sign inversion give X'C0000001(0)' as before.

Exercises

33.11.1.(3) In Example 8 above, what result would be generated if the X'C2000444' operand was
normalized?

33.11.2.(3)+ Given the hexadecimal floating-point quantities you defined in Exercise 33.1.5,
compute in decimal and in then in short hexadecimal floating-point forms the following values:

(1) D+C (2) A+E (3) B+E (4) E−F (5) D×B (6) C×C (7) D/B

33.11.3.(2) In Example 10 of Section 33.11.1, what is the normalized result?

33.12. Hexadecimal Floating-Point Comparison

Table 246 lists the hexadecimal floating-point comparison instructions:

Table 246. Hexadecimal floating-point Compare instructions

Op Mnem Type Instruction Op Mnem Type Instruction

79 CE RX Compare (Short) 39 CER R R Compare (Short)

69 CD RX Compare (Long) 29 CDR R R Compare (Long)

B369 CXR RRE Compare (Extended)

Comparing two floating-point operands requires an internal subtraction which follows all the
above rules. As with other compare instructions, no interruption conditions are recognized and
the intermediate result (including the guard digit) is examined to determine the CC setting. The
operands are considered to be equal if the intermediate difference (including the guard digit) is
zero.

The Condition Code settings are shown in this table:

Chapter IX: Floating-Point Data and Operations 615

Table 247. CC settings for hexadecimal floating-point comparison

Be careful: if you compare unnormalized operands, two unequal operands may compare equal.
For example, if we compare the short HFP number X'40000001' to any number of the form
X'3B10wxyz', the CC setting is zero (indicating equality) for any values of the digits “wxyz”. (See
Exercise 33.12.1.)

Exercises

33.12.1.(2)+ Perform the intermediate steps of comparing the two short operands X'40000001'
and X'3B10wxyz', where wxyz are arbitrary hex digits, and prove that they will be found equal.

33.12.2.(2) Given the quantities A, B, C, D, and E shown in Exercise 33.9.5, show the CC
setting after executing each of these instruction sequences:

1. LE 0,D 2. LE 0,C 3. LE 6,E 4. LE 0,B
 CE 0,A CE 0,D CE 6,E CE 0,E

33.12.3.(3) Given three arrays of 10 short hexadecimal floating-point values stored beginning at
SideA, SideB, and SideC respectively, write an instruction sequence to set the byte at offset K in
the ten-byte string starting at Triangle to one if the values of the K-th floating-point numbers
could form the sides of a plane triangle, and to zero if not. (Remember that a triangle has the
property that the sum of any two sides is greater than the third.)

33.12.4.(3) Given two arrays of twenty short HFP numbers X(i) and Y(i) stored at XX and YY
respectively, write an instruction sequence that will store in the array starting at Ratio the
quantity (X(i) / Y(i)) if |X(i)/Y(i) |< 1 0 40, or 1040 otherwise.

Your program should be written so that no exponent overflows or underflows can be generated.

33.12.5.(3)+ Under what circumstances can two hexadecimal floating-point values with different
exponents compare equal?

CC Meaning

0 Operands are equal

1 First operand is low

2 First operand is high

33.13. Rounding and Lengthening Instructions

Two sets of length-changing hexadecimal floating-point instructions let you

• round a longer operand to a shorter, and

• extend a shorter operand to a longer.

33.13.1. Rounding Instructions

Though hexadecimal floating-point arithmetic is not rounded, the instructions in Table 248 round
a longer operand to a shorter.

Table 248. Hexadecimal floating-point Round instructions

Op Mnem Type Instruction Op Mnem Type Instruction

35 LRER,
LEDR

R R Load Rounded (Long to
Short)

B366 LEXR RRE Load Rounded (Extended to
Short)

25 LRDR,
LDXR

R R Load Rounded (Extended to
Long)

The LRDR and LXDR instructions round an extended operand to long, and LRER and LEDR
round a long operand to short, as follows.

616 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. Examine the fraction bit of the next longer floating-point format that immediately follows the
low-order fraction bit of the shorter operand. For LRER, LEDR, or LEXR this will be bit
32 of FPR(R2); and for LRDR or LDXR, it will be bit 8 of FPR(R2+2).

2. If the examined bit is zero, the high-order part of the second operand is placed in the first
operand register.

3. If the examined bit is one, a low-order 1-bit is added internally to the low-order bit of the
first-operand length of the second operand, and the resulting floating-point sum is placed in
the first operand register.

4. If, in adding the low-order 1-bit, a carry occurs out of the high-order digit of the fraction, the
fraction is shifted right one hex digit, and the characteristic is increased by 1. If this process
causes the characteristic to exceed 127, an exponent overflow interruption occurs, and the IC
is set to 12 (X'C').

5. No post-normalization is done, except for a possible right shift of one digit if there is a carry
out of the high-order digit position, and the characteristic is incremented.

6. The Condition Code is not changed by these instructions.

For example, to round a long operand in FPR2 to short and store it at Rounded we can use the
instructions in Figure 392.

LRER 0,2 Long operand in FPR2, short in FPR0
STE 0,Rounded Store short rounded result

Figure 392. Rounding a long hexadecimal floating-point number to short

To form the extended product of two long operands at DA and DB and then round the result to
long format, you can use an instruction sequence like this:

LD 0,DA Load first operand into FPR0
MXD 0,DB Form extended product in FPR(0,2)
LRDR 0,0 Round extended to long in FPR0

Suppose we must store at ZZ the rounded inner product of two linear arrays of twenty long-
precision elements that start at XX and YY. (Compare Figure 387 on page 608.)

TL Equ 20 Length of arrays
LZXR 4 Accumulate extended sum in FPR(4,6)
LA 0,L'XX JXLE Increment in GR0
LA 1,L'XX*(TL-1) JXLE Comparand in GR1
SR 2,2 JXLE Index in GR2

Loop LD 0,XX(2) Fetch operand XX(i)
MXD 0,YY(2) Form extended product XX(i)*YY(i)
AXR 4,0 Accumulate extended sum
JXLE 2,0,Loop Increment index and loop
LRDR 2,4 Round the result sum into FPR2
STD 2,ZZ Store final result
- - -

XX DS (TL)D Space for first array
YY DS (TL)D Space for second array
ZZ DS D Rounded inner product stored here
Figure 393. Rounded inner product of long H F P numbers

To retain precision, products of the long elements are generated and accumulated as an extended-
precision sum that is rounded to the final long result. Because there are no instructions to test
individual bits in the floating-point registers, you could do rounding “manually” in other ways
that illustrate the rounding method used by the CPU.

Suppose the LRER instruction did not exist. We could write instruction sequences to round the
long floating-point number in FPR2 in several ways:

Chapter IX: Floating-Point Data and Operations 617

1. A direct method stores the long operand and tests the bit. If it is one, form an unnormalized
quantity of the same sign and characteristic with only a low-order 1-bit in the fraction, and
add it to do the rounding. Suppose the result is to be stored at Round1.

STD 2,Temp Store long operand
TM Temp+4,X'80' Test high-order bit of right half
JZ Done If zero, no rounding
MVC One(1),Temp Move sign and characteristic
AE 2,One Add roundoff bit

Done STE 2,Round1 Store rounded result
- - -

Temp DS D Workspace
One DC F'1' Low-order 1-bit for rounding
Round1 DS E Rounded result
Figure 394. Manually rounding long to short (1)

Suppose FPR2 initially contains X'ccdd dddr xeee eeee', where cc is the characteristic, r is
the digit that might be rounded, and the high-order bit of x is tested by the TM instruction.
If the bit is zero, nothing else need be done. If it is 1, the characteristic is moved to the
high-order byte of the “constant” named One (poor programming technique!), forming
cc00 0001, which is then added as a short hexadecimal floating-point value to FPR2,
rounding the long value to short.

2. Another instruction sequence uses the fact that if the high-order bit of the lower half of the
long operand is a 1-bit, then adding that bit to itself will produce a carry into the low-order
bit position of the short half of the register.

STD 2,T Store long operand
XC T+1(3),T+1 Set 1st 3 fraction bytes to 0
AD 2,T Add back to round off
STE 2,Round2 Store rounded short operand
- - -

T DS D
Round2 DS E
Figure 395. Manually rounding long to short (2)

3. This instruction sequence uses only the floating-point registers, and no intermediate storage:

LDR 6,2 Move long argument to FPR6
LZDR 4 Clear all of FPR4
LER 4,2 Move short half of argument to FPR4
SWR 6,4 Subtract left part of fraction
ADR 2,6 Add low-order half to round
STE 2,Round3 Store rounded result
- - -

Round3 DS E
Round1 DS E Rounded result
Figure 396. Manually rounding long to short (3)

Remember that SWR is an unnormalized subtract instruction (see Table 245 on page 606).

These examples only show how rounding works; it's far simpler to use the CPU's rounding
instructions, not these.

33.13.2. Lengthening Instructions

These instructions do a simple operation: the second operand is copied to the first operand reg-
ister and extended with zeros. The Condition Code is unchanged.

618 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 249. Hexadecimal floating-point Load Lengthened instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED24 LDE RXE Load Lengthened (Short to
Long)

B324 LDER RRE Load Lengthened (Short to
Long)

ED26 LXE RXE Load Lengthened (Short to
Extended)

B326 LXER RRE Load Lengthened (Short to
Extended)

ED25 LXD RXE Load Lengthened (Long to
Extended)

B325 LXDR RRE Load Lengthened (Long to
Extended)

For example, to lengthen a short operand to long, you could write:

LE 0,=X'12345678' Short hexadecimal floating-point value
LDER 4,0 c(FPR4)=X'1234567800000000'

For extended targets (of LX-type instructions), the signs of the first operand's high- and low-order
halves are the same, and the low-order characteristic is 14 less than the high-order characteristic
(modulo 128).

LD 0,=X'123456789ABCDEF0' Source operand
LXDR 4,0 Extend in (FPR4,6)

will set FPR4 to the same value that is in FPR0, and FPR6 will be set to X'0400000000000000'.

If the source fraction for an extended target is negative zero, the result is all zero digits except for
the two matching sign bits. For example:

LD 0,=X'8000000000000000' Minus zero
LXDR 4,0 Extend in (FPR4,6)

will set both FPR4 and FPR6 to X'8000000000000000'.

Bonus effect

LXE and LXD provide an easy way to load a short or long operand into
a floating-point register while also setting its paired register to zero.

Exercises

33.13.1.(2)+ Suppose an LRER or LRDR instruction causes an exponent overflow. What are
the possible values of the rounded result?

33.13.2.(2)+ Show the result in FPR0 of executing

LRER 0,0

with each of these register contents:

1. c (FPR0)=X'7FFFFFFF87654321'
2. c (FPR0)=X'4000000087654321'
3. c (FPR0)=X'4000000012345678'

33.13.3.(2) Write and execute instructions to verify that the sequence shown in Figure 396 on
page 618 works as described.

33.13.4.(1) Suppose you execute these instructions:

LE 4,Variable
LDER 2,4
LEDR 0,2

What differences will there be between c(FPR0) and c(FPR4)?

33.13.5.(2) Show the contents of the registers at each step in Figure 396 on page 618.

Chapter IX: Floating-Point Data and Operations 619

33.14. Converting Between Binary Integers and HFP

Before these instructions were added to the System z instruction set, converting between
hexadecimal floating-point and binary integers was somewhat roundabout. The instructions in
Table 250 greatly simplify the process.

Table 250. Hexadecimal floating-point FPR/GPR conversion instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3B4 CEFR RRE Convert from Fixed (32 to
Short)

B3B8 CFER R R F Convert to Fixed (Short to
32)

B3B5 CDFR RRE Convert from Fixed (32 to
Long)

B3B9 CFDR R R F Convert to Fixed (Long to
32)

B3B6 CXFR RRE Convert from Fixed (32 to
Extended)

B3BA CFXR R R F Convert to Fixed (Extended
to 32)

B3C4 CEGR RRE Convert from Fixed (64 to
Short)

B3C8 CGER R R F Convert to Fixed (Short to
64)

B3C5 CDGR RRE Convert from Fixed (64 to
Long)

B3C9 CGDR R R F Convert to Fixed (Long to
64)

B3C6 CXGR RRE Convert from Fixed (64 to
Extended)

B3CA CGXR R R F Convert to Fixed (Extended
to 32)

33.14.1. Converting Binary Integers to Hexadecimal Floating-Point

The six instructions in the left-hand columns of Table 250 convert a binary integer in a general
register to a hexadecimal floating-point value in a floating-point register. For example, we can
convert the integer in GR5 to short hexadecimal floating-point in FPR4:

L 5,=F'54321'
CEFR 4,5 c(FPR4)=X'44D43100'

Figure 397. Converting a 32-bit integer to short hexadecimal floating-point

The rules for these six instructions are simple:

1. Zero integer values are converted to +0 floating-point values.

2. The HFP result is truncated, not rounded.

3. The Condition Code is unchanged.

4. The CXFR and CXGR instructions require that the R1 operand refer to the lower-numbered
register of a Floating-Point Register pair.

Converting 64-bit integers to hexadecimal floating-point is just as easy, but you can see in
Figure 398 that large integer values may lose some low-order bits when converted to short or
long hexadecimal floating-point formats:

LG 5,=FD'123456789012345678' (X'01B69B4BA630F34E')
CEGR 4,5 c(FPR4)=X'4F1B69B4' (truncated)
CDGR 4,5 c(FPR4)=X'4F1B69B4BA630F34' (truncated)
CXGR 4,5 c(FPR4)=X'4F1B69B4BA630F34 41E0000000000000' (OK)

Figure 398. Converting a 64-bit integer to three hexadecimal floating-point values

To help you appreciate the simplicity of these instructions, consider this sequence of instructions
used by an early System/360 FORTRAN compiler217 to convert the fullword integer stored at
FWInt to hexadecimal floating-point, and store the result at DFInt.

217 A very early compiler. Subsequent compilers quickly used improved techniques.

620 Assembler Language Programming for IBM System z™ Servers Version 2.00

LD 0,=D'0' Clear all of FPR0
L 1,FWInt Load integer from FWInt into GPR1
LTR 1,1 Test sign
BM Neg Branch if negative
ST 1,DCon+4 Store magnitude
AD 0,DCon Normalized result in FPR0
B Store Branch to store

Neg LPR 1,1 Take magnitude of integer
ST 1,DCon+4 Store it
SD 0,DCon Form negative normalized value

Store STD 0,DFInt Store long floating value
- - -

DFInt DS D Doubleword result
DCon DC X'4E',7X'0' Pseudo-zero, exponent = 14
Figure 399. Early conversion of integer to hexadecimal floating-point

More efficient and elegant techniques were developed as high-level languages evolved; some of
them are illustrated in (the recommended!) Exercises 33.14.4 through 33.14.6.

When converting a fullword integer to short hexadecimal floating-point, there may be as many as
32 significant bits in the integer, but a short HFP number has only a 24-bit fraction. Thus, there
may be a loss of accuracy in converting fullword integers to short hexadecimal floating-point.
Since floating-point arithmetic is concerned primarily with maintaining as many high-order digits
as possible, this truncation is tolerated by the new instructions also.

33.14.2. Converting Hexadecimal Floating-Point to Binary Integers

The six instructions in the right-hand columns of Table 250 on page 620 convert a hexadecimal
floating-point value in a floating-point register to a binary integer in a general register. Any frac-
tional value is lost, except that rounding the lost fraction might affect the low-order digit of the
integer result. In addition to the expected R1 and R2 operands, they also specify a rounding mod-
ifier M3 as another operand. The instruction format is:

Table 251. Format of H F P to fixed binary instructions

Calling it the “third” operand may be confusing, because it is actually specified as the second
operand of a machine instruction statement:

opcode M3 R1 R2

CFER R1,M3,R2
Figure 400. Format of a machine instruction statement for converting H F P to binary

The R1 (target) operand specifies a general register and the R2 (source) operand specifies a
floating-point register. The M3 operand determines what rounding should be done, as shown in
Table 252. (These instructions are easy to use; just be sure to specify a rounding mode (M3)
operand, as there is no default.)

Table 252. Rounding modifiers for HFP-to-binary conversion

M3 Meaning

B'0000' Truncate the fraction part (round toward zero)

B'0001' Round to nearest; if the source value is halfway between two integer
values, choose the one with the larger magnitude

B'0100' Round to nearest; if the source value is halfway between two integer
values, choose the even one with a zero low-order bit

B'0101' Truncate the fraction part (round toward zero)

B'0110' Round toward + ∞
B'0111' Round toward − ∞

Chapter IX: Floating-Point Data and Operations 621

Other modifier values are invalid, and cause a specification exception.

These instructions set the Condition Code, with CC=3 as an interesting and unusual case.

Table 253. CC settings for HFP-to-binary conversion

As you would expect, the CFXR and CGXR instructions require that the R2 operand reference
the low-order half of a floating-point register pair.

For example, these instructions generate the indicated results:

LE 4,=E'123.456'
CFER 2,B'0110',4 c(GR2) = X'0000007C' (=124)
LD 4,=E'-73.946'
CGER 2,B'0111',4 c(GG2) = X'FFFFFFFFFFFFFFB6' (=-74)
LE 4,=E'1234567890'
CFER 2,B'0100',4 c(GR2) = X'49960300' (=1234567936)

The last example shows that some low-order bits could not be represented in the short second
operand.

Unexpected results can also be generated if floating-point values “known” to have integer values
are converted to binary. For example if a HFP result is expected to be 8 but actually is calculated
as 7.999999, the lack of a rounding conversion to binary generates the integer value 7.

Table 254 summarizes the actions of some instructions that move and/or convert data between
and among the general registers and floating-point registers:

Table 254. Instructions moving/converting binary and hexadecimal floating-point operands

Exercises

33.14.1.(2) An array of fullword integers is stored starting at IntData and the number of ele-
ments in the array is stored as a fullword integer at NItems. Write instructions to compute and
store at IntAvg the floating-point average of the list of integers, taking into account the possi-
bility that the integer sum may overflow a general register.

33.14.2.(2) What is the largest binary integer that can be converted to hexadecimal floating-
point long format without loss of precision? Explain.

CC Meaning

0 Result is = 0

1 Result is < 0

2 Result is > 0

3 The rounded result exceeds the range of the target representation, and has
been replaced by the largest representable correctly signed magnitude.

To→
↓ From

Fixed Bin
(32 bits)

Fixed Bin
(64 bits)

Hex Float
(32 bits)

Hex Float
(64 bits)

Hex Float
(128 bits)

Fixed Bin
(32 bits)

LR LGFR CEFR CDFR CXFR

Fixed Bin
(64 bits)

LR LGR CEGR CDGR CXGR

Hex Float
(32 bits)

CFER CGER LER LDER LXER

Hex Float
(64 bits)

CFDR CGDR LRER
LEDR

LDR LXER

Hex Float
(128 bits)

CFXR CGXR LEXR LRDR
LDXR

LXR

622 Assembler Language Programming for IBM System z™ Servers Version 2.00

33.14.3.(1) Can the instructions for converting a binary integer to hexadecimal floating-point
generate an exponent spill?

33.14.4.(3)+ A compiler used these instructions to convert the fullword binary integer in GR0
to long hexadecimal floating-point form in FPR0.

X 0,Float+4 Invert sign bit
ST 0,DCon+4 Store result in long number
LD 0,DCon Load the unnormalized value
SD 0,Float Subtract and normalize
- - -
DS 0D Align on doubleword boundary

DCon DC X'4E00000000000000' Pseudo-zero, exponent = 14
Float DC X'4E00000080000000' 2**31, unnormalized

Analyze this method, and show (a) how it works, and (b) that it will work correctly for any
integer value.

33.14.5.(3) Another compiler used this instruction sequence to convert a fullword binary integer
in GR0 to long hexadecimal floating-point form in FPR0. Analyze its action for positive, zero,
negative, and maximum negative integer values. Describe the differences between this instruc-
tion sequence and that in Exercise 33.14.4.

X 0,DCon+4 Invert sign bit
ST 0,Float+4 Store result in long number
LD 0,Float Load the unnormalized value
AD 0,DCon Add and normalize
- - -
DS 0D Align on doubleword boundary

DCon DC X'CE00000080000000' -2**31 unnormalized
Float DC X'4E00000000000000' pseudo-zero, exponent = 14

33.14.6.(3)+ The following instruction sequence was used by a compiler to convert a short
hexadecimal floating-point value at X to a fullword integer in GR0. Analyze its operation for
positive, zero, and negative hexadecimal floating-point values, and describe its behavior for
hexadecimal floating-point values exceeding 231.

LD 0,DCon Clear low-order half of FPR0
LE 0,X Get floating-point operand
AD 0,DCon Add and normalize
STD 0,FTemp Store the result
L 0,FTemp+4 Put the integer result in GR0
- - -

FTemp DS D Doubleword temporary
DCon DC X'4F08000000000000' Conversion constant

Explain the form of the constant at DCon.

33.14.7.(3) What modifications would be required to the instructions in Exercise 33.14.6 to
handle conversion of a long precision hexadecimal floating-point value to fullword integer form?
To 64-bit integer form?

33.14.8.(2)+ Write the constants named DCon in Exercises 33.14.4 through 33.14.6 as
hexadecimal floating-point constants in DC statements.

33.14.9.(2)+ What integer values satisfying

230 ≤ value < 231

can be converted without loss of precision to short hexadecimal floating-point form?

33.14.10.(3) Without using the instructions described in Section 33.14, write instructions to
convert the long hexadecimal floating-point value at YY to a fullword binary integer stored at

Chapter IX: Floating-Point Data and Operations 623

NN. If the integer result is too large to be correctly represented, branch after storing the result to
the instruction at location TooBig.

33.14.11.(3) Without using the instructions described in Section 33.14, write instructions to
convert the short hexadecimal floating-point number at XX to a correctly rounded fullword
integer value stored at MM.

33.14.12.(2) Write the constant named Float in Exercise 33.14.4 in a DC statement as a scaled
D-type constant.

33.14.13.(3)+ Write an instruction sequence that will convert the nonnegative fullword integer
at IntVal to a rounded short hexadecimal floating-point format stored at Result, using round
half-up (arithmetic) rounding.

33.14.14.(3) Repeat Exercise 33.14.13, but use half-even rounding.

33.14.15.(2) The following short HFP numbers are converted to binary integers using these two
instructions:

(a) LE 0,HFP_Number
CFER 3,0,0

(b) LE 0,HFP_Number
CGER 3,0,0

for these HFP_Number values:

(1) X'46000000'
(2) X'C7654321'
(3) X'7FEDCB49'
(4) X'ABCDEF74'
(5) X'4974662B'

Show the Condition Code and the contents of GR3 and GG3 for each HFP number.

33.14.16.(2)+ If you convert the HFP constant E'65537' to a halfword binary integer, what is
the result?

33.14.17.(2) Suppose you use these instructions to convert a long HFP operand at DFloat to a
fullword binary integer stored at NF. What value will be stored?

LD 0,DFloat Get long operand
AW 0,DCon Add long pseudo-zero, exponent 14
STD 0,DTemp Store temporarily
L 1,DTemp+4 Pick up fullword integer
BNM *+6 Branch if nonnegative
LCR 1,1 Complement integer value
ST 1,NF Store fullword result
- - -

DTemp DS D
DCon DC X'4E',7X'0' Pseudo-zero, exponent=14
DFloat DC D'16777219' Long HFP source data
NF DS F Integer result

624 Assembler Language Programming for IBM System z™ Servers Version 2.00

33.15. Hexadecimal Floating-Point Integers and Remainders (*)

We must sometimes compute the “remainder” of a floating-point division, even though it's not
provided by the CPU as a result of any divide instruction. Given two operands A and B, we may
need to calculate a quotient Q and a remainder R so that

A = Q*B + R

The quotient Q is produced by the divide instructions; for floating-point arithmetic, R must be
calculated separately. This can be done using

R = A - Int(A/B)*B

Thus, we evaluate A/B, convert it to its floating-point integer form, multiply that by B, and sub-
tract the product from A to give the desired result.

For example, suppose we use three-digit decimal floating-point and divide 5.55 by 2.47; the true
quotient is 2.246963562753.... The integer part of the quotient is 2, so we must evaluate
5.55 − (2×2.47) to find the remainder, 0.61.

The key step is finding the integer part of the quotient, using the instructions in Table 255.

Table 255. Hexadecimal floating-point instructions generating floating-point integers

Op Mnem Type Instruction Op Mnem Type Instruction

B377 FIER RRE Load FP Integer (Short) B37F FIDR RRE Load FP Integer (Long)

B367 FIXR RRE Load FP Integer
(Extended)

It's important to remember that the result is a hexadecimal floating-point integer in the same
format, not a fixed binary integer!

• The results of these instructions are normalized.

• The Condition Code is unchanged.

• FIXR requires that both operands refer to the lower-numbered register of a floating-point reg-
ister register pair.

• If the exponent of the second operand is large enough, the result in the first operand will be
the same value (normalized).

Using the values A=5.55 and B=2.47, Figure 401 shows how we would calculate the HFP
remainder:

LE 0,=E'5.55' A = 5.55
DE 0,=E'2.47' B = 2.47
FIER 0,0 Int(A/B) = 2
ME 0,=E'2.47' Multiply by B
LCER 0,0 Invert sign of the product
AE 0,=E'5.55' Remainder = A - Int(A/B)*B

Figure 401. Calculating a H F P remainder

The result in FPR0 is X'409C28F0', or approximately 0.60999966 in decimal.

To give another example:

LE 0,=X'42345678' Hex 33.5678
FIER 2,0 c(FPR2) = X'4234000'

removes the fraction X'42005678', leaving the integer part.

Suppose there are short hexadecimal floating-point operands at A and B and the remainder is to
be stored in short form at AModB.

Chapter IX: Floating-Point Data and Operations 625

LE 0,A Load A into FPR0
DE 0,B Divide by B
FIER 0,0 Drop off the fraction part
ME 0,B Form product with integer part
LCER 0,0 Form -B*IntPart(A/B)
AE 0,A Add A to form remainder
STE 0,AModB Store result
- - -

AModB DS E Remainder
A DC E'20' A value for A
B DC E'16' And for B
Figure 402. Evaluating a hexadecimal floating-point remainder

This technique should be used with care. If the relative magnitudes of A and B are close, the
result is acceptable; but if the ratio |A/B | approaches the precision of the operands, the result can
be inaccurate, and special programming techniques may be needed to calculate an accurate result.

Exercises

33.15.1.(2)+ In Figure 402, what will be in FPR0 after the DE instruction? After the FIER
instruction? After the ME instruction? After the AE instruction?

33.15.2.(2)+ Show that the FIER instruction in Figure 402 can be replaced by

AU 0,=X'46000000'

33.15.3.(3) What will happen in Figure 402 if the FIER instruction is replaced by

AE 0,=X'46000000' ?

For what values of A/B will there be no difference between using AE and AU instructions?

33.15.4.(1) Rewrite the instructions in Figure 402 to use long operands.

33.15.5.(2) What is the result in FPR0 of each of these instruction sequences?

(1) LE 0,=X'44001234'
FIER 0,0

(2) LD 0,=X'C7FEDCA987654321'
FIDR 0,0

(3) LXD 0,=X'1234567890ABCDEF'
FIXR 0,0

(4) LE 0,=X'77654321'
FIER 0,0

(5) LD 0,=X'C7FEDCA987654321'
FIER 0,0

33.16. Square Root Instructions (*)

The instructions in Table 256 on page 627 extract the square root of a hexadecimal floating-point
operand. None of them change the Condition Code.

626 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 256. Hexadecimal floating-point Square Root instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED34 SQE RXE Square Root (Short) B245 SQER RRE Square Root (Short)

ED35 SQD RXE Square Root (Long) B244 SQDR RRE Square Root (Long)

B336 SQXR RRE Square Root (Extended)

The SQXR instruction requires both the R1 and R2 operands to refer to the lower-numbered
register of a floating-point register pair.

The second operand is first tested to see if it is negative and nonzero. If so, a HFP Square Root
interruption occurs, and the IC is set to 29 (X'1D'). Otherwise, the operand is normalized inter-
nally and its square root is evaluated; the result is normalized, rounded, and its sign is always + .

Because the exponent of a square root is about one-half the exponent of its argument, the result
cannot cause an exponent spill.

Figure 403 gives some examples of these instructions:

LE 2,=E'1024.576' c(FPR2)=X'43400937'
SQER 0,2 c(FPR0)=X'4220024E' = 32.00900...
LD 2,=X'41FFFFFFFFFFFFFF' = 15.999999999997...
SQDR 0,2 c(FPR0)=X'4140000000000000' = 4.0
LE 2,=X'80000000' Minus zero
SQER 0,2 c(FPR0)=X'00000000'

Figure 403. Examples of H F P square root instructions

These instructions have two interesting properties (see Exercises 33.16.2 and 33.16.3):

1. Rounding cannot produce a carry out of the high-order digit of the result.

2. A square root cannot lie exactly half way between two representable values, so that tradi-
tional “half-up” rounding can be used.

Exercises

33.16.1.(1)+ Estimate the value of the square root of HFP (Max), (Min), and (DMin) values.

33.16.2.(3) It is stated above that rounding the result of a square root instruction cannot create
a carry out of the high-order digit of the fraction. Why not?

33.16.3.(4) It is stated above that the result of a square root instruction cannot lie exactly half
way between two representable values. Why not?

33.17. Multiply and Add/Subtract Instructions (*)

The instructions in Table 257 combine two operations into one: a multiplication followed by an
addition or subtraction; they are sometimes called “fused multiply-add” or “FMA” instructions.
None of them change the Condition Code.

Table 257. Hexadecimal floating-point Multiply and add/subtract instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED2E MAE RXF Multiply and Add (Short) B32E MAER R R F Multiply and Add (Short)

ED3E MAD RXF Multiply and Add (Long) B33E MADR R R F Multiply and Add (Long)

ED2F MSE RXF Multiply and Subtract
(Short)

B32F MSER R R F Multiply and Subtract (Short)

ED3F MSD RXF Multiply and Subtract
(Long)

B33F MSDR R R F Multiply and Subtract (Long)

Chapter IX: Floating-Point Data and Operations 627

These instructions have three operands; their RRF format (shown in Table 258) is similar to that
in Table 251 on page 621, except that the instruction operands are in different fields.

Table 258. Format of RRF-type H F P multiply and
add/subtract instructions

The RXF-type instruction format is shown in Table 259:

Table 259. Format of RXF-type multiply and add/subtract instructions

The assembler instruction statement format for these instructions is simpler:

MAE R1,R3,D2(X2,B2) Explicit address
MAE R1,R3,S2 Implied address
MAER R1,R3,R2

The effect of these instructions is to evaluate

operand_1 = (operand_3 × operand_2) ± operand_1
or

c(R1) = (c(R3) × operand_2) ± c(R1)

Initially, the product of operand_2 and operand_3 is evaluated internally to double precision: that
is, to 14 digits for short operands, and to 28 digits for long operands. Possible exponent spills are
ignored at this stage. Then, operand_1 is added or subtracted, the result is normalized and trun-
cated, and replaces operand_1. Exponent overflow or underflow may occur at this stage.

A single guard digit is used for the addition or subtraction, and the final result is truncated, not
rounded.

None of the operands is normalized at the start of the instructions.

For example:

LE 4,=E'25' Operand_3 in FPR4
LE 2,=E'123' Operand_1 in FPR2
MAE 2,4,=E'4' Operand_2 = 4.0

multiplies 25 and 4, and adds 123, giving X'42DF0000', or 223 as expected.

The big advantage of these instructions is that they avoid the possibility of double rounding, or
the need for using higher-precision arithmetic. If you wanted to achieve the same result without
the MAE instruction, you would have to write something like this:

LE 4,=E'25' Operand_3
LDER 4,4 Extend to long precision
LE 2,=E'4' Operand_2
LDER 2,2 Extend to long precision
MDR 4,2 Form long product
LE 2,=E'123' Operand_1
LDER 2,2 Extend to long precision
ADR 2,4 Accumulate final result

This not only takes more instructions (and probably executes more slowly), but it is open to the
possibility that the MDR instruction could cause an exponent spill that would otherwise have
been compensated by the ADR instruction. For example:

LE 4,=X'60987654' Operand_3
LE 2,=X'FFFFFFFF' Operand_1
MAE 2,4,=X'60234567' Operand_2 in memory

opcode R1 R3 R2

opcode R3 X2 B2 D2 R1 opcode

628 Assembler Language Programming for IBM System z™ Servers Version 2.00

produces a result X'7F50182C' in FPR2 with no overflow, but

LE 4,=X'60987654' Operand_3
ME 4,=X'60234567' Operand_2 in memory
AE 4,=X'FFFFFFFF' Operand_1

produces an exponent overflow when the ME instruction is executed with
c (FPR4)=X'00150182B83FCC00'; the following AE instruction ignores the (now) tiny result of the
ME instruction, giving X'FFFFFFFF' as the final result!

Exercises

33.17.1.(2)+ Rewrite the example in Figure 387 on page 608 to use multiply-add instructions.

33.17.2.(2) Rewrite the example in Figure 388 on page 608 to use multiply-add instructions.

33.18. Some Hexadecimal Floating-Point History (*)

In the early System/360 CPUs, processor and memory speeds were close (and in some cases a
memory access was faster than the time needed to execute an instruction). Some programming
techniques that performed acceptably then are no longer used.

33.18.1. Zeroing Floating-Point Registers

Sometimes you need to clear a floating-point register to zero, or set the low-order half of a
floating-point register to zero prior to loading a short operand. Without the lengthening
instructions in Section 33.13.2 on page 618, or the Load Zero instructions in Section 31.9.3. on
page 569, you might have used instructions like these:

LD 0,=D'0.0' Load a zero from memory
or

SWR 0,0 Subtract the register from itself

with the cost of a constant and a memory access for the LD instruction, and a possible HFP
lost-significance exception for the SWR instruction.

33.18.2. Hexadecimal Floating-Point to Binary Conversion Comments (*)

There are some possible problems.

1. Suppose we try to convert the HFP constant E'50000' to a halfword integer. If we use a
typical instruction sequence, the intermediate HFP result would be X'4600C350'. If we load
the rightmost four digits of this result into a general register using a LH instruction, the con-
tents of that register would be X'FFFFC350', an integer value of −15536! This could be quite
a surprise, because the original operand was positive. Such conversions gave no indication
that the result was corrupted.

While this example might seem relatively harmless (the negative result indicates that an over-
flow has occurred), it is easy to create examples where the loss of accuracy is not as obvious.

2. The lack of a CC setting meant that the binary result would have to be tested using a LTR
instruction to determine its sign; the new instructions like those in Section 33.14.2 on page
621 solve that problem

3. When converting an integer to short hexadecimal floating-point, it is possible that the integer
has enough low-order zero bits so that its magnitude may exceed 224 and still no significant
bits will be lost in the conversion, but we have no way to know this is so. While this may
not seem very important, there are situations where you may obtain unexpected results.

Chapter IX: Floating-Point Data and Operations 629

33.18.3. Initial System/360 Oversights

When the very first System/360 CPUs were delivered, customers found that some floating-point
implementation oversights made program portability more difficult among different models:

1. There was no guard digit for long hexadecimal floating-point arithmetic. (For example, the
multiplicative identity 1×a=a failed in long arithmetic due to the lack of a guard digit.)

2. No post-normalization or zero-fraction test was performed after the Halve instructions, so
that unnormalized results could be generated from normalized operands.

3. No characteristic wraparound or correct fraction was guaranteed in case of overflow and
underflow, and the result left in the register depended on the model.

4. A condition code of 3 was generated when exponent overflow occurred during add oper-
ations.

5. No extended precision operations were available.

These oversights were corrected very promptly: IBM announced in February 1967 that engi-
neering changes would be made to all machines (if desired by the owner or renter) in order to
rectify the first four of the above conditions. Extended precision was delivered several years later.

When IBM made the announcement at the SHARE conference in February 1967, the speaker
asked “How many of you have System/360 Model 30 machines?” Almost all the attendees' hands
went up. He then asked “How many of you would be willing to forgo the hardware updates?” No
hands went up. He then said “Well, I promised I'd ask.”

The reason for the question was that IBM had shipped a very large number of Model 30
processors, and the required microcode updates were quite extensive (and costly to IBM).

33.19. Summary

We've covered a lot of material in this section; a few summary comments may help.

• Operands are pre-normalized for multiplication and division, but not for addition or sub-
traction.

• There are no reserved or special values, as for binary and decimal floating-point.

• Arithmetic results are not rounded.

• Arithmetic truncates (usually, but not always, toward zero!) For example:
X'42100000'−X'40FFFFFF' = X'41F00001' (instead of X'41F00000'); this result is truncated
away from zero, with error = 15/16 ulp.

• Zero arithmetic results are delivered as +0 (“true zero”).

There are no instructions operating on two hexadecimal floating-point operands of different
lengths, such as adding a short and a long operand. Such arithmetic is sometimes called “mixed-
length” or “mixed-precision” arithmetic. The only practical way to mix short and long operands is
to clear the low-order half of a long register (or area of memory), place the short operand in the
high-order half, and then do the required operation in long arithmetic.

The hexadecimal floating-point instructions for moving and testing data in the floating-point reg-
isters are summarized in Table 260 on page 631.

630 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 260. Hexadecimal floating-point Move/Test instructions

The hexadecimal floating-point multiplication instructions are summarized in Table 261.

Table 261. Hexadecimal floating-point Multiply instructions

The hexadecimal floating-point divide instructions are summarized in Table 262.

Table 262. Hexadecimal floating-point Divide instructions

The hexadecimal floating-point instructions for normalized and unnormalized addition and sub-
traction and for comparison are summarized in Table 263.

Table 263. Hexadecimal floating-point Add, Subtract, and Compare instructions

The hexadecimal floating-point rounding instructions are summarized in Table 264 on page 632.

Function
Operand Length

4 bytes 8 bytes 16 bytes

Load and Test LTER LTDR LTXR
Load Complement LCER LCDR LCXR

Load Negative LNER LNDR LNXR
Load Positive LPER LPDR LPXR

Func-
tion

Source Length 4 bytes 8 bytes 16 bytes

Product Length 4 bytes 8 bytes 8 bytes 16 bytes 16 bytes

Multiply (registers) MEER MER
MDER

MDR MXDR MXR

Multiply (storage) MEE ME
MDE

MD MXD

Function
Operand Length

4 bytes 8 bytes 16 bytes

Divide
(register)

DER DDR DXR

Divide
(storage)

DE DD

Halve
(register)

HER HDR

Function
Operand Length

4 bytes 8 bytes 16 bytes

Add/Subtract Normalized
(register)

AER
SER

ADR
SDR

AXR
SXR

Add/Subtract Unnormalized
(register)

AUR
SUR

AWR
SWR

Add/Subtract Normalized
(storage)

AE
SE

AD
SD

Add/Subtract Unnormalized
(storage)

AU
SU

AW
SW

Compare (register) CER CDR CXR
Compare (storage) CE CD

Chapter IX: Floating-Point Data and Operations 631

Table 264. Hexadecimal floating-point Round instructions

The hexadecimal floating-point operand-lengthening instructions are summarized in Table 265.

Table 265. Hexadecimal floating-point Lengthening instructions

The instructions for converting hexadecimal floating-point operands to binary integers are sum-
marized in Table 266.

Table 266. Convert hexadecimal floating-point to binary instructions

The instructions for converting binary integer operands to hexadecimal floating-point are summa-
rized in Table 267.

Table 267. Convert binary to hexadecimal floating-point instructions

The instructions for removing the fraction part of hexadecimal floating-point operands (that is,
extracting the integer portion) are summarized in Table 268.

Table 268. Form hexadecimal floating-point integer instructions

The instructions for evaluating the square root of hexadecimal floating-point operands are sum-
marized in Table 269.

Table 269. Hexadecimal floating-point Square Root instructions

The instructions for performing multiply-and-add and multiply-and-subtract operations on
hexadecimal floating-point operands are summarized in Table 270 on page 633.

Function
Source Length 8 bytes 16 bytes 16 bytes

Result Length 4 bytes 4 bytes 8 bytes

Round LRER
LEDR

LEXR LRDR
LDXR

Function
Source Length 4 bytes 8 bytes

Result Length 8 bytes 16 bytes 16 bytes

Lengthen (register) LDER LXER LXDR
Lengthen (storage) LDE LXE LXD

Func-
tion

Source Length 4 bytes 8 bytes 16 bytes

Target Length 32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

Convert float to binary CFER CGER CFDR CGDR CFXR CGXR

Func-
tion

Source Length 32 bits 64 bits

Target Length 4 bytes 8 bytes 16
bytes 4 bytes 8 bytes 16

bytes

Convert binary to float CEFR CDFR CXFR CEGR CDGR CXGR

Function Operand Length 4 bytes 8 bytes 16 bytes

Form floating-point integer FIER FIDR FIXR

Function
Operand Length

4 bytes 8 bytes 16 bytes

Square root (register) SQER SQDR SQXR
Square root (register) SQE SQD

632 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 270. Hexadecimal floating-point Multiply-Add/Subtract instructions

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Function
Operand Length

4 bytes 8 bytes

Multiply-add (register) MAER MADR
Multiply-add (storage) MAE MAD

Multiply-subtract (register) MSER MSDR
Multiply-subtract (storage) MSE MSD

Chapter IX: Floating-Point Data and Operations 633

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

AD 6A FIDR B37F MAER B32E

ADR 2A FIER B377 MD 6C

AE 7A FIXR B367 MDE 7C

AER 3A HDR 24 MDER 3C

AU 7E HER 34 MDR 2C

AUR 3E LCDR 23 ME 7C

AW 6E LCER 33 MEE ED37

AWR 2E LCXR B363 MEER B337

AXR 36 LDE ED24 MER 3C

CD 69 LDER B324 MSD ED3F

CDFR B3B5 LDXR 25 MSDR B33F

CDGR B3C5 LEDR 35 MSE ED2F

CDR 29 LEXR B366 MSER B32F

CE 79 LNDR 21 MXD 67

CEFR B3B4 LNER 31 MXDR 27

CEGR B3C4 LNXR B361 MXR 26

CFDR B3B9 LPDR 20 SD 6B

CFXR B3BA LPER 30 SDR 2B

CGDR B3C9 LPXR B360 SE 7B

CGER B3C8 LRDR 25 SER 3B

CGXR B3CA LRER 35 SQD ED35

CXFR B3B6 LTDR 22 SQDR B244

CXGR B3C6 LTER 32 SQE ED34

CER 39 LTXR B362 SQER B245

CFER B3B8 LXD ED25 SQXR B336

CXR B369 LXDR B325 SU 7F

DD 6D LXE ED26 SUR 3F

DDR 2D LXER B326 SW 6F

DE 7D MAD ED3E SWR 2F

DER 3D MADR B33E SXR 37

DXR B22D MAE ED2E

634 Assembler Language Programming for IBM System z™ Servers Version 2.00

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

20 LPDR 3E AUR B361 LNXR

21 LNDR 3F SUR B362 LTXR

22 LTDR 67 MXD B363 LCXR

23 LCDR 69 CD B366 LEXR

24 HDR 6A AD B367 FIXR

25 LDXR 6B SD B369 CXR

25 LRDR 6C MD B377 FIER

26 MXR 6D DD B37F FIDR

27 MXDR 6E AW B3B4 CEFR

29 CDR 6F SW B3B5 CDFR

2A ADR 79 CE B3B6 CXFR

2B SDR 7A AE B3B8 CFER

2C MDR 7B SE B3B9 CFDR

2D DDR 7C MDE B3BA CFXR

2E AWR 7C ME B3C4 CEGR

2F SWR 7D DE B3C5 CDGR

30 LPER 7E AU B3C6 CXGR

31 LNER 7F SU B3C8 CGER

32 LTER B22D DXR B3C9 CGDR

33 LCER B244 SQDR B3CA CGXR

34 HER B245 SQER ED24 LDE

35 LEDR B324 LDER ED25 LXD

35 LRER B325 LXDR ED26 LXE

36 AXR B326 LXER ED2E MAE

37 SXR B32E MAER ED2F MSE

39 CER B32F MSER ED34 SQE

3A AER B336 SQXR ED35 SQD

3B SER B337 MEER ED37 MEE

3C MDER B33E MADR ED3E MAD

3C MER B33F MSER ED3F MSD

3D DER B360 LPXR

Chapter IX: Floating-Point Data and Operations 635

Exercises

33.19.1.(2)+ Suppose you evaluate X'42100000'−X'40FFFFFF' using SE and SU instructions.
Estimate the size of the error for each result, and explain their difference.

33.19.2.(4) Suppose the designers of System/360 had chosen an octal (base 8) representation for
floating-point arithmetic. Consider two choices for the width of a binary characteristic: 7 bits
(with 8 fraction digits), or 4 bits (with 9 fraction digits); the remaining bit is for the sign.

Determine the exponent ranges and fraction accuracy for each.

The following six exercises use the definition of ulp(x) described in Section 32.8 on page 580.

33.19.3.(2)+ Suppose a short hexadecimal floating-point number is stored at X. Write
instructions to calculate ulp(X) and store the result at ULPX. Assume that the value at X is large
enough that no exponent underflow occurs in calculating the result.

33.19.4.(3) What is the minimum value of the hexadecimal floating-point number at X that will
not underflow when you calculate ulp(X)?

33.19.5.(2)+ Repeat Exercise 33.19.3 assuming that the value at X is a long precision
hexadecimal floating-point number.

33.19.6.(3) Repeat Exercise 33.19.4 assuming that the value at X is a long precision hexadecimal
floating-point number.

33.19.7.(3)+ Repeat Exercise 33.19.3 assuming that the value at X is an extended precision
hexadecimal floating-point number.

33.19.8.(3) Repeat Exercise 33.19.4 assuming that the value at X is an extended precision
hexadecimal floating-point number.

Terms and Definitions
multiply and add/subtract

An instruction in which a double-length product is created internally to which a third
operand is added or subtracted before truncating or rounding the result to the length of the
original operands.

rounding-mode suffix
The letter R and a number appended to the numeric value of a constant to request the
Assembler to perform a specific form of rounding.

significance exception
In hexadecimal floating-point, the result of an addition or subtraction yields a significand of
all zero digits. This exception can either cause a program interruption with IC=14, or can be
masked to produce a true zero.

unnormalized add/subtract
Hexadecimal floating-point addition and subtraction in which the result is not normalized.

Programming Problems

Problem 33.1.(2) Write a program to compute and print the hexadecimal floating-point values
of the expression

f(x) = 1/(x3 − 3x − 2)
for integral values of x from −5 to +5. Print the largest possible hexadecimal floating-point
value if the denominator is zero for any value of x in the range.

636 Assembler Language Programming for IBM System z™ Servers Version 2.00

Problem 33.2.(2) Write a program to compute a table of factorials from 0 to 55, and determine
which values will be stored exactly (with no truncation error) for both short and long precision.

Problem 33.3.(4) Write a program to convert short hexadecimal floating-point numbers to a
printable decimal format such as “-.123456E+21”. Test your program by reading records with
eight hexadecimal characters: convert them to a word representing the short floating-point
number; convert those values, and print a line showing the original hexadecimal string and the
converted result.

Some sample input values are

80000000
451E240C
40100000
00000001
7FFFFFFF

and the output from the last of these could look like this:

 X'7FFFFFFF' = +.723701E+76

Problem 33.4.(3) For values of X running from +2.0 to −2.0 in steps of 0.1, write an instruc-
tion sequence to compute and print (in short hexadecimal floating-point) the value of the
expression

7X4 − 3X3 + 4x2 + 5x − 2.
Evaluate the expression using only four multiplications by factoring it into “nested” form.

Problem 33.5.(3) Write a program using short, long, and extended precision hexadecimal
floating-point arithmetic that shows that the expression (1.0/N)×N=1.0 is true for values of N
between 1 and 100 only when N is a power of 2.

Problem 33.6.(3) Using the iterative technique described in Section 31.3.1 on page 554, write a
program to evaluate the square root of 2 to 10 significant digits using long hexadecimal floating-
point arithmetic, and without using hexadecimal square-root instructions. Format and print the
result as a fixed-point value.

Problem 33.7.(2)+ To explore the relationship between significance and accuracy described in
Section 25.10, write a program to assemble the 50 decimal values

0.062499991
0.062499992

- - -
0.062499999
0.062500000
0.062500001

- - -
0.062500040

in short and long precision, and observe the behavior of the assembled constants. See if you can
find other sequences of decimal values that exhibit similar behavior.

Chapter IX: Floating-Point Data and Operations 637

34. Binary Floating-Point Data and Operations

3333333333 44
333333333333 444
33 33 4444

33 44 44
33 44 44

3333 44 44
3333 44444444444

33 444444444444
33 44

33 33 44
333333333333 44
3333333333 44

This section describes binary floating-point data and arithmetic, often known as “IEEE Binary
Floating-Point”218 Its design is based on many years of experience with irregular floating-point
architectures that caused great problems in creating stable and reliable software. Binary floating-
point was carefully designed219, has been widely adopted, and is now used on almost all
processors. Its benefits include:

• Greater precision and exponent range than hexadecimal floating-point (except for short preci-
sion, which has greater exponent range), making exponent spills less likely.

• Rounding for all arithmetic operations.

• Gradual underflow.

• Special values (such as infinity and “Not a Number” or “NaN”).

• Ways to control and test for exception conditions.

First, we'll examine the binary floating-point data representations.

34.1. Binary Floating-Point Data

Table 271 summarizes the three binary floating-point data formats supported by System z:

Table 271. Binary floating-point data representations

Length
(bytes)

Char.
(bits)

Min
exp.

Max
exp.

Char.
Bias

Pre-
cision

Max Norm.
(Max)

Min Norm.
(Min)

Min Denorm.
(DMin)

4 8 −126 +127 +127 24 3.4×10+38 1.2×10−38 1.4×10−45

8 11 −1022 +1023 +1023 53 1.8×10+308 2.2×10−308 4.9×10−324

16 15 −16382 +16383 +16383 113 1.2×10+4932 3.4×10−4932 6.5×10−4966

218 IEEE stands for the Institute of Electric and Electronic Engineers, which publishes standards used in many industries.
219 The standards committee paid “...meticulous attention to details that hardly matter to most people but matter, when

they do matter, very much.” (W. Kahan)

638 Assembler Language Programming for IBM System z™ Servers Version 2.00

Unlike hexadecimal floating-point, the characteristic field width is different for each data length,
and certain characteristic bit patterns represent the special values infinity and “Not a Number”.
Another key difference is that almost all finite values are normalized. This means:

• there are no redundant representations of finite values, and

• the leading significant fraction digit of a normalized number must be 1, so it can be omitted
and its presence can be assumed.

Fraction and Significand

Unlike hexadecimal floating-point where all the significant bits of a
number (its significand) are present in the fraction field, the fraction of a
normal binary floating-point number does not contain all its significant
bits.

34.1.1. Data Representations

Figure 404 illustrates the three data formats. The three components of each format are

s The sign bit (0 = + , 1 = −)

char
The characteristic (“biased exponent”), with values from Cmin = 0 to Cmax = all 1-bits.

fraction
The remaining bits of the significand. Because there is an extra implied high-order 1-bit for
normal values, significands actually have 24-bit, 53-bit, and 113-bit precisions respectively.

1 8 23
┌─┬───────┬─────────────────────┐ Single, short
│s│ char │ fraction │ (32─bit)
└─┴───────┴─────────────────────┘ Format

1 11 52
┌─┬─────────┬───┐ Double, long
│s│ char │ fraction │ (64─bit)
└─┴─────────┴───┘ Format

1 15 112
┌─┬───────────┬──────/.../───────────────────────────────/.../───────┐ Extended
│s│ char │ fraction │ (128─bit)
└─┴───────────┴──────/.../───────────────────────────────/.../───────┘ Format

Figure 404. Three binary floating-point data representations

There are six classes of binary floating-point data; all are signed:

1. Zero
2. Normal numbers
3. Denormalized numbers
4. Infinity
5. Quiet NaN
6. Signaling NaN

The “Not a Number” (or “Not any Number”) was introduced with the binary floating-point
standard.220 It is used to indicate the result of an operation that can't deliver a valid result, such as
a division by zero. NaNs are very useful: they let you detect unusable results in your computa-
tions when they occur, and with proper error handling you can avoid doing lengthy calculations
only to produce useless results.

220 Some earlier processors supported reserved values such as “indeterminate”.

Chapter IX: Floating-Point Data and Operations 639

All but the normal numbers are considered special values, even though we normally think of only
NaNs and infinity as being “special”. Valid results can be (but might not be) generated from data
of all classes except NaNs.

Unlike hexadecimal and decimal floating-point, binary floating-point has no redundant representa-
tions.

34.1.2. Normal Numbers

The exponent of a normal number is determined from its unsigned characteristic:

Characteristic = Exponent + Bias

Two characteristic values, Cmin (0) and Cmax (all 1-bits), are reserved for special values. This
means that the characteristic's range is (Cmin −B i a s) + 1 = E min to (Cmax −Bias) −1 = E max, so the
exponent range is Emin to Emax, as shown in Table 271 on page 638.

Because the significand is actually 1.fraction (the leading 1-bit is implied), the fraction is neces-
sarily always normalized, and the significand satisfies 1 ≤ significand < 2. Thus, the value of a
normal number is:

• Single precision (short) value: ± (1.fraction) × 2char −127

• Double precision (long) value: ± (1.fraction) × 2char −1023

• Extended precision (16 bytes) value: ± (1.fraction) × 2char −16383

Table 272 shows examples of short precision normal values.

Table 272. Examples of short-precision binary floating-point normal values

The first number has characteristic value 127 and zero fraction, so its value is
(1.0)×2127 −127 = 1.0.

34.1.3. Special Values

Special values are indicated by the reserved characteristic values Cmin (zero), and Cmax (all 1-bits).

1. If the characteristic is zero, there are two possible representations:

• If the fraction is zero, the value is ± 0.

• If the fraction is not zero, the value is a denormalized number.

In this case, there is no implied 1-bit before the fraction, so the value is
± (0.fraction) × 2Emin. (Emin values are shown in Table 271 on page 638.)

Table 273 shows examples of short precision denormalized values.

Table 273. Examples of short-precision binary floating-point denormalized values

Value S Char. Fraction Representation

+1.0 0 01111111 000........000 X'3F800000'

+15.0 0 10000010 1110000....000 X'41700000'

+0.1 0 01111011 10011001...101 X'3DCCCCCD'

+Max 0 11111110 111........111 X'7F7FFFFF'

−Min 1 00000001 000........000 X'80800000'

−0.0 1 00000000 000........000 X'80000000'

Value S Char. Fraction Representation

1×10−40 0 00000000 00...011000010 X'000116C2'

Largest Denorm 0 00000000 111........111 X'007FFFFF'

Smallest Denorm 0 00000000 000........001 X'00000001'

640 Assembler Language Programming for IBM System z™ Servers Version 2.00

2. If the characteristic is all 1-bits, two special values are represented:

• If the fraction is zero, the value is ± infinity. We'll see that the sign of an infinity is some-
times important.

• If the fraction is nonzero, the value is a “NaN”. There are two types of NaN:

− If the leftmost bit of the fraction is 1, the NaN is called a Quiet NaN.

− If the leftmost bit of the fraction is 0, the NaN is called a Signaling NaN. Signaling
NaNs can cause exceptions.

The sign of a NaN is ignored.

Table 274 shows examples of short precision special values:

Table 274. Examples of short-precision binary floating-point special values

34.1.4. Range of the Representation

The full range of representable binary floating-point data is sketched in Figure 405:

Value S Char. Fraction Representation

− Infinity 1 11111111 0000....0000 X'FF800000'

a Quiet NaN 0 11111111 1100....0000 X'7FE00000'

a Signaling NaN 0 11111111 0100....0000 X'7FA00000'

Characteristic Fraction
Special ┌─┬─────────────┬───────────────────────────────┐ =/ 0: NaN
Values Cmax│s│ 111...111 │ �─┼── = 0: Infinity
───── ├─┼─────────────┼───────────────────────────────┤ ─┐
� │s│ 111...110 │ │ │
│ ├─┼─────────────┼───────────────────────────────┤ │
│ │s│ 111...101 │ │ │
│ ├─┼─────────────┼───────────────────────────────┤ │
│ : : : : │
│ : : : : │ Zero fraction

 Normal : : : : │ implies value
 Values : : : : │ is an integral

│ : : : : │ power of 2.
│ : : : : │
│ ├─┼─────────────┼───────────────────────────────┤ │
│ │s│ 000...010 │ │ │
│ ├─┼─────────────┼───────────────────────────────┤ │
� │s│ 000...001 │ │ │

───── ├─┼─────────────┼───────────────────────────────┤ ─┘
Special Cmin│s│ 000...000 │ �─┼── = 0: Zero
 Values └─┴─────────────┴───────────────────────────────┘ =/ 0: Denormalized

Figure 405. Range of the binary floating-point representation

The special values with characteristic Cmax are infinity and NaNs; those with characteristic Cmin
are denormalized numbers and zero.

Another view of the binary floating-point representation for computationally valid values is
shown in Figure 406 on page 642:

Chapter IX: Floating-Point Data and Operations 641

De- De-
Normal numbers norms -0 +0 norms Normal numbers

�─ ─ ─│�─────────────────────┼─────┼──┼──┼─────┼─────────────────────│─ ─ ─
−∞ +∞

Figure 406. A view of the binary floating-point representation

NaNs are the only representable forms that can't be used in arithmetic operations.

Exercises

34.1.1.(2)+ Write numeric expressions for the values of the three short binary floating-point
values

• Min (minimum normal number),
• DMax (maximum denormalized number), and
• DMin (minimum denormalized number).

34.1.2.(2)+ In the short precision binary floating-point representation, how many denormalized
numbers can be represented?

34.1.3.(2) Show the hexadecimal representation of + infinity in short, long, and extended preci-
sion binary floating-point formats.

34.1.4.(2) Repeat Exercise 34.1.2 for long binary floating-point values.

34.2. Writing Binary Floating-Point Constants

Binary floating-point constants have the same types (E, D, and L) as other floating-point con-
stants, and the type extension must be B.

EB Short format binary floating-point

DB Long format binary floating-point

LB Extended format binary floating-point

You can create short binary floating-point constants like these:

SBFP1 DC EB'1.0' X'3F800000' Binary floating-point 1
SBTenth DC EB'0.1' X'3DCCCCCD' Binary floating-point 1/10
BPi DC EB'3.14159265' X'40490FDB' Pi
B10Mil DC EB'10000000' X'4B189680' 10**7
B10Milth DC EB'.0000001' X'33D6BF95' 10**(-7)
Familiar DC EB'123.4567' X'42F6E9D5' A familiar value
Figure 407. Examples of short binary floating-point constants

Converting decimal values to binary floating-point is a bit complicated; if you're interested, here's
how it's done for the last constant, +123.4567:

1. The integer part of the constant is 123 = X'7B'.

2. The fraction part, 0.4567, must be converted to binary. Using the method described in
Section 31.3 on page 557, the result (written in hexadecimal for compactness) is
X'0.74EA4A8C1...'.

3. The two parts combined (again, in hexadecimal) give 123.456710 = X'7B.74EA4A8C1...'.

4. Now, we rewrite this in binary: B'111 1011. 0111 0100 1110 1010 1010 1000...'.

5. We now shift the binary point left by 6 digits, so the value can be rewritten as
B'1.11 1011 0111 0100 1110 1010 1010 1000...'×26. The single 1-bit preceding the binary
point is because normal binary floating-point values have an implicit high-order 1-bit.

642 Assembler Language Programming for IBM System z™ Servers Version 2.00

6. We now know the exponent 6; adding the bias (+127, from Table 271 on page 638), the
characteristic is 133 = X'85' = B'10000101'.

7. From Table 271 on page 638 the characteristic width is 8 bits; using a zero bit for the sign,
we know that the first 9 bits of the constant are 0 1000 0101, or 0100 0010 1.

8. Finally, we attach the fraction bits (omitting the implicit 1-bit):
B'0100 0010 1111 0110 1110 1001 1101 0101', or X'42F6E9D5'.

9. The first omitted bit (underscored in step 4 above) is zero, so the result wasn't rounded.

It's easy to see why we leave conversions to the Assembler!

Similarly, you can create long and extended format binary floating-point constants:

LBFP1 DC DB'1.0' BFP 1, long format
LBTenth DC LB'0.1' BFP 1/10, extended format
LB10Mil DC DB'1000000' BFP 10**7, long format
XBMTenth DC LB'-.1' BFP -0.1, extended format
Figure 408. Examples of long and extended binary floating-point constants

Rounding is important in binary floating-point arithmetic. You can choose how your constants
should be rounded by following the nominal value of a numeric constant with the letter R and a
decimal number. The supported rounding indicators are:

R1 Add 1 in the first lost bit position (biased round)

R4 Unbiased round to nearest, ties to even (default)

R5 Round toward zero (truncate, chop)

R6 Round toward maximum positive value (+ infinity)

R7 Round toward minimum positive value (− infinity)

If no rounding indicator is specified, the Assembler uses R4, “unbiased round to nearest”. The
examples in Figure 409 show how these rounding indicators are used; the first two constants use
default rounding.

DC EB'+0.1' X'3DCCCCCD' Unbiased round half-even
DC EB'-0.1' X'BDCCCCCD' Unbiased round half-even
DC EB'+0.1R1' X'3DCCCCCD' Biased round
DC EB'-0.1R1' X'BDCCCCCD' Biased round
DC EB'+0.1R4' X'3DCCCCCD' Unbiased round half-even
DC EB'-0.1R4' X'BDCCCCCD' Unbiased round half-even
DC EB'+0.1R5' X'3DCCCCCC' Truncate
DC EB'-0.1R5' X'BDCCCCCC' Truncate
DC EB'+0.1R6' X'3DCCCCCD' Round toward +infinity
DC EB'-0.1R6' X'BDCCCCCC' Round toward +infinity
DC EB'+0.1R7' X'3DCCCCCC' Round toward -infinity
DC EB'-0.1R7' X'BDCCCCCD' Round toward -infinity

Figure 409. Rounding indicators for binary floating-point constants

The Assembler also supports nominal-value operands for special values, as shown in Table 275
on page 644.

Chapter IX: Floating-Point Data and Operations 643

Table 275. Nominal-value operands for binary floating-point special values

These assembled constants are shown for each format in Table 276: in Table 276:

Table 276. Assembled binary floating-point special-value constants

Special values may be signed:

DC EB'-(Inf)' X'FF800000'
DC DB'-(Min)' X'8010000000000000
DC LB'-(NaN)' X'FFFF800000000000 0000000000000000'

Sometimes it is useful to add information to the unused fraction bits of a NaN, such as its address
or the number of the statement in which it was defined. This “payload” can be used for diagnostic
information when a numeric result doesn't behave as you might expect.

Operand Generated value

(Inf) Infinity

(Max) Largest magnitude

(Min) Smallest normalized magnitude

(DMin) Smallest denormalized magnitude

(SNaN) A Signaling NaN, with B'01' in the high-order fraction bits and zeros elsewhere

(QNaN) A Quiet NaN, with B'11' in the high-order fraction bits and zeros elsewhere

(NaN) A Quiet NaN, with B'10' in the high-order fraction bits and zeros elsewhere

Value Short Long Extended

(Inf) 7F800000 7FF0000000000000 7FFF000000000000 0000000000000000

(Max) 7F7FFFFF 7FEFFFFFFFFFFFFF 7FFEFFFFFFFFFFFF FFFFFFFFFFFFFFFF

(Min) 00800000 0010000000000000 0001000000000000 0000000000000000

(DMin) 00000001 0000000000000001 0000000000000000 0000000000000001

(SNaN) 7FA00000 7FF4000000000000 7FFF400000000000 0000000000000000

(QNaN) 7FE00000 7FFC000000000000 7FFFC00000000000 0000000000000000

(NaN) 7FC00000 7FF8000000000000 7FFF800000000000 0000000000000000

QN DC EB'(QNaN)' Short QNaN
Org *-2 Back up location counter by 2

QNParm DC H'1324' Statement 1324, short NaN payload
SN DC DB'(SNaN)' Long SNaN

Org *-4 Back up location counter by 4
SNParm DC A(SN) Address of the long SNaN
Figure 410. Examples of parameterized binary floating-point NaNs

If you decide to parameterize your NaNs by adding payloads, follow these guidelines:

• Don't use the two high-order fraction bits; they are needed to distinguish NaN types.

• If possible, use at most the 21 high-order bits for NaN payload values, in case your NaN
might be used in an arithmetic operation that yields a short-format result.

Thus, in Figure 410 the “SNParm” payload might be truncated if the NaN named SN is short-
ened, and the address information would be incorrect.

34.2.1. Decimal Exponents and Exponent Modifiers

As with other numeric floating-point constants, you can specify a decimal exponent with the
nominal value, and an exponent modifier to apply to all values in the constant. For example,
some of the constants in Figure 407 on page 642 and Figure 408 on page 643 could be written
as in Figure 411 on page 645.

644 Assembler Language Programming for IBM System z™ Servers Version 2.00

B10Mil DC EB'1E7' X'4B189680' Exponent
B10Milth DC EB'1E-7' X'33D6BF95' Exponent

B10Mil DC EBE7'1' X'4B189680' Modifier
B10Milth DC EBE-7'1' X'33D6BF95' Modifier

LBFP1 DC DBE-12'1E12' X'3FF0000000000000' Both
Figure 411. Binary floating-point constants with decimal exponents and modifiers

As the constant LBFP1 shows, the power of ten multiplying the numeric part of the constant is the
sum of the exponent modifier (−12) and the decimal exponent (+12), so the generated constant is
simply 1.0 in long precision.

34.2.2. Length Modifiers (*)

Length modifiers are rarely used for binary floating-point data. To avoid excessive truncation, the
Assembler requires the minimum bit lengths shown in Table 277.

Table 277. Minimum bit lengths for binary floating-point constants

While it may seem strange to allow normal binary floating-point constants to include only the
sign and exponent, there is always an implied 1-bit preceding the radix point. Thus, you could
write

DC LBL2'1' X'3FFF'

and generate a valid (if not especially useful) constant!

The minimum lengths for special values are two bits larger than for normal values, to make sure
there's enough room for the bits distinguishing NaN types.

 Advice

Don't use length modifiers with binary floating-point constants.

Binary floating-point constants do not support a Scale modifier.

Exercises

34.2.1.(2) What is the hexadecimal representation of the decimal value 0.1 with lengths 2, 3, and
4 bytes in each of the three formats?

34.2.2.(2)+ A four-byte area of memory contains the bit pattern X'4040405C'. What is repres-
ented by that pattern? (You should now be able to describe six different possibilities.)

34.2.3. Determine if each of these short binary floating-point numbers is zero, normal,
denormal, infinity, a QNaN, or a SNaN:

1. X'7FFFFFFF'
2. X'007FFFFF'
3. X'80000000'
4. X'00FFFFFF'
5. X'FF8000AB'
6. X'FF800000'

Data Type Short Long Extended

Normal values 9 11 16

Special values 11 14 18

Chapter IX: Floating-Point Data and Operations 645

34.2.4.(3) Suppose you define these constants:

Short DC DBL4'0.1'
ShortOne DC DBL4'1'

Long DC EBL8'0.1'
LongOne DC EBL8'1'

What values would actually appear when the first pair is used as short operands, and the second
pair is used as long operands?

34.3. Binary Floating-Point Arithmetic in General

The IEEE standard221 specifies a powerful rule:

Each of the computational operations that return a numeric result ... shall be performed
as if it first produced an intermediate result to infinite precision and with unbounded
range, and then rounded that intermediate result, if necessary, to fit the destination's
format.

This rule means that you can know the calculated result in all situations.

34.3.1. Rounding Modes

The standard specifies that “the result cannot suffer more than one rounding error”. There are
four “global” rounding modes that can be set to apply to subsequent operations; you can change
them during your program's execution.

0 Unbiased round to nearest (ties — exact values lying exactly half way between two representa-
tions in the target format — operand in FPR0 isn't in long format — it's just the high-order
round to the neighbor of the exact value with low-order bit zero)

1 Round toward zero (truncate)

2 Round toward + ∞
3 Round toward − ∞

Most applications use rounding mode 0 and don't change it during execution.

Some specialized instructions provide an explicit “local” rounding-method mask field for the
operation of only that one instruction:

0 Round according to the current “global” rounding mode in the Floating-Point Control Reg-
ister (described in Section 34.4.1)

1 Biased round to nearest (ties round away from zero; effectively, the same as adding 1 to the
first lost bit)

4 Unbiased round to nearest

5 Round toward zero (truncate)

6 Round toward + ∞
7 Round toward − ∞

Most of the conversion instructions between binary floating-point and binary integers provide a
“local” rounding mask.

221 The full name is “IEEE Std 754™-2008”.

646 Assembler Language Programming for IBM System z™ Servers Version 2.00

34.3.2. Denormalized Numbers

Denormalized numbers allow “gradual underflow” if the exponent of a normalized result might
fall below Emin. This means that binary floating-point arithmetic needs no unnormalizing arith-
metic operations.

To illustrate the importance of denormalization, we'll use the notation for FPF(10,4) numbers
introduced in Section 32.9 on page 582, where Emin is −9. Suppose we have two numbers
X = (.1234×10−9) or [−9║+ .1234], and Y = (.1200×10−9), or [−9║+ .1200]. Then X − Y is

-9║+.1234 X
- -9║+.1200 -Y
= -9║+.0034 intermediate denormalized result
= -11║+.3400 normalized (underflowed) result

Because the exponent of the normalized result is −11, the result is often set to zero.

Suppose we add Y to (X −Y): we would expect to get X.

-9║+.1200 Y
+ 0║+.0000 underflowed difference (X-Y)
= -9║+.1200 normalized result = Y

so that without denormalization, (X −Y) +Y gives Y! However, if the result of (X −Y) is denor-
malized, we get

-9║+.0034 denormalized difference (X-Y)
+ -9║+.1200 Y
= -9║+.1234 normalized result = X

and (X −Y) +Y gives X, the result we expect.

Denormalized numbers are the default result of gradual underflow.

Of course, normal underflow can occur. In FPF(10,4), if we multiply [−6║+ .2000] by itself, the
intermediate result is [−12║+ .0400]. Deormalizing this result while retaining a nonzero fraction
can only generate [−10║+ .0004], so that one further denormalization step to increase the expo-
nent to −9 generates a zero fraction. This is a true underflow.

It sometimes helps to visualize a line of binary floating-point values close to zero. If values
smaller than Emin are normalized (or “flushed” to zero), there are no represented values between
Emin and zero. However, with gradual underflow there are as many values between between Emin
and zero as between between Emin and between Emin +1. In Figure 412 (a “magnification” of the
region near zero in Figure 406 on page 642), we suppose the binary floating-point numbers have
3 fraction bits:

abrupt underflow range
 �──────
├────────┼┼┼┼┼┼┼┼┼┼─┼─┼─┼─┼─┼─┼─┼─┼─┼───┼───┼───┼───┼───┼───┼───┼───┼ ─ ─

� � � �
0 Emin Emin+1 Emin+2 EMin+3

� � � �
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼─┼─┼─┼─┼─┼─┼─┼─┼─┼───┼───┼───┼───┼───┼───┼───┼───┼ ─ ─
 �────── �─ �───
gradual underflow range 1 ulp 1 ulp

Figure 412. Values representable with gradual underflow

As noted in Section 32.8 on page 580, an “ulp” of a number varies with the magnitude of the
number. As the figure illustrates, an ulp is proportional to the spacing between neighboring
representable values.

Chapter IX: Floating-Point Data and Operations 647

34.3.3. Arithmetic with Zero, Infinity, and NaNs

The IEEE standard defines actions taken when operations involve zero, infinity, or NaNs.

1. Zero

In operations with finite nonzero values Fn, zero behaves as you would expect: 0×Fn is zero,
0± Fn and Fn± 0 all return that finite number Fn.222

Some situations require creation of −0, such as:

• +0×(negative finite number), or −0×(positive finite number)
• +0÷ (negative finite number), or −0÷ (positive finite number)
• (Fn −Fn), rounded toward − ∞
• (−0)+ (−0)
• Square root of −0

2. Infinity

Valid arithmetic on infinities is always “exact”, and correctly signed. If Fn is a finite nonzero
number, then:

• Fn ± ∞ = ± ∞
• |∞ | + | ∞ | = ∞
• 0 × ∞ = invalid-operation exception; if the exception is masked off, a default NaN is

returned
• Fn × ∞ = ∞
• Fn ÷ ∞ = 0
• Fn ÷ 0 = ∞
• 0 ÷ 0 = invalid-operation exception; if the exception is masked off, a default NaN is

returned

and other similar operations. As noted, some operand combinations result in exceptions, as
discussed in Section 34.4.

Note, however, that infinity doesn't behave like a finite number, where (1÷ X)×X = 1 ,
X÷ X=1, and X −X=0. I f X=∞ , none of these relations apply!

3. NaNs

NaN operands in arithmetic operations have several possible results:

• A SNaN will either cause an invalid-operation exception or produce a QNaN as the
result, depending on the setting of a mask bit (described shortly, in Section 34.4).

• QNaNs are propagated without causing an exception; if both operands are QNaNs, the
CPU will deliver operand 1.

Exercises

34.3.1.(3) Show in hexadecimal the result generated if you calculate (Min)-(DMin) in short
binary floating-point.

 Details

The next section describes binary floating-point exceptions. If you are
interested mainly in the arithmetic operations, skip ahead to Section 34.5.

222 A Cornell student once asked a professor, “Is zero a number?” He replied, “Oh yes! It's one of the best!”

648 Assembler Language Programming for IBM System z™ Servers Version 2.00

34.4. Binary Floating-Point Exceptions, Interruptions, and Controls

The IEEE binary floating-point standard also defines a rich set of controls for exceptions, when a
valid result cannot be generated. Unlike hexadecimal floating-point, where only exponent under-
flow and lost significance can be controlled by bits in the Program Mask, binary floating-point
lets you control five exception conditions.

1. Invalid operation has two causes:

• Mathematically meaningless operations, such as

a. |∞ | − |∞ |
b. ∞ × 0
c. ∞ ÷ ∞
d. 0 ÷ 0
e. Remainder of X÷ Y with X = ∞ or Y = 0
f. Square root of a negative value

• Computationally meaningless operations, such as

a. an operation on a Signaling NaN (SNaN)
b. a comparison operation involving a NaN (an “unordered” comparison)
c. an integer-conversion fault (where the source operand is a NaN, ∞ , or is too large for

the target operand)

2. Division by zero (0 ÷ 0 is an invalid operation).

3. Exponent overflow: the magnitude of the result is too large for the target format.

4. Exponent underflow: the magnitude of the result is too small for the target format.

5. Inexact result occurs when a rounding operation changes the value of the exact infinite-
precision unbounded-range result. This condition can occur with others.

34.4.1. Binary Floating-Point Exceptions (*)

Exceptions can cause an interruption (the IEEE standard calls it a “trap”), or set a status flag bit.
Which of these two actions occurs depends on the setting of a mask bit.

The mask bits and the status flags are held in the Floating-Point Control (FPC) Register; it is
distinct from all other registers. In addition to the mask and status flag bits, the FPC register
contains a Data Exception Code (DXC) and bits for the “global” rounding mode. Figure 413
illustrates the format of the FPCR.

┌───────────────┬───────────────┬───────────────┬───────────────┐
│ │ │ Data Excep'n │ Rounding │
│ Mask Bits │ Flag Bits │ Code (DXC) │ Mode Bits │
│ │ │ │ │
│i z o u x 0 0 0│i z o u x 0 0 0│i z o u x y 0 0│0 0 0 0 0 0 BRM│
└─┴─┘

8 8 8 8
Figure 413. Floating-Point Control (FPC) register

• The mask and flag bits in the first and second bytes are indicated by single letters:

Bit Meaning

i (bit 0) Invalid operation

z (bit 1) Divide by zero

o (bit 2) Overflow

u (bit 3) Underflow

x (bit 4) Inexact result

When an exception occurs, the CPU takes one of two actions:

Chapter IX: Floating-Point Data and Operations 649

− If the corresponding mask bit is one an interruption occurs, the Interruption Code is set to
7, and information about the cause is placed in the Data Exception Code (DXC) byte and
in memory at address 147 (X'93'). The corresponding flag bit is unchanged.

− If the corresponding mask bit is zero a default action is taken, no interruption occurs, its
corresponding status flag bit is set to 1, and the DXC remains unchanged. A default result
value is generated.

Once a status flag bit is set to 1, it is unchanged until it is explicitly reset by an instruction
that changes the contents of the FPC register.

Sometimes the mask bits in the first byte are called “Interruption Mask” bits, abbreviated IMi,
IMz, etc.; and the flag bits in the second byte are called “Status Flag” bits, abbreviated SFi,
SFz, etc.

• The third byte of the FPC register holds the DXC; its value is set when an interruption
occurs. The y in Figure 413 on page 649 appears only in the DXC:

Bit Meaning

y (bit 5) The result was incremented

Note that the first five bits of the DXC shown in Figure 413 on page 649 correspond from
left to right to the first five bits of the mask and flag bits.

If an interruption occurs the Interruption Code is set to 7, the same IC used for the (packed
decimal) Data Exception. To learn whether the interruption is due to a binary floating-point
or packed decimal operation, you must test the DXC for zero (packed decimal) or nonzero
(binary floating-point).

Table 278 describes the values placed in the DXC:

Table 278. Binary floating-point DXC values

• The binary floating-point rounding mode is specified by the two low-order bits of the fourth
byte of the FPC register, indicated by BRM in Figure 413 on page 649. They have the same
values we saw for the rounding modes discussed in Section 34.3.1 on page 646:

DXC Meaning

00 Decimal data exception (for invalid packed decimal data, as discussed in Section 29)

01 An invalid Floating-Point Register is used by a floating-point instruction; the regis-
ters are available on this CPU, but are not enabled

02 a BFP instruction is attempting to execute on a CPU where BFP instructions are
available, but are not enabled

08 IEEE inexact exception; the result was truncated

0C IEEE inexact exception; the result was incremented

10 IEEE underflow exception; the result is exact

18 IEEE underflow exception; the result is inexact and was truncated

1C IEEE underflow exception; the result is inexact and was incremented

20 IEEE overflow exception; the result is exact

28 IEEE overflow exception; the result is inexact and was truncated

2C IEEE overflow exception; the result is inexact and was incremented

40 IEEE division by zero

80 IEEE invalid operation

650 Assembler Language Programming for IBM System z™ Servers Version 2.00

BRM Meaning

B'00' To nearest

B'01' Toward zero (truncate)

B'10' Up (toward + ∞)

B'11' Down (toward − ∞)

 Comment

When an exception condition occurs, we may say that it is “signaled” or
“indicated” or “raised”; each term means the same. The setting of the
appropriate mask bit in the FPCR determines subsequent actions.

34.4.2. FPC Register Instructions (*)

The five instructions in Table 279 are used to manage the FPC register.

Table 279. Binary floating-point FPC register control instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B29D LFPC S Load FPC B2BD LFAS S Load FPC and Signal

B384 SFPC RRE Set FPC B385 SFASR RRE Set FPC and Signal

B38C EFPC RRE Extract FPC B29C STFPC S Store FPC

B299 SRNM S Set BFP Rounding Mode

The Load FPC and Store FPC instructions use a 32-bit operand in memory. They are used to set
the mask and Rounding Mode bits. For example:

STFPC OldFPC Store current FPCR into memory
LFPC NewFPC Load new FPCR from memory

The flag bits and the Data Exception Code are set by the CPU when an exception condition
occurs.

The Set FPC and Extract FPC instructions use a 32-bit operand in the rightmost 32 bits of a
general register; bits 0-31 in the left half of the register are unaffected. For example:

SFPC 1 Set FPCR from GPR 1
EFPC 1 Extract FPCR into GPR 1

The SRNM (Set BFP Rounding Mode) instruction takes its operand from the rightmost 2 bits of
its Effective Address and puts them in the “BRM” (Binary Rounding Mode) bits of the FPCR.
The rest of the FPCR is unchanged. For example:

SRNM 0(5) Set BRM from last 2 bits of GPR5
SRNM 1 Set rounding mode to 'toward zero'

The LFAS and SFASR instructions load and set the FPCR, but with the side effect of possibly
generating a specific exception condition. They are used to simulate BFP exception conditions
without needing to perform actual BPF operations that would generate the exceptions. They
make it easier to write and test exception handling routines. Because their use is specialized, we
won't discuss them further.

34.4.3. Exception Actions (*)

When an exception occurs, the generated result depends on whether an interruption occurs (the
corresponding mask bit is 1) or does not (the corresponding mask bit is 0).

Chapter IX: Floating-Point Data and Operations 651

1. Invalid operation

Table 280. Invalid operation binary floating-point exception

If the two operands are QNaN and SNaN, the SNaN takes precedence as the result, even if it
is forced to a QNaN.

2. Divide by zero

Table 281. Divide by zero binary floating-point exception

 3. Overflow

Table 282. Exponent overflow binary floating-point exception

 Be Careful!

If possible, don't set overflowed results to MaxReal. MaxReal is a
valid finite number, so it might propagate unnoticed through subse-
quent computations.

4. Underflow

Table 283. Exponent underflow binary floating-point exception

5. Inexact result (An inexact exception can also occur with BFP overflow or underflow.)

Table 284. Inexact result binary floating-point exception

The mask and flag bits in the FPC register are ignored for HFP and FP Support instructions.

Mask bit = 1 Mask bit = 0

An interruption occurs: the DXC is set to
X'80', and the instruction is suppressed (reg-
isters remain unchanged). The i flag bit is
unchanged.

A special “hardware generated” QNaN is
delivered as the default result: its first frac-
tion bit is 1, and the rest of the fraction is
zero. If an operand was a SNaN, the corre-
sponding QNaN is delivered. The i flag bit
is set to 1.

Mask bit = 1 Mask bit = 0

An interruption occurs: the DXC is set to
X'40', and the instruction is suppressed (reg-
isters remain unchanged). The z flag bit is
unchanged.

A ± infinity is delivered. The z flag bit is set
to 1.

Mask bit = 1 Mask bit = 0

An interruption occurs: the DXC is set to
X'20', X'28', or X'2C', and the exponent of
the result is “scaled”. The o flag bit is
unchanged.

A correctly signed infinity or MaxReal is
delivered, depending on the current rounding
mode. The o and x flag bits are set to 1.

Mask bit = 1 Mask bit = 0

An interruption occurs: the DXC is set to
X'10', X'18', or X'1C', and the exponent of
the result is “scaled”. The u flag bit is
unchanged.

A zero or denormalized result is delivered.
The u flag bit is set to 1, and the x flag bit is
set to 1 if the result is inexact.

Mask bit = 1 Mask bit = 0

An interruption occurs: the DXC is set to
X'08' or X'0C'. The x flag bit is unchanged.

The result is delivered. The x flag bit is set
to 1.

652 Assembler Language Programming for IBM System z™ Servers Version 2.00

 Remember

Binary floating-point exceptions may or may not cause a program inter-
ruption, depending on the settings of mask bits in the FPC register, and
the generated results can be quite different.

34.4.4. Scaled Exponents (*)

When an exponent overflow or underflow is not masked the CPU generates a program inter-
ruption, and the characteristic of the result is adjusted or “scaled” by adding (for underflows) or
subtracting (for overflows) a fixed quantity. This adjustment brings the scaled result near the
middle of the characteristic range, so that the decimal exponent is nearer to zero than the ends of
the exponent range. The scaling factors are shown in Table 285.

Table 285. BFP overflow/underflow scale factors

To see how this works, consider multiplying two short binary floating-point numbers that cause
overflow. If their exponents are both Emax = +127, the exponent of the product will be about
+254. By subtracting the scale factor (192), the exponent of the product will be about +62, nearly
half of Emax, and easier to manage if further adjustments are needed.

Exercises

34.4.1.(1)+ What binary floating-point exception conditions and rounding mode will be set by
this instruction?

LFPC =X'30000003'

34.4.2.(2) What will be the effect of executing these three instructions?

EFPC 9
NILH 9,=X'7F00'
SFPC 9

34.4.3.(2)+ In Table 278 on page 650, a Data Exception Code X'02' means that you have tried
to execute a BFP instruction on a CPU where BFP instructions are available, but not enabled.
What do you think will happen if you try to execute a BFP instruction on a CPU where the
BFP instructions are not available?

34.4.4.(1)+ Refer to Table 278 on page 650 and construct a table that identifies the meaning of
each of the 8 bits in the DXC.

Data length Scale Factor

Short 192

Long 1536

Extended 24576

34.5. Basic Binary Floating-Point Instructions

Before we discuss the basic binary floating-point instructions, it's worth reviewing the instructions
in Section 31.9 starting on page 568. Those instructions can move floating-point operands of all
representations, so they can be used with hexadecimal floating-point, binary floating-point, and
decimal floating-point data.

Some general points to remember about binary floating-point instructions:

• Almost all binary floating-point instruction mnemonics contain a letter 'B'.

• Their actions are more complex than the equivalent operations in hexadecimal floating-point,
due to the presence of rounding modes, NaNs and infinities, maskable exceptions, and dif-
ferent exponent ranges.

Chapter IX: Floating-Point Data and Operations 653

• Instructions involving extended-precision operands must specify a valid pair of floating-point
registers.

• They support a full range of common algebraic operations.

Unlike hexadecimal floating-point, binary floating-point supports non-numeric values. Because
it's difficult to test an operand for a special value by examining its bit patterns, we use the “Test
Data Class” instructions listed in Table 286.

Table 286. Binary floating-point Test Data Class instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED10 TCEB RXE Test Data Class (Short) ED11 TCDB RXE Test Data Class (Long)

ED12 TCXB RXE Test Data Class
(Extended)

A bit pattern in the rightmost 12 bits of the Effective Address of the second operand address tests
selected classes of the first operand. The test bits are shown in Table 287.

Table 287. Test Data Class second-operand bits

Another view of the corresponding positions of the bits in the second operand Effective Address
and the tested value is illustrated in Table 288.

Table 288. Test Data Class second-operand test-bit/tested-value correspondence

If any test bit corresponds to the class of the first operand, the Condition Code is set to 1; other-
wise, it is set to 0. You can use these instructions to test for SNaNs without causing an invalid-
operation Exception.

The 12 bits of the test pattern fit in the instruction's displacement field, so you can specify it both
at assembly time and at execution time. For example, suppose you want to test a short binary
floating-point operand for ± infinity:

LE 2,FPData Get the operand
TCEB 2,X'030' Test for + or - infinity
JNZ AnInfin Branch if yes

 or
LA 9,B'110000' Put test mask bits in GR9
TCEB 2,0(,9) Same test
JNZ AnInfin Branch if yes

The TDEB instructions use the same test bit pattern.

Class + sign − sign

Zero 52 53

Norm 54 55

Denorm 56 57

Infinity 58 59

QNaN 60 61

SNaN 62 63

Bits 0-51 52 53 54 55 56 57 58 59 60 61 62 63

Ignored

+
Z

ero

−
Z

ero

+
N

orm
al

−
N

orm
al

+
D

enorm
al

−
D

enorm
al

+
Infinity

−
Infinity

+
Q

N
aN

−
Q

N
aN

+
S

N
aN

−
S

N
aN

654 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

34.5.1.(2) Given a binary floating-point operand in FPR0, which data classes will these
instructions detect?

(1) TCEB 0,29
(2) TCDB 0,4095
(3) TCXB 0,15
(4) TCDB 0,X'C00'

34.5.2.(3) What result would you expect from executing each pair of these instructions:

(1) LE 2,=DB'(Inf)'
TCEB 2,X'30' Test for infinity

(2) LE 4,=EB'42'
TCXB 4,X'300' Test for normal

(3) LE 6,=EB'42'
TCDB 6,X'300' Test for normal

34.5.3.(1)+ Which instruction in Exercise 34.5.1 is redundant?

34.5.4.(3) For each data item in Exercise 34.2.3, what operand of the TCxB instruction should
be used to correctly determine the class of the item?

34.6. Binary Floating-Point RR-Type Data Movement Instructions

Remember that the instructions described in Section 31.9 can be used to move any floating-point
data between registers and memory. The instructions in Table 289 differ from the related
representation-independent instructions because they are sensitive to the presence of NaN oper-
ands.

Table 289. Binary floating-point RR-type data movement instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B302 LTEBR RRE Load and Test (Short) B303 LCEBR RRE Load Complement
(Short)

B301 LNEBR RRE Load Negative (Short) B300 LPEBR RRE Load Positive (Short)

B312 LTDBR RRE Load and Test (Long) B313 LCDBR RRE Load Complement
(Long)

B311 LNDBR RRE Load Negative (Long) B310 LPDBR RRE Load Positive (Long)

B342 LTXBR RRE Load and Test (Extended) B343 LCXBR RRE Load Complement
(Extended)

B341 LNXBR RRE Load Negative (Extended) B340 LPXBR RRE Load Positive
(Extended)

For the operations Load Complement, Load Negative, and Load Positive, the result placed at the
first operand will be unmodified except for a possible sign change, even if the operand is a NaN.
For short operands, the right half of the target register is unchanged.

The CC setting is shown in Table 290 on page 656:

Chapter IX: Floating-Point Data and Operations 655

Table 290. CC settings for BFP data movement instructions

The Load and Test instructions are sensitive to the difference between a QNaN and an SNaN. If
the second operand is a Signaling NaN, an invalid operation exception occurs, and the result
depends on the setting of the invalid-operation mask bit in the FPCR:

• If the mask bit in the FPCR for an invalid operation is 1, an interruption occurs, and the
Condition Code is unchanged.

• If the mask bit is 0, no interruption occurs, and the result is the corresponding QNaN.

• If no interruption occurs, the Condition Code is set by the Load and Test instructions as
shown in Table 290.

Figure 414 shows some examples of these instructions:

CC Meaning

0 Operand is zero

1 Operand is less than zero

2 Operand is greater than zero

3 Operand is a NaN

LE 0,=EB'(QNaN)' c(FPR0)=X'7FE00000'
LCEBR 2,0 c(FPR2)=X'FFE00000', CC=1
LTEBR 4,0 c(FPR4)=X'7FE00000', CC=3
LNEBR 6,0 c(FPR6)=X'FFE00000', CC=1

*
LD 0,=DB'-3.14' c(FPR0)=X'C0091EB851EB851F'
LTDBR 0,0 CC=1
LPDBR 2,0 c(FPR2)=X'40091EB851EB851F', CC=2

Figure 414. Examples of binary floating-point data movement instructions

Don't mix floating-point data types

You might accidentally use a hexadecimal floating-point operation on
binary floating-point data, or vice versa. The results may be unexpected!

Exercises

34.6.1.(1) If you execute these instructions:

LD 4,=X'50123456789ABCDE'
LD 6,=X'FEDCBA9876543210'
LTXBR 0,4

What will be in the register pair FPR(0,2), and what will be the CC setting?

34.6.2.(2) Suppose c(FPR0)=X'0A123456789ABCDE' and c(FPR2)=X'42857196DBB93310'. Show
the CC setting and the contents of the result register or registers after executing each of the
following instructions:

(1) LPEBR 4,2
(2) LTDBR 2,2
(3) LCXBR 4,0
(4) LCDBR 4,2

34.6.3.(2) Suppose you execute these sets of instructions. What will be the resulting CC setting
for each case?

656 Assembler Language Programming for IBM System z™ Servers Version 2.00

(a) LE 0,=EB'(SNaN)'
LTER 0,0

(b) LE 2,=X'FFFFFFFF'
LCEBR 2,2

34.6.4. Which instruction in Exercise 34.5.1 could be replaced by one other instruction, and
what is that instruction?

34.7. Binary Floating-Point Multiplication

Table 291 lists the instructions for binary floating-point multiplication. None of them change the
Condition Code.

Table 291. Binary floating-point Multiply instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED17 MEEB RXE Multiply
(Short←Short×Short)

B317 MEEBR RRE Multiply
(Short←Short×Short)

ED0C MDEB RXE Multiply
(Long←Short×Short)

B30C MDEBR RRE Multiply
(Long←Short×Short)

ED1C MDB RXE Multiply
(Long←Long×Long)

B31C MDBR RRE Multiply
(Long←Long×Long)

ED07 MXDB RXE Multiply
(Extended←Long×Long)

B307 MXDBR RRE Multiply
(Extended←Long×Long)

B34C MXBR RRE Multiply
(Ext.←Ext.×Ext.)

As the table indicates, five instructions (MEEB, MEEBR, MDB, MDBR, and MXBR) generate
a product the same length as the two operands, while four others (MDEB, MDEBR, MXDB,
and MXDBR) generate a double-length product. As with other multiply instructions, the sign of
the product is the XOR of the signs of the two operands, even if they are zero or infinity.
MXBR, like other instructions handling extended-precision operands, must refer to valid floating-
point register pairs.

Multiplying two finite values gives the expected rounded result, determined by the rounding mode
in the FPCR, so long as there is no overflow or underflow. Figure 415 gives an example, where
we've assumed the default rounding mode (to nearest).

LE 0,=EB'0.1' c(FPR0)=X'3DCCCCCD'
MDEB 0,=EB'-0.2' c(FPR0)=X'BF947AE151EB8520' Long product

LE 0,=EB'0.1' c(FPR0)=X'3DCCCCCD'
* Multiply by X'BE4CCCCD' (= -0.2)

MEEB 0,=EB'-0.2' c(FPR0)=X'BCA3D70B' Short product
Figure 415. Example of binary floating-point multiply instructions

The first multiplication (using MDEB) creates a double-length product of the two operands; its
fraction digits start with X'47AE151E...'. The single-length product (using MEEB) has a shorter
exponent field, so its fraction digits are X'47AE16'. Because the longer result is slightly closer to
X'47AE16' than to X'47AE14', default rounding generates the indicated result.

But: the short product is not exact. If the inexact (“x”) mask bit in the FPCR is 1, a program
interruption will occur. Because we normally don't care about unused trailing bits of a product,
that mask bit is often set to zero to suppress the inexact exception.

Figure 416 on page 658 shows how overflow and underflow can occur when we multiply two
sufficiently large or sufficiently small numbers:

Chapter IX: Floating-Point Data and Operations 657

* (1) With the overflow mask bit set to 1:
LFPC =X'F8000000' All mask bits = 1 (allow interrupts)
LE 0,=EB'1E20' c(FPR0)=X'60AD78EC'
MEEBR 0,0 c(FPR0)=X'21EB1950' Overflowed result
LE 0,=EB'1E-30' c(FPR0)=X'0DA24260'
MEEBR 0,0 c(FPR0)=X'3BCDB025' Underflowed result

* (2) With the overflow and underflow mask bits set to 0:
LFPC =F'0' All mask bits = 0 (no interrupts)
LE 0,=EB'1E20' c(FPR0)=X'60AD78EC'
MEEBR 0,=EB'-(Inf)' c(FPR0)=X'7F800000' Overflow to +infinity
LE 0,=EB'1E-30' c(FPR0)=X'0DA24260'
MEEBR 0,0 c(FPR0)=X'00000000' Underflow to zero

Figure 416. Examples of binary floating-point multiplication overflow and underflow

In case (1), both MEEBR instructions cause interruptions, and the result in FPR0 is set to a
scaled result: the significand is correct, but the exponent has been adjusted by a fixed amount to
bring the result into a more manageable range. Further computation with this result must take
account of the exponent scaling.

In case (2) both interruptions are suppressed, and the default result is + infinity for overflow, and
zero for underflow.

Figure 417 shows two examples with signed zeros and infinities:

LE 0,=EB'-0.' c(FPR0)=X'80000000' (-0)
MEEBR 0,0 c(FPR0)=X'00000000' (-0)*(-0) = +0

LE 0,=EB'(Inf)' c(FPR0)=X'7F800000' (+infinity)
MEEBR 0,=EB'-(Inf)' c(FPR0)=X'FF800000' (-infinity)

Figure 417. Examples of binary floating-point multiply instructions

Figure 418 shows how a denormalized result can be generated:

LFPC =F'0' Set all mask bits to zero
LE 0,=EB'1E-21' c(FPR0)=X'1C971DA0'
MEEBR 0,0 c(FPR0)=X'000002CA'

Figure 418. Example of binary floating-point denormalized product

If the mask bit for exponent underflow had not been set to zero, an underflow exception would
have occurred, and the result would have a “wrapped” exponent rather than a denormalized
number.

Table 291 on page 657 shows that the product of two extended operands is formed by the
RRE-type instruction MXBR, so that both operands must be loaded into register pairs, as illus-
trated in Figure 419:

LD 0,=LB'0.1' c(FPR0)=X'3FFB999999999999'
LD 2,=LB'0.1'+8 c(FPR2)=X'999999999999999A'
LD 4,=LB'-0.2' c(FPR4)=X'BFFC999999999999'
LD 6,=LB'-0.2'+8 c(FPR6)=X'999999999999999A'
MXBR 0,4

* Now, c(FPR0,FPR2)=X'BFF947AE147AE147 AE147AE147AE147C'
Figure 419. Example of binary floating-point extended-precision operands

The product contains a repeating digit pattern X'147AE'; the final digit has been rounded up to the
nearest even value. As in Figure 415 on page 657, if the mask bit for inexact result had been
one, an interruption for an inexact exception would have occurred.

If the operands are not finite numbers, some special rules apply:

658 Assembler Language Programming for IBM System z™ Servers Version 2.00

• Multiplying two infinities, or a finite nonzero number by infinity, generates an infinity.

• Multiplying zero and infinity generates an invalid-operation exception. If the corresponding
mask bit is zero, the generated result is a default QNaN.

• If both operands are QNaNs, the first operand is generated.

• If either operand is a SNaN, an invalid-operation exception is generated. If the corresponding
mask bit is zero, the generated result is the corresponding QNaN. (If both operands are
SNaNs, the first operand is used to create the corresponding QNaN.)

As these rules indicate, the result depends on the order of the operands only if one or both is a
NaN. For other values, the order of the operands doesn't matter.

Exercises

34.7.1.(2) Show the actual bit patterns of the two products in Figure 415 on page 657 and
determine how the rounded product of the second multiplication is formed.

34.7.2.(2) Write a program segment using binary floating-point arithmetic that will compute a
table of the cubes of the first 100 integers, and store them as short binary floating-point
numbers starting at BCubes.

34.7.3.(3)+ How can you generate the maximum positive short-precision binary floating-point
number by multiplying two finite short binary floating-point values?

34.7.4.(2) In Figure 416 on page 658 part (1), determine the exponent of each operand before
executing the instruction, and the scaled exponent of each result.

34.8. Binary Floating-Point Division

Table 292 lists the five binary floating-point divide instructions. None of them generate a
remainder; the instructions described in Section 34.13 on page 668 can be used to calculate a
remainder in most cases. The Condition Code is unchanged.

Table 292. Binary floating-point Divide instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED0D DEB RXE Divide (Short) B30D DEBR RRE Divide (Short)

ED1D DDB RXE Divide (Long) B31D DDBR RRE Divide (Long)

B34D DXBR RRE Divide (Extended)

As this table shows, none of the instructions operate on mixed-length operands: dividend, divisor,
and quotient all have the same length. DXBR, like other instructions handling extended-
precision operands, must refer to valid floating-point register pairs.

If the result is finite, zero, or infinity (and not a NaN), the sign of the quotient is the XOR of the
operand signs.

Figure 420 shows two examples of binary floating-point division.

LE 2,=EB'7'
DEB 2,=EB'2' Result = 3.5 = X'40600000'

LD 0,=DB'987654321'
DDB 0,=DB'3' Result = 329218107 = X'41B39F783B000000'

Figure 420. Examples of binary floating-point division

The quotient is rounded according to the current rounding mode in the Floating-Point Control
Register.

Chapter IX: Floating-Point Data and Operations 659

Division can also generate overflow and underflow exceptions, as illustrated in Figure 421:

* (1) With the overflow mask bit set to 1:
LFPC =X'F8000000' All mask bits = 1 (allow interrupts)
LE 0,=EB'1E20' c(FPR0)=X'60AD78EC'
LER 4,0 Copy to FPR4
LE 2,=EB'1E-30' c(FPR2)=X'0DA24260'
DEBR 0,2 c(FPR0)=X'3288D876' Overflowed result
DEBR 2,4 c(FPR0)=X'4C6F73D2' Underflowed result

* (2) With the overflow and underflow mask bits set to 0:
LFPC =F'0' All mask bits = 0 (no interrupts)
LE 0,=EB'1E20' c(FPR0)=X'60AD78EC'
LER 4,0 Copy to FPR4
LE 2,=EB'1E-30' c(FPR2)=X'0DA24260'
DEBR 0,2 c(FPR0)=X'7F800000' Overflow to +infinity
DEBR 2,4 c(FPR0)=X'00000000' Underflow to zero

Figure 421. Examples of binary floating-point division overflow and underflow

In case (1), the overflow and underflow exceptions cause an interruption, and the result in the
first-operand register has the correct significand and a scaled exponent. In case (2), no interruption
occurs, and the default result is delivered (as indicated in the comment fields of the DEBR
instructions).

Special cases are treated as follows:

• A finite number divided by infinity returns a correctly signed zero.

• A finite number divided by zero causes a divide-by-zero exception. If the “z” mask bit is zero,
a properly signed infinity is generated. For example:

LFPC =F'0' Mask off all exceptions
LE 2,=EB'-3' Finite dividend to divide by zero
DEB 2,=EB'+0' Result = X'FF800000' = -infinity

• 0÷ 0 and ∞ ÷ ∞ cause an invalid-operation exception. If masked off, they deliver the default
QNaN of the appropriate length.

• If neither operand is a SNaN, but one or both is a QNaN, then QNaN is the generated result.

• An invalid-operation exception results if either operand is a SNaN. If the exception is masked
off, the corresponding QNaN is the delivered result.

Exercises

34.8.1.(3) How can you generate the maximum positive short-precision binary floating-point
number by dividing two finite short binary floating-point values?

34.8.2.(1) Show the short binary floating-point result of each of these division operations:

1. +1 ÷ −1
2. −0 ÷ + ∞
3. + ∞ ÷ −1

34.8.3.(1)+ What values will result from these operations?

1. +2.4 ÷ − ∞
2. −2.5 ÷ − ∞
3. +2.6 ÷ −2.6

34.8.4.(3) Using binary floating-point divide instructions (no “Test Data Class”), how can you
distinguish between +0 and −0?

660 Assembler Language Programming for IBM System z™ Servers Version 2.00

34.9. Binary Floating-Point Addition and Subtraction

Table 293 lists the instructions for binary floating-point addition and subtraction. As with the
multiplication and division instructions, extended operands use only RR-type instructions that
require valid floating-point register pairs.

Table 293. Binary floating-point Add and Subtract instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED0A AEB RXE Add (Short) B30A AEBR RRE Add (Short)

ED1A ADB RXE Add (Long) B31A ADBR RRE Add (Long)

B34A AXBR RRE Add (Extended)

ED0B SEB RXE Subtract (Short) B30B SEBR RRE Subtract (Short)

ED1B SDB RXE Subtract (Long) B31B SDBR RRE Subtract (Long)

B34B SXBR RRE Subtract (Extended)

The machine instruction statement format for these instructions is written

mnemonic R1,R2 RRE format instructions
mnemonic R1,D2(X2,B2) RXE format instructions

The second operand is added to or subtracted from the first operand, and the resulting sum or
difference replaces the first operand.

Table 294 shows the Condition Code settings:

Table 294. CC settings after BFP add/subtract instructions

For example:

LE 2,=EB'2.55'
AEB 2,=EB'-2.77' CC=1, result < 0

These considerations apply to the instructions:

1. The current rounding mode in the Floating-Point Control Register is used.

2. Denormalized operands are valid, and the result may be denormalized.

3. If both operands are QNaNs, the result is the first operand; and if both operands are SNaNs
and the invalid-operation exception is masked off, the result is the QNaN derived from the
first operand.

4. There are no instructions for adding or subtracting operands of different lengths. If you need
to use mixed-length operands, you must use one of the rounding instructions (to make an
operand shorter) or lengthening instructions (to make an operand longer) described in Section
34.11 on page 664.

Figure 422 shows examples of binary floating-point addition and subtraction:

CC Meaning

0 Result is zero

1 Result is < zero

2 Result is > zero

3 Result is a NaN

LD 0,=DB'1.1E4' c(FPR0)=X'40C57C0000000000'
ADBR 0,0 c(FPR0)=X'40D57C0000000000', CC=2
LD 2,=DB'1.9E4' c(FPR2)=X'40D28E0000000000'
SDBR 2,0 c(FPR2)=X'C0A7700000000000', CC=1

Figure 422. Examples of binary floating-point addition and subtraction

Chapter IX: Floating-Point Data and Operations 661

Because the ADBR instruction in Figure 422 doubles the number in FPR0, its significand is
unchanged and its exponent is increased by 1.

Exercises

34.9.1.(1)+ In each binary floating-point representation, show the hexadecimal value of
(DMin) + (DMin). Assume that all exceptions are masked off.

34.9.2.(2)+ In each binary floating-point representation, show the hexadecimal value of
(Min) + (Min). Do not assume that all exceptions are masked off.

34.9.3.(1)+ What is the result of (1) (+ ∞) − (− ∞), (2) (+ ∞) − (+ ∞)?

34.10. Binary Floating-Point Comparison

Table 295 lists the “normal” BFP compare instructions (the “special” instructions are in Section
34.10.1):

Table 295. Binary floating-point Compare instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED09 CEB RXE Compare (Short) B309 CEBR RRE Compare (Short)

ED19 CDB RXE Compare (Long) B319 CDBR RRE Compare (Long)

B349 CXBR RRE Compare (Extended)

For instructions dealing with extended-precision operands, the operands must be loaded into the
floating-point registers.

None of the comparison instructions compare mixed-length operands, but the lengthening
instructions described in Section 34.11.2 on page 665 can be used to extend a shorter operand to
the length of the longer before comparing.

The Condition Code settings for the compare instructions are shown in Table 295:

Table 296. CC settings for BFP comparisons

All values other than NaNs can be compared:

• + infinity is greater than all values, other than + infinity (to which it compares equal).

• − infinity is less than all values, other than − infinity (to which it compares equal).

• +0 and −0 compare equal. (They are the only two distinct binary floating-point bit patterns
for numeric values that compare equal.)

When one or both operands is a QNaN, the comparison is “unordered” and the CC is set to 3. If
either operand is a SNaN, an invalid-operation exception either causes an interruption (if the cor-
responding mask bit is 1), or sets the CC to 3 (if the mask bit is 0).

Figure 423 on page 663 shows examples of binary floating-point comparisons.

CC Meaning

0 Operand1 = Operand2

1 Operand1 < Operand2

2 Operand1 > Operand2

3 Operands are unordered

662 Assembler Language Programming for IBM System z™ Servers Version 2.00

LE 0,=EB'+0' c(FPR0) = +0
CEB 0,=EB'-(Inf)' CC=2 (0 > -infinity)
CEB 0,=EB'-0' CC=0 (+0 = -0)
CEB 0,=EB'(QNaN)' CC=3 (unordered)
CEB 0,=EB'+(Inf)' CC=1 (0 < +infinity)

CDBR 6,11 c(FPR6) : c(FPR11) (long operands)
CDB 4,=DB'5.75E4' c(FPR6) : 5.75E4 (long operands)
CXBR 0,4 c(FPR0,FPR2) : c(FPR4,FPR6) (ext.)

Figure 423. Examples of binary floating-point comparison

Remember that Condition Code 3 does not occur for hexadecimal floating-point comparisons.

34.10.1. Compare and Signal (*)

Specialized uses

These instructions are used mainly for testing binary floating-point appli-
cations.

The binary floating-point compare and signal instructions in Table 297 behave just like the
“normal” binary floating-point comparisons in Table 295 on page 662, except that any NaN
causes an invalid-operation exception. Thus, these compare and signal instructions are very useful
in helping to prevent propagation of invalid results throughout a calculation.

Table 297. Binary floating-point Compare and Signal instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED08 KEB RXE Compare and Signal
(Short)

B308 KEBR RRE Compare and Signal
(Short)

ED18 KDB RXE Compare and Signal
(Long)

B318 KDBR RRE Compare and Signal
(Long)

B348 KXBR RRE Compare and Signal
(Extended)

The CC settings for these instructions are the same as in Table 296 on page 662. As with the
“normal” comparisons, masking off the invalid-operation interruption will set CC=3.

Figure 424 shows examples of binary floating-point compare and signal instructions.

LE 0,=EB'+0' c(FPR0) = +0
KEB 0,=EB'-(Inf)' CC=2 (0 > -infinity)
KEB 0,=EB'-0' CC=0 (+0 = -0)
KEB 0,=EB'(QNaN)' Invalid Operation; CC=3 if masked off

Figure 424. Examples of binary floating-point compare and signal instructions

Exercises

34.10.1.(2)+ Given operands A= +1 , B= −0 , C=+ ∞ , D = − (Min), and E=− ∞ , show the
Condition Code setting resulting from comparing each to the other four.

34.10.2.(2) Will the results you found in Exercise 34.10.1 be different if you use compare and
signal instructions instead?

34.10.3.(4) A programmer claimed that two numeric short or long precision binary floating-
point numbers X and Y satisfy the relation X < Y when compared as binary floating-point
numbers and when they are compared as signed two's complement binary integers. Is this true
or not?

Chapter IX: Floating-Point Data and Operations 663

34.11. Binary Floating-Point Rounding and Lengthening Instructions (*)

These two groups of instructions convert longer to shorter formats (with rounding) and shorter to
longer formats.

34.11.1. Rounding Instructions (*)

The three Load Rounded instructions in Table 298 round a longer operand to a shorter form
using the default Binary Rounding Mode in the FPCR. None of the instructions change the
Condition Code.

Table 298. Binary floating-point Round instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B344 LEDBR RRE Load Rounded
(Short←Long)

B346 LEXBR RRE Load Rounded
(Short←Extended)

B345 LDXBR RRE Load Rounded
(Long←Extended)

Because each longer operand format has a wider exponent range than the range of the target
operand, exponent overflow or underflow can be generated. (They are handled as described in
Section 34.4.3 on page 651.) Figure 425 shows some examples:

LD 0,BFPCon
LD 2,BFPCon+8

* c(FPR0,FPR2)=X'3FFF3C0CA428C59F B71A7BE16B6B6D43'
LEXBR 4,0 Extended to short: c(FPR4)=X'3F9E0652'
LDXBR 4,0 Extended to long: c(FPR4)=X'3FF3C0CA428C59FB'
LEDBR 4,0 Long to Short(??) c(FPR4)=X'3FF9E065'? (Wrong!)
- - -

BFPCon DC LB'1.23456789012345678901234567890123'
Figure 425. Examples of binary floating-point rounding instructions

The last example (using LEDBR) is invalid, because the second operand is the high-order half of
an extended-precision value, while the LEDBR instruction expects a long precision second
operand! Unlike hexadecimal floating-point operands, binary floating-point exponent field widths
are different for each format, so you must be careful to ensure your instructions deal with the
correct operand lengths.

The treatment of NaNs is interesting:

• The low-order bits of QNaNs are discarded. (The exponent field is adjusted to the proper
length for the shorter format.)

• SNaNs cause an invalid-operation exception. If masked off, the result is the same as for
QNaNs.

34.11.2. Lengthening Instructions (*)

The instructions in Table 299 on page 665 extend a shorter operand to a longer format, by
adjusting the exponent and appending zeros to the low-order bits of the significand. The Condi-
tion Code is unchanged.

664 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 299. Binary floating-point Lengthening instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED04 LDEB RXE Load Lengthened
(Long←Short)

B304 LDEBR RRE Load Lengthened
(Long←Short)

ED06 LXEB RXE Load Lengthened
(Extended←Short)

B306 LXEBR RRE Load Lengthened
(Extended←Short)

ED05 LXDB RXE Load Lengthened
(Extended←Long)

B305 LXDBR RRE Load Lengthened
(Extended←Long)

These instructions are simpler than the Load Rounded instructions, because numeric values in a
shorter format can always be represented correctly in a longer format. For example:

LE 0,=EB'0.1' c(FPR0)=X'3DCCCCCD'
LDEBR 2,0 c(FPR2)=X'3FB99999A0000000'
LXDBR 4,2 c(FPR4,FPR6)=X'3FFB99999A000000 0000000000000000'

Figure 426. Examples of BFP load lengthened instructions

Figure 426 shows that lengthening an operand doesn't increase its accuracy, even though the
longer value has greater precision.223

QNaNs are simply extended with zeros; SNaNs cause an invalid-operation exception, and place
the corresponding QNaN in the first-operand register. Figure 427 shows some examples:

LE 0,=EB'(QNaN)' c(FPR0)=X'7FE00000' (Short QNaN)
LDEBR 2,0 c(FPR2)=X'7FFC000000000000 (Long QNaN)

LE 0,=EB'(SNaN)' c(FPR0)=X'7FA00000' (Short SNaN)
LDEBR 2,0 c(FPR2)=X'7FFC000000000000 (Long QNaN)

Figure 427. Examples of BFP load lengthened instructions with NaNs

Exercises

34.11.1.(1) Can the Load Rounded instructions be considered “shortening” or “truncating”
instructions? Why or why not?

34.11.2.(2)+ Suppose you round a long binary floating-point operand X to short format, and
then extend it to long format again. Estimate the difference between the original and final
lengthened values.

34.11.3.(4)+ Suppose you execute these instructions for each of the short precision binary
floating-point operands listed below:

LZDR 0 Set FPR0 to zero
LE 0,data_item Load a short data item

 1. =EB'1.0'
 2. =EB'(Min)'
 3. =EB'(Dmin)'
 4. =EB'(QNaN)'
 5. =EB'(SNaN)'
 6. =EB'(Inf)'

In each case, if you then treat the number in FPR0 as a long binary floating-point value, what
will that long value be? What can you infer from the results?

223 If you set a value like π to 9.876543210987654321..., the number may have great precision but no accuracy.

Chapter IX: Floating-Point Data and Operations 665

34.12. Converting Between BFP and Binary Integers (*)

System z instructions let you convert binary integers in the general registers to binary floating-
point format, and vice versa. We'll start with the integer-to-float instructions.

34.12.1. Converting Binary Integers to Binary Floating-Point (*)

The instructions in Table 300 convert the binary integer in the second-operand general register to
one of the three binary floating-point formats in the first-operand floating-point register, using the
current rounding mode in the FPCR if needed. None of them affect the Condition Code.

Table 300. Binary integer to binary floating-point conversion instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B394 CEFBR RRE Convert from Fixed
(Short←32)

B3A4 CEGBR RRE Convert from Fixed
(Short←64)

B395 CDFBR RRE Convert from Fixed
(Long←32)

B3A5 CDGBR RRE Convert from Fixed
(Long←64)

B396 CXFBR RRE Convert from Fixed
(Extended←32)

B3A6 CXGBR RRE Convert from Fixed
(Extended←64)

Some examples are shown in Figure 428.

L 0,=F'2147483647' c(GR0)= X'7FFFFFFF'
SRNM 1(0) Set rounding mode to 'truncate'
CEFBR 4,0 c(FPR4)=X'4EFFFFFF', truncated
SRNM 0(0) Set rounding mode to 'to nearest'
CEFBR 4,0 c(FPR0)=X'4F000000', rounded

LG 1,=FD'-99' c(GG1)= X'FFFFFFFFFFFFFF9D'
CDGBR 6,1 c(FPR6)=X'C058C00000000000'

Figure 428. Examples of binary integer to binary floating-point instructions

Because the value in register GG1 is small enough, the result in FPR6 needed no rounding.

34.12.2. Converting Binary Floating-Point to Binary Integers (*)

These instructions convert binary floating-point operands in a floating-point register to a two's
complement fixed-point binary value in a general register:

Table 301. Binary floating-point to integer conversion instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B398 CFEBR R R F Convert to Fixed
(32←Short)

B3A8 CGEBR R R F Convert to Fixed
(64←Short)

B399 CFDBR R R F Convert to Fixed
(32←Long)

B3A9 CGDBR R R F Convert to Fixed
(64←Long)

B39A CFXBR R R F Convert to Fixed
(32←Extended)

B3AA CGXBR R R F Convert to Fixed
(64←Extended)

The six instructions in Table 301 have an additional mask operand specifying a “local” rounding
mode that takes effect only for that single instruction. Their format is illustrated in Table 302:

Table 302. Format of BFP Convert To Fixed instructions

Opcode M3 R1 R2

666 Assembler Language Programming for IBM System z™ Servers Version 2.00

Even though the local rounding mode mask is called M3, it appears in the machine instruction
statement's operand field as the second operand:

Mnemonic R1,M3,R2

As noted in Section 34.3 on page 646, the meanings of the local rounding mode field M3 are:

Table 303. Rounding modifier for BFP convert to fixed instructions

Local rounding mode 1 is the traditional “round up” action.

The effect of the rounding modifiers on fraction-to-integer conversion is illustrated in Figure 429.

M3 Meaning

B'0000' Round according to the current “global” rounding mode in the FPCR

B'0001' Biased round to nearest (ties round away from zero; the same as adding 1 to the
first lost bit)

B'0100' Unbiased round to nearest

B'0101' Round toward zero (truncate)

B'0110' Round toward + ∞
B'0111' Round toward − ∞

Up: + 3.5 ── + 4, − 3.5 ── − 3
Down: + 3.5 ── + 3, − 3.5 ── − 4
To Zero: + 3.5 ── + 3, − 3.5 ── − 3
To Nearest: ± 3.4 ── ± 3, ± 2.6 ── ± 3
To Nearest: ± 3.5 ── ± 4, ± 2.5 ── ± 2 (ties to even)
Biased Round: ± 3.5 ── ± 4, ± 2.5 ── ± 3 (away from zero)

Figure 429. Examples of converting binary floating-point fractions to integers with rounding

To obtain these results we can use the instructions in Figure 430:

LE 8,=EB'3.5' c(FPR8)=X'40600000'
CFEBR 11,B'0110',8 c(GR11)=X'00000004' (Round up)
CFEBR 12,B'0111',8 c(GR12)=X'00000003' (Round down)
CFEBR 13,B'0101',8 c(GR13)=X'00000003' (Round toward 0)
CFEBR 14,B'0100',8 c(GR14)=X'00000004' (To nearest even)
CFEBR 15,B'0001',8 c(GR15)=X'00000004' (Biased round)
LE 6,=EB'2.5' c(FPR6)=X'40200000'
CFEBR 10,B'0100',6 c(GR10)=X'00000002' (To nearest even)

Figure 430. Examples of Convert to Fixed instructions

The Condition Code is set as shown in Table 304:

Table 304. CC settings after convert to binary instructions

These are the special cases resulting in CC=3:

• The size of the binary floating-point value lies outside the representable range of a 32- or
64-bit integer; an invalid operation exception is signaled.

− If the “Inexact result” mask bit is zero, CC3 is set, and the maximum correctly signed
integer is placed in the target R1 general register.

CC Meaning

0 Source was zero

1 Source was less than zero

2 Source was greater than zero

3 Special case

Chapter IX: Floating-Point Data and Operations 667

− If the mask bit is one, a program interruption occurs.

• If the source operand is a NaN and the invalid-operation mask bit is 1, a program interruption
occurs; otherwise, the target R1 general register is set to the maximum negative number.

An inexact exception may also occur, but these interruptions are typically masked off.

These instructions make it very easy to choose the rounding you want to use for converting
binary floating-point values to binary integers.

Exercises

34.12.1.(2) An array of fullword integers is stored starting at IntData and the number of ele-
ments in the list is stored as a fullword integer at NItems. Write an instruction sequence to
compute and store at IntAvg the binary floating-point average of the list of integers. Take into
account the possibility that the integer sum may overflow a general register.

34.12.2.(1)+ Can the instructions for converting a binary integer to binary floating-point gen-
erate an exponent underflow or overflow?

34.12.3.(2)+ What integer values satisfying

230 ≤ value < 231

can be converted without loss of precision to short binary floating-point form?

34.13. Binary Floating-Point Integers and Remainders (*)

System z provides two groups of instructions for deriving integer values of binary floating-point
numbers, and for calculating remainders.

As with other binary floating-point instructions, a QNaN operand leads to a QNaN result, and a
SNaN operand causes an invalid operation exception. If masked off, the result is the corre-
sponding QNaN.

34.13.1. Load FP Integer Instructions

The three Load FP Integer instructions in Table 305 round a second-operand binary floating-
point operand to a first-operand integer value in the same format.

Table 305. Load floating-point integer instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B357 FIEBR R R F Load FP Integer (Short) B35F FIDBR R R F Load FP Integer (Long)

B347 FIXBR R R F Load FP Integer
(Extended)

The three instructions have the format shown in Table 302 on page 666. The format of the
machine instruction statement is

mnemonic R1,M3,R2
where M3 is a rounding modifier with values shown in Table 306 on page 669:

668 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 306. Rounding mode modifiers for BFP load integer instructions

If we execute the instructions in Figure 431, the results in FPR2 are as shown:

M3 Meaning

B'0000' Round according to the current BFP rounding mode

B'0001' Round to nearest with ties away from 0

B'0100' Round to nearest with ties to even

B'0101' Round toward 0

B'0110' Round toward + ∞
B'0111' Round toward − ∞

LE 0,=EB'5.6789012' c(FPR0)=X'40B5B98F'
FIEBR 2,B'0100',0 c(FPR2)=X'40C00000' (Round to nearest)
FIEBR 2,B'0001',0 c(FPR2)=X'40C00000' (Round away from 0)
FIEBR 2,B'0101',0 c(FPR2)=X'40A00000' (Round toward 0)
FIEBR 2,B'0111',0 c(FPR2)=X'40A00000' (Round down)

Figure 431. Examples of load F P integer instructions

The first and second results have value +6, and the third and fourth results have value +5.

Because the initial operand in FPR0 is not already an integer, there will be an exception condition
for an inexact result; if not masked off, and an interruption will occur.

 Remember

These instructions produce a binary floating-point integer-valued result in
a floating-point register, not a binary integer in a general register.

34.13.2. Divide to Integer Instructions (*)

Table 307 lists the two instructions224 used to calculate binary floating-point remainders:

Table 307. Binary floating-point Divide to Integer instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B353 DIEBR R R F Divide to Integer (Short) B35B DIDBR R R F Divide to Integer (Long)

The format of these two instructions is shown in Table 308:

Table 308. Format of BFP Divide to Integer instructions

The format of the machine instruction statement is

mnemonic R1,R3,R2,M4
where all the register operands must be different, and M4 is a rounding modifier with the same
values shown in Table 306 above. Note that only the final quotient is rounded.

The first operand is divided by the second operand, and the integer quotient replaces the third
operand; the remainder replaces the dividend in the first operand.

If you divide x by y, a floating-point remainder is defined by the relation

r = x−(y×n)

Opcode R3 M4 R1 R2

224 These instructions are complex; before using them you should study their description in the z/Architecture Principles
of Operation.

Chapter IX: Floating-Point Data and Operations 669

where n is the integer nearest the exact value of x/y.

For example, suppose we want the remainder of 6.5/2.0. The quotient is 3 and the remainder is
0.5. However, if we want the remainder of 7.5/2.0, the “true” quotient n is again 3 and the “true”
remainder is 1.5. Depending on the rounding mode chosen for the final quotient, the remainder
could be -0.5! This shows why:

6.5/2.0 with rounding toward zero: qexact=3.25, so q=3.0, r=+0.5
7.5/2.0 with rounding toward zero: qexact=3.75, so q=3.0, r=+1.5

6.5/2.0 with rounding toward nearest: qexact=3.25, so q=3.0, r=+0.5
7.5/2.0 with rounding toward nearest: qexact=3.75, so q=4.0, r=-1.5

The instructions in Figure 432 show this behavior (where the rounding mode is “to nearest”):

LE 0,=EB'6.5' c(FPR0)=X'40D00000'
LE 2,=EB'2.0' c(FPR0)=X'40000000'
DIEBR 0,4,2,B'0100' c(FPR0)=X'3F000000' (Remainder=+0.5)

* c(FPR4)=X'40400000' (Quotient =+3.0)

LE 0,=EB'7.5' c(FPR0)=X'40F00000'
DIEBR 0,4,2,B'0100' c(FPR0)=X'BF000000' (Remainder=-0.5)

* c(FPR4)=X'40800000' (Quotient =+4.0)
Figure 432. Examples of divide to integer instructions

Sometimes the calculation of a remainder is lengthy, so the CPU sets the CC to indicate that the
operation is incomplete, as we saw for instructions like MVCLE and CLCLE in Section 25. The
CC settings are shown in Table 309:

Table 309. CC settings after divide to integer instructions

These CC settings are somewhat unusual. Rather than indicating an exception condition for quo-
tient overflow, CC values 1 and 3 indicate that the exponent of the quotient has been scaled. CC
values 2 or 3 mean you should repeat the instruction until the remainder is complete.

If a quotient overflow occurs or if an operand is a SNaN, an invalid operation exception is indi-
cated. If masked off, the result is a QNaN.

To illustrate, suppose we execute the instructions in Figure 433:

CC Meaning

0 Remainder complete, normal quotient

1 Remainder complete, quotient overflow or NaN

2 Remainder incomplete, normal quotient

3 Remainder incomplete, quotient overflow or NaN

LE 8,=EB'1E28' Dividend is large, X'6E013F39'
LE 3,=EB'.73E-9' Divisor is small, X'3048A92F'

Div DIEBR 8,0,3,B'0100' Partial quotient in FPR0,
* partial remainder in FPR8

BC 3,Div Iterate if not complete
Figure 433. Example of iterative divide to integer

A final result requires five iterations. The CC setting, the values in FPR8 and FPR0, and the
partial remainders (PR) and partial quotients (PQ) are developed in these steps:

670 Assembler Language Programming for IBM System z™ Servers Version 2.00

CC FPR8 FPR0
Execution 1 2 X'60985BC8' X'7D24E429' PR=8.78E19 PQ=1.37E37
Execution 2 2 X'54A2FBB9' X'6FC26069' PR=5.60E12 PQ=1.20E29
Execution 3 2 X'48A5FFF8' X'63CFEE78' PR=3.40E5 PQ=7.67E21
Execution 4 2 X'399F6040' X'57D3C7B1' PR=3.04E-4 PQ=4.66E14
Execution 5 0 X'AFB07DDA' X'48CB5460' PR=-3.21E-10 PQ=4.16E5
Figure 434. Iterative execution of a divide to integer instruction

Calculating the quotient manually gives a value 1.3698E37, as we see in the partial quotient of the
first iteration.

Exercises

34.13.1.(2)+ Show the result in FPR2 of executing

LE 0,=EB'3.5'
FIEBR 2,mask,0

for mask values 1, 4, 5, 6, and 7.

34.13.2.(3)+ What result will appear in FPR2 after executing

LD 0,=DB'9.5'
FIEBR 2,4,0

Be careful!

34.13.3.(4) Show that the rule requiring the generation of an even quotient in the case when
|n-x/y |=1/2 and the rounding mode is “to nearest even” leads to a remainder satisfying
|r |≤ y/2.

34.14. Binary Floating-Point Square Root Instructions (*)

Four of the square root instructions in Table 310 have both RX- and RR-type forms; SQXBR
has only RR format.

Table 310. Binary floating-point Square Root instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED14 SQEB RXE Square Root (Short) B314 SQEBR RRE Square Root (Short)

ED15 SQDB RXE Square Root (Long) B315 SQDBR RRE Square Root (Long)

B316 SQXBR RRE Square Root (Extended)

The square root of the binary floating-point second operand is evaluated, rounded according to
the current BFP rounding mode, and placed in the R1 floating-point register. Negative nonzero
values and SNaNs cause an invalid-operation exception; if masked off, the result is a QNaN. The
square root of + ∞ is + ∞ .225

Figure 435 on page 672 shows some examples of the binary floating-point square root
instructions.

225 Seems reasonable.

Chapter IX: Floating-Point Data and Operations 671

SQEB 0,=EB'10' c(FPR0)=X'404A62C2'
SQDB 2,=DB'9999' c(FPR2)=X'4058FFAE13F4A7D3'
LD 4,=LB'0.1' c(FPR4)=X'3FFB999999999999'
LD 6,=LB'0.1'+8 c(FPR6)=X'999999999999999A'
SQXBR 4,4 c(FPR4)=X'3FFD43D136248490',

* c(FPR6)=X'EDB36E896CF3D7B0'
SQEB 0,=EB'(QNaN)' c(FPR0)=X'7FE00000' (QNaN)
SQEB 2,=EB'(Inf)' c(FPR2)=X'7F800000' (+infinity)

Figure 435. Examples of binary floating-point square root instructions

Exercises

34.14.1.(1)+ Estimate the value of the square root of BFP (Max), (Min), and (DMin) values.

34.14.2.(2)+ What result will appear in FPR0 if you execute this instruction?

SQEB 0,=DB'16'

Be careful!

34.15. Binary Floating-Point Multiply and Add/Subtract (*)

Table 311 lists the binary floating-point “multiply and add” and “multiply and subtract”
instructions. The Condition Code is unchanged.

Table 311. Binary floating-point Multiply and Add/Subtract instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED0E MAEB RXF Multiply and Add (Short) B30E MAEBR R R F Multiply and Add
(Short)

ED1E MADB RXF Multiply and Add (Long) B31E MADBR R R F Multiply and Add
(Long)

ED0F MSEB RXF Multiply and Subtract
(Short)

B30F MSEBR R R F Multiply and Subtract
(Short)

ED1F MSDB RXF Multiply and Subtract
(Long)

B31F MSDBR R R F Multiply and Subtract
(Long)

The Assembler instruction statement format for these instructions is

 R1,R3,R2 For RRF-format
 R1,R3,D2(X2,B2) For RXF-format

These instructions provide a more precise result for a very common mathematical operation:

operand1 = (operand3 × operand2) ± operand1

The product is formed internally to double length without rounding, and then operand1 is added
or subtracted. This result is then rounded to the target operand length according to the current
BFP rounding mode. This means that

• the product is more precise than would be delivered by a single multiplication operation, and

• the first operand is added to an unrounded product, with possibly more bits participating.

To illustrate the difference between using multiply and add compared to using a multiply and
then an add instruction, consider the instructions shown in Figure 436 on page 673:

672 Assembler Language Programming for IBM System z™ Servers Version 2.00

LE 2,Operand2 c(FPR2)=Operand2 (and Operand3)
LE 6,Operand1 c(FPR6)=Operand1
MAEBR 6,2,2 c(FPR0)=Operand1+(Operand2**2)

*
LE 2,Operand2 c(FPR2)=Operand2 (and Operand3)
MEEBR 2,2 c(FPR2)=Operand2**2
AEB 2,Operand1 c(FPR2)=Operand1+(Operand2**2)

Figure 436. Example of binary floating-point multiply and add instructions

In many cases, the results will differ by very little, perhaps by a single bit. But if these operations
are part of a long loop involving sums of many products, the accumulated differences can be sig-
nificant.

If the operands are close to overflow or underflow threshholds, the results can be quite different.
For example:

LE 0,=EB'1.85E19' c(FPR0) = X'5F805E9A'
MEEBR 0,0 c(FPR0) = X'1F80BD7A' (overflow)
AEB 0,=EB'-(Max)' c(FPR0) = X'FF7FFFFF' -(Max)

*
LE 0,=EB'1.85E19' c(FPR0) = X'5F805E9A'
LE 2,=EB'-(Max)' c(FPR2) = X'FF7FFFFF'
MAEBR 2,0,0 c(FPR2) = X'7BBD7A6B'

The first three instructions multiply an operand slightly larger than the square root of (Max), gen-
erating an overflowed result with characteristic wrap. Subtracting (Max) overwhelms the wrapped
result, leaving − (Max) as the result. The second three instructions add − (Max) to the interme-
diate result, generating a finite (and correct) result.

If any operand is a QNaN, the result is a QNaN taken from the original operands in order of
precedence operand3, operand2, operand1. Any SNaN causes an invalid operation exception; if it
is masked off, a default QNaN is delivered as the result.

Exercises

34.15.1.(2)+ Rewrite the example in Figure 387 on page 608 to use binary floating-point data
and multiply-add instructions.

34.15.2.(2) Rewrite the example in Figure 388 on page 608 to use binary floating-point data
and multiply-add instructions.

34.16. Summary

The binary floating-point instructions for several operation types are summarized in Table 312.
All of these operations use operands of uniform lengths.

Table 312 (Page 1 of 2). Summary of binary floating-point instructions with
uniform operand lengths

Function
Operand Length

4 bytes 8 bytes 16 bytes

Add/Subtract
(register)

AEBR
SEBR

ADBR
SDBR

AXBR
SXBR

Add/Subtract
(storage)

AEB
SEB

ADB
SDB

Compare (register) CEBR CDBR CXBR
Compare (storage) CEB CDB

Chapter IX: Floating-Point Data and Operations 673

Tables 313 through 317 summarize instructions whose operands may have mixed lengths.

The binary floating-point multiplication instructions are summarized in Table 313.

Table 313. Binary floating-point Multiply instructions

The binary floating-point rounding instructions are summarized in Table 314.

Table 314. Binary floating-point Round instructions

The binary floating-point operand-lengthening instructions are summarized in Table 315.

Table 315. Binary floating-point Lengthening instructions

The instructions for converting binary floating-point operands to binary integers are summarized
in Table 316 on page 675.

Table 312 (Page 2 of 2). Summary of binary floating-point instructions with
uniform operand lengths

Function
Operand Length

4 bytes 8 bytes 16 bytes

Divide (register) DEBR DDBR DXBR
Divide (storage) DEB DDB
Divide to Integer DIEBR DIDBR

Compare and Signal
(register)

KEBR KDBR KXBR

Compare and Signal
(storage)

KEB KDB

Load Positive (register) LPEBR LPDBR LPXBR
Load Negative (register) LNEBR LNDBR LNXBR

Load Complement (register) LCEBR LCDBR LCXBR
Load and Test (register) LTEBR LTDBR LTXBR

Load FP Integer FIEBR FIDBR FIXBR
Multiply and Add/Subtract

(register)
MAEBR
MSEBR

MADBR
MSDBR

Multiply and Add/Subtract
(storage)

MAEB
MSEB

MADB
MSDB

Square Root (register) SQEBR SQDBR SQXBR
Square Root (storage) SQEB SQDB

Test Data Class (register) TCEB TCDB TCXB

Func-
tion

Source Length 4 bytes 8 bytes 16 bytes

Product Length 4 bytes 8 bytes 8 bytes 16 bytes 16 bytes

Multiply (registers) MEEBR MDEBR MDBR MXDBR MXBR
Multiply (storage) MEEB MDEB MDB MXDB

Function
Source Length 8 bytes 16 bytes 16 bytes

Result Length 4 bytes 4 bytes 8 bytes

Round LEDBR LEXBR LDXBR

Function
Source Length 4 bytes 8 bytes

Result Length 8 bytes 16 bytes 16 bytes

Lengthen (register) LDEBR LXEBR LXDBR
Lengthen (storage) LDEB LXEB LXDB

674 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 316. Convert binary floating-point to binary integer instructions

The instructions for converting binary integer operands to binary floating-point are summarized in
Table 317.

Table 317. Convert binary integer to binary floating-point instructions

Table 318 summarizes the binary floating-point exception conditions that might be caused by the
instructions described in this section. F denotes a finite value, and IMax is the largest represent-
able binary integer in the target format.

Table 318. Summary of binary floating-point operations and exceptions

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Func-
tion

Source Length 4 bytes 8 bytes 16 bytes

Target Length 32 bits 64 bits 32 bits 64 bits 32 bits 64 bits

Convert float to binary CFEBR CGEBR CFDBR CGDBR CFXBR CGXBR

Func-
tion

Source Length 32 bits 64 bits

Target Length 4 bytes 8 bytes 16
bytes 4 bytes 8 bytes 16

bytes

Convert binary to float CEFBR CDFBR CXFBR CEGBR CDGBR CXGBR

Operation Invalid Operation Divide
by Zero

Over-
flow

Under-
flow Inexact

Add, Subtract SNaN, ∞ − ∞ — Yes Yes Yes

Compare,
Compare and Signal SNaN — — — —

Convert to Fixed NaN, | F | > |IMax | — — — Yes

Divide SNaN, 0÷ 0, ∞ ÷ ∞ F÷ 0 Yes Yes Yes

Divide to Integer SNaN, Any÷ ∞ — — Yes Yes

Load and Test SNaN — — — —

Load FP Integer SNaN — — — Yes

Load Lengthened SNaN — — — —

Load Rounded SNaN — Yes Yes Yes

Multiply SNaN, ∞ × 0 — Yes Yes Yes

Multiply & Add,
Multiply & Subtract SNaN, ∞ − ∞ , ∞ × 0 — Yes Yes Yes

Square Root SNaN, − ∞ , F <0 — — — Yes

Note: F is any finite value; IMax is the largest available signed integer in the target format.

Chapter IX: Floating-Point Data and Operations 675

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

ADB ED1A FIXBR B347 MAEBR B30E

ADBR B31A KDB ED18 MDB ED1C

AEB ED0A KDBR B318 MDBR B31C

AEBR B30A KEB ED08 MDEB ED0C

AXBR B34A KEBR B308 MDEBR B30C

CDB ED19 KXBR B348 MEEB ED17

CDBR B319 LCDBR B313 MEEBR B317

CDFBR B395 LCEBR B303 MSDB ED1F

CDGBR B3A5 LCXBR B343 MSDBR B31F

CEB ED09 LDEB ED04 MSEB ED0F

CEBR B309 LDEBR B304 MSEBR B30F

CEFBR B394 LDXBR B345 MXBR B34C

CEGBR B3A4 LEDBR B344 MXDB ED07

CFDBR B399 LEXBR B346 MXDBR B307

CFEBR B398 LFAS B2BD SDB ED1B

CFXBR B39A LFPC B29D SDBR B31B

CGDBR B3A9 LNDBR B311 SEB ED0B

CGEBR B3A8 LNEBR B301 SEBR B30B

CGXBR B3AA LNXBR B341 SFASR B385

CXBR B349 LPDBR B310 SFPC B384

CXFBR B396 LPEBR B300 SQDB ED15

CXGBR B3A6 LPXBR B340 SQDBR B315

DDB ED1D LTDBR B312 SQEB ED14

DDBR B31D LTEBR B302 SQEBR B314

DEB ED0D LTXBR B342 SQXBR B316

DEBR B30D LXDB ED05 SRNM B299

DIDBR B35B LXEB ED06 STFPC B29C

DIEBR B353 LXEBR B306 SXBR B34B

DXBR B34D LXDBR B305 TCDB ED11

EFPC B38C MADB ED1E TCEB ED10

FIDBR B35F MADBR B31E TCXB ED12

FIEBR B357 MAEB ED0E

The instruction opcodes and mnemonics are shown in the following table:

676 Assembler Language Programming for IBM System z™ Servers Version 2.00

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

B299 SRNM B31C MDBR B3A5 CDGBR

B29C STFPC B31D DDBR B3A6 CXGBR

B29D LFPC B31E MADBR B3A8 CGEBR

B2BD LFAS B31F MSDBR B3A9 CGDBR

B300 LPEBR B340 LPXBR B3AA CGXBR

B301 LNEBR B341 LNXBR ED04 LDEB

B302 LTEBR B342 LTXBR ED05 LXDB

B303 LCEBR B343 LCXBR ED06 LXEB

B304 LDEBR B344 LEDBR ED07 MXDB

B305 LXDBR B345 LDXBR ED08 KEB

B306 LXEBR B346 LEXBR ED09 CEB

B307 MXDBR B347 FIXBR ED0A AEB

B308 KEBR B348 KXBR ED0B SEB

B309 CEBR B349 CXBR ED0C MDEB

B30A AEBR B34A AXBR ED0D DEB

B30B SEBR B34B SXBR ED0E MAEB

B30C MDEBR B34C MXBR ED0F MSEB

B30D DEBR B34D DXBR ED10 TCEB

B30E MAEBR B353 DIEBR ED11 TCDB

B30F MSEBR B357 FIEBR ED12 TCXB

B310 LPDBR B35B DIDBR ED14 SQEB

B311 LNDBR B35F FIDBR ED15 SQDB

B312 LTDBR B384 SFPC ED17 MEEB

B313 LCDBR B385 SFASR ED18 KDB

B314 SQEBR B38C EFPC ED19 CDB

B315 SQDBR B394 CEFBR ED1A ADB

B316 SQXBR B395 CDFBR ED1B SDB

B317 MEEBR B396 CXFBR ED1C MDB

B318 KDBR B398 CFEBR ED1D DDB

B319 CDBR B399 CFDBR ED1E MADB

B31A ADBR B39A CFXBR ED1F MSDB

B31B SDBR B3A4 CEGBR

Terms and Definitions
Data Exception Code

A field in the FPCR indicating which of various floating-point and packed decimal
exceptions have occurred.

denormalized number
A nonzero binary floating-point value with characteristic zero and a nonzero fraction.

DXC
Data Exception Code, a field in the FPCR.

Chapter IX: Floating-Point Data and Operations 677

exception condition
One of five conditions defined by the IEEE Floating-Point Standard: invalid operation, divi-
sion by zero, exponent overflow, exponent underflow, and inexact result.

Floating-Point Control Register (FPCR)
A special register containing IEEE masks, status indicators, Data Exception Code, and
rounding modes.

gradual underflow
A technique allowing numbers to become denormalized when they are finite and smaller than
the smallest normalized magnitude.

mask
A bit in the FPCR controlling the actions to be taken when an exception condition occurs.

NaN
A “Not-a-Number” having no numeric or mathematical meaning.

QNaN
A Quiet Not-a-Number that does not cause an exception condition in any arithmetic opera-
tion.

Rounding Mode
A field in the FPCR indicating the rounding action to be taken after a binary floating-point
operation.

rounding modifier
A field in an instruction specifying the type of rounding to be performed on the result of the
operation.

SNaN
A Signaling Not-a-Number that causes an exception condition in an arithmetic operation.

special value
A zero, a denormalized number, an infinity, a QNaN, or an SNaN.

status flag
A bit in the FPCR indicating that an exception condition has occurred.

Programming Problems

Problem 34.1.(2) Write a program using binary floating-point operands to generate each of the
five exception conditions. First, set the five mask bits to zero, and see what default results are
delivered for each exception type; then, generate the same exceptions with each mask bit set to
one. Determine the ways your operating system reports the interruptions.

Problem 34.2.(4) Write a program that will read records containing eight hex digits representing
short binary floating-point numbers. Then, print the approximate (but reasonably accurate)
decimal value of the binary floating-point number to five significant digits, in the form
s.dddddEtnn, where s is the sign of the number, ddddd are the significant decimal digits, t is the
sign of the exponent, and nn is the decimal exponent. If the number is a NaN or infinity, print
an appropriate indication. (See Problem 33.3.)

Problem 34.3.(2) Write a program that calculates a table of the square roots of short precision
binary floating-point integer values from 1 to 20. For each square root value, also calculate its
square and compare the result to the original integer value. Then, display the original value, its
square root, and the difference between the integer value and the squared square root. (If you
can display the results as decimal values, perhaps using your solution to Problem 34.2, so much
the better!)

Problem 34.4.(3) A programmer claimed that evaluating (1.0/N)*N in binary floating-point
arithmetic (with (default) rounding to nearest even) for values of N from 1 to 100 does not
always produce 1.0. Write a program that will test this claim in short, long, and extended binary
floating-point arithmetic.

678 Assembler Language Programming for IBM System z™ Servers Version 2.00

Problem 34.5.(3) Using the iterative technique described in Section 31.3.1 on page 554, write a
program to evaluate the square root of 2 to 10 significant digits using long binary floating-point
arithmetic, and without using any square-root instructions. Format and print the result as a
fixed-point value.

Chapter IX: Floating-Point Data and Operations 679

35. Decimal Floating-Point Data and Operations

3333333333 55555555555
333333333333 555555555555
33 33 55

33 55
33 555555555

3333 5555555555
3333 555

33 55
33 55

33 33 555
333333333333 55555555555
3333333333 555555555

Having seen in Sections 33 and 34 that System z supports both hexadecimal and binary floating-
point, you might ask why yet another is needed.

• We are ten-fingered creatures: (almost) all humans count in decimal, and non-decimal arith-
metic is highly unintuitive for most people.226

• When calculations using hexadecimal or binary floating-point are compared with “hand” cal-
culations in decimal, the results may be different. Decimal notation and arithmetic is pervasive
in business use, and is often a legal requirement.

• If your processor is capable of scaled fixed-point decimal arithmetic (like packed decimal), such
computations are difficult because the position of the decimal point must be remembered.

− Even when you can do this the resulting code may be complex, difficult to understand and
maintain, and slow.

• One of the most annoying aspects of non-decimal arithmetic is that representations of decimal
fractions (e.g., 1/10) are imprecise and must be rounded, which can cause accumulated errors.

− Laws in many countries require exact decimal rounding for financial calculations.

• Conversions between decimal and hexadecimal or binary are complicated, and can be quite
difficult to do correctly. Imprecise conversions can lead in either binary or packed decimal to
many other problems.

• Floating-point remainders are often not what you would expect in bases other than ten.

• The decimal “precision” of a binary or hexadecimal floating-point number is often not what it
seems. The question “How many significant digits?” almost always implies decimal digits.

• The results of floating-point comparisons can be surprising: two values that you think should
be algebraically equal may not be.

• Decimal floating-point is now an international standard (IEEE Std 754™-2008).

226 Old joke: “There are 10 types of people who understand binary: those who do, and those who don't.”

680 Assembler Language Programming for IBM System z™ Servers Version 2.00

A desired solution should have these properties:

• Intuitive, familiar decimal arithmetic

• Exact representation of (most) decimal numbers

− Problems with repeating non-decimal fractions like 1/3 are well known and understood.

• Automatic tracking of the decimal point's placement

• No conversions between decimal and hex or binary are needed, so there are fewer miscon-
ceptions about the decimal precision of a number.

• Rounding uses decimal rules, not binary or hexadecimal.

− More rounding modes are supported.

• Low-order digits are preserved whenever possible.

• Integer, fixed point, and floating-point values are supported without extra effort.

− Businesses need all three, for things like counts, currency, and interest and tax rates.

As we will see, the System z decimal floating-point data types and instructions have these proper-
ties.

Exercises

35.0.1.(0) Many cartoon characters are drawn with only three fingers and a thumb on each
hand. Use that property to devise examples for teaching children octal (base-8) arithmetic.

35.0.2.(1) What other number bases are in widespread use today?

35.1. Representations

The significand in the binary and hexadecimal floating-point representations is a string of
hexadecimal or binary digits, packaged with a sign and an exponent:

�─────────── hex digits ───────────
 ┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │ h h h h h h h h h h h h│ Hex
 └─┴──────────┴────────────────────────────────────┘

�────────────── bits ──────────────
 ┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb│ Binary
 └─┴──────────┴────────────────────────────────────┘
Figure 437. Hexadecimal and binary floating-point representations

You might reasonably expect something similar for decimal:

�───────── decimal digits ─────────
 ┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │ d d d d d d d d d d d d d d d d d d│ Decimal
 └─┴──────────┴────────────────────────────────────┘

Three possible representations could be considered:

1. Like hexadecimal floating-point, the significand could contain BCD (not EBCDIC!) digits.227

This has some advantages and disadvantages:

• No conversion of external decimal data to and from binary or hexadecimal is needed.

227 One of the earliest time-sharing systems on System/360 was known as RUSH; its decimal floating-point represen-
tation used BCD rather than hexadecimal digits, and its implementation used part of the packed decimal microcode.

Chapter IX: Floating-Point Data and Operations 681

• Rounding can use similar techniques as for the packed decimal instruction SRP (discussed
in Section 29.7).

• Because the operations would be done in the floating-point registers rather than in
storage, they could be faster than for packed decimal.

• The representation is somewhat wasteful, using only 62.5 percent of the available “bit
space” (digits A-F are not present). Encoding decimal values with BCD digits is ineffi-
cient because each 3 BCD digits require 12 bits, but values from 000 to 999 can be stored
in 10 bits.

2. The significand could be a binary integer, as sketched in this figure:

┌─┬──────────┬────────────────────────────────────┐
 │s│ exponent │ binary integer│
 └─┴──────────┴────────────────────────────────────┘

This has some advantages and disadvantages:

• The representation is compact; no significand bit combinations are disallowed.

• Arithmetic should be about as fast as for the binary floating-point instructions.

• Data would require conversion from BCD formats.

• A serious disadvantage is that decimal rounding, shifting, and scaling are complicated and
possibly expensive.

This format is actually defined by the IEEE standard, but is not supported by System z. (If
you're interested, see Section 35.14 on page 730.)

3. The significand could contain compressed BCD digits.

This has some advantages and disadvantages:

• The representation can be made very efficient, having the compactness of binary and the
ease of scaling, shifting, and rounding of decimal.

• The encoding is complex and quite unintuitive.

• Decimal operations are natural.

The encoding chosen for System z to represent decimal floating-point data is the last one.

35.1.1. Conceptual View of the Decimal Floating-Point Representation

It's easiest to think of decimal floating-point data having the representation shown in Figure 438.
As with hexadecimal and binary floating-point representations, the exponent field contains a char-
acteristic (the exponent plus a bias to ensure that it's nonnegative).

�────────── decimal digits ──────────
┌─┬──────────┬──────────────────────────────────────┐ implied
│s│ exponent │ 0 0 0 0 0 0 0 d d d d d d d d d d d d│. �── decimal
└─┴──────────┴──────────────────────────────────────┘ point

� � �
Leftmost Digit (LMD) ──┘ │�─── Significant ───└─── Units Digit

Leftmost Significant Digit ──┘ Digits

Figure 438. Conceptual decimal floating-point representation

An important property of decimal floating-point data is that it is not always normalized, either as
a fraction or as an integer. This means that it is easy to generate equal values that don't have the
same representation. For example, 1×103 and 100×101 have the same value but different repres-
entations.

682 Assembler Language Programming for IBM System z™ Servers Version 2.00

The set of redundant representations with the same value is called a “cohort”:228 each such
number is a “cohort member”.

To illustrate a decimal floating-point cohort, consider the notation we used in Section 32.9, where
a 4-digit decimal floating-point number is represented as [exponent║significand]. The decimal
number 100 then has four possible representations: [−1║1000], [0║0100], [+1║0010], and
[+2║0001]; this cohort has 4 members.

None of the values is necessarily normalized, either as a fraction (as in the FPF(10,4) represen-
tation) nor as an integer (as in the FPI(10,4) representation), even though the first and last cohort
members appear to be left- and right-normalized.

A new term is introduced in place of the “ulp” (unit in the last place) we saw in discussing
hexadecimal and binary floating-point: the units-digit value, 1 × 10exponent, is called the quantum.

 Remember!

Finite numbers with the same exponent have the same quantum.

Each of the four representations above has a different quantum, respectively 1×10−1, 1×100,
1×10+ 1, and 1×10+ 2. This shows how the quantum of a value depends on which member of a
cohort is chosen.

 Comment

The z/Architecture Principles of Operation uses “quantum” in describing
decimal floating-point data and operations. It's much simpler to think of
a decimal floating-point value as an integer with an exponent (as in
Figure 438 on page 682).

For example, the three numbers in Figure 439 represent the same value, 12345×107, so they are
members of the same cohort. But they have different exponents (and therefore, different quanta).

┌─┬──────────┬──────────────────────────────────────┐
│+│ 7 │ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5│
└─┴──────────┴──────────────────────────────────────┘
┌─┬──────────┬──────────────────────────────────────┐
│+│ 6 │ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0│
└─┴──────────┴──────────────────────────────────────┘
┌─┬──────────┬──────────────────────────────────────┐
│+│ 3 │ 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 0│
└─┴──────────┴──────────────────────────────────────┘
Figure 439. Three decimal floating-point representations of the same value

You may remember from Section 27.4 on page 467 that a packed decimal number can have mul-
tiple representations with the same value, and that different values can have the same represen-
tation. Different decimal floating-point values always have different representations.

Table 319 on page 684 summarizes the properties of the System z decimal floating-point repres-
entations, where approximations are given for Max, Min, and DMin values. Because decimal
floating-point numbers aren't usually normalized, the column headed “Max Norm.” refers to
values with nonzero leftmost digit, and the two “Min” columns refer to values with only 1 in the
units digit.

228 The term “cohort” actually refers to a division of 300 to 600 troops of a Roman army legion. Its informal meaning
of a group of associates (not an associate of a “hort”) is intended here.

Chapter IX: Floating-Point Data and Operations 683

Table 319. Decimal floating-point data representations

Byte
length

Char.
(bits)

Min
exp.

Max
exp.

Char.
Bias

Pre-
cision

Max Norm.
(Max)

Min Norm.
(Min)

Min Denorm.
(DMin)

4 8 −95 +96 +101 7 1.0×10+97 1.0×10−95 1.0×10−101

8 10 −383 +384 +398 16 1.0×10+385 1.0×10−383 1.0×10−398

16 14 −6143 +6144 +6176 34 1.0×10+6145 1.0×10−6143 1.0×10−6176

The “1.0×10N” values in Table 319 are actually 0.9999...×10N, which were rounded for simplicity.

Decimal floating-point has many advantages over packed decimal:

• Its behavior is governed by industry standards.

• It keeps track of the decimal point automatically.

• Fewer programming languages support packed decimal.

• Its performance is faster because arithmetic is done in registers, rather than in memory.

• Rounding support is far more varied than the simple “round-by-adding” of the SRP instruc-
tion.

Exercises

35.1.1.(2) Short hexadecimal and binary floating-point data can correctly represent only 6
decimal digits. Assuming a 7-bit exponent, show how you would create a 24-bit decimal
floating-point data item with BCD digits used for the significand. What should be the minimum
and maximum values of the exponent, EMax and EMin, and what should be the characteristic
bias?

35.1.2.(2)+ In Figure 439, what is the quantum of each value?

35.1.3.(1)+ Suppose two decimal floating-point numbers have representations of 7 and 16 digits
respectively. If their exponents are equal, do they also have the same quantum?

35.1.4.(2)+ In Figure 439 on page 683, how many significant digits are there in each value?

35.1.5.(2)+ In Figure 439 on page 683, how many members are there in the cohort of each
value?

35.1.6.(3)+ Suppose a decimal floating-point representation supports p significand digits. If a
nonzero value has n digits between its leftmost and rightmost nonzero digits, how many
members are in its cohort, assuming the value is well within the limits of the representation's
exponent range? (For example, if p=11 and the significand is 00057036000, then n=5.)

35.2. System z Decimal Floating-Point Data Encoding and Representation (*)

Details Follow

This next section describes the interesting (and complex!) details of the
System z decimal floating-point format, but you don't need to under-
stand it to make good use of decimal floating-point instructions and
arithmetic. The conceptual representation in Figure 438 on page 682 is
an adequate description for almost all your needs.

We'll start by showing how three BCD digits are encoded in 10 bits.

684 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.2.1. Decimal Floating-Point Data Encoding (*)

To efficiently encode decimal values between 0 and 999, we could use 10-bit binary integers. (The
values from 1000 to 1023 would be unused, but this is a small price to pay.) However, because
we want to do decimal arithmetic, we should avoid frequent internal conversions between binary
and decimal. Thus, this 10-bit binary-integer format was rejected.

Instead, an efficient and unusual densely packed decimal (DPD) encoding is used. Three BCD
digits (12 bits) are mapped into an unusual 10-bit grouping229 called a “declet”.

The actual encoding takes this form: let 3 BCD digits be represented by the 12 bits
“abcd efgh ijkm”, and let a a 10-bit declet be represented by “pqr stu v wxy”. Converting from
BCD digits to a declet is done in two steps:

1. Extract the high-order bits of the three BCD digits (aei).

2. Select one of eight 10-bit declet encodings, based on the remaining nine bits of the BCD
string. Table 320 shows the bit selections:

Table 320. Declet encoding for BCD
digits

For example, suppose you want to encode the BCD digits 579 into a declet. The bits of the BCD
digits are 0101 0111 1001, so the aei bits are 001. The remaining three bits (bcd) of the first BCD
digit are 101; the remaining three bits of the second BCD digit (fgh) are 111, and the remaining
bits (jkm) of the last BCD digit are 001. When combined, the result is 101 111 1 001. (The jk
bits are zero because the final BCD digit is 9, so they are ignored in forming the declet!)

Because we are encoding only 1000 values (from 000 to 999), the remaining 24 possible bit pat-
terns are called “non-preferred”, and assigned 3 each to 8 BCD values. They have bit patterns
01x11x111x, 10x11x111x, and 11x11x111x, where x can be either 0 or 1. The preferred encodings
are called canonical encodings. Non-preferred encodings are accepted as arithmetic operands, but
are never generated as a result.

Figure 469 on page 734 shows all the BCD-to-DPD encodings, including the 24 non-preferred
declet encodings. Figure 470 on page 735 shows all the DPD-to-BCD encodings, and Table 386
on page 733 summarizes the non-canonical declets and their BCD equivalents.

Declets can be converted to BCD digits according the rules shown in Table 321 on page 686,
where the '-' is a “don't care” indicator meaning the bit may be 0 or 1. (The same notation for
declet bits and BCD-digit bits is used as in Table 320.)

aei pqr stu v wxy
000 bcd fgh 0 jkm
001 bcd fgh 1 00m
010 bcd jkh 1 01m
011 bcd 10h 1 11m
100 jkd fgh 1 10m
101 fgd 01h 1 11m
110 jkd 00h 1 11m
111 00d 11h 1 11m

229 The details are ugly or elegant, depending on your perspective.

Chapter IX: Floating-Point Data and Operations 685

Table 321. Converting decimal floating-point declets to BCD digits

For example, suppose you start with a declet 1011111001, where the bits are denoted pqrstuvwxy,
and the bits of the three BCD digits are denoted abcd efgh ijkm. The vwxst bits are then 10011.
This corresponds to the second row of Table 321, so we construct the abcd (first BCD) digit from
0101, the efgh (second BCD) digit from 0111, and the ijkm (third BCD) digit from 1001. Thus,
the three BCD digits are 579, as desired.

This may seem an enormous amount of effort and a great complication, just to encode three
BCD digits. But it has a great advantage from the perspective of the CPU designers:
DPD-to-BCD and BCD-to-DPD conversions can be done efficiently with simple logical oper-
ations;230 no arithmetic is needed!

Remember that all the non-preferred digit encodings have bit representations 01x11x111x,
10x11x111x, and 11x11x111x, where x is either 0 or 1.

35.2.2. Decimal Floating-Point Data Representation (*)

Now that we know how declets are created, we'll see how they and the exponent are actually
packaged. Unlike Figure 438 on page 682, the decimal floating-point representation takes the
form shown in Figure 440:

vwxst abcd efgh ijkm
0---- 0pqr 0stu 0wxy
100-- 0pqr 0stu 100y
101-- 0pqr 100u 0sty
110-- 100r 0stu 0pqy
11100 100r 100u 0pqy
11101 100r 0pqu 100y
11110 0pqr 100u 100y
11111 100r 100u 100y

┌─┬─────────────┬───┐
 │s│ Combination │ Trailing Significand Field │
 │ │ Field (CF) │ (TSF) or (T) │
 └─┴─────────────┴───┘
Figure 440. Decimal floating-point data representation

The key properties of the representation shown in Figure 440 are:

• The coefficient is a string of encoded decimal digits, to the left of an implied decimal point
following the low-order digit. The value of the exponent determines the true position of the
decimal point (as we've seen for hexadecimal and binary floating-point data).

• The rightmost digit is the “units digit”. It may be zero, because the significand is not right-
normalized.

• The leftmost nonzero digit is called the “leftmost significant digit”.

• The high-order digit (whether or not it's zero) is the “leftmost digit”, Thus, the significand
digits are the leftmost digit through the low-order units digit, while the significant digits are the
leftmost nonzero digit through the low-order units digit.

Then, the value of a number is (−1)sign × coefficient × 10exponent

Figure 441 on page 687 shows the 32-, 64-, and 128-bit formats. Each Trailing Significand Field
(sometimes abbreviated TSF) is a multiple of 10 bits long, because it contains 2, 5, or 11 declets.

230 The logical operations are described in the IEEE Standard.

686 Assembler Language Programming for IBM System z™ Servers Version 2.00

1 11 20
Single ┌─┬───────────┬─────────────────┐
(32 bit) │s│ Combo Fld │ TSF │
 Format └─┴───────────┴─────────────────┘

1 13 50
 Double ┌─┬─────────────┬──┐
(64 bit) │s│ Combo Fld │ Trailing Significand Field │
 Format └─┴─────────────┴──┘

1 17 110
Extended ┌─┬───────────────┬───────────/ /────────────────────────────────/ /──────────┐
(128 bit) │s│ Combo Field │ Trailing Significand Field │
 Format └─┴───────────────┴───────────/ /────────────────────────────────/ /──────────┘
Figure 441. System z decimal floating-point representations

The 32-bit format is not encouraged by the IEEE standard, but is supported by the Assembler as
a storage format. There are no arithmetic operations on the 32-bit format, but special instructions
make it easy to convert to and from long and extended formats.

The Combination Field is unusual: it contains the exponent and the leftmost significand digit!
The Trailing Significand Field (TSF) contains the remaining significand digits, encoded as 10-bit
declets. Thus, the precisions of the three representations are 6(+1)=7, 15(+1)=16, and
33(+1)=34 decimal digits respectively.

35.2.3. Decimal Floating-Point Combination Field (*)

The representation of the exponent is unusual: the first five bits of the Combination Field231 (CF)
contain the leftmost significand digit and the first two bits of the characteristic (the biased expo-
nent), and the remaining 6, 8, or 12 bits contain the rest of the characteristic.

The first five bits allow 32 combinations; two are reserved for the special values shown in
Table 322:

Table 322. First five bits of special-values Combination Field

When the first 5 bits are 11111, the data item is a NaN. If the next bit (bit 6 of the represen-
tation; remember, the sign bit is bit 0) is zero, the item is a QNaN, and if one, a SNaN.
Canonical NaNs set all other bits of the data item to zero.

When the first 5 bits are 11110, the data item is an infinity, no matter what the remaining bits are.
Canonical infinity values set all the other bits of the data item to zero.

The remaining 30 possible combinations of Combination Field are used to encode finite values.
The five bits contain the Leftmost Digit (LMD) of the significand and the first two bits of the
characteristic, as shown in Table 323 on page 688.

CF bits 0-4 Meaning

11111 NaN

11110 Infinity

All others Finite numbers

231 The IEEE 754-2008 standard calls these bits G0 through G4.

Chapter IX: Floating-Point Data and Operations 687

Table 323. First 5 bits of finite-value Combination Field

A zero value has all significand digits zero, and any representable exponent.

Suppose we want to represent the value 8765432 as a short decimal floating-point number. The
rightmost 6 digits are encoded into two declets X'3E5' (representing 765) and X'232' (representing
432). Thus, the rightmost five hex digits of the data item contain X'F9632'. (Remember, the
declet representing 765 was shifted right 2 bits.)

The exponent is zero, so the characteristic is decimal 101 (the characteristic bias, shown in
Table 324 on page 689) or B0110 0101'. Because the Combination Field is 11 bits wide and its
first 5 bits are the LMD +Leading CF bits, we must extract the two leading bits of the character-
istic, or 01. Then, we see in Table 323 that the LMD 8 means that the leading 5 bits of the CF
contains 11010. With a zero for the sign bit, we can put the pieces together:

• 0 (Sign Bit)
• 11010 (initial 5 bits of Combination Field)
• 100101 (rest of the characteristic)
• X'F9632' (20-bit trailing significand)

so the final data item has representation X'6A5F9632'.

Decimal floating-point encodings are difficult!

As this example shows, it's best to let the Assembler and the CPU gen-
erate encoded values for you.

Table 324 on page 689 summarizes properties of the decimal floating-point representation. The
values in the row denoted “Characteristic length” show that two of its bits are encoded in the
Combination Field.

LMD
First 2 characteristic bits

00 01 10
0 00000 01000 10000
1 00001 01001 10001
2 00010 01010 10010
3 00011 01011 10011
4 00100 01100 10100
5 00101 01101 10101
6 00110 01110 10110
7 00111 01111 10111
8 11000 11010 11100
9 11001 11011 11101

688 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 324. Properties of decimal floating-point representations

The unusual format of the combination field allows the exponent range to be wider: normally an
n-bit exponent would allow 2n values, but the DFP encoding allows approximately 3×2(n-1) or 1.5
times as many values.

Exercises

35.2.1.(2)+ Using a decimal floating-point notation like that used in the text on page 683, what
are the quanta of each member of the cohorts of these numbers?

1. [−3║7430]
2. [+1║0009]
3. [−2║0340]

35.2.2.(1) In Figure 441 on page 687, how many declets appear in each of the decimal floating-
point representations?

35.2.3.(2) Suppose the significand of a long decimal floating-point number has eight nonzero
significant digits, such as “12345678”. How many members does its cohort have?

35.2.4.(3) Suppose the significand of a long decimal floating-point number has eight significant
digits, but you don't know their values. How many members does its cohort have?

35.2.5.(2) What is the declet encoding of the BCD digits 987? Show the steps you used to
derive your result.

35.2.6.(2) Decode the declet 1011001101 to BCD digits. Show the steps you used to derive your
result.

35.2.7.(2) What type of long decimal floating-point special value is represented by these strings?

1. X'827C000000000000'
2. X'7EF00049826BA3B0'
3. X'FB7388215142D357'

35.2.8.(1) Write and assemble a test program to verify that the representation of the short
decimal floating-point value 8765432 is as derived following Table 323 on page 688.

35.2.9.(2)+ Convert the value 3.141593 to short and long decimal floating-point using the
method shown following Table 323 on page 688.

Property Short format Long format Extended
format

Format length (bits) 32 64 128

Combination field length (bits) 11 13 17

Characteristic length (bits) 6+2 8+2 12+2

Trailing Significand Field length (bits) 20 50 110

Precision (decimal digits) 7 16 34

Exponent range −95, +96 −383, +384 −6143, +6144

Exponent bias 101 398 6176

Max Normalized Value (Nmax) ≈ 10+97 ≈ 10+385 ≈ 10+6145

Min Normalized Value (Nmin) ≈ 10−95 ≈ 10−383 ≈ 10−6143

Smallest DeNorm Value (Dmin) ≈ 10−101 ≈ 10−398 ≈ 10−6176

Effective exponent range (of all repre-
sentable values) −101, +90 −398, +369 −6176, +6111

Chapter IX: Floating-Point Data and Operations 689

35.2.10.(2) Why is the low-order digit of a decimal floating-point value often the same as the
low-order digit of its decimal value?

35.3. Decimal Floating-Point Constants

Decimal floating-point constants are generated by DC statements with types E, D, and L for
short, long, and extended formats respectively. The type extension must be D:

ED Short format decimal floating-point

2614D2E7 DC ED'123.4567' 7 digits

DD Long format decimal floating-point

261934B9C1E28E56 DC DD'12345678.90123456' 16 digits

LD Extended format decimal floating-point

2603534B9C1E28E5 DC LD'123456789012345.6789012345678901234' 34 digits
6F3C127177823534

These three statements generate the short, long, and extended decimal floating-point representa-
tions of 100:

DC ED'100' Generates X'22500080'
DC DD'100' Generates X'2238000000000080'
DC LD'100' Generates X'2208000000000000 0000000000000080'

Because decimal floating-point values are not normalized, equivalent values (members of a
cohort) can generate different constants. For example, each of these constants has numeric value
100;

DC ED'100.00' Generates X'22304000'
DC ED'100.0' Generates X'22400400'
DC ED'100' Generates X'22500080'
DC ED'1E2' Generates X'22700001'

but the generated constants depend on the number of significant digits in the nominal value: in
the first three constants, the trailing zero digits are significant.

You can also generate constants with the four special values infinity, NaN, SNaN, and QNaN, as
well as the three finite values Max, Min, and DMin. These are shown in Table 325:

Table 325. Assembled decimal floating-point special-value constants

Unlike binary floating-point, the only decimal floating-point special value that is not simply a
short constant extended with zeros is the (Max) constant. (Compare these values with those in
Table 276 on page 644.)

Decimal floating-point zeros do not have a unique representation, as illustrated in Table 326 on
page 691. This lack of uniqueness can have possibly unexpected effects in decimal floating-point
arithmetic operations; some examples are given in Section 36.7.

Value Short Long Extended

(Inf) 78000000 7800000000000000 7800000000000000 0000000000000000

(NaN) 7C000000 7C00000000000000 7C00000000000000 0000000000000000

(SNaN) 7E000000 7E00000000000000 7E00000000000000 0000000000000000

(QNaN) 7C000000 7C00000000000000 7C00000000000000 0000000000000000

(Max) 77F3FCFF 77FCFF3FCFF3FCFF 77FFCFF3FCFF3FCF F3FCFF3FCFF3FCFF

(Min) 04000000 0400000000000000 0400000000000000 0000000000000000

(DMin) 00000001 0000000000000001 0000000000000000 0000000000000001

690 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 326. Examples of decimal floating-point short precision zeros

Unlike hexadecimal and binary floating-point zeros, decimal floating-point zeros can have a wide
variety of representations.

35.3.1. Rounding-Mode Suffixes for Decimal Floating-Point Constants

In the absence of a specific rounding request, the Assembler rounds decimal floating-point con-
stants to “nearest even”. For directed rounding, you can specify a rounding-mode suffix of the
form Rn, where n is one of the numbers 8 through 15; Rn must given as a single token with no
embedded blanks. Table 327 lists the rounding-mode suffixes and their meanings.

Table 327. Assembler rounding-mode suffixes for D F P constants

We'll discuss these various rounding options in more detail later.

In this short-precision example, the nominal value is rounded up:

2614D2E7 DC ED'123.4567' Default rounding
2614D2E8 DC ED'123.45678R10' Rounded to +infinity
2614D2E8 DC ED'123.45678R14' Rounded away from zero

In this long-precision example, the nominal value is rounded down:

261934B9C1E28E58 DC DD'12345678.901234577' Default rounding
261934B9C1E28E57 DC DD'12345678.901234577R11' Rounded to -infinity

In this extended-precision example, the nominal value is rounded toward zero (truncated):

2603534B9C1E28E5 DC LD'123456789012345.67890123456789012349' Default rounding
6F3C127177823535
2603534B9C1E28E5 DC LD'123456789012345.67890123456789012349R9' Rounded to 0
6F3C127177823534

DC Operand Generated Constant

ED'0' X'22500000'

ED'0.0' X'22400000'

ED'.00' X'22300000'

ED'0E-101' X'00000000'

DD'0' X'22380000 00000000'

DD'0E1' X'223C0000 00000000'

DD'0E369' X'43FC0000 00000000'

DD'0E-398' X'00000000 00000000'

Mode Rn Description

8 R8 Round to nearest; ties to nearest even (“half-even”)

9 R9 Round toward zero (truncate)

10 R10 Round to + ∞ ; if − , truncate

11 R11 Round to − ∞ ; if + , truncate

12 R12 Round to nearest; ties away from 0 (“half-up”)

13 R13 Round to nearest; ties toward 0 (“half-down”)

14 R14 Round up (away from zero)

15 R15 Round for reround, or “prepare for shorter precision”

Chapter IX: Floating-Point Data and Operations 691

35.3.2. Decimal Exponents and Modifiers

You can specify a decimal exponent as part of the nominal value, or an exponent modifier that
applies to all the nominal values in the operand. Figure 442 on page 692 shows some examples;
the letters E, M, and B in the comments fields mean the constant has a decimal Exponent, an
exponent Modifier, or Both. The “also” comments show different ways to generate the same
constant. All the constants have value 100, so are members of the same cohort.

DC ED'10000E-2' E: generates X'22304000'
DC EDE-2'10000' M: generates X'22304000' also.
DC ED'1000E-1' E: generates X'22400400'
DC EDE-1'1000' M: generates X'22400400' also.
DC ED'100' Generates X'22500080'
DC ED'10E1' E: generates X'22600010'
DC ED'1E2' E: generates X'22700001'
DC EDE1'1E1' B: generates X'22700001' also,
DC EDE-5'1E7' B: generates X'22700001' also, and
DC ED'.1E3' M: generates X'22700001' also.

Figure 442. DFP constants with exponent modifiers and decimal exponents

The only other modifier allowed with decimal floating-point constants is Length, and it must be 4
for short precision values, 8 for long, or 16 for extended. Its only effect is that the generated
constants are not aligned on their respective “natural” boundaries: word, doubleword, and
doubleword.

Exercises

35.3.1.(2)+ A four-byte area of memory contains the bit pattern X'4040405C'. What possibilities
are represented by that pattern?

35.3.2.(3) Write three decimal floating-point constants that generate a value one “ulp” smaller
than the (Max) constant in short, long, and extended representations.

35.3.3.(2) Write three decimal floating-point constants with numeric operands that generate a
value equal to that generated by a (Max) operand.

35.3.4.(2)+ Hexadecimal and binary floating-point constants allow a variety of length modifiers.
Why do decimal floating-point constants not allow length modifiers other than 4 (for short), 8
(for long), or 16 (for extended)?

35.3.5.(2)+ How many members are there in the cohort of +0 in a short decimal floating-point
representation?

35.3.6.(2)+ How many members are there in the cohort of +0 in a long decimal floating-point
representation?

35.3.7.(2)+ Assemble the following sixteen short DFP constants, and study the generated
values, particularly the encoding of the significands. Which of the values are “NMin”, and
which are “DMin”, having the minimum exponent?

10000000.E-95
1000000.E-95
100000.E-95
10000.E-95
1000.E-95
100.E-95
10.E-95
1.E-95
.1E-95
.01E-95
.001E-95

692 Assembler Language Programming for IBM System z™ Servers Version 2.00

.0001E-95

.00001E-95

.000001E-95

.0000001E-95

.00000001E-95

35.4. Decimal Floating-Point Data Classes (*)

Like binary floating-point data types, decimal floating-point data occurs in six classes:

1. Zeros may have any exponent and either sign, and have a zero significand.232 ± 0's are distinct,
but compare equal.

2. Subnormal numbers X lie in the range Dmin ≤ |X| < Nmin

3. Normal values X lie in the range Nmin ≤ |X| ≤ Nmax

4. Infinity requires that the first five bits of the Combination Field be 11110. The contents of
the Trailing Significand Field is ignored. Infinities are valid in decimal floating-point arith-
metic operations.

5. Quiet NaNs require that the first five bits of the Combination Field be 11111, and that the
next bit of the CF is 0.

6. Signaling NaNs require that the first five bits of the Combination Field be 11111, and that the
next bit of the CF is 1.

• Operations involving SNaNs usually cause an Invalid Operation exception, and may be
masked off by setting mask bits in the Floating-Point Control Register (described in
Section 34.4 on page 649).

Table 328 lists the three instructions used to test operands in the floating-point registers:

Table 328. Decimal floating-point Test Data Class instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED50 TDCET RXE Test Data Class (Short) ED54 TDCDT RXE Test Data Class (Long)

ED58 TDCXT RXE Test Data Class
(Extended)

The operands of these instructions have the format

R1,D2(X2,B2)

where R1 designates a FPR.

A bit pattern in the rightmost 12 bits of the Effective Address of the second operand address tests
selected classes of the first operand; the remaining bits of the Effective Address are ignored. The
instruction sets the CC to 1 if a bit in the Effective Address matches the operand's data class, or
to zero if not.

Table 329 on page 694 shows the test bits; the bit numbering corresponds to a 64-bit Effective
Address.

232 Binary floating-point zeros must have zero characteristic and zero significand. Hexadecimal floating-point true zeros
have zero characteristic and zero fraction, but pseudo-zeros have a zero fraction and nonzero characteristic.

Chapter IX: Floating-Point Data and Operations 693

Table 329. DFP Test Data Class second-operand bits

 Note:

The order of the test bits in the second operand's Effective Address of
these decimal floating-point instructions is different from the order of the
test bits in the corresponding binary floating-point instructions.
(Compare Table 329 to Table 287 on page 654.)

To illustrate, the Condition Code after each of these TDCET instructions in Figure 443 will be 1,
because the bits in the Effective Address match the class of the data in FPR0.

Class + sign − sign

Zero 52 53

Subnormal 54 55

Normal 56 57

Infinity 58 59

QNaN 60 61

SNaN 62 63

LZER 0 c(FPR0) = X'00000000', zero
TDCET 0,B'110000000000' Test for zero
LE 0,=ED'1E-100' c(FPR0) = X'00100001', subnormal
TDCET 0,B'001100000000' Test for subnormal
LE 0,=ED'1' c(FPR0) = X'22500001', normal
TDCET 0,B'000011000000' Test for normal
LE 0,=ED'(Inf)' c(FPR0) = X'78000000', infinity
TDCET 0,B'000000110000' Test for infinity
LE 0,=ED'(QNaN)' c(FPR0) = X'7C000000', QNaN
TDCET 0,B'000000001100' Test for QNaN
LE 0,=ED'(SNaN)' c(FPR0) = X'7E000000', SNaN
TDCET 0,B'000000000011' Test for SNaN

Figure 443. Examples of decimal floating-point Test Data Class instructions

Table 330 shows another way to visualize the left-to-right order of the test bits and the tested
classes:

Table 330. Test Data Class test-bit vs. tested-class correspondence

Three related “Test Data Group” instructions are described in Section 35.12.7 on page 726.

Exercises

35.4.1.(2) Given a decimal floating-point operand in FPR0, which data classes will these
instructions detect?

(1) TDCET 0,29
(2) TDCDT 0,4095
(3) TDCXT 0,15
(4) TDCDT 0,X'C00'

Bits 0-51 52 53 54 55 56 57 58 59 60 61 62 63

Ignored

+
Z

ero

−
Z

ero

+
S

ubnorm
al

−
S

ubnorm
al

+
N

orm
al

−
N

orm
al

+
Infinity

−
Infinity

+
Q

N
aN

−
Q

N
aN

+
S

N
aN

−
S

N
aN

694 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.5. Decimal Floating-Point Operations: Rounding, Quanta, and Exceptions

Decimal floating-point operations offer rich choices of rounding options; we'll describe them
briefly. Because many instructions involve selecting the “quantum” of the final result, we'll see
some examples to clarify the concepts involved.

35.5.1. Rounding

Rounding a result requires choosing a “Permissible Value” among the possible values; it is usually
one of the values allowed by the destination precision. (Infinity is not a permissible value.)

Suppose Z is the infinitely precise result.

• If Z is exactly representable, its value is always selected as the delivered result, independent of
the rounding mode.

• Otherwise, the two adjacent values with same sign as Z are candidates for the delivered result.

To illustrate, suppose Z is the intermediate result of an operation, as sketched in Figure 444.

┌────────────────────────Increase │Z│───────────────────────┐
│ │
│ ┌──────────── Infinitely precise value ───────────┐ │
│ │ │ │
│ │ ┌──────────────Decrease │Z│─────────────┐ │ │
� � � � � �

- �──────┼────┼────┼──────────────────┼────────────────────┼────┼────┼────── +
Z1 Z Z2 0 Z3 Z Z4

 � � � �
└─────────┴──── Closest Representable values ─────┴─────────┘

Figure 444. Illustration of decimal floating-point rounding candidates

Let Z1 and Z2, or Z3 and Z4 be the nearest representable values to the infinitely precise value. If
Z is not representable, either Z1 or Z2 is chosen (if Z is negative), or Z3 or Z4 is chosen (if Z is
positive). Z2 or Z3 can be zero.

Assuming Z is not between Z2 and Z3, the standard rounding modes from Z to one of the
nearest candidate values are as follows:

• If Z lies exactly halfway between the two candidates, a “tie” occurs: choose the candidate with
an even low-order digit. (“Round to nearest even”)

• If Z lies exactly halfway between the two candidates, a “tie” occurs: choose the candidate with
the larger magnitude (Z1 or Z4). (“Round half-up”)

• Choose the candidate toward + ∞ (Z2 or Z4). (“Round up”)

• Choose the candidate toward − ∞ (Z1 or Z3). (“Round down”)

• Choose the candidate closer to zero (Z2 or Z3). (“Round toward zero; Truncate”)

• If Z lies anywhere between the two candidates, choose the candidate with the larger magnitude
(Z1 or Z4). (“Round away from zero”)

If Z is a very small number close to zero, there are two cases to consider:

- �────────────────┼───────┼──────┼──────┼───────┼───────────────── +
-DMin Z? 0 Z? +DMin

Figure 445. Illustration of decimal floating-point rounding candidates near zero

• If -DMin < Z < 0, then

− -DMin is selected for for rounding toward − ∞ or for rounding away from zero

Chapter IX: Floating-Point Data and Operations 695

− Otherwise, 0 is selected.

• If 0 < Z < +DMin, then

− +DMin is selected for for rounding toward + ∞ or for rounding away from zero
− Otherwise, 0 is selected.

These rounding modes are illustrated in Table 331:

Table 331. Example of D F P rounding modes

We'll see how to set a default “global” decimal floating-point rounding mode in Section 35.12
starting on page 718; one other rounding type (“Round to prepare for shorter precision”) is
described there.

35.5.2. Preferred Exponent and Quantum

When a decimal floating-point calculation generates a result, if the result is inexact to the oper-
ands' precisions, a choice must sometimes be made among several possible cohort members
having the correct value. Using numbers with seven-digit maximum precision, suppose we add
two numbers having the same exponent (and quantum):

123.450 123450.×10**-3 Exponent = -3, Quantum = .001
+ 6.228 6228.×10**-3 Exponent = -3, Quantum = .001
129.678 129628.×10**-3 Exponent = -3, Quantum = .001

the sum has the same exponent and quantum so long as greater precision isn't needed for the
significand.

Suppose the two numbers have different exponents/quanta:

123.45 12345.×10**-2 Exponent = -2, Quantum = .01
+ 6.228 6228.×10**-3 Exponent = -3, Quantum = .001
129.678 129628.×10**-3 Exponent = -3, Quantum = .001

In this case, the same result should have the same quantum as before, so we assign the smaller
exponent/quantum of the two operands. This choice preserves all the significant digits.

It doesn't matter if the low-order digit is zero; the smaller quantum is still chosen: this is the
“preferred quantum” for exact results.

123.45 12345.×10**-2 Exponent = -2, Quantum = .01
+ 6.220 6220.×10**-3 Exponent = -3, Quantum = .001
129.670 129670.×10**-3 Exponent = -3, Quantum = .001

If the result is inexact, a different rule is needed. Using 7-digit precision, suppose we add:

123.45 12345.×10**-2 Exponent = -2, Quantum = .01
+ 6.22801 622801.×10**-5 Exponent = -5, Quantum = .00001
129.67801 Quantum = ???, inexact result

The result will be inexact because it must be rounded to seven significant digits (the example uses
rounding toward zero). Thus, the possible same-valued results with 7 digits are 129.6780 and
0129.678; these are two members of a cohort having quanta .0001 and .001 respectively. The

Rounding Mode 12.341 12.345 12.349 12.355 − 12.345

Round to nearest, ties to even 12.34 12.34 12.35 12.36 −12.34

Round to nearest, ties away
from zero 12.34 12.35 12.35 12.36 −12.35

Round toward + ∞ 12.35 12.35 12.35 12.36 −12.34

Round toward − ∞ 12.34 12.34 12.34 12.35 −12.35

Round toward zero (truncate) 12.34 12.34 12.34 12.35 −12.34

Round away from zero 12.35 12.35 12.35 12.36 −12.35

696 Assembler Language Programming for IBM System z™ Servers Version 2.00

smaller quantum is preferred, so the first value 129.6780 is delivered; it is the result with the
greater precision.

A similar rule applies to multiplication: the exponent of the product is the sum of the two
operand exponents, and the product quantum is the product of the two operand quanta.
Assuming 7-digit precision,

11.11 1111.×10**-2 Exponent = -2, Quantum = .01
× 22.2 222.×10**-1 Exponent = -1, Quantum = .1
246.642 246642.×10**-3 Exponent = -3, Quantum = .001, exact result

For an exact result, the exponent is the sum of the two exponents, and the quantum is the
product of the quanta of the two operands. Now, suppose we generate the inexact product of
11.01 and 22.002, and the exact result 242.242020 must be rounded:

11.01 1101.×10**-2 Exponent = -2, Quantum = .01
× 22.002 22002.×10**-3 Exponent = -3, Quantum = .001
242.24202 24224202.×10**-5 Exponent = -5, Quantum = .00001, inexact

Again assuming the result is truncated to 7 significant digits, we must choose one of two possible
cohort members: 242.2420 (with quantum .0001) and 0242.242 (with quantum .001). As we saw
for addition, the preferred quantum is the smaller, so the delivered result is 242.2420, with the
greater precision.

Similar considerations apply to division. The exponent of the quotient is the exponent of the
divisor subtracted from the exponent of the dividend, and the quantum of the quotient is the
quantum of the dividend divided by the quantum of the divisor. Consider an exact result:

655.36 65536.×10**-2 Exponent = -2, Quantum = .01
÷ 12.8 128.×10**-1 Exponent = -1, Quantum = .1

51.2 512.×10**-1 Exponent = -1, Quantum = .1

For this exact result, the preferred quantum is the quotient of the operand quanta, in this case
.01÷ .1 = .1.

Now, consider an inexact result: the quotient of 10000.1 ÷ 2.0001 is 4999.8000099..., which must
be rounded to seven significant digits:

10000.1 100001.×10**-1 Exponent = -1, Quantum = .1
÷ 2.0001 20001.×10**-4 Exponent = -4, Quantum = .0001
4999.800... Exponent = -3, Quantum = .001

The cohort containing the result has three members: 004999.8 (with quantum 0.1) 04999.80 (with
quantum .01), and 4999.800 (with quantum .001). The chosen result is the last of these, with the
smallest exponent and quantum, and the largest number of significant digits.

This example shows an inexact quotient with only one cohort member:

10. 0.×10**0 Exponent = 0, Quantum = 1
÷ .03 3.×10**-2 Exponent = -2, Quantum = .01
333.3333... 3333333.×10**-4 Exponent = -4, Quantum = .0001

where the infinitely-repeating result has been truncated to 7 digits. If the result had been exact,
the quantum would have been 100; but for an inexact result, the cohort member (in this case,
there's only one!) with the smallest quantum is chosen.

These rules are summarized in Table 332 on page 698.

Chapter IX: Floating-Point Data and Operations 697

Table 332. Preferred quanta for some decimal floating-point operations

These examples help show that the exponent and quantum chosen for a delivered result generally
retain the maximum number of significant digits. Low-order digits are preserved until the number
of significant digits exceeds the precision p of the representation. Thus, values are right-
normalized so long as the number of significant digits is less than p, and left-normalized when the
number is greater than p.

We might characterize the treatment of preferred exponent and quantum233 this way:

Preferred Exponent and Quantum

Decimal floating-point arithmetic tries to give the best available fixed-
point result unless it can't, and then it gives you the most precise avail-
able rounded floating-point result.

35.5.3. DFP Exceptions

In addition to the exceptions described in Section 34.4 starting on page 649, the quantum excep-
tion is provided for decimal floating-point. This exception condition is caused when a result has a
different quantum from the preferred quantum. This is rarely a concern to most programs.

There are two decimal floating-point “q” bits defined in the Floating-Point Control Register,
shown in Figure 446. (The decimal floating-point rounding mode bits are described in Section
35.12.)

Operation Result Preferred Quantum

Add, Subtract
Exact Smaller of the two source quanta, or the

quantum closest to it

Inexact Smallest quantum of result's cohort members

Multiply
Exact Product of the two source quanta

Inexact Smallest quantum of result's cohort members

Divide
Exact Quotient of the two source quanta

Inexact Smallest quantum of result's cohort members

8 8 8 8
┌───────────────┬───────────────┬───────────────┬───────────────┐
│ │ │ Data Excep'n │ Rounding │
│ Mask Bits │ Flag Bits │ Code (DXC) │ Mode Bits │
│ │ │ │ │
│i z o u x q 0 0│i z o u x q 0 0│i z o u x y 0 0│0 DRM 0 0 BRM│
└─┴─┘

Figure 446. Floating-Point Control (FPC) register

Bit Meaning

q (bit 5) Quantum exception

In addition to the Data Exception Code values listed in Table 278 on page 650, there are two
further codes that might be placed in the DXC when you execute a DFP instruction:

233 Rather than the term “preferred quantum”, the IEEE-754 standard uses “preferred exponent” instead:

“For all computational operations except quantize and roundToIntegralExact, if the result is inexact the
cohort member of least possible exponent is used to get the maximum number of significant digits. If the
result is exact, the cohort member is selected based on the preferred exponent for a result of that operation,
a function of the exponents of the inputs. Thus, for finite x, depending on the representation of zero, 0 + x
might result in a different member of x's cohort. If the result's cohort does not include a member with the
preferred exponent, the member with the exponent closest to the preferred exponent is used.”

698 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 333. Decimal floating-point additional DXC value

The CPU's behavior for a quantum exception is shown in Table 334:

Table 334. Decimal floating-point quantum exception

In other words, the delivered result is the same whether or not you enable an exception.

The other exceptions generated by decimal floating-point operations are the same as those for
binary floating-point described in Section 34.4.3 on page 651, and the other mask and flag bits in
the first and second bytes are as described in Section 34.4 on page 649.

35.4.4. Overflow/Underflow Scale Factors (*)

When exponent overflow and underflow exceptions are enabled, the exponent of the delivered
result is scaled by adding or subtracting a factor that causes the exponent to lie near the middle of
the exponent range for that representation. These scale factors are shown in Table 335.

Table 335. Decimal floating-point scale factors for exponent spills

For overflows, the scale factor is subtracted from the overflowed exponent, and for underflows it
is added to the underflowed exponent.

Exercises

35.5.1.(2)+ Does the choice of the smallest quantum for an inexact result mean that the
significand is left-normalized?

35.5.2.(1) What will happen if you attempt to execute a DFP instruction on a CPU where
DFP instructions are not available?

DXC Meaning

03 a DFP instruction is attempting to execute on a CPU where DFP instructions are
available, but are not enabled.

04 a DFP instruction has delivered a result with a quantum that is different from the
preferred quantum.

Mask bit = 1 Mask bit = 0

An interruption occurs: the DXC is set to
X'04', and the quantum of the result is set to
the quantum closest to the preferred
quantum.

The result is the cohort member with
quantum closest to the preferred quantum.
The q flag bit is set to 1.

Long Extended

576 9216

35.6. Decimal Floating-Point Data Movement Instructions

These instructions were described in Section 31.9 starting on page 568, and are mentioned here
because they can be used for decimal floating-point operands. They have no dependence on any
floating-point representation, and the CC is not changed.

35.6.1. Copy Sign

The CPSDR instruction copies the long second operand to the first operand register, giving it the
sign of the third operand.

Chapter IX: Floating-Point Data and Operations 699

Table 336. Copy Sign instruction

Op Mnem Type Instruction

B372 CPSDR R R F Copy Sign (Long)

The instruction format is

CPSDR R1,R3,R2
so you could write

CPSDR 1,5,8 Copy FPR8 to FPR1 with FPR5's sign

35.6.2. Copy between General and Floating-Point Registers

The LDGR and LGDR instructions copy long operands between a GPR and a FPR.

Table 337. Instructions moving data between FPRs and GPRs

Op Mnem Type Instruction Op Mnem Type Instruction

B3C1 LDGR RXY Load FPR from GPR
(Long)

B3CD LGDR RXY Load GPR from FPR
(Long)

Their instruction format is

mnemonic R1,R2

To copy the contents of GG3 to FPR6, and from FPR2 to GG0, you could write

LDGR 6,3 Copy c(GG3) to FPR6
LGDR 0,2 Copy c(FPR2) to GG0

35.6.3. Copy Among Floating-Point Registers

Table 338 lists the instructions for moving floating-point operands among the floating-point regis-
ters. (They were introduced in System/360 for moving hexadecimal floating-point operands, but
can just as well be used for binary and decimal operands.)

Table 338. Instructions copying data between FPRs

Op Mnem Type Instruction Op Mnem Type Instruction

38 LER R R Load FPR from FPR
(Short)

28 LDR R R Load FPR from FPR
(Long)

B365 LXR RRE Load FPR from FPR
(Extended)

For example:

LER 5,8 Copy short c(FPR8) to FPR5
LDR 4,2 Copy long c(FPR4) to FPR2
LXR 1,12 Copy extended c(FPR12,FPR14) to (FPR1,FPR3)

Always remember that both operands of the LXR instruction must refer to valid FPR pairs.

Exercises

35.6.1.(1) What is the difference between these instructions?

LDR 8,1
LDR 10,3

and
LXR 8,1

700 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.7. Decimal Floating-Point Arithmetic Instructions

We'll start with the basic arithmetic operations of multiplication, division, addition, and sub-
traction; the instructions are listed in Table 339. All the operations are rounded according to the
current rounding mode in the FPCR.

Table 339. Decimal floating-point basic arithmetic instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3D0 M D T R R R R Multiply (Long) B3D8 MXTR R R R Multiply (Extended)

B3D0 MDTRA R R R Multiply (Long) B3D8 MXTRA R R R Multiply (Extended)

B3D1 DDTR R R R Divide (Long) B3D9 DXTR R R R Divide (Extended)

B3D1 DDTRA R R R Divide (Long) B3D9 DXTRA R R R Divide (Extended)

B3D2 ADTR R R R Add (Long) B3DA AXTR R R R Add (Extended)

B3D2 ADTRA R R R Add (Long) B3DA AXTRA R R R Add (Extended)

B3D3 SDTR R R R Subtract (Long) B3DB SXDR R R R Subtract (Extended)

B3D3 SDTRA R R R Subtract (Long) B3DB SXDRA R R R Subtract (Extended)

All decimal floating-point arithmetic instructions are register-register operations, unlike some
hexadecimal and binary floating-point instructions that support register-storage operations. All
can be “non-destructive” because neither source operand need be overwritten by the result.

The format of the instructions without an “A” suffix on the mnemonics is shown in Table 340:

Table 340. Format of D F P arithmetic instructions

where the shaded field is filled with B'0000' by the Assembler.

Their assembler instruction statements have operand format

mnemonic R1,R2,R3
where the two source operands are in floating-point registers R2 and R3, and the result is placed
in floating-point register R1.

The operands must all be long or all extended precision; there are no arithmetic operations for
short-precision or mixed-length operands.

The format of the instructions with an “A” suffix on the mnemonics is shown in Table 341:

Table 341. Format of D F P arithmetic instructions with
rounding mask

allowing the programmer to specify a M4 rounding mask value.

Their assembler instruction statements have operand format

mnemonic R1,M4,R2,R3
Again, the two source operands are in floating-point registers R2 and R3, and the result is placed
in floating-point register R1. The rounding mask M4 applies only to the current instruction, and
has the values and effects shown in Table 342 on page 702:

opcode R3 R1 R2

opcode R3 M4 R1 R2

Chapter IX: Floating-Point Data and Operations 701

Table 342. Instruction-specific rounding mask values

The mnemonics with the “A” suffix have the same opcodes as the instructions without a suffix.
The new mnemonics were introduced so the Assembler can correctly identify the four operands.

35.7.1. Multiplication

The decimal floating-point multiply instructions leave the Condition Code unchanged. You can
think of the operation this way:

operand1 ← operand2 × operand3

The exponent of the product is the sum of the exponents of the two operands.

Unlike hexadecimal and binary floating-point multiplication, there are no instructions to form
“double-length” products from “single-length” operands; results have the same format as the
operands. For example:

LD 4,=DD'75.22'
MDTR 1,4,4 c(FPR1) = c(FPR4)**2

LD 8,=DD'1.41421'
MDTR 2,4,8 c(FPR2)=75.22*1.41421

LD 0,DDec1 High-order half to FPR0
LD 2,DDec1+8 Low-order half to FPR2
MXTR 8,0,0 c(FPR8,FPR10) = c(FPR0,FPR2)**2
- - -

DDec1 DC LD'0.1' 16-byte decimal floating-point constant

For finite results, the quantum of the product is chosen as shown in Table 332 on page 698.

If underflow or overflow occur, the appropriate exception is signaled; if enabled, the rounded
result is delivered to the target register and an interruption occurs. Otherwise, the exponent is
scaled and the corresponding flag bit in the FPCR is set to 1.

If either operand is a QNaN, that QNaN is the delivered result; if both are QNaNs, the R2
operand is the result. Any SNaN operand, or multiplying zero and infinity, causes an invalid-
operation exception.

To illustrate exponent scaling on overflow, suppose we multiply the decimal floating-point con-
stant (Max) by itself, with the interruption enabled for exponent overflow:

Mask Effect Mask Effect

B'0000' Use current DFP rounding mode B'1000' Round to nearest with ties to
even

B'0001' Round to nearest with ties away
from 0 (“traditional” round) B'1001' Round toward 0

B'0010' Use current DFP rounding mode B'1010' Round toward + ∞

B'0011' Round to prepare for shorter pre-
cision B'1011' Round toward − ∞

B'0100' Round to nearest with ties to
even B'1100' Round to nearest with ties away

from 0

B'0101' Round toward 0 B'1101' Round to nearest with ties
toward 0

B'0110' Round toward + ∞ B'1110' Round away from 0

B'0111' Round toward − ∞ B'1111' Round to prepare for shorter
precision

702 Assembler Language Programming for IBM System z™ Servers Version 2.00

LD 0,=DD'(Max)' c(FPR0) = X'77FCFF3FCFF3FCFF'
MDTR 2,0,0 c(FPR2) = X'7500FF3FCFF3FCFE'

The overflowed exponent (384 +384=768) is scaled by subtracting 576 (from Table 335 on
page 699), giving a scaled exponent 192, which happens to be exactly half the maximum expo-
nent, 384. The scaled result is now in “mid-range”.

35.7.2. Division

The decimal floating-point divide instructions leave the Condition Code unchanged, and no
remainder — integer or fraction — is calculated. The second operand (the dividend) is divided by
the third operand (the divisor). The quotient is rounded according to the current DFP rounding
mode, and replaces the first operand. You can think of the operation this way:

operand1 ← operand2 ÷ operand3

The exponent of the quotient is the exponent of the divisor subtracted from the exponent of the
dividend. For example:

LD 0,=DD'1' c(FPR0) = 1 = X'2238000000000001'
LD 1,=DD'3' c(FPR1) = 3 = X'2238000000000003'
DDTR 2,0,1 c(FPR2) = 1/3 = X'2DF9B36CDB36CDB3'

For finite results, the quantum of the quotient is chosen as shown in Table 332 on page 698.

If underflow or overflow occur, the appropriate exception is signaled; if enabled, the rounded
result is delivered to the target register and an interruption occurs. Otherwise, the exponent is
scaled and the corresponding flag bit in the FPCR is set to 1.

Dividing a finite number by infinity returns a zero quotient, and dividing a finite number by zero
causes a divide-by-zero exception (which if masked off, returns infinity as the quotient).

Dividing zero by zero or infinity by infinity, or any SNaN operand, causes an invalid-operation
exception. A SNaN operand is returned, unless both are SNaNs in which case the dividend SNaN
is delivered. A QNaN divisor returns a canonical QNaN.

35.7.3. Addition and Subtraction

You can think of these operations this way:

operand1 ← operand2 ± operand3

The results from addition and subtraction depend on whether or not the result is exact. We'll
illustrate using 7-digit operands:

• If the result is exact, the preferred quantum is the smaller of the quanta of the two source
operands, or (if the smaller can't be represented) the quantum closest to the smaller.

For example, this sum produces an exact result:

1.234 Quantum = .001
+ .34567 Quantum = .00001
1.57967 Quantum = .00001

and the result has the smaller quantum. In the next example, the result is exact but the smaller
quantum can't be assigned:

1.234000 Quantum = .000001 = 10**-6
+ .3456700 Quantum = .0000001 = 10**-7
1.5796700 Quantum = .0000001 ?

In this case there are two cohort members with the same value: 1.579670 and 01.57967, with
quanta 10 −6 and 10−5 respectively. The quantum closest to the preferred value (10−7) is 10−6,
so the delivered result is 1.579670.

• If the result is inexact, the preferred quantum is the smallest of the quanta of the result's
cohort members.

Chapter IX: Floating-Point Data and Operations 703

For example, this sum produces an inexact result:

1.234321 Quantum = .000001
+ .3454321 Quantum = .0000001
1.579753 Quantum = .000001

and the (rounded) sum has the larger quantum because the cohort has only one member.

There may be more than one member of the cohort containing the result. For example:

1.111201 Quantum = .000001
- .1111009 Quantum = .0000001
1.000100 Quantum = .000001

where the rounded result has discarded the low-order one. There are three cohort members:
1.000100, 01.00010, and 001.0001; the first has the smallest quantum and greatest number of
significant digits among these cohort members.

These rules preserve as many low-order digits as possible.

Adding a finite number to infinity produces infinity, as does adding like-signed infinities. Adding
infinities of opposite signs causes an invalid-operation exception. If the exception is masked off a
default QNaN is delivered and the CC is set to 3.

Any SNaN operand delivers a SNaN result, and the CC is set to 3. QNaNs generate an invalid-
operation exception; if masked off, the CC is set to 3.

For example:

LD 0,=DD'1' c(FPR0) = 1
LD 4,=DD'(Inf)' c(FPR4) = +infinity
ADTR 2,0,0 c(FPR2) = 2, CC=2
ADTR 2,0,4 c(FPR2) = +infinity, CC=2
SDTR 2,0,4 c(FPR2) = -infinity, CC=1
SDTR 2,4,4 Invalid-operation exception

Table 343 shows how the decimal floating-point add and subtract instructions set the Condition
Code:

Table 343. CC settings for Add/Subtract instructions

Exercises

35.7.1.(2)+ Assuming the same initial contents of FPR0 and FPR2 in each case, what result of
each of these operations will be in FPR4?

LD 0,=DD'-1'
LD 2,=DD'-(Inf)'

(1) DDTR 4,0,2
(2) DDTR 4,2,0
(3) MDTR 4,2,0
(4) SDTR 4,0,2

CC Meaning

0 Result is zero

1 Result is less than zero

2 Result is greater than zero

3 Result is a NaN

704 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.8. Decimal Floating-Point Compare Instructions

We'll look at three groups of decimal floating-point compare instructions:

• arithmetic compare

• compare and signal

• compare biased exponent (characteristic)

All have operand format R1,R2. The first operand is compared to the second, and the CC is set to
indicate the result, as shown in Table 344. All these compare instructions set the Condition
Code in the same way.

Table 344. CC settings for Compare instructions

35.8.1. Compare

These two instructions work just like other arithmetic comparisons, except that the presence of
any QNaN sets the CC to 3. If either operand is a SNaN, an invalid operation exception occurs;
if it is masked off, the CC is set to 3.

CC Meaning

0 Operands are equal

1 First operand is low

2 First operand is high

3 Operands are unordered

Table 345. Decimal floating-point Compare instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3E4 CDTR RRE Compare (Long) B3EC CXTR RRE Compare (Extended)

For example, these comparisons set the CC as indicated in the comments:

LD 0,=DD'(Inf)' c(FPR0) = +Infinity
LD 1,=DD'(QNaN)' c(FPR1) = +QNaN
LD 2,=DD'2' c(FPR0) = +2
LD 3,=DD'(SNaN)' c(FPR0) = +SNaN

*
CDTR 0,2 CC = 2 (+Infinity > +2)
CDTR 0,1 CC = 3 (unordered)
CDTR 2,0 CC = 1 (+2 < +Infinity)
CDTR 2,2 CC = 0
CDTR 2,3 Invalid operation exception

35.8.2. Compare and Signal

The two Compare and Signal instructions in Table 346 behave just like the ordinary compare
instructions, except that any NaN, Quiet or Signaling, causes an invalid operation exception.
Again, if the exception is masked off, the CC is set to 3.

Table 346. Decimal floating-point Compare and Signal instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3E0 KDTR RRE Compare and Signal
(Long)

B3E8 KXTR RRE Compare and Signal
(Extended)

These comparisons set the CC as indicated in the comments:

Chapter IX: Floating-Point Data and Operations 705

LD 0,=DD'(Inf)' c(FPR0) = +Infinity
LD 1,=DD'(QNaN)' c(FPR1) = +QNaN
LD 2,=DD'2' c(FPR0) = +2
LD 3,=DD'(SNaN)' c(FPR0) = +SNaN

*
KDTR 0,2 CC = 2 (+Infinity > +2)
KDTR 0,1 Invalid operation exception
KDTR 2,0 CC = 1 (+2 < +Infinity)
KDTR 2,2 CC = 0
KDTR 2,3 Invalid operation exception

The main reason to use the Compare and Signal instructions is to avoid the propagation of NaNs
through a computation, perhaps to stop before useless results have been generated.

35.8.3. Compare Biased Exponent

It is sometimes useful to compare the characteristics of two decimal floating-point operands using
the instructions in Table 347.

Table 347. Decimal floating-point Compare Biased Exponent instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3F4 CEDTR RRE Compare Biased Exponent
(Long)

B3FC CEXTR RRE Compare Biased Expo-
nent (Extended)

These instructions compare the biased exponent (characteristic) of the operands, including infinity
and any type of NaN. Table 348 shows the Condition Code setting:

Table 348. CC settings for Compare Biased Exponent instructions

If both operands are finite, the CC is set to 0, 1, or 2. Otherwise, comparing the characteristic of
any infinity to another, or of any NaN to another, sets the CC to zero. Other combinations of
operands set the CC to 3.

These examples show some biased exponent comparisons:

LD 0,=DD'(Inf)' c(FPR0) = +Infinity
LD 1,=DD'(QNaN)' c(FPR1) = +QNaN
LD 2,=DD'2' c(FPR0) = +2
LD 3,=DD'2E75' c(FPR0) = +2*(10**75)

*
CEDTR 0,2 CC = 3 (Finite vs. Infinity)
CEDTR 1,1 CC = 0 (NaN vs. NaN)
CEDTR 2,1 CC = 3 (Finite vs. NaN)
CEDTR 2,3 CC = 1 (2 vs. 2*(10**75))
CEDTR 0,0 CC = 0 (Infinity vs. Infinity)

Exercises

35.8.1.(1)+ Make a table showing the CC settings after comparing the biased exponents (char-
acteristics) of a finite value, a NaN, and an infinity among one another.

CC Meaning

0 Characteristics equal

1 First-operand characteristic is low

2 First-operand characteristic is high

3 Operands are unordered

706 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.9. Converting Decimal Floating-Point To and From Fixed Binary

The instructions in Table 349 convert fixed-point binary integers in a 64-bit general register to
and from a decimal floating-point value in a floating-point register.

Table 349. Decimal floating-point convert to/from fixed binary instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3F1 CDGTR RRE Convert from Fixed
(Long←64)

B3F1 CDGTRA RRE Convert from Fixed
(Long←64)

B3F9 CXGTR RRE Convert from Fixed
(Extended←64)

B3F9 CXGTRA RRE Convert from Fixed
(Extended←64)

B3E1 CGDTR R R F Convert to Fixed
(64←Long)

B3E1 CGDTRA R R F Convert to Fixed
(64←Long)

B3E9 CGXTR R R F Convert to Fixed
(64←Extended)

B3E9 CGXTRA R R F Convert to Fixed
(64←Extended)

35.9.1. Convert From Fixed Binary To DFP

These four instructions convert a 64-bit binary integer in the R2 general register to a long or
extended decimal floating-point value in the R1 floating-point register, and the Condition Code is
unchanged. For the instructions without an “A” suffix, the instruction format is

mnemonic R1,R2

For the instructions with an “A” suffix, the instruction format is

mnemonic R1,M3,R2,M4
The values of the M3 rounding mask are shown in Table 342 on page 702, and the M4 mask has
bit settings to optionally suppress certain exception conditions.

The preferred quantum for an exact result is 1; for an inexact result, an exception might be indi-
cated, and the preferred quantum is the smallest.

To illustrate, suppose we convert three binary values containing 17 decimal digits to long decimal
floating-point, with default rounding:

LG 0,=FD'12345678901234560' 17 digits
CDGTR 0,0 c(FPR0)=X'263D34B9C1E28E56'

LG 0,=FD'12345678901234565' 17 digits
CDGTR 0,0 c(FPR0)=X'263D34B9C1E28E56'

LG 0,=FD'12345678901234569' 17 digits
CDGTR 0,0 c(FPR0)=X'263D34B9C1E28E57'

In the first case, the result is exact because the final decimal digit is zero. The second case is
rounded to the same value because the DFP value lies exactly between two decimal values so the
result has an even low-order digit, and the third is rounded up to the next higher value.

Converting very large binary values does not cause overflow:

LG 0,=X'7FFFFFFFFFFFFFFF' Maximum positive value
CDGTR 0,0 c(FPR0)=X'6E45237C836973F6'

but because 263 −1 is 19 digits long, the decimal floating-point result was rounded to 16 decimal
digits.

35.9.2. Convert From DFP To Fixed Binary

The instructions that convert from decimal floating-point to binary integers whose mnemonics
have no suffix have the format shown in Table 350 on page 708:

Chapter IX: Floating-Point Data and Operations 707

Table 350. Format of Convert to Fixed Binary instructions

The assembler instruction statement format is

mnemonic R1,M3,R2

For the instructions with a suffix A, the instruction format is shown in Table 351:

Table 351. Format of Convert to Fixed Binary instructions

Their assembler instruction statement format is

mnemonic R1,M3,R2,M4
As noted above, the M4 field can be used to mask certain exception conditions.

The decimal floating-point operand in the R2 floating-point register is rounded to a binary integer
in the R1 general register according to the M3 rounding modifier described in Table 342 on page
702.

Figure 447 shows some examples of proper conversions; those with CGXTR instructions use
16-byte extended-precision values that can hold all the digits of the full 19-digit maximum-integer
value.

opcode M3 R1 R2

opcode M3 M4 R1 R2

LD 0,=DD'127'
CGDTR 0,B'0000',0 c(GG0)=X'000000000000007F'
LD 0,=DD'-3'
CGDTR 0,B'0000',0 c(GG0)=X'FFFFFFFFFFFFFFFD'

LD 0,=LD'9223372036854775807' 2**63-1 = +MaxPos
LD 2,=LD'9223372036854775807'+8 2**63-1 = +MaxPos
CGXTR 0,B'0000',0 c(GG0)=X'7FFFFFFFFFFFFFFF'

LD 0,=LD'-9223372036854775808' -2**63 = -MaxNeg
LD 2,=LD'-9223372036854775808'+8 -2**63 = -MaxNeg
CGXTR 0,B'0000',0 c(GG0)=X'8000000000000000'

Figure 447. Examples of converting decimal floating-point to fixed binary

In each case, the Condition Code is set according to the result, as shown in Table 352:

Table 352. CC settings for Convert to Fixed instructions

Cases where the decimal floating-point value exceeds the representable range of a 64-bit binary
integer are handled either by causing an invalid operation exception, or (if the exception is masked
off) by setting the CC to 3 and the result to the maximum positive or negative integer, according
to the sign of the decimal floating-point operand.

The following CGXTR instructions each cause an invalid operation exception, but because the
exception is masked off the CC is set to 3 and the results are the default maximum and minimum
integer values.

CC Meaning

0 Source was zero

1 Source was less than zero

2 Source was greater than zero

3 Special case

708 Assembler Language Programming for IBM System z™ Servers Version 2.00

LFPC =F'0' Mask off all exceptions
LD 0,=LD'9223372036854775808' 2**63 = +MaxPos+1
LD 2,=LD'9223372036854775808'+8 Low-order half
CGXTR 0,B'0000',0 c(GG0)=X'7FFFFFFFFFFFFFFF'

LD 0,=LD'-9223372036854775809' -2**63-1 = -MaxNeg-1
LD 2,=LD'-9223372036854775809'+8 Low-order half
CGXTR 0,B'0000',0 c(GG0)=X'8000000000000000'

Figure 448. Examples of converting decimal floating-point to binary integer

Exercises

35.9.1.(3)+ Suppose two extended precision decimal floating-point numbers have the value of
the 64-bit maximum positive integer plus 1/2 and the maximum negative integer minus 1/2:

LD 0,=LD'9223372036854775807.5' +MaxPos+1/2
LD 2,=LD'9223372036854775807.5'+8 +MaxPos+1/2
CGXTR 0,Mp,0

LD 0,=LD'-9223372036854775808.5' -MaxNeg-1/2
LD 2,=LD'-9223372036854775808.5'+8 -MaxNeg-1/2
CGXTR 0,Mm,0

For what values of the rounding modifier mask fields Mp and Mm will an invalid operation excep-
tion be avoided?

35.10. Converting Decimal Floating-Point To/From Packed and Zoned Decimal

As you might expect, converting decimal floating-point data to displayable decimal digits is far
simpler than for hexadecimal and binary floating-point data. These instructions make the process
quite simple. None of the instructions change the Condition Code.

The packed decimal operands are in general registers, not in memory.

35.10.1. Convert To/From Signed Packed Decimal

For signed packed decimal operands, use the instructions in Table 353:

Table 353. Decimal floating-point convert to/from signed packed decimal instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3F3 CDSTR RRE Convert from 64-bit
Signed Packed (Long)

B3FB CXSTR RRE Convert from 128-bit
Signed Packed
(Extended)

B3E3 CSDTR R R F Convert to 64-bit
Signed Packed (Long)

B3EB CSXTR R R F Convert to 128-bit Signed
Packed (Extended)

When converting from packed decimal to decimal floating-point you don't need to worry about
rounding, because 15-digit and 31-digit packed decimal operands in a general register or general
register pair (respectively) can be represented exactly in long and extended formats.

When you convert to packed decimal from decimal floating-point using the CSDTR and CSXTR
instructions, you might want to select the sign code. the instruction format in Table 354 provides
an M4 field to select the sign code:

Table 354. Format of Convert to Signed Packed instructions

opcode M4 R1 R2

Chapter IX: Floating-Point Data and Operations 709

The M4 mask uses only a single bit. If M4=0, the + sign code of the packed decimal result is
X'C', and if M4=1, the + sign code is X'F'.234 For negative numbers, the packed decimal sign
code is X'D'.

The machine instruction statement operands for converting to packed decimal are written

mnemonic R1,R2,M4
and those for converting from packed decimal are written

mnemonic R1,R2

First, consider converting from signed packed decimal to decimal floating-point:

LG 7,=PL8'123456789012345' c(GG7)=X'123456789012345C'
CDSTR 4,7 c(FPR4)=X'2238A395BCF049C5'

LG 8,=X'1234567890123456' High-order 16 digits
LG 9,=X'789012345678901C' Low-order 15 digits, sign
CXSTR 0,8 Convert to extended DFP

* c(FPR0,FPR2)=X'22080014D2E7078A 395BCF049C5DE08D'
Figure 449. Converting signed packed decimal to decimal floating-point

As this example indicates, both operands of the CXSTR instruction must be register pairs.

Converting from packed decimal to decimal floating-point is straightforward. Converting in the
other direction, however, is a bit more complex. First, we'll start with the decimal floating-point
values in Figure 449, and convert them to signed packed decimal.

LD 4,=X'2238A395BCF049C5' c(FPR4)=DD'123456789012345'
CSDTR 7,4,B'0000' c(GG7)=X'123456789012345C'

LD 0,=X'22080014D2E7078A' High-order half
LD 2,=X'395BCF049C5DE08D' Low-order half
CXSTR 8,0,B'0000' Convert to packed decimal

* c(GG8,GG9)=X'1234567890123456 789012345678901C'
Figure 450. Converting decimal floating-point to signed packed decimal

In Figure 450 we started with decimal floating-point values containing 15 and 31 significant digits.
Because long and extended decimal floating-point data can hold 16 and 34 significant digits, these
two instructions will convert only the rightmost 15 and 31 digits to packed decimal, as shown in
Figure 451.

LD 0,=DD'1234567890123456' 16 significant digits
CSDTR 3,0,B'0000' c(GG3)=X'234567890123456C'

LD 1,=LD'1234567890123456789012345678901234' 34 digits
LD 3,=LD'1234567890123456789012345678901234'+8 34 digits
CSXTR 4,1,B'0000' Convert to packed decimal

* c(GG4,GG5)=X'4567890123456789 012345678901234C'
Figure 451. Converting decimal floating-point to signed packed decimal

This example shows that one or three high-order digits can be lost when converting from decimal
floating-point to signed packed decimal.

It doesn't matter if the DFP operand is a NaN or infinity; the “significand” is converted anyway.
For example:

234 Since M4 is only a single bit, it's not really a “mask”; the other bit positions are reserved.

710 Assembler Language Programming for IBM System z™ Servers Version 2.00

LD 0,=DD'(Inf)' c(FPR0)=X'7800000000000000'
CSDTR 1,0,B'0000' c(GG1)=X'000000000000000C'

LD 0,=DD'(SNaN)' c(FPR0)=X'7E00000000000000'
CSDTR 2,0,B'0000' c(GG2)=X'000000000000000C'

Be Careful!

When converting decimal floating-point data to signed packed decimal
using the CSDTR instruction, you may lose one high-order digit; and
when using CSXTR, you may lose three high-order digits.

We'll see in Section 35.12.4 that the Shift Significand instructions let you convert the “lost” digits.

35.10.2. Convert To/From Unsigned Packed Decimal

The instructions in Table 355 convert decimal floating-point data to unsigned packed decimal
digits in a general register.

Table 355. Decimal floating-point convert to/from unsigned packed decimal instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3F2 CDUTR RRE Convert from 64-bit
Unsigned Packed
(Long)

B3FA CXUTR RRE Convert from 128-bit
Unsigned Packed
(Extended)

B3E2 CUDTR RRE Convert to 64-bit
Unsigned Packed
(Long)

B3EA CUXTR RRE Convert to 128-bit
Unsigned Packed
(Extended)

Because no sign code is generated for the unsigned packed decimal results, 16 or 32 digits can be
converted, and no digits are lost for long precision decimal floating-point data. CUXTR, however,
loses the two high-order digits.

CUDTR and CUXTR provide no M4 operand as do CSDTR and CSXTR, so their machine
instruction statement operand format is R1,R2.

We'll use the examples as for conversions to signed packed decimal, to see the difference in the
number of generated digits. Figure 452 shows how to convert from unsigned packed decimal to
decimal floating-point.

LG 7,=XL8'1234567890123456' c(GG7)=X'1234567890123456'
CDUTR 4,7 c(FPR4)=X'263934B9C1E28E56'

LG 8,=X'1234567890123456' High-order 16 digits
LG 9,=X'7890123456789012' Low-order 16 digits
CXUTR 0,8 Convert to extended DFP

* c(FPR0,FPR2)=X'2208012717782353 4B9C1E28E56F3C12'
Figure 452. Converting unsigned packed decimal to decimal floating-point

These examples convert from decimal floating-point to unsigned packed decimal:

LD 4,=DD'1234567890123456' c(FPR4)=X'263934B9C1E28E56'
CUDTR 7,4 c(GG0)=X'1234567890123456'

LD 0,=LD'12345678901234567890123456789012' High half
LD 2,=LD'12345678901234567890123456789012'+8 Low half
CUXTR 8,0 Convert to packed decimal

* c(GG8,GG9)=X'1234567890123456 7890123456789012'
Figure 453. Converting decimal floating-point to unsigned packed decimal

Chapter IX: Floating-Point Data and Operations 711

If we compare Figure 453 on page 711 to Figure 451 on page 710, we see that the lack of a sign
code lets us generate one more packed decimal digit in place of the sign code.

Because it's easy to determine the sign of a decimal floating-point number, most programs con-
verting decimal floating-point to packed decimal will probably use the unsigned conversions, to
generate the largest possible number of digits.

NaNs and infinity are converted to unsigned packed decimal without causing exceptions:

LD 0,=DD'(Inf)' c(FPR0)=X'7800000000000000'
CUDTR 1,0 c(GG1)=X'0000000000000000'

LD 0,=DD'(SNaN)' c(FPR0)=X'7E00000000000000'
CUDTR 2,0 c(GG2)=X'0000000000000000'

Be Careful!

When converting decimal floating-point data to unsigned packed decimal
using the CUXTR instruction, you may lose two high-order digits.

We'll see in Section 35.12.4 on page 720 that the Shift Significand instructions let you capture the
“lost” digits.

35.10.3. Convert To/From Zoned Decimal

The instructions in Table 356 convert data between decimal floating-point and zoned decimal,
saving the need to use packed decimal as an intermediate step.

Table 356. Instructions converting between decimal floating-point and zoned decimal

Op Mnem Type Instruction Op Mnem Type Instruction

EDAA CDZT RSL Convert from Zoned
(Long←Zoned)

EDAB CXZT RSL Convert from Zoned
(Extended←Zoned)

EDA8 CZDT RSL Convert to Zoned
(Zoned←Long)

EDA9 CZXT RSL Convert to Zoned
(Zoned←Extended)

All the instructions have the format shown in Table 357:

Table 357. Format of DFP/zoned decimal conversion instructions

The decimal floating-point operand is in FPR R1, and the zoned decimal operand is in memory
at the Effective Address of the second operand.

The machine instruction statement format of the instructions is

mnemonic R1,D2(N2,B2),M3
where N2 is the true number of bytes in the second operand. (Remember from Section 24.2 on
page 366 that you specify the true length in the Assembler Language machine instruction state-
ment, but the CPU uses the encoded length in the machine language instruction, which is one
less.)

Because the decimal floating-point operand is at most 16 or 34 digits long, the CPU requires that
the length of the zoned decimal operand satisfy

0 ≤ L2 ≤ 15 (or 1 ≤ N2 ≤ 16) for Long DFP
0 ≤ L2 ≤ 33 (or 1 ≤ N2 ≤ 34) for Extended DFP

The Convert from Zoned instructions are simpler: the N2 zoned decimal digits at the second
operand are converted to decimal floating-point; the Condition Code is unchanged.

The leftmost bit of the M3 field determines the treatment of a possible sign code in the rightmost
byte of the zoned operand:

opcode L2 B2 D2 R1 M3 opcode

712 Assembler Language Programming for IBM System z™ Servers Version 2.00

• If M3 = B'1000', the zoned operand is assumed to have a standard sign code (X'A,C,E,F' for
+ , (X'B,D' for −); the decimal floating-point operand is given that sign.

• If M3 = B'0000', the zoned operand is assumed to have no sign code, so the sign bit of the
decimal floating-point operand is set to zero to indicate plus. (This is important for numeric
ASCII characters that have zone digit X'3' that would otherwise cause a decimal data excep-
tion.)

The preferred quantum of the result is one, meaning that the exponent assigned is set to zero so
the result is treated as an integer.

Figure 454 shows the effect of the two values of the M3 operand:

CDZT 0,ZoneA,B'1000' c(FPR0) = X'A2380000000049C5'
CDZT 0,ZoneA,B'0000' c(FPR0) = X'22380000000049C5'
- - -

ZoneA DC Z'-12345' X'F1F2F3F4D5'
Figure 454. Effect of the mask operand on Convert from Zoned results

The first instruction generates a negative result because M3 = B'1000', while the second instruc-
tion ignores the sign code in the last zoned byte and returns a positive result.

The Convert to Zoned instructions convert the specified number of rightmost digits of the decimal
floating-point operand to zoned, with the same restrictions on L2 (and N2).

The bits of the M3 operand control how zone and sign digits are assigned; for convenience, the
bits are designated SZPF from left to right.

S is bit zero of M3: B'S...'. If S=0, the zoned result does not have a sign, and all zone digits
are determined by the Z bit. If S=1, the zoned operand has a sign; its form is controlled by
the P and F bits.

Z is bit one of M3: B'.Z..'. If Z=0, the zone fields of the result are X'F'; if Z=1, the zone
fields are X'3'. If S=1, the final zone (the sign) depends on the P and F bits.

P is bit two of M3: B'..P.'. If S=0, the P bit is ignored (assumed to be zero) and the sign
code depends on the Z bit. Otherwise, if P=0, the sign code for non-negative results is set
to X'F'; if P=1, the plus sign code is X'C'.

F is bit three of M3: B'...F'. If S=0, the F bit is ignored (assumed to be zero). Otherwise, if
F=0, nothing happens. If F=1 and the absolute value of the zoned result is zero, the sign
code is set to a plus code as determined by the P bit. (This is so that the zoned result can't
be a negative zero.)

The field allocated for the zoned result may be too short for all the significant digits of the
decimal floating-point operand. Because only the requested number of rightmost digits are con-
verted, it's possible that significant digits could be lost. (This is one reason why the F bit tests for
a zero result.)

The Convert to Zoned instructions set the Condition Code, as shown in Table 358:

Table 358. Condition Code settings for Convert to Zoned

To illustrate, suppose we convert these DFP operands to zoned:

CC Meaning

0 Source operand is zero

1 Source operand is less than zero

2 Source operand is greater than zero

3 Source operand is infinity, QNaN, SNaN, or a
partial result was generated

Chapter IX: Floating-Point Data and Operations 713

LD 0,=DD'-12345'
CZDT 0,ZoneB,B'0000' Result = X'F0F1F2F3F4F5', CC=1
CZDT 0,ZoneB,B'1000' Result = X'F0F1F2F3F4D5', CC=1
CZDT 0,ZoneB,B'0100' Result = X'303132333435', CC=1
CZDT 0,ZoneB,B'1100' Result = X'3031323334D5', CC=1

LD 0,=DD'+12345'
CZDT 0,ZoneC,B'1010' Result = X'F0F1F2F3F4F5', CC=2
CZDT 0,ZoneC,B'0000' Result = X'F0F1F2F3F4F5', CC=2
CZDT 0,ZoneD,B'0000' Result = X'F2F3F4F5', CC=3

LD 0,=DD'-12000000'
CZDT 0,ZoneD,B'1000' Result = X'F0F0F0D0', CC=3
CZDT 0,ZoneD,B'1001' Result = X'F0F0F0C0', CC=3
- - -

ZoneB DS ZL6
ZoneC DS ZL6
ZoneD DS ZL4
Figure 455. Examples of converting decimal floating-point to zoned

Most of the results in Figure 455 are what you might expect, but some may look unusual:

• In the first group, the fourth CZDT instruction's M3 digit is B'1100': the S bit means the
result should be signed, and because the result is negative, the Z, P, and F bits don't apply.

• In the second group, the first CZDT instruction's M3 digit is B'1010': the S bit means the
result should be signed, the Z bit is zero so the result's zone is X'F' independent of the P and
F bits. The third CZDT instruction sets the CC=3 because a partial result was generated.

• In the third group, both CZDT instruction set CC=3 because the result is partial.

Exercises

35.10.1.(2)+ If you are converting decimal floating-point data to signed packed decimal, what
instructions can you use to test beforehand whether or not any high-order digits might be lost?

35.10.2.(2) Why do CUDTR and CUXTR need no M4 operand?

35.10.3.(2)+ In Figure 449 on page 710, what is the LeftMost Digit (LMD) of the decimal
floating-point result in (FPR0,FPR2)? Why?

35.10.4.(2) Can a source operand of CZDT be zero and cause Condition Code 3? If yes, give an
example; if not, explain why.

35.10.5.(3)+ Make a table showing the effect of all possible combinations of the SZPF bits in
the M3 field of a CZDT instruction.

35.11. Decimal Floating-Point Load Operations

This section describes four groups of instructions; all the instructions are register-register oper-
ations.

• Load and Test, Load Complement, Load Negative, and Load Positive
• Load Floating-Point Integer
• Load Lengthened
• Load Rounded

35.11.1. Load and Test, Complement, Negative, and Positive

The instructions in Tables 359 and 361 starting on page 715 have operand format R1,R2.

714 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 359. Decimal floating-point Load and Test instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3D6 LTDTR RRE Load and Test (Long) B3DE LTXTR RRE Load and Test
(Extended)

If the source operand is a QNaN, the CC is set to 3; if it is a SNaN, an invalid operation excep-
tion occurs; if masked off, the corresponding QNaN is placed in the first-operand location.

Table 360 shows the Condition Code setting.

Table 360. CC setting after D F P Load and Test instructions

The three instructions in Table 361 set the sign bit as indicated by the instruction name.

CC Meaning

0 Operand is zero

1 Operand is less than zero

2 Operand is greater than zero

3 Operand is a NaN

Table 361. Instructions copying/complementing data between FPRs

Op Mnem Type Instruction Op Mnem Type Instruction

B373 LCDFR RRE Load Complement (Long) B371 LNDFR RRE Load Negative (Long)

B370 LPDFR RRE Load Positive (Long)

These instructions can be used for both decimal and binary floating-point operands: they are type-
insensitive and don't care if the operand is a NaN or infinity. Unlike the corresponding
instructions for hexadecimal floating-point operands, they don't change the Condition Code.

Some examples of these instructions, showing that only the sign bit changes:

LD 0,=DD'-21.43' c(FPR0) = X'A2300000000008C3'
LCDFR 1,0 c(FPR1) = X'22300000000008C3'
LNDFR 2,1 c(FPR2) = X'A2300000000008C3'
LPDFR 3,2 c(FPR3) = X'22300000000008C3'

35.11.2. Load Floating-Point Integer

The two Load Floating-Point Integer instructions in Table 362 convert a decimal floating-point
second operand to an integer-valued first operand in the same format. The CC is unchanged.

Table 362. Decimal floating-point Load Floating-point Integer instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3D7 FIDTR R R F Load Floating-Point
Integer (Long)

B3DF FIXTR R R F Load Floating-Point
Integer (Extended)

The instructions have two mask fields, M3 and M4, shown in Table 363:

Table 363. Format of Load F P Integer instructions

The machine instruction statement format specifies the operands in this order:

mnemonic R1,M3,R2,M4

The M3 mask controls rounding of the delivered operand; its possible values are given in
Table 342 on page 702.

opcode M3 M4 R1 R2

Chapter IX: Floating-Point Data and Operations 715

The M4 mask controls recognition of the inexact exception. If the value of the result is different
from the value of the second operand it is inexact; then, if bit 1 (B'0100') of M4 is one, no inexact
exception will occur.

If the second operand is a QNaN, so is the result. If the second operand is a SNaN, an invalid
operation exception occurs; if masked off, the corresponding QNaN is the result. To illustrate:

LD 6,=DD'7.2' Fractional operand X'2234000000000072'
FIDTR 2,B'1000',6,4 No exception: X'2238000000000007'

LD 6,=DD'7.2' Same fractional operand
FIDTR 2,B'1000',6,0 Same result, inexact exception

35.11.3. Load Lengthened

Table 364 lists the two instructions that convert a decimal floating-point operand to a longer
format. They can be used to convert from the short (storage) format to long format, or from
long to extended format for computations. (Converting the short format to extended requires two
instructions.)

Because a longer format has greater precision and range, no rounding is needed. Only infinity and
SNaNs need special treatment; QNaNs are converted to the longer format with the payload (if
any) extended with zeros on the left. Neither instruction changes the CC.

Table 364. Decimal floating-point Load Lengthened instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3D4 LDETR R R F Load Lengthened
(Short to Long)

B3DC LXDTR R R F Load Lengthened (Long
to Extended)

They have the instruction format illustrated in Table 350 on page 708, and machine instruction
statement format

mnemonic R1,R2,M4

The second operand is extended to the next longer format, and placed in the first operand register.

Table 365 shows how the M4 mask controls the treatment of an infinity or SNaN.

Table 365. Load Lengthened special operand control mask

For finite values, the M4 mask makes no difference:

LE 2,=ED'(QNaN)' Short source operand X'7C000000'
LDETR 4,2,0 Long result X'7C00000000000000'

LE 2,=ED'123.4567' Short source operand X'2614D2E7'
LDETR 4,2,0 Long result X'222800000014D2E7'
LXDTR 4,4,0 Extended result in FPR4, FPR6 is

* c(FPR4,FPR6) = X'2207000000000000 000000000014D2E7'

LD 1,=DD'7654.321' Long operand X'222C0000007D51A1'
LXDTR 5,1,0 Extended result in FPR5, FPR7 is

* c(FPR5,FPR7) = X'2207400000000000 00000000007D51A1'

Operand M4 Action

Infinity
0 Canonical infinity for the target format

8 Source infinity with payload padded with zeros on the left

SNaN
0 Invalid operation exception; if masked, deliver corresponding

QNaN with payload padded with zeros on the left

8 Source SNaN with payload padded with zeros on the left

716 Assembler Language Programming for IBM System z™ Servers Version 2.00

Note that the second operand of LDETR has short format.

35.11.4. Load Rounded

The two Load Rounded instructions in Table 366 convert an operand to the next shorter format:
extended to long, and long to short. Because the shorter format has less precision and narrower
range, the M3 rounding mask field is provided in the instruction, as shown in Table 342 on
page 702. If the source operand is finite, these instructions can indicate underflow, overflow, and
inexact exceptions.

Neither instruction changes the CC.

Table 366. Decimal floating-point rounding/lengthening instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3D5 LEDTR R R F Load Rounded (Long
to Short)

B3DD LDXTR R R F Load Rounded
(Extended to Long)

If the source operand's range causes an overflow or underflow condition when rounded to the
shorter format, an interruption will occur if the mask bits in the Floating-Point Control Register
are one. If the appropriate mask bit is zero, the exponent is scaled to be in range.

The B'1000' bit in the M4 mask controls the treatment of infinity and SNaNs:

• If the source operand is infinity and the M4 bit is zero, the result is a canonical infinity; and if
the M4 bit is one, trailing exponent bits are set to zero and the payload is shortened by
removing high-order digits.

• If the source operand is a SNaN and the M4 bit is zero, an invalid operation condition occurs;
if the interruption is masked off, the result is the corresponding QNaN with shortened
payload. If the M4 bit is one, the invalid operation condition is suppressed and the result is a
canonicalized SNaN with shortened payload.

Note that LDETR and LEDTR are the only DFP instructions that operate on short DFP operands.
(TDCET tests a short operand, but doesn't operate on it.) Arithmetic on short-format data requires
lengthening the source operands and rounding the result back to short format. Suppose we need
the short-format quotient of 24÷ 7:

LE 2,=ED'24' Load first operand X'22500024'
LDETR 2,2,B'0000' Lengthen it X'2238000000000024'
LE 6,=ED'7' Load second operand X'22500007'
LDETR 6,6,B'0000' Lengthen it X'2238000000000007'
DDTR 2,2,6 Long quotient X'2DFE28BC628BC629'
LEDTR 2,B'0000',2,0 Round to short format X'2DF8A2F1'
STE 2,Quotient Store the short result

Figure 456. DFP arithmetic with short operands

Both the division and rounding instructions indicate an inexact result; 24÷ 7 is not a finite frac-
tion.

Exercises

35.11.1.(3) Suppose the source operand of a Load Rounded instruction is a SNaN. Show the
possible combinations of M4 mask bit and FPCR invalid-operation mask, and the delivered
result for each case.

35.11.2.(1) With reference to Figure 456, what is the true value of 24÷ 7?

35.11.3.(1)+ Table 361 on page 715 has no instructions for extended precision operands. How
then could you do a “Load Complement” of an extended precision operand?

35.11.4.(2) Under what circumstances would you use a Test Data Class instruction in prefer-
ence to a Load and Test instruction?

Chapter IX: Floating-Point Data and Operations 717

35.12. Decimal Floating-Point Miscellaneous Operations (*)

This subsection describes some operations of (possibly) less interest or less frequent use:

• Set Decimal Rounding Mode
• Extract and Insert Biased Exponent
• Extract Significance
• Shift Coefficient Left and Right
• Quantize
• Reround
• Test Data Group

35.12.1. Set Decimal Rounding Mode

The SRNMT instruction in Table 367 sets the DFP rounding mode.

Table 367. Decimal floating-point Set Rounding Mode instruction

Op Mnem Type Instruction

B2B9 SRNMT S Set Decimal Rounding
Mode

The machine instruction statement is written with a single operand:

SRNMT D2(B2)

The rightmost three bits of the Effective Address are placed in the FPCR's rightmost byte, in the
bits indicated by DRM in Figure 457. The CC is unchanged.

Comparing this figure to Figure 413 on page 649, the only difference is the presence of the “q”
mask and flag bits (for the quantum exception), and the three added DRM bits for the decimal
rounding mode.

┌───────────────┬───────────────┬───────────────┬───────────────┐
│ │ │ Data Excep'n │ Rounding │
│ Mask Bits │ Flag Bits │ Code (DXC) │ Mode Bits │
│ │ │ │ ┌─────┐ ┌───┤
│i z o u x q 0 0│i z o u x q 0 0│i z o u x y 0 0│0 DRM 0 0 BRM│
└─┴─┘

8 8 8 8
Figure 457. Floating-Point Control Register showing Decimal Rounding Mode bits

The rightmost 2 bits of the DRM field have the same meaning as for the Binary Rounding Mode
(BRM):

BRM/DRM Rounding Action
B'000' To nearest (default; “ties” round to even),
B'001' Toward zero (truncate; “chop”)
B'010' Up (toward + ∞)
B'011' Down (toward − ∞)

There are four additional decimal floating-point rounding modes when the leftmost DRM bit is 1:

DRM Rounding Action
B'100' To nearest, with ties away from 0 (instead of “to even”)
B'101' To nearest, with ties toward 0
B'110' Round away from 0
B'111' Round to prepare for shorter precision

For example, to set the decimal rounding mode to the default, you could execute

SRNMT B'000' Set DRM to unbiased round to nearest

718 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.12.2. Extract and Insert Biased Exponent

Because the representation of the true biased exponent of a DFP number is so complex, System z
provides the instructions listed in Table 368 on page 719 to extract and to insert its value.

Table 368. Decimal floating-point Insert/Extract Biased Exponent instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3E5 EEDTR RRE Extract Biased Expo-
nent (Long)

B3ED EEXTR RRE Extract Biased Exponent
(Extended)

B3F6 IEDTR R R F Insert Biased Exponent
(Long)

B3FE IEXTR R R F Insert Biased Exponent
(Extended)

None of the instructions change the Condition Code.

Machine instruction statements for the extract instructions have two operands:

EEDTR R1,R2
where the R2 floating-point register holds a decimal floating-point number and its biased expo-
nent is placed in the 64-bit general register specified by R1. For example:

LD 5,=DD'2.5' Long DFP operand X'2234000000000025'
EEDTR 3,5 Result in GG3 = X'18D' = 397
AGHI 3,-398 Remove exponent bias

* c(GG3) = -1, the unbiased exponent
Figure 458. Example of extracting D F P biased exponent

The value in FPR5 is 25×10−1; the exponent bias for a long DFP number is 398, so the true
exponent is 397 −398 = −1, as expected.

For special values, a negative value is placed in the R1 general register, as shown in Table 369:

Table 369. Extracted Biased Exponent for D F P special values

Thus, the EEDTR and EEXTR extract instructions can be applied to any DFP operand in a floating-
point register.

The instructions that insert a biased exponent have three operands:

IEDTR R1,R3,R2
where the source DFP operand is in floating-point register R3, the new biased exponent is in
64-bit general register R2, and the result is placed in floating-point register R1. For example:

DFP operand Binary result

Infinity −1

QNaN −2

SNaN −3

LD 5,=DD'2.5' Source operand = X'2234000000000025'
LG 9,=FD'399' New biased exponent
IEDTR 2,5,9 Insert; result = X'223C000000000025'

Figure 459. Example of inserting a biased D F P exponent

In this case, the significand is unchanged, and the new biased exponent (399) means that the new
true exponent is 399 −398 = +1, so the value of the number in FPR2 is 25×10+ 1, or 250.

Thus, the Insert Biased Exponent instructions provide an easy way to multiply or divide finite
numbers by a power of 10, without changing significance.

Chapter IX: Floating-Point Data and Operations 719

Special values are treated in a way much like that for the extract instructions. The results are illus-
trated in Table 370 on page 720, where “CMax” represents the largest characteristic (biased expo-
nent) value.

Table 370. DFP Insert Biased Exponent results

35.12.3. Extract Significance

The instructions in Table 371 let you determine the number of significant digits in a DFP
operand. Neither instruction changes the Condition Code.

R2 operand
DFP source operand in R3

Finite Infinity QNaN SNaN

Value > CMax QNaN QNaN QNaN QNaN

0 ≤ Value ≤ CMax Finite Finite Finite Finite

Value = −1 Infinity Infinity Infinity Infinity

Value = −2 QNaN QNaN QNaN QNaN

Value = −3 SNaN SNaN SNaN SNaN

Value ≤ −4 QNaN QNaN QNaN QNaN

Table 371. Decimal floating-point Extract Significance instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3E7 ESDTR RRE Extract Significance
(Long)

B3EF ESXTR RRE Extract Significance
(Extended)

The second operand of the machine instruction statement is the DFP number, and the result is
placed in the 64-bit R1 general register. For example:

LD 0,=DD'2.5' 2 digits, value = X'2234000000000025'
ESDTR 0,0 c(GG0) = 2
LD 1,=DD'2.5E10' 2 digits, value = X'225C000000000025'
ESDTR 1,1 c(GG1) = 2
LD 2,=DD'2.5000000' 8 digits, value = X'221C000002500000'
ESDTR 2,2 c(GG2) = 8

Figure 460. Examples of D F P Extract Significance instructions

Special values return zero (for zeros), −1 for infinities, −2 for QNaNs, and −3 for SNaNs.

35.12.4. Shift Significand Left/Right

Table 372 on page 721 lists the four instructions for shifting decimal floating-point operands left
and right.

Table 372. Decimal floating-point Shift Significand instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED40 SLDT RXF Shift Significand Left
(Long)

ED48 SLXT RXF Shift Significand Left
(Extended)

ED41 SRDT RXF Shift Significand Right
(Long)

ED49 SRXT RXF Shift Significand Right
(Extended)

All four leave the CC unchanged, and cause no exceptions.

These shifts are similar to the logical shift instructions for binary data in the general registers:
digits shifted off either end are lost, and zeros are inserted into positions vacated by the shift.
Exponents are unchanged, and the results are not rounded.

720 Assembler Language Programming for IBM System z™ Servers Version 2.00

The instruction format235 is illustrated in Table 373 on page 721:

Table 373. Format of D F P shift instructions

The operands of the assembler instruction statements have format R1,R3,D2(X2,B2), where the
source operand is in FPR R3, the result is placed in FPR R1, and the shift amount is determined
by the rightmost 6 bits of the Effective Address. For example, shifting right by one digit effectively
divides the source operand by 10, truncating the lost digits:

LD 0,=DD'1000000' Source = X'2238000000100000'
SRDT 0,0,1 Result = X'2238000000020000'

LD 0,=DD'1234567' Source = X'223800000014D2E7'
SRDT 0,0,1 Result = X'2238000000028E56'

Left shifts are similar, except that the high-order digit of the significand moves into the Combina-
tion Field; the previous occupant is lost. For example:

LD 0,=DD'1000000000' Source = X'2238000040000000'
SLDT 0,0,6 Result = X'2638000000000000'

* Leftmost digit now in Combo Field

LD 0,=DD'1000000000' Source = X'2238000040000000'
SLDT 0,0,7 Result = X'2238000000000000'

* Zero significand, all digits lost

In the first case, the significant digit is shifted into the Combination Field, and in the second case
it is shifted completely out leaving a zero significand with exponent +9.

Because the exponent is not changed, you might consider these instructions as a way to multiply
or divide by 10; but be cautious. The significance of the operand is changed depending on the
direction and amount of the shift.

The significands of infinity, SNaN, and QNaN are shifted without regard to the type of operand,
and without causing any exceptions.

With these shift instructions, we can now convert all 34 digits of an extended decimal floating-
point value to packed decimal, using instructions like those in Figure 461 on page 722.

opcode R3 X2 B2 D2 R1 opcode

LD 0,=LD'1234567890123456789012345678901234' 34 digits
LD 2,=LD'1234567890123456789012345678901234'+8
CSXTR 4,0,0 Convert 31 signed digits to (GG4,GG5)
STMG 4,5,Packed+2 Store low-order 31 digits and sign
SRXT 0,0,31 Shift, keeping 3 high-order digits
CUXTR 4,0 Convert 3 unsigned digits
STH 5,Packed Store leading 0, remaining 3 digits
- - -

Packed DS XL18 34 Packed digits and sign
Figure 461. Converting an extended decimal floating-point value to packed decimal

Note that CSXTR requires that the R1 operand specify an even-odd pair of 64-bit registers.

The result at Packed is X'01234567890123456789012345678901234C'. Because the symbol Packed
may not be aligned on a halfword preceding a doubleword boundary, the Assembler may diag-
nose a possibly unfavorable operand alignment; such messages can be avoided by preceding the
DS instruction with

235 This format is unusual in placing the R3 operand in the position where most instructions put the R1 operand.

Chapter IX: Floating-Point Data and Operations 721

ORG *+2,8,-2 Halfword preceding doubleword

You can consult the High Level Assembler Language Reference for details.

35.12.5. Quantize

The quantize instructions in Table 374 do a very simple operation: they make one operand have
the same decimal point alignment as another.

Table 374. Decimal floating-point Quantize instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3F5 QADTR R R F Quantize (Long) B3FD QAXTR R R F Quantize (Extended)

The instruction format in Table 375 has four operands:

Table 375. Format of decimal floating-point Quantize
instructions

and the assembler instruction statement is written

QADTR R1,R3,R2,M4

The source operand is in FPR R3 and the result is placed in FPR R1; the operand in FPR R2
(the “quantizing” operand) provides the quantum to be assigned to the R3 operand. The M4
rounding mask controls the rounding of the result, and takes the values listed in Table 342 on
page 702. The Condition Code is unchanged.

The idea is to make the result have the same exponent (and quantum) as the R2 operand, pre-
serving the value of the R3 operand to the greatest possible extent.

For example, suppose we have two values, 12789 (12789×100) and 12.789 (12789×10−3).

A DC DD'12789' Generates X'2238000000004BCF'
B DC DD'12789E-3' Generates X'222C000000004BCF'

Both have the same significand, 12789, but their exponents differ by 3. Now, suppose we want to
quantize A to have the same quantum/exponent as B, while preserving the value of A.

LD 0,A c(FPR0) = X'2238000000004BCF'
LD 2,B c(FPR2) = X'222C000000004BCF'
QADTR 4,0,2,B'1000' c(FPR4) = X'222C0000012F3C00'=12789000

The result in FPR4 has the same quantum/exponent as B, but the significand 12789000 has effec-
tively been shifted left three digits and is now larger by 1000. Because the result has B's exponent
(−3), its value is 12789000.×10−3, the same as the value of A.

Now, consider quantizing B to have the same quantum/exponent as A.

LD 0,A c(FPR0) = X'2238000000004BCF'
LD 2,B c(FPR2) = X'222C000000004BCF'
QADTR 4,2,0,B'1000' c(FPR4) = X'2238000000000013'=13

Because the result in FPR4 must have the same quantum as A, the significand of B must effec-
tively be shifted right by three digits. The rounding mask causes 12.789 to be rounded to 13×100.

Infinity as either the source or quantizing operand produces an invalid operation exception; if
masked off the result is a canonical QNaN:

LD 0,A Finite value in FPR0
LD 2,=DD'(Inf)' Infinity in FPR2
QADTR 4,0,2,B'0000' Quantize A with infinity; c(FPR4) = QNaN
QADTR 6,2,0,B'0000' Quantize infinity with A; c(FPR6) = QNaN

opcode R3 M4 R1 R2

722 Assembler Language Programming for IBM System z™ Servers Version 2.00

Quantizing with QNaNs always produces QNaNs. Quantizing with SNaNs produces an invalid
operation exception; if masked off, the result is the corresponding QNaN.

These examples illustrate the rules for quantizing operations:

1. If the exponent of the result is being decreased (as in the first example), and the result does
not have more digits than supported by the operand format, the result has the same value as
the source operand. But if the result would have more digits than supported, an invalid oper-
ation is signaled; if masked off, the result is a default QNaN.

For example:

LD 0,A Source operand = X'2238000000004BCF'=12789
LD 2,=DD'12789E-12' Second operand = X'2208000000004BCF'
QADTR 4,0,2,B'1000' Invalid operation

If the quantum/exponent of the result in FPR4 were to be the same as the second operand's,
the significand of A would have to be shifted left 12 digits, giving 12789000000000000. But
this is 17 digits long, too many digits for a long decimal floating-point operand.

2. If the exponent of the result is being increased (as in the second example), the result is
rounded according to the M4 rounding modifier. This can possibly generate an inexact excep-
tion if the value of the result is different from the value of the source operand. A zero value
with nonzero exponent can be generated.

3. If the source or quantizing operand is infinity, the result is a canonical infinity.

Because the exponent of the result is the same as that of the second (quantizing) operand, no
overflow or underflow occurs. A finite result always has the requested quantum/exponent.

To summarize the exception conditions for finite operands:

• If the requested quantum/exponent (from the quantizing operand) is smaller than the quantum
of the source operand, the only possible exception is an invalid operation exception that might
occur if the significand would have too many digits.

• If the requested quantum/exponent (from the quantizing operand) is greater than the quantum
of the source operand, the only possible exception is an inexact exception that might occur if
nonzero digits were lost.

Here's a practical example using a quantize instruction. Suppose you must calculate the final
price of an item costing $923.85 after adding tax of 8.25 percent. You would probably start with
something like this:

LD 0,Price Get item price (923.85)
LD 2,Tax Load tax rate (1.0825)
MDTR 0,2,0 Calculate price+tax (1000.067625)
STD 0,Cost Store final cost (1000.067625)
- - -

Price DC DD'923.85' Item price
Tax DC DD'1.0825' Tax rate + 1 for price
Cost DS DD Calculated item cost
Figure 462. Calculate price plus tax

The product was calculated by the MDTR instruction to 16 digits, and rounded according to the
current rounding mode. But you will want to display the cost with only two decimal places, as
$1000.07; because it's important to avoid double rounding, how should you proceed?

First, calculate the product without rounding, by setting the Decimal Rounding Mode to “prepare
for shorter precision”:

SRNMT 7 Set rounding mode to B'111'

This rounding mode selects the result of the MDTR instruction with the smaller magnitude,
unless the rounding digit is 0 or 5, when the result with the largest magnitude is chosen.

Chapter IX: Floating-Point Data and Operations 723

The calculated result has too many digits, so we must round the result to two decimal digits. But
since we don't know how many digits are to the left of the decimal point, we can use a quantize
operation. We know that the original price had two decimal digits, so we can use it as the quan-
tizing operand:

SRNMT 7 Set rounding mode to B'111'
LD 4,Price Item price (923.85) in FPR4
LD 2,Tax Tax rate (1.0825) in FPR2
MDTR 2,2,4 Price+tax (1000.067625) in FPR2
QADTR 0,2,4,B'1100' Quantize to 2 decimal digits
STD 0,Cost Store final cost (1000.07)
- - - Convert and format for display

Figure 463. Correctly rounding a cost to two decimal digits

The rounding mask (12) of the QADTR instruction rounds to nearest with ties away from zero;
this is the familiar decimal rounding used for many business calculations.

35.12.6. Reround

The instructions in Table 376 perform a reround operation. In effect, rerounding simply changes
the number of significant digits.

Table 376. Decimal floating-point Reround instructions

Op Mnem Type Instruction Op Mnem Type Instruction

B3F7 R R D T R R R F Reround (Long) B3FF R R X T R R R F Reround (Extended)

The instruction format is shown in Table 375 on page 722, and assembler instruction statements
are written as shown following that table. Neither instruction changes the Condition Code.

These instructions let you simulate a DFP operation with a different precision from any sup-
ported format, and with the effect of a single rounding. You start by specifying “Round to
prepare for shorter precision” in the operation, and then you follow that with the desired
rounding method in the reround instruction.

The reround instructions work like this:

• The desired significance is an unsigned integer in GPR R2.

• The operand in FPR R3 is rounded to the significance specified in GPR R2, and the result is
placed in FPR R1.

• If the requested significance is less than or equal to the significance of the third operand, it is
placed unchanged in R1.

• If the requested significance is greater than the significance of the third operand, it is rounded
to the requested significance using the rounding mask specified by the M4 operand.

• If the instruction can't represent the result to the requested significance, or if the source
operand is a SNaN or infinity, an invalid operation is signaled. If the exception is disabled, the
delivered result is a default QNaN.

• As with other operations, if the result differs in value from the source operand in R3, an
inexact exception is signaled.

These instructions may seem strange: you already have rounding options for all the arithmetic
operations, so why would you want to use a “reround” instruction?

Suppose you are offering to do some work, and you calculate your total cost as $1783. You prob-
ably prefer to quote a slightly larger “rounder” number, such as $1800. You can do this with a
reround instruction:

724 Assembler Language Programming for IBM System z™ Servers Version 2.00

LD 4,=DD'1783' Calculated total cost
LA 5,2 2 significant digits
RRDTR 6,4,5,B'1110' Round to 2 digits, away from zero
SLDT 6,6,2 Shift left 2 digits
- - - Convert result to printable form

Figure 464. Example of a reround instruction

and the result in FPR6 is 1800, the value to be quoted.

This example works for a total cost with at most 4 digits, but you would like to use it for larger
values. Supposing that you still want to quote values with two low-order zero digits, you can
modify the example in Figure 464:

Final0s Equ 2
LD 4,=DD'1783333' Calculated total cost = $1,783,333
ESDTR 5,4 Extract its significance into GG5
AHI 5,-Final0s Reduce by number of final zeros
RRDTR 6,4,5,B'1110' Round to to specified significance
SLDT 0,6,Final0s Compensate for digits removed
- - - Convert to printable format

Figure 465. Example of rerounding arbitrary amounts

Because we have rounded away from zero, the result in FPR0 is 1783400. (For large values like
this you would probably want to set Final0s to 3, to round to thousands.)

Because the reround instructions can round longer operands to shorter, the Assembler supports a
“round for reround” modifier. These 17-digit constants have an even final digit and rounding
digits 4, 5, and 6. You can see that the R15 rounding option leaves the final digit unchanged.

DC DD'12345678901234564R8' Generates X'263D34B9C1E28E56'
DC DD'12345678901234565R8' Generates X'263D34B9C1E28E56'
DC DD'12345678901234566R8' Generates X'263D34B9C1E28E57'

DC DD'12345678901234564R15' Generates X'263D34B9C1E28E56'
DC DD'12345678901234565R15' Generates X'263D34B9C1E28E56'
DC DD'12345678901234566R15' Generates X'263D34B9C1E28E56'

DC DD'12345678901234574R8' Generates X'263D34B9C1E28E57'
DC DD'12345678901234575R8' Generates X'263D34B9C1E28E58'
DC DD'12345678901234576R8' Generates X'263D34B9C1E28E58'

DC DD'12345678901234574R15' Generates X'263D34B9C1E28E57'
DC DD'12345678901234575R15' Generates X'263D34B9C1E28E57'
DC DD'12345678901234576R15' Generates X'263D34B9C1E28E57'

Figure 466. Examples of assembled D F P constants using rounding for reround

These constants are now prepared for rerounding if desired.236

35.12.7. Decimal Floating-Point Data Groups (*)

You may find in evaluating a complex expression that you need to do parts of the calculation in a
longer format, and want to know whether the result will have the same value and quantum as if
the calculation had been done in the shorter format. The Test Data Group instructions in
Table 377 on page 726 provide this information.

236 Most applications would probably define separate constants of the required length, rather than rounding longer ones.

Chapter IX: Floating-Point Data and Operations 725

Table 377. Decimal floating-point Test Data Group instructions

Op Mnem Type Instruction Op Mnem Type Instruction

ED51 TDGET RXE Test Data Group (Short) ED55 TDGDT RXE Test Data Group (Long)

ED59 TDGXT RXE Test Data Group
(Extended)

Like the Test Data Class instructions in Section 35.4 on page 693, you can test the properties of
an operand without causing any exceptions. The assembler instruction statement is written

mnemonic R1,D2(X2,B2)

The rightmost 12 bits of the second operand's Effective Address test the operand in R1. Using
the same bit numbering as in Table 329 on page 694, the tested groups are shown in Table 378.

Table 378. Test Data Group second-operand bits

If a 1-bit in the Effective Address matches one of the properties in the table, the Condition Code
is set to 1; otherwise, it is set to 0.

The main use of these instructions is checking an operand to verify it has these properties:

• its value is finite,
• its exponent is not extreme (neither maximum nor minimum),
• its leftmost significant digit is zero,
• calculating the operand in a wider format would have produced the same value and quantum.

If the result satisfies these conditions, it is said to be “safe”.

For example, suppose you multiply the number 100000000×105 by itself in long and extended
arithmetic. Because it has 9 significant digits, the extended precision product has 17 significant
digits:

LD 0,=LD'100000000E5' c(FPR0)=X'2209400000000000'
LD 2,=LD'100000000E5'+8 c(FPR2)=X'0000000008000000'
MXTR 0,0,0 Form extended product

The result in (FPR0,FPR2) is X'220A800000000000 0040000000000000' and the exponent is 10.
When we form the same product in long precision:

LD 0,=DD'100000000E5' c(FPR0)=X'224C000008000000'
MDTR 0,0,0 c(FPR0)=X'2664000000000000'

where the most significant digit is also the leftmost digit, and the exponent is 11. If we test the
data group of this result:

TDGDT 0,B'000000001100' Test normal value, nonzero LMD

the Condition Code is set to 1, indicating that this would not be a “safe” result. The value of the
result is the same, but the exponents (and therefore quanta) were different.

+
sign

−
sign Group

52 53 Zero with non-extreme exponent

54 55 Zero with extreme exponent

56 57 Normal or subnormal with extreme exponent

58 59 Normal with non-extreme exponent and zero leftmost digit

60 61 Normal with non-extreme exponent and nonzero leftmost digit

62 63 Infinity or NaN

726 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

35.12.1.(2) Assuming you start with the same operand in FPR2 for each shift instruction, what
will be the result of extracting the significance of the result after executing each of these
instructions?

LD 2,=DD'12340000E3' Initial value for each shift
- - -

(1) SLDT 2,2,0
(2) SLDT 2,2,3
(3) SRDT 2,2,6
(4) SLDT 2,2,10
(5) SRDT 2,2,8

35.12.2.(2) In Figure 460 on page 720, it appears that the third DFP operand
(X'221C000002500000') has only seven significant digits, but the result of extracting its signif-
icance is 8. Why are they different?

35.12.3.(2) The shift instructions effectively multiply or divide the source operand by a power of
10. Why or why not use them in place of the “regular” multiply and divide instructions?

35.12.4.(2) Give an example showing how a quantize operation can generate a non-canonical
zero, a zero result with nonzero exponent.

35.12.5.(1)+ In Figure 461 on page 722, why was the symbol Packed not defined as PL18?

35.13. Example of a Decimal Floating-Point “Business” Computation

We'll repeat the simple business computation that used packed decimal arithmetic in Section
29.11 on page 526, now using decimal floating-point arithmetic.

This is the situation: we suppose a wholesaler and a retailer complete an order.

1. The retailer orders from the wholesaler 60 high-tech widgets at $74.65 each.
(60×$74.65 = $4479.00)

2. For this large order, the wholesaler discounts the price by 4.7%.
($4479.00×0.047 = $210.513, so the discounted price is $4479.00 −$210.51 = $4268.49)

3. The wholesaler adds 9.75% local sales tax, and a $4.00 per-item shipping charge.
(4268.49×1.0975 = 4684.67; the shipping charge is 60×$4.00 = $240.00, so the total is
$4684.67+$240.00 = $4924.67.)

4. The retailer's pre-payment of $1000.00 is deducted. The result is the wholesaler's bill to the
retailer.
($4294.67 −$1000.00 = $3294.67)

Then, the retailer calculates his necessary markup and the sale price:

5. The retailer calculates his base cost for each item.
($4294.67/60 = $82.07785 or $82.08)

6. He then applies his retail markup (about 37%), adjusted to a sale cost just below one dollar.
(The markup is $82.08×1.37 = $112.4496 or $112.45, and the adjustment is
$0.54+$112.45 = $112.99)

7. Each item a customer buys must include 9.25% sales tax and a $7.50 recycling fee.
(The sales tax is $112.99×1.0925 = $123.44; adding the recycling fee gives the final customer
cost: $123.44+$7.50 = $130.94)

8. The result is the final cost per item to the customer.

9. The retailer's gross profit per item is (sale cost) − (base cost).
($112.99 −$82.08 = $30.91. The percent gross profit is $30.91/$82.08 = 0.376 or 38%)

Chapter IX: Floating-Point Data and Operations 727

35.13.1. The Wholesaler's Calculation

We will use long decimal floating-point values. Because all arithmetic is done in the floating-
point registers, we won't define constants with names, but use literals with the same values as in
Section 29.11.1.

The values in the comments fields show the value of each operand as a decimal floating-point
number.

LD F1,=DD'60' Number of items 60.E+0
LD F2,=DD'74.65' Wholesale price per widget 7465.E-2
MDTR F3,F1,F2 Price of all 60 items 447900.E-2
LD F4,=DD'.047' Discount % for a large order 47.E-3
MDTR F5,F3,F4 Discount amount 21051300.E-5
SDTR F3,F3,F5 Subtract the discount 426848700.E-5
LD F6,=DD'1.0975' Sales tax multiplier 10975.E-4
MDTR F3,F3,F6 Price with sales tax 4684664482500.E-9
LD F7,=DD'4.00' Shipping charge per item 400.E-2
MDTR F7,F7,F1 Shipping charge for 60 items 24000.E-2
ADTR F3,F7,F3 Add shipping charge 4924664482500.E-9
LD F8,=DD'1000.00' Retailer's prepayment 100000.E-2
SDTR F3,F3,F8 Result = bill to retailer 3924664482500.E-9

So, we calculate that the final bill to the retailer is $3924.66. But this is one cent less than the
packed decimal value! What happened?

Aha! We didn't use something like the “Shift and Round Decimal” (SRP) instruction to round
intermediate results. So, we'll try again, using QADTR “quantize” instructions to round interme-
diate results to two decimal places, as was done with the SRP instructions in the packed decimal
example.

LD F1,=DD'60' Number of items 60.E+0
LD F2,=DD'74.65' Wholesale price per widget 7465.E-2
MDTR F3,F1,F2 Price of all 60 items 447900.E-2
LD F4,=DD'.047' Discount % for a large order 47.E-3
MDTR F5,F3,F4 Discount amount 21051300.E-5
QADTR F5,F5,F2,B'0001' * Round to two decimals 21051.E-2
SDTR F3,F3,F5 Subtract the discount 426849.E-2
LD F6,=DD'1.0975' Sales tax multiplier 10975.E-4
MDTR F3,F3,F6 Price with sales tax 4684667775.E-6
QADTR F3,F3,F2,B'0001' * Round to two decimals 468467.E-2
LD F7,=DD'4.00' Shipping charge per item 400.E-2
MDTR F7,F7,F1 Shipping charge for 60 items 24000.E-2
ADTR F3,F7,F3 Add shipping charge 492467.E-2
LD F8,=DD'1000.00' Retailer's prepayment 100000.E-2
SDTR F3,F3,F8 Result = bill to retailer 392467.E-2

Now, the calculated final bill to the retailer is $3924.67, matching the packed decimal calculation.

35.13.2. The Retailer's Calculation

Again, we'll use quantization instructions to mimic SRP rounding:

728 Assembler Language Programming for IBM System z™ Servers Version 2.00

LD F1,=DD'60' Number of items 60.E+0
LD F2,=DD'4924.67' Wholesale charge 492467.E-2
LD F3,=DD'1.37' Retail markup 137.E-2
LD F4,=DD'.54' Retail fudge factor 54.E-2
LD F5,=DD'.0925' Retailer's sales tax 925.E-4
LD F6,=DD'7.50' Recycle charge per item 750.E-2
DDTR F7,F2,F1 Base cost per item 8207783333333333.E-14
QADTR F7,F7,F3,B'0001' * Round to 2 decimals 8208.E-2
MDTR F8,F7,F2 Calculate retail markup 1124496.E-4
QADTR F8,F8,F3,B'0001' * Round to 2 decimals 11245.E-2
ADTR F8,F8,F4 Add retail fudge 11299.E-2
MDTR F9,F8,F5 Calculate sales tax 10451575.E-6
QADTR F9,F9,F3,B'0001' * Round to 2 decimals 1045.E-2
ADTR F10,F9,F8 Cost/item with sales tax 12344.E-2
ADTR F10,F10,F6 Add recycle fee for cust cost 13094.E-2
SDTR F8,F8,F7 Gross profit/item 3092.E-2
DDTR F8,F8,F7 Gross profit % 3765838206627680.E-16
QADTR F8,F8,F5,B'0001' * Round % to xx.xx 3766.E-4

We get the same results as we did with packed decimal: $130.94 for the total cost to the con-
sumer, and a 37.66% profit margin for the retailer.

35.13.3. Comparing Packed and Floating Decimal

In the packed decimal calculations we had to keep track of the decimal point for each calculation.
Furthermore, all packed decimal operations are storage-to-storage; on modern CPUs, the cost of
memory references grows much faster than processor speed, so storage references are relatively
expensive. Temporary work areas (as in Figures 323 and Figure 325 on page 528) add to the
amount of storage needed, and intermediate results must often be copied to temporaries for later
use.

Although neither the packed decimal nor the decimal floating-point example showed how the
results would be formatted for printing, packed decimal formatting must “know” where to put the
decimal point, and how many significant digits are in the value.

Decimal floating-point takes care of all the hard work for you! For example:

• All 16 floating-point registers are available, so temporary work areas in storage are rarely
needed.

• Non-destructive operations minimize the need for copying data.

• Decimal floating-point knows where the decimal point is, and how many significant digits are
present; instructions are available to easily determine both.

• A simple timing test showed that the decimal floating-point computation was several times
faster than the packed decimal computation.

Comparing the two examples, you can see how programming decimal-arithmetic financial and
business calculations can be much easier using decimal floating-point values and arithmetic.

35.14. Decimal Floating-Point Binary-Significand Format (*)

For other architectures

This format is not supported by System z.

We mentioned briefly on page 682 that a binary-integer significand could be used for decimal
floating-point data. The IEEE 754-2008 standard defines this representation; it is intended mainly
for implementations not using the complex hardware logic of the DPD formats.

Chapter IX: Floating-Point Data and Operations 729

The binary-significand encoding uses a simpler significand, and like the DPD representation, the
Combination Field also mixes part of the characteristic and the leading significand digits.

As in the DPD representation, the first five bits of the CF are used to indicate infinity and NaNs:

• If the bits are 11110, the value is an infinity. In a canonical infinity, all remaining bits are zero.

• If the bits are 11111, the data item is a NaN; the following bit is zero for a QNaN and 1 for a
SNaN. In a canonical NaN, all bits after the sixth are zero.

The standard defines the Combination Field to be w +5 bits long, where the five bits are reserved.
This means that for short, long, and extended representations, w is 6, 8, and 11 respectively. The
CF bits are denoted gn, where n takes values from 0 to (5+w −1). If we call the significand T, then
the value of a number in this format is defined this way:

1. If g0 and g1 are one of 00, 01, or 10, then the biased exponent E is formed from g0 through
g(w +1) and the significand is formed from bits g(w +2) through the end of the encoding
(including T).

2. if g0 and g1 together are 11 and g2 and g3 are one of 00, 01, or 10, then the biased exponent E
is formed from g2 through g(w +3) and the significand is formed by prefixing the 4 bits
(8 + g (w +4)) to T.

3. Exponent biases are the same as for the decimal encodings.

Figure 467 sketches this representation:

 1 �───── 5+w ─────
┌─┬─────────────────┬──┐
│s│abcdefghijklmnopq│ T=binary significand │
└─┴─────────────────┴──┘

Figure 467. Example of D F P binary-significand format

Figure 468 shows a short-format value in this representation, where w=6:

 1 �─11 bits─ �──────────── 20 bits ────────────
┌─┬───────────┬───────────────────────────────────┐
│s│abcdefghijk│ T=binary significand │
└─┴───────────┴───────────────────────────────────┘

Figure 468. Sketch of short binary-significand format

Thus, if bits 'ab' are 00, 01, or 10, then the characteristic is bits 'abcdefgh', and the binary
significand is formed from bits 'ijk' concatenated at the front of T (23 bits).

Similarly, if bits 'ab' are 11 and bits 'cd' are 00, 01, or 10, then the characteristic is bits
'cdefghij' and the binary significand is formed from the four bits (8+'k') concatenated at the
front of T (24 bits).

We can derive the value of the short binary-encoded number X'3FFFFFFF' this way:

• The sign bit is 0, so the number is positive.

• The eleven bits of the Combination Field are B'011 1111 1111'. The 'ab' bits are 01, so the
biased exponent is B'011 1111 1' or X'7F' = 127 decimal. Because the exponent bias is 101,
the true exponent is 127 −101 = 26.

• The significand is the remaining 3 bits of the CF, B'111', followed by the 20 bits of the TSF,
giving X'7FFFFF', or 8388607 in decimal.

Thus, the value is +8388607×1026.

If J is the number of 10-bit, 3-BCD-digit declets in the Trailing Significand Field of a
DPD-encoded number (2, 5, or 11), then the maximum valid value of the binary-encoded
significand is the same as that of the corresponding decimal-encoded significand: 10(3× J +1) −1 for
numeric values, or 10(3×J) −1 when T is used as the payload of a NaN. If the value exceeds this
maximum, the significand is non-canonical and the value used is zero.

730 Assembler Language Programming for IBM System z™ Servers Version 2.00

Computational operations in both decimal- and binary-significand representations produce only
canonical significands, and always accept non-canonical significands as input operands.

Exercises

35.14.1.(3) Create a 32-bit binary-significand representation whose value exceeds the maximum
value 1097 −1.

35.14.2.(4) Construct a short-format binary-significand decimal floating-point number Max, the
maximum valid value. Show its hexadecimal representation.

35.14.3.(2) Construct a short-format binary-significand decimal floating-point number Min, the
minimum valid value. Show its hexadecimal representation.

35.14.4.(3) A binary-significand decimal floating-point number has representation X'5FFFFFFF'.
Is it valid? If so, what is its value?

35.15. Summary

This section has covered a wide range of topics, some of which most programmers won't need to
worry about. The key operations are the arithmetic, loading, and type-conversion instructions; the
others are useful to know about, but aren't as frequently used.

We might describe decimal floating-point arithmetic this way:

Decimal floating-point arithmetic

It can behave like fixed-point arithmetic until it can't, and then it behaves
like floating-point arithmetic.

Table 379 on page 732 lists the instructions that test data classes and data groups.

Table 379. DFP Test Data Class and Test Data Group instructions

Table 380 on page 732 lists the decimal floating-point arithmetic and related instructions.

Function
Operand Length

Short Long Extended

Test Data Class TDCET TDCDT TDCXT
Test Data Group TDGET TDGDT TDGXT

Chapter IX: Floating-Point Data and Operations 731

Table 380. DFP Arithmetic and related instructions

Table 381 summarizes instructions that convert decimal floating-point data to and from different
lengths and different data types.

Table 381. DFP length and type conversion instructions

Table 382 lists the decimal floating-point rounding and lengthening instructions.

Table 382. DFP rounding and lengthening instructions

Table 383 on page 733 lists instructions that move data among the floating-point registers.

Function
Operand Length

Long Extended

Add ADTR AXTR
Subtract SDTR SXTR
Divide DDTR DXTR

Multiply MDTR MXTR
Compare CDTR CXTR

Compare and Signal KDTR KXTR
Compare Biased Exponent CEDTR CEXTR

Load FP Integer FIDTR FIXTR
Extract Biased Exponent EEDTR EEXTR
Insert Biased Exponent IEDTR IEXTR

Extract Significance ESDTR ESXTR
Shift Significand Left SLDT SLXT

Shift Significand Right SRDT SRXT
Quantize QADTR QAXTR
Reround RRDTR RRXTR

To→
From↓

Short
DFP

Long
DFP

Ext.
DFP

64-bit
binary

Signed
BCD

Unsigned
BCD

Zoned
decimal

Short DFP — LDETR — — — — —

Long DFP LEDTR — LXDTR CGDTR CSDTR CUDTR CZDT
Ext. DFP — LDXTR — CGXTR CSXTR CUXTR CZXT

64-bit binary — CDGTR CXGTR — — — —

Signed BCD — CDSTR CXSTR — — — —

Unsigned BCD — CDUTR CXUTR — — — —

Zoned decimal — CDZT CZXT — — — —

Function Round Lengthen

Long to Short LEDTR
Short to Long LDETR

Extended to Long LDXTR
Long to Extended LXDTR

732 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 383. DFP data-loading instructions

Table 384 lists instructions that move data among the floating-point registers.

Table 384. Instructions copying between FPRs and GPRs

Table 385 lists the instruction that sets the decimal rounding model.

Table 385. Instruction setting decimal rounding mode

Table 386 summarizes the non-preferred declet encodings. (They are also shown in parentheses
with all the declet encodings in Figure 470 on page 735.)

Table 386. Non-canonical declets

Function Long Extended

Copy Sign CPSDR
Load Complement LCDFR

Load Negative LNDFR
Load Positive LPDFR
Load and Test LTDTR LTXTR

Function Instruction

Copy FPR to GPR LGDR
Copy GPR to FPR LDGR

Function Instruction

Set Decimal Rounding Mode SRNMT

Noncanonical declets BCD digits Canonical declet

16E 26E 36E 888 06E

16F 26F 36F 889 06F

17E 27E 37E 898 07E

17F 27F 37F 899 07F

1EE 2EE 3EE 988 0EE

1EF 2EF 3EF 989 0EF

1FE 2FE 3FE 988 0FE

1FF 2FF 3FF 999 0FF

Chapter IX: Floating-Point Data and Operations 733

The following table shows how sets of three BCD digits are encoded into a canonical declet. The
first two BCD digits are selected from a row, and the final BCD digit is selected from a column.

┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬──┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ │ │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │

┌─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼──┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ 00_ │ 000 │ 001 │ 002 │ 003 │ 004 │ 005 │ 006 │ 007 │ 008 │ 009 │ │ 50_ │ 280 │ 281 │ 282 │ 283 │ 284 │ 285 │ 286 │ 287 │ 288 │ 289 │
│ 01_ │ 010 │ 011 │ 012 │ 013 │ 014 │ 015 │ 016 │ 017 │ 018 │ 019 │ │ 51_ │ 290 │ 291 │ 292 │ 293 │ 294 │ 295 │ 296 │ 297 │ 298 │ 299 │
│ 02_ │ 020 │ 021 │ 022 │ 023 │ 024 │ 025 │ 026 │ 027 │ 028 │ 029 │ │ 52_ │ 2A0 │ 2A1 │ 2A2 │ 2A3 │ 2A4 │ 2A5 │ 2A6 │ 2A7 │ 2A8 │ 2A9 │
│ 03_ │ 030 │ 031 │ 032 │ 033 │ 034 │ 035 │ 036 │ 037 │ 038 │ 039 │ │ 53_ │ 2B0 │ 2B1 │ 2B2 │ 2B3 │ 2B4 │ 2B5 │ 2B6 │ 2B7 │ 2B8 │ 2B9 │
│ 04_ │ 040 │ 041 │ 042 │ 043 │ 044 │ 045 │ 046 │ 047 │ 048 │ 049 │ │ 54_ │ 2C0 │ 2C1 │ 2C2 │ 2C3 │ 2C4 │ 2C5 │ 2C6 │ 2C7 │ 2C8 │ 2C9 │
│ 05_ │ 050 │ 051 │ 052 │ 053 │ 054 │ 055 │ 056 │ 057 │ 058 │ 059 │ │ 55_ │ 2D0 │ 2D1 │ 2D2 │ 2D3 │ 2D4 │ 2D5 │ 2D6 │ 2D7 │ 2D8 │ 2D9 │
│ 06_ │ 060 │ 061 │ 062 │ 063 │ 064 │ 065 │ 066 │ 067 │ 068 │ 069 │ │ 56_ │ 2E0 │ 2E1 │ 2E2 │ 2E3 │ 2E4 │ 2E5 │ 2E6 │ 2E7 │ 2E8 │ 2E9 │
│ 07_ │ 070 │ 071 │ 072 │ 073 │ 074 │ 075 │ 076 │ 077 │ 078 │ 079 │ │ 57_ │ 2F0 │ 2F1 │ 2F2 │ 2F3 │ 2F4 │ 2F5 │ 2F6 │ 2F7 │ 2F8 │ 2F9 │
│ 08_ │ 00A │ 00B │ 02A │ 02B │ 04A │ 04B │ 06A │ 06B │ 04E │ 04F │ │ 58_ │ 28A │ 28B │ 2AA │ 2AB │ 2CA │ 2CB │ 2EA │ 2EB │ 2CE │ 2CF │
│ 09_ │ 01A │ 01B │ 03A │ 03B │ 05A │ 05B │ 07A │ 07B │ 05E │ 05F │ │ 59_ │ 29A │ 29B │ 2BA │ 2BB │ 2DA │ 2DB │ 2FA │ 2FB │ 2DE │ 2DF │
│ 10_ │ 080 │ 081 │ 082 │ 083 │ 084 │ 085 │ 086 │ 087 │ 088 │ 089 │ │ 60_ │ 300 │ 301 │ 302 │ 303 │ 304 │ 305 │ 306 │ 307 │ 308 │ 309 │
│ 11_ │ 090 │ 091 │ 092 │ 093 │ 094 │ 095 │ 096 │ 097 │ 098 │ 099 │ │ 61_ │ 310 │ 311 │ 312 │ 313 │ 314 │ 315 │ 316 │ 317 │ 318 │ 319 │
│ 12_ │ 0A0 │ 0A1 │ 0A2 │ 0A3 │ 0A4 │ 0A5 │ 0A6 │ 0A7 │ 0A8 │ 0A9 │ │ 62_ │ 320 │ 321 │ 322 │ 323 │ 324 │ 325 │ 326 │ 327 │ 328 │ 329 │
│ 13_ │ 0B0 │ 0B1 │ 0B2 │ 0B3 │ 0B4 │ 0B5 │ 0B6 │ 0B7 │ 0B8 │ 0B9 │ │ 63_ │ 330 │ 331 │ 332 │ 333 │ 334 │ 335 │ 336 │ 337 │ 338 │ 339 │
│ 14_ │ 0C0 │ 0C1 │ 0C2 │ 0C3 │ 0C4 │ 0C5 │ 0C6 │ 0C7 │ 0C8 │ 0C9 │ │ 64_ │ 340 │ 341 │ 342 │ 343 │ 344 │ 345 │ 346 │ 347 │ 348 │ 349 │
│ 15_ │ 0D0 │ 0D1 │ 0D2 │ 0D3 │ 0D4 │ 0D5 │ 0D6 │ 0D7 │ 0D8 │ 0D9 │ │ 65_ │ 350 │ 351 │ 352 │ 353 │ 354 │ 355 │ 356 │ 357 │ 358 │ 359 │
│ 16_ │ 0E0 │ 0E1 │ 0E2 │ 0E3 │ 0E4 │ 0E5 │ 0E6 │ 0E7 │ 0E8 │ 0E9 │ │ 66_ │ 360 │ 361 │ 362 │ 363 │ 364 │ 365 │ 366 │ 367 │ 368 │ 369 │
│ 17_ │ 0F0 │ 0F1 │ 0F2 │ 0F3 │ 0F4 │ 0F5 │ 0F6 │ 0F7 │ 0F8 │ 0F9 │ │ 67_ │ 370 │ 371 │ 372 │ 373 │ 374 │ 375 │ 376 │ 377 │ 378 │ 379 │
│ 18_ │ 08A │ 08B │ 0AA │ 0AB │ 0CA │ 0CB │ 0EA │ 0EB │ 0CE │ 0CF │ │ 68_ │ 30A │ 30B │ 32A │ 32B │ 34A │ 34B │ 36A │ 36B │ 34E │ 34F │
│ 19_ │ 09A │ 09B │ 0BA │ 0BB │ 0DA │ 0DB │ 0FA │ 0FB │ 0DE │ 0DF │ │ 69_ │ 31A │ 31B │ 33A │ 33B │ 35A │ 35B │ 37A │ 37B │ 35E │ 35F │
│ 20_ │ 100 │ 101 │ 102 │ 103 │ 104 │ 105 │ 106 │ 107 │ 108 │ 109 │ │ 70_ │ 380 │ 381 │ 382 │ 383 │ 384 │ 385 │ 386 │ 387 │ 388 │ 389 │
│ 21_ │ 110 │ 111 │ 112 │ 113 │ 114 │ 115 │ 116 │ 117 │ 118 │ 119 │ │ 71_ │ 390 │ 391 │ 392 │ 393 │ 394 │ 395 │ 396 │ 397 │ 398 │ 399 │
│ 22_ │ 120 │ 121 │ 122 │ 123 │ 124 │ 125 │ 126 │ 127 │ 128 │ 129 │ │ 72_ │ 3A0 │ 3A1 │ 3A2 │ 3A3 │ 3A4 │ 3A5 │ 3A6 │ 3A7 │ 3A8 │ 3A9 │
│ 23_ │ 130 │ 131 │ 132 │ 133 │ 134 │ 135 │ 136 │ 137 │ 138 │ 139 │ │ 73_ │ 3B0 │ 3B1 │ 3B2 │ 3B3 │ 3B4 │ 3B5 │ 3B6 │ 3B7 │ 3B8 │ 3B9 │
│ 24_ │ 140 │ 141 │ 142 │ 143 │ 144 │ 145 │ 146 │ 147 │ 148 │ 149 │ │ 74_ │ 3C0 │ 3C1 │ 3C2 │ 3C3 │ 3C4 │ 3C5 │ 3C6 │ 3C7 │ 3C8 │ 3C9 │
│ 25_ │ 150 │ 151 │ 152 │ 153 │ 154 │ 155 │ 156 │ 157 │ 158 │ 159 │ │ 75_ │ 3D0 │ 3D1 │ 3D2 │ 3D3 │ 3D4 │ 3D5 │ 3D6 │ 3D7 │ 3D8 │ 3D9 │
│ 26_ │ 160 │ 161 │ 162 │ 163 │ 164 │ 165 │ 166 │ 167 │ 168 │ 169 │ │ 76_ │ 3E0 │ 3E1 │ 3E2 │ 3E3 │ 3E4 │ 3E5 │ 3E6 │ 3E7 │ 3E8 │ 3E9 │
│ 27_ │ 170 │ 171 │ 172 │ 173 │ 174 │ 175 │ 176 │ 177 │ 178 │ 179 │ │ 77_ │ 3F0 │ 3F1 │ 3F2 │ 3F3 │ 3F4 │ 3F5 │ 3F6 │ 3F7 │ 3F8 │ 3F9 │
│ 28_ │ 10A │ 10B │ 12A │ 12B │ 14A │ 14B │ 16A │ 16B │ 14E │ 14F │ │ 78_ │ 38A │ 38B │ 3AA │ 3AB │ 3CA │ 3CB │ 3EA │ 3EB │ 3CE │ 3CF │
│ 29_ │ 11A │ 11B │ 13A │ 13B │ 15A │ 15B │ 17A │ 17B │ 15E │ 15F │ │ 79_ │ 39A │ 39B │ 3BA │ 3BB │ 3DA │ 3DB │ 3FA │ 3FB │ 3DE │ 3DF │
│ 30_ │ 180 │ 181 │ 182 │ 183 │ 184 │ 185 │ 186 │ 187 │ 188 │ 189 │ │ 80_ │ 00C │ 00D │ 10C │ 10D │ 20C │ 20D │ 30C │ 30D │ 02E │ 02F │
│ 31_ │ 190 │ 191 │ 192 │ 193 │ 194 │ 195 │ 196 │ 197 │ 198 │ 199 │ │ 81_ │ 01C │ 01D │ 11C │ 11D │ 21C │ 21D │ 31C │ 31D │ 03E │ 03F │
│ 32_ │ 1A0 │ 1A1 │ 1A2 │ 1A3 │ 1A4 │ 1A5 │ 1A6 │ 1A7 │ 1A8 │ 1A9 │ │ 82_ │ 02C │ 02D │ 12C │ 12D │ 22C │ 22D │ 32C │ 32D │ 12E │ 12F │
│ 33_ │ 1B0 │ 1B1 │ 1B2 │ 1B3 │ 1B4 │ 1B5 │ 1B6 │ 1B7 │ 1B8 │ 1B9 │ │ 83_ │ 03C │ 03D │ 13C │ 13D │ 23C │ 23D │ 33C │ 33D │ 13E │ 13F │
│ 34_ │ 1C0 │ 1C1 │ 1C2 │ 1C3 │ 1C4 │ 1C5 │ 1C6 │ 1C7 │ 1C8 │ 1C9 │ │ 84_ │ 04C │ 04D │ 14C │ 14D │ 24C │ 24D │ 34C │ 34D │ 22E │ 22F │
│ 35_ │ 1D0 │ 1D1 │ 1D2 │ 1D3 │ 1D4 │ 1D5 │ 1D6 │ 1D7 │ 1D8 │ 1D9 │ │ 85_ │ 05C │ 05D │ 15C │ 15D │ 25C │ 25D │ 35C │ 35D │ 23E │ 23F │
│ 36_ │ 1E0 │ 1E1 │ 1E2 │ 1E3 │ 1E4 │ 1E5 │ 1E6 │ 1E7 │ 1E8 │ 1E9 │ │ 86_ │ 06C │ 06D │ 16C │ 16D │ 26C │ 26D │ 36C │ 36D │ 32E │ 32F │
│ 37_ │ 1F0 │ 1F1 │ 1F2 │ 1F3 │ 1F4 │ 1F5 │ 1F6 │ 1F7 │ 1F8 │ 1F9 │ │ 87_ │ 07C │ 07D │ 17C │ 17D │ 27C │ 27D │ 37C │ 37D │ 33E │ 33F │
│ 38_ │ 18A │ 18B │ 1AA │ 1AB │ 1CA │ 1CB │ 1EA │ 1EB │ 1CE │ 1CF │ │ 88_ │ 00E │ 00F │ 10E │ 10F │ 20E │ 20F │ 30E │ 30F │ 06E │ 06F │
│ 39_ │ 19A │ 19B │ 1BA │ 1BB │ 1DA │ 1DB │ 1FA │ 1FB │ 1DE │ 1DF │ │ 89_ │ 01E │ 01F │ 11E │ 11F │ 21E │ 21F │ 31E │ 31F │ 07E │ 07F │
│ 40_ │ 200 │ 201 │ 202 │ 203 │ 204 │ 205 │ 206 │ 207 │ 208 │ 209 │ │ 90_ │ 08C │ 08D │ 18C │ 18D │ 28C │ 28D │ 38C │ 38D │ 0AE │ 0AF │
│ 41_ │ 210 │ 211 │ 212 │ 213 │ 214 │ 215 │ 216 │ 217 │ 218 │ 219 │ │ 91_ │ 09C │ 09D │ 19C │ 19D │ 29C │ 29D │ 39C │ 39D │ 0BE │ 0BF │
│ 42_ │ 220 │ 221 │ 222 │ 223 │ 224 │ 225 │ 226 │ 227 │ 228 │ 229 │ │ 92_ │ 0AC │ 0AD │ 1AC │ 1AD │ 2AC │ 2AD │ 3AC │ 3AD │ 1AE │ 1AF │
│ 43_ │ 230 │ 231 │ 232 │ 233 │ 234 │ 235 │ 236 │ 237 │ 238 │ 239 │ │ 93_ │ 0BC │ 0BD │ 1BC │ 1BD │ 2BC │ 2BD │ 3BC │ 3BD │ 1BE │ 1BF │
│ 44_ │ 240 │ 241 │ 242 │ 243 │ 244 │ 245 │ 246 │ 247 │ 248 │ 249 │ │ 94_ │ 0CC │ 0CD │ 1CC │ 1CD │ 2CC │ 2CD │ 3CC │ 3CD │ 2AE │ 2AF │
│ 45_ │ 250 │ 251 │ 252 │ 253 │ 254 │ 255 │ 256 │ 257 │ 258 │ 259 │ │ 95_ │ 0DC │ 0DD │ 1DC │ 1DD │ 2DC │ 2DD │ 3DC │ 3DD │ 2BE │ 2BF │
│ 46_ │ 260 │ 261 │ 262 │ 263 │ 264 │ 265 │ 266 │ 267 │ 268 │ 269 │ │ 96_ │ 0EC │ 0ED │ 1EC │ 1ED │ 2EC │ 2ED │ 3EC │ 3ED │ 3AE │ 3AF │
│ 47_ │ 270 │ 271 │ 272 │ 273 │ 274 │ 275 │ 276 │ 277 │ 278 │ 279 │ │ 97_ │ 0FC │ 0FD │ 1FC │ 1FD │ 2FC │ 2FD │ 3FC │ 3FD │ 3BE │ 3BF │
│ 48_ │ 20A │ 20B │ 22A │ 22B │ 24A │ 24B │ 26A │ 26B │ 24E │ 24F │ │ 98_ │ 08E │ 08F │ 18E │ 18F │ 28E │ 28F │ 38E │ 38F │ 0EE │ 0EF │
│ 49_ │ 21A │ 21B │ 23A │ 23B │ 25A │ 25B │ 27A │ 27B │ 25E │ 25F │ │ 99_ │ 09E │ 09F │ 19E │ 19F │ 29E │ 29F │ 39E │ 39F │ 0FE │ 0FF │
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴──┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

Figure 469. BCD-to-DPD encodings

734 Assembler Language Programming for IBM System z™ Servers Version 2.00

The following table shows how declets are converted to groups of three BCD digits. The paren-
thesized values in the table are non-preferred encodings; they are accepted as input values, but are
not generated by any arithmetic operation.

┌─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┬─────┐
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ A │ B │ C │ D │ E │ F │

┌─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤
│ 00_ │ 000 │ 001 │ 002 │ 003 │ 004 │ 005 │ 006 │ 007 │ 008 │ 009 │ 080 │ 081 │ 800 │ 801 │ 880 │ 881 │
│ 01_ │ 010 │ 011 │ 012 │ 013 │ 014 │ 015 │ 016 │ 017 │ 018 │ 019 │ 090 │ 091 │ 810 │ 811 │ 890 │ 891 │
│ 02_ │ 020 │ 021 │ 022 │ 023 │ 024 │ 025 │ 026 │ 027 │ 028 │ 029 │ 082 │ 083 │ 820 │ 821 │ 808 │ 809 │
│ 03_ │ 030 │ 031 │ 032 │ 033 │ 034 │ 035 │ 036 │ 037 │ 038 │ 039 │ 092 │ 093 │ 830 │ 831 │ 818 │ 819 │
│ 04_ │ 040 │ 041 │ 042 │ 043 │ 044 │ 045 │ 046 │ 047 │ 048 │ 049 │ 084 │ 085 │ 840 │ 841 │ 088 │ 089 │
│ 05_ │ 050 │ 051 │ 052 │ 053 │ 054 │ 055 │ 056 │ 057 │ 058 │ 059 │ 094 │ 095 │ 850 │ 851 │ 098 │ 099 │
│ 06_ │ 060 │ 061 │ 062 │ 063 │ 064 │ 065 │ 066 │ 067 │ 068 │ 069 │ 086 │ 087 │ 860 │ 861 │ 888 │ 889 │
│ 07_ │ 070 │ 071 │ 072 │ 073 │ 074 │ 075 │ 076 │ 077 │ 078 │ 079 │ 096 │ 097 │ 870 │ 871 │ 898 │ 899 │
│ 08_ │ 100 │ 101 │ 102 │ 103 │ 104 │ 105 │ 106 │ 107 │ 108 │ 109 │ 180 │ 181 │ 900 │ 901 │ 980 │ 981 │
│ 09_ │ 110 │ 111 │ 112 │ 113 │ 114 │ 115 │ 116 │ 117 │ 118 │ 119 │ 190 │ 191 │ 910 │ 911 │ 990 │ 991 │
│ 0A_ │ 120 │ 121 │ 122 │ 123 │ 124 │ 125 │ 126 │ 127 │ 128 │ 129 │ 182 │ 183 │ 920 │ 921 │ 908 │ 909 │
│ 0B_ │ 130 │ 131 │ 132 │ 133 │ 134 │ 135 │ 136 │ 137 │ 138 │ 139 │ 192 │ 193 │ 930 │ 931 │ 918 │ 919 │
│ 0C_ │ 140 │ 141 │ 142 │ 143 │ 144 │ 145 │ 146 │ 147 │ 148 │ 149 │ 184 │ 185 │ 940 │ 941 │ 188 │ 189 │
│ 0D_ │ 150 │ 151 │ 152 │ 153 │ 154 │ 155 │ 156 │ 157 │ 158 │ 159 │ 194 │ 195 │ 950 │ 951 │ 198 │ 199 │
│ 0E_ │ 160 │ 161 │ 162 │ 163 │ 164 │ 165 │ 166 │ 167 │ 168 │ 169 │ 186 │ 187 │ 960 │ 961 │ 988 │ 989 │
│ 0F_ │ 170 │ 171 │ 172 │ 173 │ 174 │ 175 │ 176 │ 177 │ 178 │ 179 │ 196 │ 197 │ 970 │ 971 │ 998 │ 999 │
│ 10_ │ 200 │ 201 │ 202 │ 203 │ 204 │ 205 │ 206 │ 207 │ 208 │ 209 │ 280 │ 281 │ 802 │ 803 │ 882 │ 883 │
│ 11_ │ 210 │ 211 │ 212 │ 213 │ 214 │ 215 │ 216 │ 217 │ 218 │ 219 │ 290 │ 291 │ 812 │ 813 │ 892 │ 893 │
│ 12_ │ 220 │ 221 │ 222 │ 223 │ 224 │ 225 │ 226 │ 227 │ 228 │ 229 │ 282 │ 283 │ 822 │ 823 │ 828 │ 829 │
│ 13_ │ 230 │ 231 │ 232 │ 233 │ 234 │ 235 │ 236 │ 237 │ 238 │ 239 │ 292 │ 293 │ 832 │ 833 │ 838 │ 839 │
│ 14_ │ 240 │ 241 │ 242 │ 243 │ 244 │ 245 │ 246 │ 247 │ 248 │ 249 │ 284 │ 285 │ 842 │ 843 │ 288 │ 289 │
│ 15_ │ 250 │ 251 │ 252 │ 253 │ 254 │ 255 │ 256 │ 257 │ 258 │ 259 │ 294 │ 295 │ 852 │ 853 │ 298 │ 299 │
│ 16_ │ 260 │ 261 │ 262 │ 263 │ 264 │ 265 │ 266 │ 267 │ 268 │ 269 │ 286 │ 287 │ 862 │ 863 │(888)│(889)│
│ 17_ │ 270 │ 271 │ 272 │ 273 │ 274 │ 275 │ 276 │ 277 │ 278 │ 279 │ 296 │ 297 │ 872 │ 873 │(898)│(899)│
│ 18_ │ 300 │ 301 │ 302 │ 303 │ 304 │ 305 │ 306 │ 307 │ 308 │ 309 │ 380 │ 381 │ 902 │ 903 │ 982 │ 983 │
│ 19_ │ 310 │ 311 │ 312 │ 313 │ 314 │ 315 │ 316 │ 317 │ 318 │ 319 │ 390 │ 391 │ 912 │ 913 │ 992 │ 993 │
│ 1A_ │ 320 │ 321 │ 322 │ 323 │ 324 │ 325 │ 326 │ 327 │ 328 │ 329 │ 382 │ 383 │ 922 │ 923 │ 928 │ 929 │
│ 1B_ │ 330 │ 331 │ 332 │ 333 │ 334 │ 335 │ 336 │ 337 │ 338 │ 339 │ 392 │ 393 │ 932 │ 933 │ 938 │ 939 │
│ 1C_ │ 340 │ 341 │ 342 │ 343 │ 344 │ 345 │ 346 │ 347 │ 348 │ 349 │ 384 │ 385 │ 942 │ 943 │ 388 │ 389 │
│ 1D_ │ 350 │ 351 │ 352 │ 353 │ 354 │ 355 │ 356 │ 357 │ 358 │ 359 │ 394 │ 395 │ 952 │ 953 │ 398 │ 399 │
│ 1E_ │ 360 │ 361 │ 362 │ 363 │ 364 │ 365 │ 366 │ 367 │ 368 │ 369 │ 386 │ 387 │ 962 │ 963 │(988)│(989)│
│ 1F_ │ 370 │ 371 │ 372 │ 373 │ 374 │ 375 │ 376 │ 377 │ 378 │ 379 │ 396 │ 397 │ 972 │ 973 │(998)│(999)│
│ 20_ │ 400 │ 401 │ 402 │ 403 │ 404 │ 405 │ 406 │ 407 │ 408 │ 409 │ 480 │ 481 │ 804 │ 805 │ 884 │ 885 │
│ 21_ │ 410 │ 411 │ 412 │ 413 │ 414 │ 415 │ 416 │ 417 │ 418 │ 419 │ 490 │ 491 │ 814 │ 815 │ 894 │ 895 │
│ 22_ │ 420 │ 421 │ 422 │ 423 │ 424 │ 425 │ 426 │ 427 │ 428 │ 429 │ 482 │ 483 │ 824 │ 825 │ 848 │ 849 │
│ 23_ │ 430 │ 431 │ 432 │ 433 │ 434 │ 435 │ 436 │ 437 │ 438 │ 439 │ 492 │ 493 │ 834 │ 835 │ 858 │ 859 │
│ 24_ │ 440 │ 441 │ 442 │ 443 │ 444 │ 445 │ 446 │ 447 │ 448 │ 449 │ 484 │ 485 │ 844 │ 845 │ 488 │ 489 │
│ 25_ │ 450 │ 451 │ 452 │ 453 │ 454 │ 455 │ 456 │ 457 │ 458 │ 459 │ 494 │ 495 │ 854 │ 855 │ 498 │ 499 │
│ 26_ │ 460 │ 461 │ 462 │ 463 │ 464 │ 465 │ 466 │ 467 │ 468 │ 469 │ 486 │ 487 │ 864 │ 865 │(888)│(889)│
│ 27_ │ 470 │ 471 │ 472 │ 473 │ 474 │ 475 │ 476 │ 477 │ 478 │ 479 │ 496 │ 497 │ 874 │ 875 │(898)│(899)│
│ 28_ │ 500 │ 501 │ 502 │ 503 │ 504 │ 505 │ 506 │ 507 │ 508 │ 509 │ 580 │ 581 │ 904 │ 905 │ 984 │ 985 │
│ 29_ │ 510 │ 511 │ 512 │ 513 │ 514 │ 515 │ 516 │ 517 │ 518 │ 519 │ 590 │ 591 │ 914 │ 915 │ 994 │ 995 │
│ 2A_ │ 520 │ 521 │ 522 │ 523 │ 524 │ 525 │ 526 │ 527 │ 528 │ 529 │ 582 │ 583 │ 924 │ 925 │ 948 │ 949 │
│ 2B_ │ 530 │ 531 │ 532 │ 533 │ 534 │ 535 │ 536 │ 537 │ 538 │ 539 │ 592 │ 593 │ 934 │ 935 │ 958 │ 959 │
│ 2C_ │ 540 │ 541 │ 542 │ 543 │ 544 │ 545 │ 546 │ 547 │ 548 │ 549 │ 584 │ 585 │ 944 │ 945 │ 588 │ 589 │
│ 2D_ │ 550 │ 551 │ 552 │ 553 │ 554 │ 555 │ 556 │ 557 │ 558 │ 559 │ 594 │ 595 │ 954 │ 955 │ 598 │ 599 │
│ 2E_ │ 560 │ 561 │ 562 │ 563 │ 564 │ 565 │ 566 │ 567 │ 568 │ 569 │ 586 │ 587 │ 964 │ 965 │(988)│(989)│
│ 2F_ │ 570 │ 571 │ 572 │ 573 │ 574 │ 575 │ 576 │ 577 │ 578 │ 579 │ 596 │ 597 │ 974 │ 975 │(998)│(999)│
│ 30_ │ 600 │ 601 │ 602 │ 603 │ 604 │ 605 │ 606 │ 607 │ 608 │ 609 │ 680 │ 681 │ 806 │ 807 │ 886 │ 887 │
│ 31_ │ 610 │ 611 │ 612 │ 613 │ 614 │ 615 │ 616 │ 617 │ 618 │ 619 │ 690 │ 691 │ 816 │ 817 │ 896 │ 897 │
│ 32_ │ 620 │ 621 │ 622 │ 623 │ 624 │ 625 │ 626 │ 627 │ 628 │ 629 │ 682 │ 683 │ 826 │ 827 │ 868 │ 869 │
│ 33_ │ 630 │ 631 │ 632 │ 633 │ 634 │ 635 │ 636 │ 637 │ 638 │ 639 │ 692 │ 693 │ 836 │ 837 │ 878 │ 879 │
│ 34_ │ 640 │ 641 │ 642 │ 643 │ 644 │ 645 │ 646 │ 647 │ 648 │ 649 │ 684 │ 685 │ 846 │ 847 │ 688 │ 689 │
│ 35_ │ 650 │ 651 │ 652 │ 653 │ 654 │ 655 │ 656 │ 657 │ 658 │ 659 │ 694 │ 695 │ 856 │ 857 │ 698 │ 699 │
│ 36_ │ 660 │ 661 │ 662 │ 663 │ 664 │ 665 │ 666 │ 667 │ 668 │ 669 │ 686 │ 687 │ 866 │ 867 │(888)│(889)│
│ 37_ │ 670 │ 671 │ 672 │ 673 │ 674 │ 675 │ 676 │ 677 │ 678 │ 679 │ 696 │ 697 │ 876 │ 877 │(898)│(899)│
│ 38_ │ 700 │ 701 │ 702 │ 703 │ 704 │ 705 │ 706 │ 707 │ 708 │ 709 │ 780 │ 781 │ 906 │ 907 │ 986 │ 987 │
│ 39_ │ 710 │ 711 │ 712 │ 713 │ 714 │ 715 │ 716 │ 717 │ 718 │ 719 │ 790 │ 791 │ 916 │ 917 │ 996 │ 997 │
│ 3A_ │ 720 │ 721 │ 722 │ 723 │ 724 │ 725 │ 726 │ 727 │ 728 │ 729 │ 782 │ 783 │ 926 │ 927 │ 968 │ 969 │
│ 3B_ │ 730 │ 731 │ 732 │ 733 │ 734 │ 735 │ 736 │ 737 │ 738 │ 739 │ 792 │ 793 │ 936 │ 937 │ 978 │ 979 │
│ 3C_ │ 740 │ 741 │ 742 │ 743 │ 744 │ 745 │ 746 │ 747 │ 748 │ 749 │ 784 │ 785 │ 946 │ 947 │ 788 │ 789 │
│ 3D_ │ 750 │ 751 │ 752 │ 753 │ 754 │ 755 │ 756 │ 757 │ 758 │ 759 │ 794 │ 795 │ 956 │ 957 │ 798 │ 799 │
│ 3E_ │ 760 │ 761 │ 762 │ 763 │ 764 │ 765 │ 766 │ 767 │ 768 │ 769 │ 786 │ 787 │ 966 │ 967 │(988)│(989)│
│ 3F_ │ 770 │ 771 │ 772 │ 773 │ 774 │ 775 │ 776 │ 777 │ 778 │ 779 │ 796 │ 797 │ 976 │ 977 │(998)│(999)│
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘

Figure 470. DPD-to-BCD translation

Chapter IX: Floating-Point Data and Operations 735

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

ADTR B3D2 CXFTR B359 LGDR B3CD

ADTRA B3D2 CXGTR B3F9 LNDFR B371

AXTR B3DA CXGTRA B3F9 LPDFR B370

AXTRA B3DA CXLFTR B95B LTDTR B3D6

CDFTR B351 CXLGTR B95A LTXTR B3DE

CDGTR B3F1 CXSTR B3FB LXDTR B3DC

CDGTRA B3F1 CXTR B3EC MDTR B3D0

CDLFTR B353 CXUTR B3FA MDTRA B3D0

CDLGTR B952 CXZT EDAB MXTR B3D8

CDSTR B3F3 CZDT EDA8 MXTRA B3D8

CDTR B3E4 CZXT EDA9 QADTR B3F5

CDUTR B3F2 DDTR B3D1 QAXTR B3FD

CDZT EDAA DDTRA B3D1 RRDTR B3F7

CEDTR B3F4 DXTR B3D9 RRXTR B3FF

CEXTR B3FC DXTRA B3D9 SDTR B3D3

CFDTR B941 EEDTR B3E5 SDTRA B3D3

CFXTR B949 EEXTR B3ED SLDT ED40

CGDTR B3E1 ESDTR B3E7 SLXT ED48

CGDTRA B3E1 ESXTR B3EF SRDT ED41

CGXTR B3E9 FIDTR B3D7 SRNMT B2B9

CGXTRA B3E9 FIXTR B3DF SRXT ED49

CLFDTR B943 IEDTR B3F6 SXTR B3DB

CLFXTR B94B IEXTR B3FE SXTRA B3DB

CLGXTR B94A KDTR B3E0 TDCDT ED54

CLGDTR B942 KXTR B3E8 TDCET ED50

CPSDR B372 LCDFR B373 TDCXT ED58

CSDTR B3E3 LDETR B3D4 TDGDT ED55

CSXTR B3EB LDGR B3C1 TDGET ED51

CUDTR B3E2 LDXTR B3DD TDGXT ED59

CUXTR B3EA LEDTR B3D5

736 Assembler Language Programming for IBM System z™ Servers Version 2.00

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

B2B9 SRNMT B3ED EEXTR B353 CDLFTR

B3CD LGDR B3EF ESXTR B359 CXFTR

B3C1 LDGR B3E0 KDTR B370 LPDFR

B3DA AXTR B3E1 CGDTR B371 LNDFR

B3DA AXTRA B3E1 CGDTRA B372 CPSDR

B3DB SXTR B3E2 CUDTR B373 LCDFR

B3DB SXTRA B3E3 CSDTR B94A CLGXTR

B3DC LXDTR B3E4 CDTR B94B CLFXTR

B3DD LDXTR B3E5 EEDTR B941 CFDTR

B3DE LTXTR B3E7 ESDTR B942 CLGDTR

B3DF FIXTR B3E8 KXTR B943 CLFDTR

B3D0 MDTR B3E9 CGXTR B949 CFXTR

B3D0 MDTRA B3E9 CGXTRA B95A CXLGTR

B3D1 DDTR B3FA CXUTR B95B CXLFTR

B3D1 DDTRA B3FB CXSTR B952 CDLGTR

B3D2 ADTR B3FC CEXTR ED40 SLDT

B3D2 ADTRA B3FD QAXTR ED41 SRDT

B3D3 SDTR B3FE IEXTR ED48 SLXT

B3D3 SDTRA B3FF RRXTR ED49 SRXT

B3D4 LDETR B3F1 CDGTR ED50 TDCET

B3D5 LEDTR B3F1 CDGTRA ED51 TDGET

B3D6 LTDTR B3F2 CDUTR ED54 TDCDT

B3D7 FIDTR B3F3 CDSTR ED55 TDGDT

B3D8 MXTR B3F4 CEDTR ED58 TDCXT

B3D8 MXTRA B3F5 QADTR ED59 TDGXT

B3D9 DXTR B3F6 IEDTR EDA8 CZDT

B3D9 DXTRA B3F7 RRDTR EDA9 CZXT

B3EA CUXTR B3F9 CXGTR EDAA CDZT

B3EB CSXTR B3F9 CXGTRA EDAB CXZT

B3EC CXTR B351 CDFTR

Exercises

35.15.1.(3) Several decimal floating-point instructions have an M4 mask field. Make a table
showing (a) their possible values, (b) the type or types of instructions to which each value
applies, and (c) the effect of each value for the affected instructions.

Terms and Definitions
cohort

In a given format, a set of decimal floating-point numbers having the same numeric value but
different quanta.

Chapter IX: Floating-Point Data and Operations 737

declet
A 10-bit encoding of three Binary Coded Decimal (BCD) digits. Declets may have two
forms:

• canonical: preferred (and generated) values, and
• non-canonical: any of 24 non-preferred encodings accepted as operands, but not generated

by any arithmetic operation.

DPD
Densely Packed Decimal; an encoding into declets.

extreme exponent
An exponent with maximum positive or negative value.

payload
Diagnostic information contained in a the significand of a NaN.

preferred exponent
The exponent of the result of every numeric operation has a preferred value, either that of
one of the operands or a value providing the maximum number of significant digits.

preferred quantum
The quantum selected for the result of an operation that maximizes the number of significant
digits, including low-order zero digits. Equivalent to preferred exponent.

quantum
The value of a unit in the low-order digit of a decimal floating-point number.

Programming Problems

Problem 35.1.(3)+ Write a program that reads records containing eight hex digits representing a
short decimal floating-point number. Then, display the value of the number in “scientific”
format: sd.ddddddEsdd where s is a sign, and d represents decimal digits. If the hex digits repre-
sent a special value, print its sign followed by Inf, QNaN, or SNaN as appropriate.

Problem 35.2.(4) In decimal floating-point arithmetic, the equation (1.0/N)×N=1.0 is true for
some values of N between 1 and 100 and not for others. Write a program that tests this relation
in long and extended precision decimal floating-point arithmetic. Show the values of N for
which the relation fails for both lengths, and for which the relation fails for only one of the
lengths.

For your own edification and/or extra credit:

• For those values of N for which the equation fails, determine the relative difference between
1.0 and the result of (1.0/N)×N.

• What rounding modes should be used for your solution? How would other choices affect
the results?

• What property is shared by all the values that fail?

Problem 35.3.(3)+ Write a subroutine named DPD2BCD that converts a declet to the decimal
equivalent 3 hex digits that represent the value of the declet.

Then, write a driver program that will call DPD2BCD for each of the 1024 possible bit combina-
tions, and display in tabular form (a) the decimal value of the declet, (b) the declet as three
hexadecimal digits, and (c) the decimal number between 0 and 999 represented by the declet.

738 Assembler Language Programming for IBM System z™ Servers Version 2.00

36. Floating-Point Summary

3333333333 6666666666
333333333333 666666666666
33 33 66 66

33 66
33 66

3333 66666666666
3333 666666666666

33 66 66
33 66 66

33 33 66 66
333333333333 666666666666
3333333333 6666666666

This chapter has covered a wide range of topics; this final section summarizes properties of
floating-point data and arithmetic, and provides some general observations and reminders.

36.1. Floating-Point Data Representations

The three System z floating-point representations are summarized in Table 387 for short, long,
and extended precision data respectively.

Table 387 (Page 1 of 2). Summary of System z floating-point representations

Property Hexadecimal Binary Decimal

Operand width, in bits 32, 64, 128 32, 64, 128 32, 64, 128

Base/radix 16 2 10

Representation of
significand digits Fraction Fraction Integer or fraction

Significant digits All are present Implicit high-order bit
for normalized data

All are present; high-
order digit is part of
Combination Field

Significand width, in
radix digits 6, 14, 28 24, 53, 113 7, 16, 34

Maximum equivalent
decimal precision 6, 15, 32 6, 15, 33 7, 16, 34

Exponent width, in bits Always 7 8, 11, 15 8, 10, 14

Exponent represen-
tation Binary Binary Binary

Exponent sign In biased exponent In biased exponent In biased exponent

Exponent bias 64 127, 1023, 16383 101, 398, 6176

Maximum exponent +63 +127, +1023, +16383 +96, +384, +6144

Minimum exponent −64 −126, −1022, −16382 −95, −383, −6143

Chapter IX: Floating-Point Data and Operations 739

Table 387 (Page 2 of 2). Summary of System z floating-point representations

Property Hexadecimal Binary Decimal

Maximum normalized
value 7.2×10+75

3.4×10+38

1.8×10+308

1.2×10+4392

10+97

10+385

10+6145

Minimum normalized
value 7.2×10−79

1.2×10−38

2.2×10−308

3.4×10−4392

10−95

10−383

10−6143

Minimum denormal-
ized value

5.1×10−85

1.2×10−94

1.7×10−111

1.4×10−45

4.9×10−324

6.5×10−4966

10−101

10−398

10−6176

Scale factor for
overflow/underflow
exponent wrap

none
192
1536
24576

—
576
9216

Scale factor for “Load
Rounded” exponent
wrap

none
—
512
8192

—
192
3072

Special values None QNaN, SNaN, Infinity QNaN, SNaN, Infinity

Multiple representa-
tions of a value Yes No Yes

Unnormalized values Yes Yes (for tiny values) Yes

Rounding options for
arithmetic None 4 modes 8 modes

Sign of zero arithme-
tically significant No Yes Yes

Each representation has advantages and disadvantages:

• Hexadecimal floating-point has a fixed-width characteristic, so it's easier to extract the
significand and to extend or shorten operands; it supports redundant representations.

• Binary floating-point has no redundant values or representations, but lengthening or short-
ening operands requires special instructions.

• Decimal floating-point has a very complex representation and supports redundant values, but
its arithmetic is more intuitive than hexadecimal or binary.

• Precisions have minor differences:

− Short binary has 0 to 3 more fraction bits than short hexadecimal

− Long binary has 0 to 3 fewer fraction bits than long hexadecimal

− Extended IEEE binary has 1 to 4 more fraction bits than extended hexadecimal

• Decimal floating-point has greater decimal precision than either hexadecimal or binary
floating-point, for all operand lengths.

Exercises

36.1.1.(1) What possibilities must you consider in converting short-precision floating-point data
between hexadecimal and binary representations?

36.1.2.(1) What possibilities must you consider in converting long-precision floating-point data
between hexadecimal and binary representations?

36.1.3.(1) What possibilities must you consider in converting extended-precision floating-point
data between hexadecimal and binary representations?

740 Assembler Language Programming for IBM System z™ Servers Version 2.00

36.2. Floating-Point Properties

Because precision and range are limited, the fundamental behaviors of floating-point are always
present; and, some numbers cannot be represented exactly. For example, consider the decimal
value 0.1: its value in binary is 0.0001 1001 1001 1001 1001 1001 1001 1001 ..., an unbounded
bit string. When representing 0.1 as a normalized short hexadecimal floating-point value, the frac-
tion has 21 significant bits: X'19999A', with relative error ≈ 2−22. When represented as a short
precision binary floating-point value, the fraction has 24 significant bits: X'CCCCCD', with relative
error ≈ 2−25.

This representation error may lead to unexpected results. Suppose we add 0.1 to itself 8 times,
and multiply 0.1 by 8, using short binary and hexadecimal arithmetic. The results are shown in
Table 388, where the differences from the decimal result are due to the imprecise representation
of 0.1 in hexadecimal and binary.

Table 388. Adding 0.1 in hexadecimal, binary, and decimal floating-point

This repeating-fraction problem doesn't go away when you use decimal floating-point: it cannot
precisely represent fractions like 2/3 and 1/7.

Exercises

36.2.1.(2)+ Using 6-digit decimal floating-point numbers and arithmetic (not a type used in
System z!), add 2/3 to 1.00000 3 times, with rounding to the nearest 6-digit value at each step.
If you start (a) with 2/3 = 0.666667 and (b) with 2/3 = 0.666666, what are the results?

36.2.2.(2)+ Using the same 6-digit decimal floating-point numbers as in Exercise 36.2.1, add
three copies of each representation of 2/3 to itself, and then add 1.00000. What are the results?

Operation Binary Hexadecimal Decimal

Add 0.1 8 times .8000000715... .8000000119... .8000000

Multiply 0.1 by 8 .8000000119... .8000000119... .8000000

36.3. Floating-Point Exceptions

Hexadecimal and binary/decimal exceptions have similarities and differences, as summarized in
Tables 389 and 390.

Table 389. Exception behavior for hexadecimal floating-point

Table 390. Exception behavior for binary and decimal floating-point

Exception Maskable Masked result Interrupt action/result

Exponent overflow No — Scaled exponent

Exponent underflow Yes True zero Scaled exponent

Zero divide No — Dividend operand unchanged

Lost significance Yes True zero Pseudo-zero

Exception Maskable Masked result Interrupt action/result

Invalid operation Yes QNaN Operation suppressed

Zero divide Yes Signed infinity Operation suppressed

Exponent overflow Yes Infinity or MaxReal Scaled exponent

Exponent underflow Yes Zero (or BFP de-norm) Scaled exponent

Inexact result Yes Calculated result Calculated result

Quantum exception
(DFP only) Yes Calculated result Calculated result

Chapter IX: Floating-Point Data and Operations 741

Differences to consider

Both hexadecimal and IEEE BFP/DFP results can differ significantly
between masked and unmasked actions.

36.4. Defining Floating-Point Constants

Each type allows you to specify a length modifier, as shown in Table 391. The hexadecimal and
binary types can be generated at less than their default lengths, but decimal floating-point con-
stants must have fixed lengths even if they are not aligned on default boundaries. (Bit-length
modifiers were described in Section 17.5 on page 257.)

Table 391. Length modifiers of floating-point constants

Table 392 summarizes the rounding-mode suffixes you can use when defining floating-point con-
stants. Values less than 8 are used for hexadecimal and binary constants. and values greater than
or equal to 8 are used for decimal floating-point constants.

Table 392. Assembler rounding-mode suffixes for floating-point constants

Exercises

36.4.1.(2) Table 391 indicates that the minimum bit length for hexadecimal floating-point con-
stants is 12 bits. However,

DC EL.9'8'

Constant Type Default Length Length Modifier Range

E,EH (hexadecimal) 4 .12 to 8

EB (binary) 4 .9 to 4

ED (decimal) 4 .32 or 4 only

D,DH (hexadecimal) 8 .12 to 8

DB (binary) 8 .12 to 8

DD (decimal 8 .64 or 16 only

L,LH,LQ (hexadecimal) 8 .12 to 16

LB (binary) 16 .16 to 16

LD (decimal) 16 .128 or 16 only

Mode Rn Description

1 R1 Round half-up (to nearest, ties away from 0) (HFP default)

4 R4 Round half-even (to nearest, ties to nearest even) (BFP Default)

5 R5 Round toward zero (truncate)

6 R6 Round to + ∞ ; if − , truncate

7 R7 Round to − ∞ ; if + , truncate

8 R8 Round half-even (to nearest, ties to nearest even) (default)

9 R9 Round toward zero (truncate)

10 R10 Round to + ∞ ; if − , truncate

11 R11 Round to − ∞ ; if + , truncate

12 R12 Round half-up (to nearest, ties away from 0)

13 R13 Round half-down (to nearest, ties toward 0)

14 R14 Round up (away from zero)

15 R15 Round for reround (“prepare for shorter precision”)

742 Assembler Language Programming for IBM System z™ Servers Version 2.00

is quite acceptable to the Assembler. Why then is the stated minimum bit length 12?

36.4.2.(3)+ Consider the representations of the decimal constant 0.1: Its short binary floating-
point representation is X'3DCCCCCD' and its short decimal floating-point representation is
X'22400001'. What are the values of these two words if they are mistakenly interpreted as short
hexadecimal floating-point constants?

36.4.3.(3)+ The short hexadecimal floating-point representation of 0.1 is X'4019999A'. What
would be the value of this constant if treated as if it is binary and decimal floating-point?

36.4.4.(3)+ The short decimal floating-point representation of 1 is X'22500001'. What would
be the value of this constant if treated as if it is hexadecimal and binary floating-point?

36.4.5.(3)+ These four floating-point constants were found in a program that didn't document
their type. What values would they take if interpreted as short hexadecimal, binary, and decimal
floating-point constants?

(1) X'3F800000'
(2) X'41100000'
(3) X'42640000'
(4) X'7FFFFFFF'

36.5. Converting Among Decimal, Hexadecimal and Binary Representations

When you display the values of floating-point numbers, they will almost always be wanted in
decimal form. For decimal floating-point, you only need to format the results; no conversion is
needed because values are already in decimal format. For the other two representations, however,
the data must be converted from a binary format (including hexadecimal) to decimal. These con-
versions can be very difficult to do correctly: approximate conversions between decimal and hex
or binary are easy, but some common values require great care. We'll discuss this problem in two
forms, known as “In-Out” and “Out-In” conversions.

An “In” conversion converts data from decimal to a machine radix (hexadecimal or binary) and
an “Out” conversion converts data from a from machine radix to decimal. The conversions
between decimal and binary must be correctly rounded for all values237 for these rules to apply.

36.5.1. In-Out Conversions

When we convert external data from a decimal representation to internal hexadecimal or binary
floating-point, do some computations, and then convert the internal floating-point values back to
decimal for display or printing, we have done an In-Out conversion. To be assured that the results
are reliable, we must answer this question:

• If the precision of the external decimal data is D digits, what internal precision p is required to
be sure we can correctly represent the decimal value (the “In” conversion); and when con-
verted back to decimal (the “Out” conversion), can we correctly recover all D decimal digits?

This observation helps define the term “equivalent decimal digits”. Using a floating-point system
FP(r,p) with radix r and p base-r digits, if

1. 10J ≠ rK for any nonzero J and K (that is, no power of 2 is a power of 10, which is true for
both hexadecimal and binary), and

2. all D-digit decimal floating-point numbers can be correctly converted to a member of
FP(r,p), and when converted back to decimal will correctly recover the original decimal value,
and

237 Today, these conversions are almost always correctly rounded, but for many years their complexity was not well
understood.

Chapter IX: Floating-Point Data and Operations 743

3. conversions are exact (that is, deliver the nearest neighbor of the infinitely precise value), and
are correctly rounded.

then we say that FP(r,p) can faithfully represent D-digit decimal numbers.

Starting with decimal data with precision D, the required internal hexadecimal and binary
floating-point precisions for faithful conversion are summarized in Table 393.

Table 393. Internal precision required for faithful In-Out conversion

For example, suppose the decimal data has precision 6 digits. Faithful conversion to hexadecimal
or binary requires 6 hexadecimal digits or 21 binary digits, so decimal data with 6 digits is
faithfully represented in both short floating-point representations. But if the decimal data has 7
digits, the number of internal hexadecimal and binary digits is too small, so seven-digit decimal
numbers cannot be faithfully represented in short floating-point. Thus we say that FP(16,6) and
FP(2,24) faithfully represent 6 decimal digits. This result may not be what you would expect
from calculating the weight of the low-order bit of a floating-point number. In short hexadecimal
floating-point, even though 16−6 ≈ 0.59×10−7, all 6-digit decimal floating-point values but not
all 7-digit decimal floating-point values can can be converted to hexadecimal and back with com-
plete recovery.

Similar considerations apply to long floating-point: at most 15 decimal digits can be faithfully
represented in hexadecimal and binary. For extended precision, the two representations behave
differently: hexadecimal floating-point can faithfully represent 32 decimal digits, while binary
floating-point can faithfully represent 33.

36.5.2. Out-In Conversions

For Out-In conversions, we start with internal floating-point data, convert it to external decimal
format, and then want to convert it back to internal format without losing the precision of the
original internal values. This means we must know how many decimal digits are required; they are
shown in Table 394.

Table 394. Decimal precision required for faithful Out-In conversion

For example, to recover long internal floating-point values converted to decimal and back,

• long binary requires 17 decimal digits for faithful representation of the internal value,
• long hexadecimal requires 18 decimal digits,
• and (as for In-Out conversions) correct conversion is required.

This is a useful “Rule of Thumb” for In-Out and Out-In conversions:

In-Out and Out-In Conversions

Out-In conversions need 3 more decimal digits than In-Out.

Precision Decimal Digits Hexadecimal
Digits Binary Digits

Short 6 6 21

Long 15 14 51

Extended 32
33

28
—

—
111

Precision Binary Digits Hexadecimal
Digits Decimal Digits

Short 24 6 9

Long 53
—

—
14

17
18

Extended
—

113
28
—

35
36

744 Assembler Language Programming for IBM System z™ Servers Version 2.00

36.5.3. The PFPO Instruction (*)

The System z PFPO instruction converts floating-point data formats among one another.

Table 395. Perform Floating-Point Operation instruction

Op Mnem Type Instruction

010A PFPO E Perform Floating-Point
Operation

Its assembler instruction statement has no operands! The floating-point source and target oper-
ands are in FPR4 and FPR0 respectively (with their paired registers for extended-precision oper-
ands). GR0 is set to a complex bit pattern describing the format of the source and target
operands, and GR1 contains the return code. For example, to convert a short BFP operand in
FPR4 to a long HFP operand in FPR0, you could write

LE 4,=EB'3.141592645' Source operand in FPR4, X'40490FDB'
L 0,=X'01010501' Convert according to current BFP mode
PFPO , Convert short BFP to long HFP
STD 0,HFPLong Store result, X'413243F6C0000000'
LTR 1,1 Check return code
JNZ WhatNext Do something if nonzero
- - -

HFPLong DS D Converted HFP result

The instruction handles many operand combinations; for details, see the z/Architecture Principles
of Operation.

Exercises

36.5.1.(2)+ Write a short Assembler Language program defining hexadecimal floating-point
constants for the six 7-digit decimal floating-point values 0.625000xE −1, where x takes values
from 3 to 8. What hexadecimal floating-point values are generated?

36.5.2.(3) If the short hexadecimal floating-point number X'40100001' is converted to 7-digit
decimal, what is the result?

36.6. “Real” and “Realistic” (Floating-Point) Arithmetic

Computation uses actual numbers, not mathematical real-number abstractions, so we must cope
with problems of precision, rounding, significance, etc. The mathematician's “real” numbers
provide elegant analyses, but don't always describe the “realistic” world where weights, dimen-
sions, and other values are known only imprecisely. The quantities used for computation neces-
sarily have finite precision and errors of measurement or estimation, and computational
techniques have finite precision.

The abstract formulation of a problem can help define the form of a computation, but it's impor-
tant to remember that usable results may depend on knowing the behavior of the adaptations you
make in order to calculate meaningful results.

The “laws” of real arithmetic such as associativity, distributivity, etc. apply only to abstract
numbers and in limited ways to “realistic” numbers, so you may sometimes unknowingly make
unsafe assumptions when you write your programs. We'll compare “real” and “realistic” laws in
Table 396 on page 746, where real numbers are represented by lower case letters (a,b), and
floating-point numbers are represented by capital letters (A,B).238 The letter “r” denotes the radix
of the representation.

238 A useful reference is Floating-Point Computation by Pat H. Sterbenz, Prentice-Hall, 1974.

Chapter IX: Floating-Point Data and Operations 745

Table 396. Laws of real and realistic arithmetic

“Law” Arithmetic with
“real” numbers Arithmetic with “realistic” numbers

Closure
The product and sum
of real numbers a and b
are reals.

The product (AB) and sum (A+B) of the floating-point
numbers A and B may not exist in FPF(r,p). Example:
FPF(16,6) (HFP) contains 90009.0 and 0.84375, but not
their sum, difference, quotient, or product.

Commutative a + b = b + a , a b = b a True for System z and almost all other systems.

Associative
Addition (a + b) + c = a + (b + c) Fails. If A, B, and C have the same sign, the results may

differ by r ulps.

Associative
Multiplication (ab)c = a(bc) Fails. If both products are in range, the results may differ by

2r ulps (fails spectacularly if exponent spills occur).

Distributive a (b + c) = a b + b c Fails. If B and C have the same sign, then the results differ
by at most r ulps.

Additive Unit
There is a real number
0 such that
a + 0 = 0 + a = a

True for most systems (unless underflow intrudes).

Multiplicative
Unit

There is a real number
1 such that
a×1 = 1×a = a

True for System z and almost all other systems.

Additive
Inverse

For any real a there is a
real −a with
a + (−a) = (−a) + a = 0

True in all known systems.

Multiplicative
Inverse

For any real a, if a≠ 0
there is a real a−1 with
a×a−1 = a −1×a = 1

Fails to hold in many systems; there may be no represent-
able inverses. (System z hexadecimal floating-point has no
inverse for any magnitude ≤ X'02100000'= 1 6 −63).

• Several A values may have the same A−1 (= 1 ÷ A)
• Some A −1 values give A×A−1 ≠ 1

− In HFP, A×(1/A) may differ from 1 by 16 ulps.
• If r > 2, a number with fraction 1 − r− p has r −1 inverses

in FPF(r,p) with chopped arithmetic, and approximately
(r −1)/2 inverses with rounded arithmetic
− In HFP, A −1= B −1 means only that A and B may

differ by 16 ulps
• In HFP, numbers with fraction 1 − n×r− p have inverse r−1

if 1≤ n≤ 15

Zero Divisor
If ab = 0, then at least
one of a or b must
vanish

Frequently fails if overflow or underflow occurs.

Cancellation

1. b + (a −b) = a
2. a×(b /a)=b
3. If ab = ac and

a ≠ 0, then b=c

1. Fails, especially in the presence of underflow or over-
flow.

2. Fails.
3. Fails. B and C may differ by r −1 ulps.

Division If b ≠ 0, and a/b means
ab −1, then b(a/b) = a Fails. If B(A/B) = C, then |A | and |C | may differ by r ulps.

Subtraction
If (a −b) means
a + (−b), then
(a + b) −b = a

Frequently fails near underflow threshholds, or if |B| greatly
exceeds |A|.

Inequalities

1. a < b
2. If a < b then for

all c, a+c < b + c
3. If a < b and c < d

then a+c < b + d
4. If b < c and a > 0

then ab < ac

Fails; strict inequalities must be weakened to tolerate
equality.

1. A ≤ B
2. A + C ≤ B + C
3. A + C ≤ B + D
4. AB ≤ AC

746 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. Floating-point numbers are actually a subset of the rational numbers, but they also don't
satisfy all the mathematical properties of rationals (which have unbounded numerator and
denominator).

2. Neither equalities nor inequalities reliably persist across floating-point operations.

3. Multiplying any fraction by a power of the radix leaves the fraction unchanged, unless there
is no guard digit and the product is truncated.

4. Inverses of tiny hex numbers overflow: the inverse of X'02100001' = HexMax, but any
smaller value causes exponent overflow.

5. An advantage of the binary floating-point representation: inverses exist for all normal values.

6. Some operations create meaningless results. Even in well-behaved programs, ordinary alge-
braic rules may fail:

This table shows that NaNs and infinity violate many common arithmetic “laws”.

Numerical analysis is a “realistic” discipline, coping with realistic problems in a world of realistic
numbers; the “real” analysis of advanced mathematics is a helpful but occasionally misleading
abstraction because it requires “unrealistic” conditions such as infinite precision and unbounded
magnitudes.

Exercises

36.6.1.(2)+ Table 396 on page 746 indicates that the “additive unit” is zero. Give an example
of a nonzero hexadecimal floating-point value A such that A +0 ≠ A.

36.6.2.(2)+ Table 396 on page 746 indicates that the “additive unit” is zero. Give examples of
a nonzero numeric binary and decimal floating-point value A such that A +0 ≠ A.

36.6.3.(4) Find a short HFP constant A such that A×(1/A) differs from 1 by at least 15 ulps.

36.6.4.(2)+ In hexadecimal floating-point, what is the value of Max×Min?

36.6.5.(3)+ For each floating-point representation, create an example that shows the failure of
additive association.

36.6.6.(3)+ For each floating-point representation, create an example that shows the failure of
multiplicative association.

36.6.7.(3)+ For each floating-point representation, create an example that shows the failure of
the distributive law.

Calculation Possible Problems

 0 / X → 0 ? Fails for X = 0
 1 * X → X ? Fails for X = NaN
 0 * X → 0 ? Fails for X = NaN or infinity
 X - X → 0 ? Fails for X = NaN or infinity
 X / X → 1 ? Fails for X = NaN or infinity
 X = X → TRUE ? Fails for X = NaN
 X > Y → Y < X ? Fails for X = NaN
-X = 0 - X ? Fails for X = +0

36.7. When Does Zero Not Behave Like Zero? (*)

Fascinating details

Mathematically, we would expect X± 0=X, X×0=0, and 0÷ X=0 (for
X≠ 0). In floating-point arithmetic, a zero value doesn't always behave
like a mathematical zero, especially in addition and subtraction.

Chapter IX: Floating-Point Data and Operations 747

36.7.1. Hexadecimal Floating-Point

Hexadecimal floating-point Pseudo-zeros have zero fraction and nonzero characteristic. For
example:

Table 397. Examples of hexadecimal floating-point pseudo-zeros

If a pseudo-zero is an operand in a multiply operation, or is the dividend in a division operation,
the result is a true zero (that is, +0). Thus, multiplication and division are well-behaved math-
ematically in hexadecimal floating-point arithmetic.

For addition and subtraction, the result depends on the differences between the characteristics of
the operands. Figure 471 shows some examples using short-precision operands: the precision of
the sum is degraded as the characteristic difference grows.

Precision A representative pseudo-zero

Single X'41000000'
Double X'41000000 00000000'
Extended X'41000000 00000000 33000000 00000000'

LE 4,=E'123.456' c(FPR4) = X'427B74BC' = 123.456
LER 0,4 Copy starting value to FPR0
AE 0,=X'45000000' c(FPR4) = X'427B7400' = 123.453
LER 0,4 Copy starting value to FPR0
AE 0,=X'46000000' c(FPR4) = X'427B7000' = 123.434
LER 0,4 Copy starting value to FPR0
AE 0,=X'47000000' c(FPR4) = X'427B0000' = 123.000
LER 0,4 Copy starting value to FPR0
AE 0,=X'48000000' c(FPR4) = X'42700000' = 112.000
LER 0,4 Copy starting value to FPR0
AE 0,=X'49000000' c(FPR4) = X'00000000' = 0.0

Figure 471. Degraded precision in adding hexadecimal floating-point pseudo-zeros

Because the fraction of the operand with the smaller characteristic is shifted right until the charac-
teristics are equal, more and more significant digits are lost.

• In the first example, the characteristic difference is 3, so the fraction X'7B74BC' is shifted right
three places; the digit 4 becomes the guard digit and then appears in the normalized result, so
only two digits are lost.

• In the last example, a zero fraction is generated and a significance exception is indicated.

Hexadecimal floating-point pseudo-zeros should be used rarely, and only with care.

36.7.2. Binary Floating-Point

Binary floating-point does not support pseudo-zeros: every zero and nonzero finite number has a
unique representation in each precision, except that zero may have either sign. Arithmetic results
have the mathematically-expected values:

• Adding zero to or subtracting zero from any operand that is not a NaN produces the original
operand. (The sign of an exact zero result depends on the rounding mode.)

• Dividing zero by any finite operand that is not a NaN produces ± 0.

• Multiplying zero by any operand that is not a NaN produces ± 0.

• The square root of zero is a zero with the same sign.

• Operations with ± ∞ behave sensibly.

748 Assembler Language Programming for IBM System z™ Servers Version 2.00

36.7.3. Decimal Floating-Point

As described in Section 35.3 on page 690, decimal floating-point zeros can have many representa-
tions. This can sometimes lead to unintuitive or unexpected results. For example, suppose we
add 1 and 0.0000000:

LD 4,=DD'0.0000000' 0E-7
LD 2,=DD'1'
ADTR 0,2,4 Sum in FPR0
EEDTR 6,0 Biased exponent in GG6
AGHI 6,-398 Exponent in GR6 = -7
CUDTR 7,0 c(GG7) = X'00000000 10000000'

so that the result is 10000000.×10−7, with value 1. We see that 1+0=1, but the result in this case
has a very different representation than ordinary arithmetic might predict. If the decimal floating-
point zero operand had been defined by

LD 4,=DD'0.00'

and the same instructions were executed, the result would be 100.×10−2 = 1.00, with value 1
(again!) but with yet another representation.

This behavior isn't limited to zero constants. If the result of an arithmetic operation is zero, we
can get similar results:

LD 4,=DD'123.456' c(FPR4)=X'222C0000 00028E56'
SDTR 2,4,4 c(FPR2)=X'222C0000 00000000' (zero)
LD 0,=DD'1' c(FPR0)=X'22380000 00000001'
ADTR 4,2,0 c(FPR4)=X'222C0000 00000400'
CUDTR 3,4 c(GG3) =C'00000000 00001000'
EEDTR 5,4 Extract biased exponent
AGHI 5,-398 Remove bias; c(GR5)=X'FFFFFFFD'=-3

The operands of the SDTR instruction have 3 significant decimal places, so the resulting zero in
FPR2 has the same quantum. When 1 is added the quantum is preserved, and the result is
1000×10−3 = 1.000, with value 1 as expected.

As noted earlier, these results are numerically reasonable, but their representation may not be as
easily predictable as with fixed-point binary or decimal arithmetic.

Exercises

36.7.1.(1)+ In a hexadecimal floating-point representation of each precision, how many dif-
ferent pseudo-zeros can be created?

36.7.2.(2) Figure Figure 471 on page 748, what result will be generated if the second operand is
X'43000000'? That is, what is the result of this operation:

LE 4,=E'123.456' c(FPR4) = X'427B74BC' = 123.456
AE 4,=X'43000000' c(FPR4) = ?

36.8. Examples of Former Floating-Point Representations and Behaviors (*)

In Table 398 on page 750, a sample of floating-point representations shows the processor, the
base (radix) B of the significand, the number of base-B digits in the significand, the equivalent
number of decimal digits represented, the exponent width in bits, the instruction format, and the
representation of the significand.239

239 To see some other floating-point representations, you may enjoy exploring the web for the formats on other old
processors such as the IBM 7030 “Stretch”, the DEC VAX, and the Harris Series 500.

Chapter IX: Floating-Point Data and Operations 749

Table 398. Examples of other floating-point representations

Processor and representation Base
B

Base-B
Digits

Equiv.
Dec.

Exp.
Wid. Format Significand

Representation

Pr1me 550 series single 2 23 6 8 s/f/e Two's complement

IEEE binary short precision 2 24 6 8 s/c/f Sign-magnitude

IBM hex short precision 16 6 6 7 s/c/f Sign-magnitude

Burroughs 6700 short precision 8 13 10 6 S/s/e/i Sign-magnitude

CDC 6600/CYBER 70 2 48 14 11 s/e/i Sign-magnitude

Cray-2 single precision 2 48 14 15 s/e/f Sign-magnitude

IEEE binary double precision 2 53 15 11 s/c/f Sign-magnitude

IBM hex double precision 16 14 15 7 s/c/f Sign-magnitude

IBM hex extended precision 16 28 32 7 s/c/f Sign-magnitude

Note: s = sign, e = signed exponent, c = characteristic, f = fraction, i = integer.

Most of these representations use a biased characteristic, but the Cray-2 used a signed exponent.
Two processors (Burroughs and CDC) used a right-adjusted integer significand rather than a left-
adjusted fraction, and Burroughs used sign-magnitude representations for both the exponent and
the integer significand.

Some processors had representations for special values:

• CDC processors provided representations for infinity and “indefinite” (what we now call “Not
a Number”).

• The IBM 7030 Stretch provided representations for infinity, infinitesimal (ε), and OMZ
(“Order of Magnitude Zero” with significand = 0).

• The DEC VAX systems provided a “reserved operand” with minus sign and exponent zero
that caused an interruption when accessed.

The wide variety of floating-point implementations on past processors led to some of the fol-
lowing oddities that happened on widely used processors:

• Some processors responded to exponent spills by delivering zero, ∞ , MaxReal, or MinReal.
• Some numbers had no inverse.
• A number a had a precisely representable inverse, but a×a−1 ≠ 1.
• Some processors treated all sufficiently tiny nonzero numbers z as if they were zero during

multiplication and division, but not during addition or subtraction.
• z = y but z − t ≠ y− t for reasonable values of z, y, and t.
• 1/3 ≠ 9/27.
• y × z ≠ z × y (for example, the Cray-1 traded commutativity for speed).
• z ≠ 1×z ≠ 0.
• y/z < 0.99 but y−z = 0 (caused by underflow to 0).
• |z | < 1, but the processor claimed |z | ≥ 1.
• The expressions x < y and (x −y) < 0 were exactly equivalent on some systems but not on

others.
• Some processors had different over/underflow thresholds for multiplication and/or division

than for addition and/or subtraction.

These many inconsistencies made it quite difficult (if not impossible) to create reliable numeric
software that worked on many systems.240 This led to the IEEE Floating-Point standard for
binary floating-point, adopted in 1975; its format quickly became an industry standard,
supplanting most of the formats sketched in Table 398.

240 Such oddities led someone to propose “Murphy's Law of Floating-Point:” Anything that can go wrong, does on some
computer.

750 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

36.8.1.(2) Sketch the formats of the floating-point representations in Table 398 on page 750 for

• Pr1me 550 series single precision
• CDC 6600
• Cray-2 single precision

36.8.2.(2)+ In Table 396 on page 746, the description of Additive Units says that underflow
may cause the identity to fail. Give an example in hexadecimal floating-point where this can
occur.

36.8.3.(3)+ The list of computational oddities included the possibility that z = y but
z− t ≠ y− t. Create “sensible” (non-extreme) short hexadecimal floating-point values that
exhibit this behavior.

36.8.4.(2) Search the web to find the representation used by the Burroughs 6700 for short
floating-point numbers.

36.8.5.(2)+ Show the character, integer, and the binary, hexadecimal, and decimal floating-point
values of these four words: X'81818181', X'A3A3A3A3', X'F5F5F5F5', X'FEFEFEFE'.

36.9. Summary

Given the 32-, 64-, and 128-bit floating-point representations, the equivalent decimal precisions
that can be faithfully represented are shown in Table 399.

Table 399. Equivalent decimal and floating-point precisions

If precision “equivalent to decimal” is important, decimal floating-point is best.

Some things to keep in mind:

1. Be careful about “optimizing” arithmetic expressions. The possible presence of signed zeros,
NaNs, and infinities require care.

2. Predictability is more important than efficiency; getting wrong answers fast helps no one.

3. Respect the parentheses in coded expressions: they often specify a required order of evalu-
ation.

4. Don't accidentally mix operand lengths (except possibly with hexadecimal floating-point, and
then only if you're very careful!). A number in a floating-point register may have very dif-
ferent representations; for example, the three binary and decimal representations have dif-
ferent exponent field and significand widths.

5. It is best to do all computations in a single mode: hexadecimal, binary, or decimal, with a
single representation for constants and literals.

6. Binary floating-point permits exceptions where none would occur with hexadecimal, such as
when shortening an operand or creating inexact and invalid operation exceptions.

7. Inequalities do not persist across floating-point operations!

8. Don't compare floating-point values for strict equality; use either an inequality, or a compar-
ison for “equality within an acceptable tolerance”.

floating-point
precision

hexadecimal
floating-point

binary floating-
point

decimal
floating-point

32 bits 6 digits 6 digits 7 digits

64 bits 15 digits 15 digits 16 digits

128 bits 32 digits 33 digits 34 digits

Chapter IX: Floating-Point Data and Operations 751

9. A smaller radix means that relative error grows more slowly, but more exponent bits are
needed for a given exponent range. For example, binary requires 2 more exponent bits than
hexadecimal for same range.

10. Rounding (as in BFP and DFP arithmetic) compared to truncation (in HFP arithmetic)
means that the magnitude of average error tends to be smaller.

11. Don't confuse the “ulp” (for HFP and BFP) with the quantum (for DFP). They might seem
to describe the same concept, but an ulp(x) depends on the value of x and may vary by a
factor of 2 (BFP) or 16 (HFP), while the magnitude of a quantum depends only on the
exponent of the number. An ulp of a DFP number is meaningless, because DFP values
aren't normalized.

12. The two signed zeros (in BFP and DFP) are distinguishable arithmetically only by division
by zero (producing signed infinities) or using the copy sign instructions. (See Exercise 34.8.3.)

You must think differently about floating-point numbers and arithmetic; so why do we rely on
floating-point arithmetic?

1. It closely approximates the way most of us do most of our calculations, most of the time.

2. It handles most of the hard work automatically.

3. But, remember that it can be difficult to know with certainty when it doesn't work!

4. “The secret of success of floating-point computation lies in the fact that we continue to do
arithmetic to p digits of precision even though the accuracy of our intermediate results has
degraded so that we can only guarantee that a few digits are significant.”241

Terms and Definitions
mantissa

A term sometimes used to describe the significand of a floating-point number. Because it can
be confused with the mantissa (fractional part) of a logarithm, avoid its use when describing
floating-point representations.

“real” numbers
A powerful abstraction used by mathematicians, in which values have infinite precision and
unlimited range.

“realistic” numbers
Numbers used for computation with finite range, precision, and accuracy.

Programming Problems

Problem 36.1.(5) Suppose your processor does not provide instructions to automatically convert
between floating-point representations. Write a program that accepts strings of 8 hex digits
representing a short binary floating-point value, and converts them to a short hexadecimal
floating-point representation using half-up rounding. Display the original and converted values
in hexadecimal, and generate appropriate messages if any conversion problems arise.

Suggested test values include: X'80000000', X'7FFFFFFF', X'7F7FFFFF', X'3DCCCCCD',
X'80800000', X'FF800000', and X'007FFFFF', but you should create others.

Problem 36.2.(4) Suppose your processor does not provide instructions to automatically convert
between floating-point representations. Write a program that accepts strings of 16 hex digits
representing a long hexadecimal floating-point value, and converts them to a long binary
floating-point representation using rounding to half-even. Display the original and converted
values in hexadecimal. If the HFP value is unnormalized, generate a canonical QNaN.

241 Quoted from Floating-Point Computation by Pat H. Sterbenz, Prentice-Hall, 1974.

752 Assembler Language Programming for IBM System z™ Servers Version 2.00

Suggested test values include: X'80000000 00000000', X'7FFFFFFF FFFFFFFF',
X'40199999 9999999A', X'470CCCCC CCCCCCC5', X'80100000 00000000', and
X'413243F6 A8885A31', but you should create others.

Problem 36.3.(5) Suppose your processor does not provide instructions to automatically convert
between floating-point representations. Write a program that accepts 16 hex digits representing
a long binary floating-point value, and converts them to a long hexadecimal floating-point rep-
resentation using half-up rounding. Display the original and converted values in hexadecimal,
and generate appropriate messages if any conversion problems arise.

Suggested test values include: X'80000000 00000000', X'7FFFFFFF FFFFFFFF',
X'7FEFFFFF FFFFFFFF', X'3DCCCCCC CCCCCCCD', X'80100000 00000000', and
X'FFF00000 00000000', but you should create others.

Problem 36.4.(3) For each floating-point representation, write instructions that will create a
table of the values of N Factorial (N!) starting at 1! = 1 in the 8-byte floating-point represen-
tation. Determine the maximum representable value without causing overflow or underflow
exceptions, and store the value of N for that maximum value as a word integer at HFactMax,
BFactMax, and DFactMax for hexadecimal, binary, and decimal floating-point values respectively.

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode

PFPF 010A

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic

010A PFPO

Chapter IX: Floating-Point Data and Operations 753

754 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter X: Large Programs and Modularization

XX XX
XX XX
XX XX
XX XX
XX XX

 XXXX
 XXXX

XX XX
XX XX
XX XX
XX XX
XX XX

The two sections of this chapter discuss program modularization:

• Section 37 introduces the basic concepts of internal subroutines, focusing on the fundamental
processes of subroutine linkage, argument passing, and status preservation. It then describes
the general linkage conventions used on System z operating systems.

• Section 38 describes:

− Techniques for managing addressability in large programs (and how the powerful LOCTR
instruction can help).

− Separately assembled multi-module applications.

− How to write external subroutines callable from Assembler Language and other program-
ming languages.

− How separately assembled modules are linked together to form an executable load module
or program object, and how they are loaded into memory.

− How to handle changes in addressing modes.

Chapter X: Large Programs and Modularization 755

37. Subroutines and Linkage Conventions

3333333333 777777777777
333333333333 777777777777
33 33 77 77

33 77
 33 77

3333 77
3333 77

33 77
33 77

33 33 77
333333333333 77
3333333333 77

Program modularization is a fundamental application development process. We divide a task into
smaller pieces that can be written and tested independently. In this and the next section we will
examine some general features of subroutines, a basic form of modularization.

Subroutines help you divide a programming problem into smaller and more manageable parts. A
calculation needed at many places within a program can be done by including the necessary
instructions at each place they are needed, but it is usually more economical to write the needed
instructions once, and then execute them as needed.

Of course, if a calculation is needed at only one point in a program, it might seem easiest to insert
the instructions there. But we will see that using a subroutine is justifiable because it simplifies
program planning, organization, coding, and debugging. Often, a tested subroutine can be used in
other programs.

37.1. Basic Concepts

We'll start with three basic concepts:

• Linkage: how to pass control to a subroutine and return.

• Argument passing: how to provide data needed by the subroutine and access its results.

• Status preservation: how to be sure that nothing important is lost, modified, or destroyed in
the process.

We call the main program the routine that transfers control to the subroutine. The former is said
to call the latter, so the main program is the calling program (or caller) and the subroutine is the
called program (or callee).

The rest of Section 37.1 uses simple examples to illustrate these three basic concepts; many of
them are used in the general linkage conventions discussed in sections 37.2-37.4. For now, we'll
consider only 32-bit registers and 24- and 31-bit addressing modes.

756 Assembler Language Programming for IBM System z™ Servers Version 2.00

37.1.1. Linkage

This problem is relatively simple: we must find a way to transfer control from the caller to the
callee and for the callee to then return to the caller. The calling program must know where to
transfer control to execute the called program, and the called program must know how and where
to return control to the calling program.

To use a trivial (and nonsensical) example, suppose the subroutine starting at an instruction
named ZSet sets the byte named Flag to zero. (For the following examples, assume GR12 has
been established as a base register.)

- - - Main program calculates something
J ZSet Then branches to the subroutine (1)

Next L 2,Noodle And then continues
- - - ...with something else
- - -

ZSet MVI Flag,0 Subroutine sets the byte to zero
J Next And returns to the main program (2)

Figure 472. Trivial example of a subroutine (1)

The “processing” performed by this “subroutine” can obviously be done more simply without a
subroutine call. The point is that we have (1) transferred control to a subroutine which does
something and then (2) returns control to the caller. In its most primitive form, a subroutine can
be written as an instruction sequence to which a branch is made, and which returns by branching
elsewhere.

Now, suppose we want to call the subroutine starting at ZSet from several different places in the
main program. We see that the return in Figure 472 always branches to the same instruction
(named Next) in the calling program. But we may want to do something different before and after
calling the subroutine each time. Thus we must solve the second half of the linkage problem:
specify where control should be transferred when the subroutine ends.

We can solve this problem by agreeing that when control is transferred to ZSet, GR14 will
contain a return address, the address of the instruction to which the subroutine should branch
when it completes. Then we can make two calls to the subroutine at ZSet as shown in
Figure 473.

- - - Calculate something
LA 14,Next Set return address in GR14
J ZSet Branch to subroutine

Next L 2,Noodle On return, begin calculating
- - - ...something else
ST 2,Result And store it
LA 14,Ret2 Set new return address in GR14
J ZSet Branch to subroutine

Ret2 L 3,Poodle ...and so forth
- - -

ZSet MVI Flag,0 Subroutine does its work
BR 14 And returns to the address in GR14

Figure 473. Trivial example of a subroutine (2)

The Branch and Save instructions provide a simpler solution.

37.1.2. The Branch and Save Instructions

The Branch and Save instructions let you execute both the branch to the called program, and set
the return address. The four instructions are shown in Table 400 on page 758.

Chapter X: Large Programs and Modularization 757

Table 400. Branch and Save instructions

Op Mnem Type Instruction Op Mnem Type Instruction

0D BASR R R Branch and Save
(Register)

4D BAS RX Branch and Save

A75 BRAS RI Branch Relative and
Save

C05 BRASL RIL Branch Relative and Save
(Long)

We first encountered BASR in Section 10 when we discussed addressability, but there the R2 digit
was assumed to be zero. BAS is an RX-type instruction with the operand format shown in
Section 9.5, and BASR is an RR-type instruction with the operand format illustrated in Section
9.2. BRAS and BRASL use relative-immediate addressing, as discussed in Section 20.1.3.

As with other branch-relative instructions, we often use the extended mnemonics JAS for BRAS
and JASL for BRASL.

The first step in executing a Branch and Save instruction is determining the branch address: for
BASR it is the address in the R2 register (unless R2 is zero, in which case the instruction doesn't
branch) and for the other three instructions the branch address is the Effective Address.

The second step places the Instruction Address (IA) from the PSW into general register R1, so
that R1 contains the address of the instruction following the Branch and Save instruction.242

• If the addressing mode is 24 or 31, bit 32 of the R1 register is set to 0 or 1 accordingly, and
bits 0 to 31 are unchanged.

• In 64-bit addressing mode, the 64-bit address of the following (next sequential) instruction is
placed in GG R1.

The third and final step replaces the contents of the IA in the PSW with the branch address, so
the next instruction executed will be at the branch address.

 Reminder

Remember that the Branch and Save instructions are modal. The address
in the R1 register depends on the current addressing mode, as described
in Section 20.2.

We can rewrite Figure 473 on page 757 to use a BAS instruction:

- - - Main program labors
BAS 14,ZSet Branch to subroutine, set GR14
L 2,Noodle On return, labor again
- - -
ST 2,Result Store a new result
BAS 14,ZSet Call subroutine again
L 3,Poodle ...etc.
- - -

ZSet MVI Flag,0 Subroutine does required work
BR 14 Return to address in GR14

Figure 474. Subroutine linkage using a BAS instruction

This program segment is functionally identical to Figure 473 on page 757 but requires fewer
instructions (and symbols) because the BAS instructions provide both the return addresses (for-
merly generated by LA instructions) and the branches to the subroutine (formerly done by the
J ZSet instructions).

242 If the Branch and Save instruction is the subject of an EXecute instruction, R1 contains the address of the instruction
following the execute instruction.

758 Assembler Language Programming for IBM System z™ Servers Version 2.00

The RX-type BAS instruction requires a base register to resolve the target address; you can also
use the relative branch form, JAS, to eliminate the need for one or more base registers for instruc-
tion addressing.

A BASR instruction can be used in a similar sequence:

- - - Same main program
LA 15,ZSet Put subroutine address in GR15
BASR 14,15 Branch to subroutine
L 2,Noodle ...etc
- - - Assume that GR15 is unmodified
ST 2,Result ...etc
BASR 14,15 Call subroutine again
L 3,Poodle ...etc
- - -

ZSet MVI FLAG,0 Subroutine
BR 14 Returns to caller

Figure 475. Subroutine linkage using a BASR instruction

This program segment is identical to that in the previous example, except that the BAS
instructions have been replaced by BASR, and GR15 has been preset to contain the “entry point
address” of the subroutine.

This convention is widely used for calling subroutines. In Figures 474 and 475, we assumed that
the symbol ZSet was addressable from the BAS and LA instructions. If the source program is
large the entry point of the subroutine may be far away, so you might use a technique like this:

- - - Same main program
LZSet L 15,AdrZSet Put subroutine address in GR15

BASR 14,15 Branch to subroutine
L 2,Noodle ...etc
- - - Assume that GR15 is unmodified
ST 2,Result ...etc
BASR 14,15 Call subroutine again
L 3,Poodle ...etc
- - -

AdrZSet DC A(ZSet) Addressable from instruction LZSet
- - -

ZSet MVI FLAG,0 Subroutine (quite far from LZset)
BR 14 Returns to caller

Figure 476. Subroutine linkage using an address constant

Section 38 will explore this theme in more detail.

37.1.3. Argument Passing

Subroutines are rarely this trivial. A subroutine usually operates on data provided to it, and either
modifies the data or uses it to compute new values. The data provided to a subroutine are called
its arguments.243

The caller and callee must agree on the method(s) used for passing arguments. We will sketch a
few simple techniques that require different amounts of information be known to both routines.

For these examples, suppose we must write a subroutine starting with an instruction named
ShftRt which is has two arguments: a logical fullword to be shifted and a fullword integer N. The

243 This terminology comes from the mathematical concept of a function of one or more arguments. Because mathemat-
ical functions such as SIN and EXP in higher-level languages are almost always implemented by subroutine calls, we
use the same terminology to describe similar situations even when the called routines are not mathematical functions.

Chapter X: Large Programs and Modularization 759

subroutine will shift the first argument logically to the right by 2+max(N,0) bit positions: if N is
negative shift right two places, and if N is non-negative shift N+2 places.

One simple method places the arguments into agreed-upon general registers. This works only for
data which “naturally” fits in registers; a different method would be needed for packed decimal or
character data.

Now, let the two arguments for the subroutine at ShftRt be placed in registers GR0 and GR1
respectively: the logical argument is in GR0 and the integer N is in GR1. The shifted result is left
in GR0 when control is returned to the caller. As above, we assume the return address is in
GR14.

* ShftRt Arguments in registers 0 and 1
ShftRt LTR 1,1 Test value of N

JNM ShftOK Branch if nonnegative
SR 1,1 Set N to zero if it was minus

ShftOK SRL 0,2(1) Shift (2+max(N,0)) bit positions
BR 14 Return to caller

Figure 477. Simple shift subroutine (1)

While this instruction sequence is straightforward, a possibly undesirable side-effect is created by
the subroutine: if the argument N in GR1 is negative, GR1 is set to zero. If the calling program
did not need to use the contents of GR1 after the call there is no problem. Otherwise, we might
rewrite the routine as in Figure 478:

ShftRt SRL 0,2 Shift logical argument 2 places
LTR 1,1 Test integer value N
BNPR 14 Return to caller if not positive
SRL 0,0(1) Otherwise shift N more places
BR 14 And return to caller

Figure 478. Simple shift subroutine (2)

This is better because the subroutine makes as few changes to the caller's registers as possible.

A second way to pass arguments is to place them in named memory areas. This is sometimes
used for operands (such as packed decimal data and character strings) that must be processed in
memory. For example, suppose the argument to be shifted is stored in a word named Logic and
the integer value N is stored in a word named NN. Assuming again that the caller expects the
shifted result to be returned in GR0, we could write the subroutine as in Figure 479.

ShftRt L 0,Logic Get argument to be shifted
L 1,NN Get number of shifts, N
LTR 1,1 Check shift count
JNM ShftOK Branch if not negative
SR 1,1 Set count to zero

ShftOK SRL 0,2(1) Shift by required amount
BR 14 Return result to caller in GR0

Figure 479. Simple shift subroutine with named arguments (3)

In this case we have used the same technique as in Figure 472 on page 757, but no harm is done
by the SR instruction that sets GR1 to zero because the value of N stored at NN is unchanged.
You can mix these techniques; some variations are illustrated in the Exercises.

A more powerful technique is to use argument addresses. Then, arguments can be anywhere in
memory, and the subroutine is passed the addresses of the arguments. This method can be used
for arguments of any type and is preferable as a general scheme; the simpler methods just
described are efficient when restricted to particular types of data. First, suppose the address of the
logical argument is in GR2, and the address of N is in GR3.

760 Assembler Language Programming for IBM System z™ Servers Version 2.00

* ShftRt argument addresses in GR2, GR3
ShftRt L 0,0(0,2) Get logical argument

L 1,0(0,3) Get integer argument
SRL 0,2 Shift logical argument 2 places
LTR 1,1 Now test integer argument
BNPR 14 Return if negative or zero
SRL 0,0(1) Shift N places
BR 14 And return result in GR0

Figure 480. Simple shift subroutine (4) using argument addresses

A key advantage of passing arguments or their addresses in registers is that the subroutine need
not know where the arguments are, nor whether they would be addressable within the subroutine.

Now, suppose the argument addresses are also in memory: let the address of the logical argument
be in a word named AdrLogic and the address of the integer argument N be in a word named
AdrN. Then we can write the subroutine as in Figure 481:

* ShftRt argument addresses in named memory locations
ShftRt L 1,AdrLogic Get first argument address

L 0,0(0,1) Get logical argument in GR0
SRL 0,2 Shift right 2 bit positions
L 1,AdrN Get second argument address
L 1,0(0,1) Get integer argument in GR1
LTR 1,1 Test sign of N
BNPR 14 Return if not positive
SRL 0,0(1) Shift remaining N bit positions
BR 14 And return

Figure 481. Simple shift subroutine (5) with argument addresses in memory

This example is close to the “standard” argument-passing convention used by System z operating
systems that we'll discuss in Section 37.2.

In some specialized cases the return address can be used to address the arguments or the argument
addresses. This is done by placing them inline: the data or data addresses are placed into the
instruction sequence following the Branch and Save that links to the subroutine.

To illustrate inline arguments, first suppose the ShftRt subroutine is written so that the logical
argument is in GR0 on entry and return, but the number of shifts is contained in a halfword
immediately following the Branch and Save instruction. On entry to the subroutine, R14 contains
the address of the halfword integer shift amount, and control must return to the instruction fol-
lowing that halfword.

- - - Call the subroutine
L 0,Data1 Get first logical data item
BAS 14,ShftRt1 Call ShftRt1 subroutine
DC H'5' Shift amount = +5
ST 0,Result1 Store shifted result
- - -
L 0,Data2 Get second data item
BAS 14,ShftRt1 Call subroutine again
DC H'-4' Shift amount = -4
ST 0,Result2 Store second result

Figure 482. Subroutine call with inline arguments

We can't use the address in R14 for the return address, because we would branch to the halfword
constant! The subroutine must account for the 2-byte length of the inline parameter when it
returns:

Chapter X: Large Programs and Modularization 761

* Subroutine ShftRt1 with inline halfword shift-count argument
ShftRt1 LH 1,0(0,14) Get halfword shift argument N

LTR 1,1 Test sign
JNM ShftOK Branch if not negative
SR 1,1 Clear GR1 to zero

ShftOK SRL 0,2(1) Perform required shifts
B 2(,14) �── Return, stepping past argument

Figure 483. Subroutine returning past inline argument

For a further variation on this inline-argument scheme, suppose the arguments are two fullwords
containing the addresses of the arguments. The call to the subroutine could then be written:

- - -
CNOP 0,4 Align to fullword boundary
BAS 14,ShftRt2 Call ShftRt2 subroutine
DC A(Logic,NN) Argument addresses
ST 0,Result Store shifted result
- - -

Logic DS F Logical datum to be shifted
NN DS F Shift amount
Result DS F Space for result
Figure 484. Subroutine call with inline argument addresses

The CNOP statement is needed to guarantee that the 4-byte BAS instruction falls on a fullword
boundary, so that no space will be wasted between the BAS and the address constants. Other-
wise, a program interruption might be generated by the subroutine. (See Exercise 37.1.6.)

A ShftRt2 subroutine called with these arguments could be written as follows:

ShftRt2 LM 1,2,0(14) Get argument addresses
L 0,0(0,1) Fetch logical datum
L 1,0(0,2) ...and shift amount
SRL 0,2(0) Shift two places
LTR 1,1 Now test shift amount
BNP 8(0,14) �── If not +, return to caller
SRL 0,0(1) Otherwise perform remaining shifts
B 8(0,14) �── ...and return

In both versions of this subroutine, the RX form of the return branch instruction (rather than
RR form) must be used so that the displacement of the BC instruction can contain the length of
the arguments to be skipped.

The technique of inline arguments is discouraged today because it can seriously impact program
performance, but it was widely used in the past and sometimes appears in instructions generated
by operating system macros. It is especially inefficient if the inline arguments vary each time the
subroutine is called.

37.1.4. Returned Values

Each of the schemes for passing arguments to the subroutine can also be used for returning com-
puted results to the calling program. (See Exercise 37.1.2.)

When the returned value can be held naturally in a register, we often return it in a register; or, we
might store it in a specified place in memory. To illustrate the latter, suppose our general
argument-passing scheme above is used with three address arguments. The first two addresses in
the address list are the logical word and shift count, and the third address in the address list points
to a word where the result is to be stored. Assuming GR1 contains the address of the first of the
three argument addresses, we can write the subroutine as follows:

762 Assembler Language Programming for IBM System z™ Servers Version 2.00

* GR1 has address of argument and result addresses
ShftRt3 LM 2,4,0(1) Get argument and result addresses

L 0,0(0,2) Load logical argument
L 1,0(0,3) Load shift amount N
LTR 1,1 Test sign of shift count
JNM ShftOK Branch if not negative
SR 1,1 Set shift to zero otherwise

ShftOK SRL 0,2(1) Perform the required shifts
ST 0,0(0,4) Store result in given location
BR 14 Return to caller

Figure 485. Subroutine with argument address list

The important feature of this example is that GR1 points to a list of argument addresses; we'll see
this again in Section 37.3.

37.1.5. Status Preservation

The previous examples assumed that all registers except GR14 were available for use and could be
modified by the subroutine. This could conflict with registers used in the calling program. For
example, in Figure 485 registers GR0 through GR4 were modified.

Two decisions must be made: what should be preserved, and which routine should do the pre-
serving: caller or callee? Among items that might need to be saved for later use by the caller are
the general registers, the floating-point registers, and other things like the Condition Code and
Program Mask.

Consider first the problem of determining which routine should do the status preservation. For
simplicity, we take this to mean the saving and restoring of the general registers. If the calling
program saves all the registers before branching to the subroutine, and restores them on return, it
might be doing a lot of unnecessary work; a subroutine like ShftRt uses very few registers, but the
writer of the calling program would typically prepare for the worst and save all the registers.

More critically, whatever registers were used for addressability in the calling program may have
been destroyed by the subroutine, which needs only to branch to the instruction at the return
address. This could cause serious problems when the caller tries to restore its registers. (See Exer-
cise 37.1.7.)

Thus, it's better for the called routine to save and restore registers. The subroutine can take
advantage of its (possibly) economical use of registers by saving and restoring only the ones it
modifies.

There are also advantages to not preserving some registers. In Figure 481 on page 761 only GR1
is modified, so there could easily be a convention between caller and callee that GR1 may be used
for any necessary purpose without preserving its contents. (Such a register is sometimes called a
scratch register or a volatile register: its contents may “evaporate” across calls.) The extra time and
memory needed for status preservation on each subroutine call may be less if we agree to let the
subroutine modify and not restore a designated group of registers.

There are many solutions to the problems of status preservation; this example shows a simple
technique. Suppose we rewrite Figure 485 so that only GR0 is modified (containing the result),
and GR1 through GR3 are restored before returning.

Chapter X: Large Programs and Modularization 763

* ShftRt4 subroutine saves and restores GR1-GR3
ShftRt4 STM 1,3,ShftSave Save GR1 through GR3

LM 2,3,0(1) Get argument addresses
L 0,0(0,2) Get first argument in GR0
L 3,0(0,3) Get second argument in GR3
LTR 3,3 Test sign of shift amount
JNM ShftOK Branch if non-negative
SR 3,3 Set shift count to zero

ShftOK SRL 0,2(3) Shift by required amount
LM 1,3,ShftSave Restore GR1-GR3
BR 14 Return to caller

ShftSave DS 3F Save area for 3 registers
Figure 486. Subroutine saves and restores registers

(See Exercises 37.1.10 and 37.1.11.)

Exercises

37.1.1.(1) Write a version of the ShftRt subroutine that receives the logical argument in GR0,
and the integer argument N is in a fullword area of memory named NN. The return address is
in GR14.

37.1.2.(1) Write a version of the ShftRt subroutine that expects its arguments to be in fullword
areas of memory named Logic and NN and which leaves the result in a fullword area of memory
named Result. The return address is in GR14.

37.1.3.(2)+ What will be found in GR R1, and what instruction will be fetched next, if the
subject instruction of an EX is a Branch and Save?

37.1.4.(3)+ A programmer asked whether or how the actions of the two instructions

BASR 2,0 and BASR 2,2

differ; he believed that they are identical except that the latter takes slightly longer. Explain how
and why this is incorrect.

37.1.5.(3) Describe the action of the following sequence of instructions:

BASR 3,0
- - - First block of code
BASR 3,3
- - - Second block of code
BASR 3,3
- - - Etc.

37.1.6.(2)+ In Figure 484 on page 762, what problems might occur if the CNOP instruction is
omitted?

37.1.7.(3) Suppose the calling program saves and restores its own registers, and that the called
routine returns to its caller using this (nonstandard) instruction sequence:

LR 1,14 Move return address to GR1
S 1,=F'4095' Subtract 4095 from ret addr
LM 2,15,=14F'0' Have fun with the other regs
B 4095(,1) And return to the caller, with

* An odd address in GR1 (HaHa)

State the conditions under which the calling program could re-establish its own registers.

37.1.8.(3) The BASR instruction with operands “R1,R2”, when used for subroutine branching,
is functionally identical to the instruction

BAS R1,0(0,R2)

764 Assembler Language Programming for IBM System z™ Servers Version 2.00

Why then is there any use for BASR? Can you think of any reasons why the CPU architects
included it in the instruction set? (Apply the same considerations to the instruction pairs
BC/BCR and BCT/BCTR.)

37.1.9.(2)+ What will happen at execution time when these instructions are executed?

LA 4,XYZ Address of XYZ in GR4
BASR 5,0
BASR 4,5

37.1.10.(2)+ Rewrite the instructions in Figure 486 on page 764 so that only two registers need
to be saved and restored.

37.1.11.(2)+ Rewrite the instructions in Figure 486 on page 764 so that only one register needs
to be saved and restored. Is this solution likely to be more or less efficient than your solution to
Exercise 37.1.10?

37.2. A General Linkage Convention

Section 37.1 described basic aspects of internal subroutines written as part of your source
program. You can use these basic techniques to write internal subroutines using almost any work-
able conventions. (We'll discuss external subroutines in Section 38.)

As your subroutines grow in size and complexity, you will want to use a more standard set of
conventions.

• Section 37.3 describes a general scheme for passing arguments.

• Section 37.4 describes status preservation using save areas and register-saving conventions.

• Some additional conventions are described in Section 37.5.

Section 37.4 will summarize the conventions used by most operating systems on System z.

We describe subroutines using several important terms.

• The entry point of a subroutine is the first instruction to be executed when it receives control
from the caller.

• The return address is set by the caller to the address of the first instruction to receive control
when the subroutine terminates its execution.

• Values passed to a subroutine are arguments and variables using those values in the subroutine
are parameters.

This example may help: suppose we need a subroutine Add2 that adds two integers and stores
their sum. We might define Add2(X,Y,Z) to mean “Add the values of X and Y and store their
sum at Z”, even though we don't know the values associated with X and Y. We might think
of the subroutine doing something like this:

L 0,X Get first value from caller
A 0,Y Add second value from caller
ST 0,Z Store sum where caller specifies

If we want the Add2 subroutine to add the integers at A and B and store their sum at C, we
could write something like “CALL Add2(A,B,C)”. In this case, A, B, and C are the arguments of
the call to Add2, and X, Y, and Z are the parameters of Add2. We associate arguments and
parameters in order from left to right: argument A is associated with parameter X, B with Y,
and C with Z. Another invocation like “CALL Add2(D,E,F)” will associate D with X, E with Y,
and F with Z.

Thus, arguments have values supplied by the caller, while parameters are place-holders in the
called subroutine. Parameters let the called routine use its own names to refer to the caller's
arguments (whose names may not be known to the callee); this is especially true for separately
assembled routines.

Chapter X: Large Programs and Modularization 765

37.3. Argument Passing

The previous examples have illustrated many ways to pass arguments. One further refinement
provides a very general method. Suppose, as in Figure 486 on page 764, that the addresses of the
arguments are in successive words in memory, and when the subroutine is called register GR1
contains the address of the first address; this is illustrated in Figure 487, where we use 32-bit
addresses. (We'll discuss 64-bit addresses shortly.)

 ┌───────────────┐ ┌───────────────┐ ┌──────────────┐
GR1│ ──┼──│ A(arg 1) ──┼─────│first argument│
 └───────────────┘ ├───────────────┤ └──────────────┘

│ A(arg 2) ──┼──┐ ┌───────────────────────┐
└───────────────┘ └────│ second argument │

argument address list └───────────────────────┘
Figure 487. General argument-passing scheme

The argument addresses in the successive fullwords in memory form the argument address list.

Figure 488 illustrates a call to a ShftRt5 subroutine; the first instruction is Load Address, not
Load, so GR1 contains the address of the argument address list.

LA 1,ArgList GR1 points to address list
BAS 14,ShftRt5 Call ShftRt5 subroutine
ST 0,Result Store shifted result
- - -

Logic DS F Argument to be shifted
ArgList DC A(Logic,NN) Argument address list
Result DS F Space for result
NN DS F Number of shifts
Figure 488. Subroutine call using an argument address list

The arguments (Logic and NN) could have had any names and could be anywhere in the program;
only the two address constants containing their addresses need be contiguous (and in this
example, addressable). A ShftRt5 subroutine using this argument-passing convention is shown in
Figure 489.

* Argument address list pointer in GR1
ShftRt5 LM 2,3,0(1) Get argument addresses in GR2, GR3

L 0,0(0,2) Get 1st (logical) argument in GR0
L 1,0(0,3) Get 2nd (integer) argument in GR1
SRL 0,2 Shift 2 places
LTR 1,1 Test second argument
BNPR 14 Return if it's not positive
SRL 0,0(1) Otherwise shift N places
BR 14 And return

Figure 489. Subroutine called with an argument address list

With the exception of the first instruction, this example is essentially the same as in Figure 480
on page 761.

If we want to call this subroutine with other arguments, we can write instructions to build the
argument address list, as illustrated in Figure 490 on page 767.

766 Assembler Language Programming for IBM System z™ Servers Version 2.00

ST 7,LogicTmp Store a different logical variable
ST 4,NTemp Store a different shift count
LA 0,LogicTmp c(GR0) = A(LogicTmp)
LA 1,NTemp c(GR1) = A(NTemp)
STM 0,1,ArgList Store argument addresses in list
LA 1,ArgList c(GR1) = A(argument address list)
JAS 14,ShftRt5 Call the ShftRt5 subroutine
- - -

ArgList DS 2A Space for 2 argument addresses
NTemp DS F Space for a shift count
LogicTmp DS F Space for a logical variable
Figure 490. Constructing an argument address list

37.3.1. Variable-Length Argument Lists

Sometimes a subroutine may accept a variable number of arguments. Thus, we need a way for a
subroutine to determine the number of arguments passed to it. This is done by setting the left-
most bit of each 32-bit argument address to zero, except for the last argument address where we
set its leftmost bit to 1. For example, to call a subroutine with two and then with three argu-
ments, we could define the argument address lists as

ArgList1 DC A(ArgA1,ArgA2+X'80000000') Two arguments
ArgList2 DC A(ArgB1,ArgB2,ArgB3+X'80000000') Three arguments
Figure 491. Two variable-length argument lists

and the subroutine can determine the number of arguments passed to it. To illustrate, suppose a
subroutine named AddHW is called with these two argument address lists. The routine is to return
the sum of the halfword integer arguments in GR0. We can call the subroutine with instructions
like these:

LA 1,ArgPtrs GR1 points to argument list
JAS 14,AddHW
- - -

HiBit Equ X'80000000' High-order bit for 32-bit address
ArgPtrs DC A(Arg1,Val4,Whenever,Track+HiBit) Arg address list
Track DC H'13030' A halfword value
Val4 DC H'-7294' Another
Whenever DC H'2016' Another halfword value
Arg1 DC H'12345' Still another halfword value
Figure 492. Calling a subroutine with a variable-length argument list

This example shows that the arguments can be “anywhere” in the calling program, not necessarily
in any order. The AddHW subroutine could be written as in Figure 493:

AddHW SR 0,0 Clear GR0 for sum
AddLoop L 2,0(0,1) Pick up an argument address

AH 0,0(0,2) Add the argument to the sum
LA 1,4(0,1) Increment address list pointer
LTR 2,2 Test if we just added the last
JNM AddLoop Branch if not done
BR 14 Otherwise return sum to caller

Figure 493. Subroutine called with a variable-length argument list

The LTR instruction checks the high-order bit of the address of the just-added argument to test
whether it was the last in the list.

In 24- and 31-bit addressing mode, where addresses can be held in a 32-bit register and word, a
variable-length argument list looks like this:

Chapter X: Large Programs and Modularization 767

┌─────────────────────┐ ┌─┬─────────────────────────┐
│ GR1 │──────────│0│ A(argument 1) │
└─────────────────────┘ ├─┼─────────────────────────┤

│0│ A(argument 2) │
├─┼─────────────────────────┤
: :
: :
├─┼─────────────────────────┤
│1│ A(argument n) │
└─┴─────────────────────────┘

Figure 494. Sketch of a variable-length argument list

This is the standard argument address list for 32-bit addresses: the high-order bit of the address of
the last argument is set to 1.

37.3.2. Argument Lists with 64-Bit Addresses

At the time of this writing, no conventions have been established for variable-length lists of 64-bit
argument addresses, or for setting a return flag. Some possible methods include the following; all
require agreement between caller and callee; each method assumes GR1 (or GG1) contains the
address of the list.

1. After the last argument address, add a doubleword of all one-bits. (This is sometimes called a
“fence”.)

┌────────────────────┐ ┌───────────────────────────────────┐
│ GR1 or GG1 │───────│ AD(argument 1) │
└────────────────────┘ ├───────────────────────────────────┤

: :
├───────────────────────────────────┤
│ AD(argument n) │
├───────────────────────────────────┤
│ X'FFFFFFFFFFFFFFFFF' │
└───────────────────────────────────┘

2. After the last argument address, add a doubleword of all zero-bits.

3. Immediately precede the list with a halfword integer containing the number of argument
addresses. (This requires correct alignment of the halfword; see Exercise 37.3.5.)

ORG *+2,8,-2 Align to halfword before doubleword
Arglist DC Y(NArgs) Number of argument addresses

DC AD(Argument_1) Address of 1st argument
- - -
DC AD(Argument_n) Address of nth argument

NArgs Equ (*-(Arglist+2))/8 Number of argument addresses
Figure 495. Sample 64-bit argument list addresses

4. The first doubleword in the argument list contains the number of argument addresses that
follow it:

Arglist DC AD(NArgs) Number of argument addresses
DC AD(Argument_1) Address of 1st argument
- - -
DC AD(Argument_n) Address of nth argument

NArgs Equ (*-Arglist)/8-1 Number of argument addresses

Exercises

37.3.1.(2) Write a version of the ShftRt subroutine that uses an argument address list like that
in Figure 487 on page 766. The first and second addresses point to the word to be shifted and
the shift count. The third address in the list is the address of the fullword area where the result

768 Assembler Language Programming for IBM System z™ Servers Version 2.00

is to be stored. The return address is in R14. Restore all registers to the contents they had on
entry to the subroutine.

37.3.2.(3)+ Write a subroutine starting at an instruction named AMax that has two arguments,
passed according to the general scheme illustrated in Figure 487 on page 766. The first argu-
ment is the lowest addressed element of an array of word integers, and the second argument is a
positive word integer containing the number of elements in the array. The subroutine should
return to the address in GR14 with the largest element of the array in GR0. The subroutine
should save and restore the contents of any registers modified by the subroutine.

37.3.3.(3) Write a subroutine starting at an instruction named CMax like that in Exercise 37.3.2,
except that the array elements are addresses pointing to character strings prefixed with a
halfword length field containing the number of bytes in the following string. Compare the
strings, and return in GR1 the address of the string comparing higher than any of the others.
Assume that shorter strings are padded with blanks. (Hint: the CLCL instruction may help.)

37.3.4.(3)+ Write a subroutine to count the number of 1-bits in a string of bytes. The subrou-
tine entry point should be named NBITS and a typical standard call from a high-level language
would look like

CALL NBITS(String, StrgLen, NCount)

The first argument is the address of the first byte of the string, the second argument is a word
integer containing the number of bytes in the string (not including the length of this word!), and
the third argument is where the count of 1-bits should be stored. If the second argument is not
strictly positive, set the bit count to zero.

37.3.5.(2)+ In Figure 495 on page 768, explain why the first operand of the ORG instruction
is *+2 instead of simply *.

37.3.6.(2)+ Criticize the following schemes for passing a variable-length list of arguments to a
subroutine, using 32-bit argument addresses, and compare them to the standard convention.

1. The number of arguments is contained in the leftmost byte of R1 on entry to the subrou-
tine.

2. The end of the argument list is indicated by the presence of a fullword zero following the
last valid argument address.

3. The first fullword in the argument address list holds the number of argument addresses in
the rest of the list.

37.3.7.(2) The IBM Model 026 card punch produces holes in a card according the the old BCD
character representation. The important differences between it and the EBCDIC representation
are that the BCD characters '=+() punched by an 026 produce the same hole configurations as
the characters @#&>< in the EBCDIC representation produced by a Model 029 card punch.

Write a subroutine named CONVT that will convert all occurrences of the characters @#&>< in a
character string to the characters '=+() respectively. That is, replace each @ by ', each # by =,
each & by +, and so forth. The subroutine should use standard linkage, parameter passing, and
status-preservation conventions. There are two parameters: the string of characters, and the
length of the string. (Table 170 on page 430 may help.)

37.3.8.(2)+ Write a new version of the ShftRt subroutine, now named ShftRt64, that is called
in 64-bit addressing mode, using an argument address list like the one shown in the first
example in Section 37.3.2 (that is, with 64-bit argument addresses terminated with a
doubleword of all 1-bits). Assume that the arguments themselves are 32-bit integers.

Chapter X: Large Programs and Modularization 769

37.4. Save Areas

We'll start with conventions used for 32-bit registers.

If a register save area is used within a program, we must necessarily modify some part of the
program itself. While this is not a problem for many applications, there are times when we want
to write re-enterable code that can be shared by many simultaneously executing programs. This
requires different techniques for allocating save areas.

For now, we'll consider programs that contain internal save areas. Such programs are not re-
entrant; we'll see the changes needed to support re-entrant programs in Chapter XII.

By convention, the caller provides a “standard” 18-word save area, and its address is passed to the
callee in GR13. The caller's general registers are stored starting at offset +12 in the order GR14,
GR15, GR0, GR1, GR2, ..., GR12. The easiest way to save the registers is to execute the
instruction

STM 14,12,12(13) Save GR14-GR12 in caller's save area

before the called program modifies any of them. This is often one of the first instructions executed
by a called program.

Table 401 shows the contents of a standard “Format-0” 18-word save area. (Note that words are
numbered starting at zero.)

Table 401. Standard (Format-0) Save Area

Assuming that our current routine B was called by routine A, and that B will call routine C,
Figure 496 on page 771 shows a sketch of a standard save area that we provide:

Word Offset Offset How this word is used

0 0 X'0' Special Purpose Data; not to be modified

1 4 X'4' Address of caller's (A's) save area; stored here by the
called routine (B) owning this save area (back chain)

2 8 X'8' Address of the save area in the subroutine most
recently called by this routine; put here by that sub-
routine (C) (forward chain)

3 12 X'C' c(GR14) (return address to caller)

4 16 X'10' c(GR15) (entry point address of this routine)

5 20 X'14' c(GR0)

6 24 X'18' c(GR1)

7 28 X'1C' c(GR2)

...

17 68 X'44' c(GR12)

770 Assembler Language Programming for IBM System z™ Servers Version 2.00

�───── 4 bytes ──────
┌────────────────────┐

 Offset 0│ Reserved │ Save area provided by this routine (B)
├────────────────────┤

+4│ Back chain │�──── A(Caller A's Save Area), stored by B
├────────────────────┤

+8│ Forward chain │�──── A(Callee C's Save Area), stored by C
├────────────────────┤

+12│ Save c(GR14) │
├────────────────────┤

+16│ Save c(GR15) │
├────────────────────┤

+20│ Save c(GR0) │
├────────────────────┤

+24│ Save c(GR1) │
├────────────────────┤
: :
: :
├────────────────────┤

+64│ Save c(GR11) │
├────────────────────┤

+68│ Save c(GR12) │
└────────────────────┘

Figure 496. Standard save area layout

The first word of the save area is used for special purposes by some high-level languages, and
should not be modified in any way.244 The second and third words are used to chain (link) the
save areas in a doubly-linked list.

Suppose the save area is in routine B, that routine B was called from routine A, and that B will
call routine C, as in Figure 497.

Routine A Routine B Routine C
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐

───│ │ ┌───│ │ ┌───│ │
│ │ │ │ Call C ─┼───┘ │ │
│ Call B ─┼───┘ │ │ │ │
│ │ │ │ │ │
├─────────────────┤ ├─────────────────┤ ├─────────────────┤
│ A's save area │ │ B's save area │ │ C's save area │
└─────────────────┘ └─────────────────┘ └─────────────────┘

Figure 497. Sample subroutine calling sequence

To show how save areas are used and how they are chained, we suppose routine B is called by
routine A. Figure 498 on page 772 shows instructions used at the entry point of B; these are
typical of many subroutines.

244 In your Assembler Language routine it may be prudent to zero the first word of the save area you provide to routines
you call. But don't touch the first word of any other routine's save area if it was created by a high-level language.

Chapter X: Large Programs and Modularization 771

B STM 14,12,12(13) Save registers in A's area
BASR 12,0 Establish local base for B
Using *,12 Addressability for B
ST 13,BSave+4 Store address of the caller's

* ... area at word 1 of our area
* ... (back chain from B to A)

LR 2,13 Copy GR13 temporarily to GR2
LA 13,BSave Establish address of our area

* ... in GR13 for calls to C
ST 13,8(0,2) And store the address of our

* ... save area in A's save area
* ... (forward chain from A to B)

- - -
BSave DC 18F'0' Save area in routine B
Figure 498. Save area chaining instructions

These instructions put the address of B's save area into R13, so that routine B can call lower-level
routines such as C. After a sequence of subroutine calls, A to B to C to ..., the chained save
areas would then appear as in Figure 499.

Routine A Routine B Routine C
: : : : : :
: : : : : :
├────────────────┤ ├────────────────┤ ├────────────────┤

�──┐ │ │�──┐ ┌──│ │�──┐ ┌──│ │ ┌──
 │ ├────────────────┤ │ │ ├────────────────┤ │ │ ├────────────────┤ │
 └──┼─ back chain │ └──┼───┼─ back chain │ └──┼───┼─ back chain │ │
 ├────────────────┤ │ ├────────────────┤ │ ┤────────────────┤ │

│ forward chain ─┼──────┘ │ forward chain ─┼──────┘ │ forward chain ─┼──┘
├────────────────┤ ├────────────────┤ ├────────────────┤
: : : : : :
: A's registers : : B's registers : : C's registers :
: saved by B : : saved by C : : saved by ... :
: : : : : :
└────────────────┘ └────────────────┘ └────────────────┘
Save Area in A Save Area in B Save Area in C

Figure 499. Chained save areas

To return control to the calling program, we restore the registers and branch to the return address.
For a routine having its own save area (as for B, in Figure 498), the address of the save area in
the calling program A must be retrieved before A's registers can be reloaded. Because the address
of B's save area is in GR13, we use the typical subroutine return instructions shown in
Figure 500.

L 13,4(,13) Retrieve address of caller's area
LM 14,12,12(13) Restore all registers
BR 14 Return to caller

Figure 500. Reloading registers and returning to a caller

It is not necessary to save and then restore all the general registers, so long as the others are not
modified in any way.

772 Assembler Language Programming for IBM System z™ Servers Version 2.00

37.4.1. Extended Save Area Conventions (*)

When your programs are executed in an environment using 64-bit registers, the save area con-
ventions can be more complex. There are three situations we will consider:

1. Your calling and called programs use only 32-bit registers.

You don't need to do anything different; continue to use the standard (Format-0) save areas
shown in Table 401 on page 770.

2. Your calling program has provided a 144-byte save area, or your program and its caller are
executing in 64-bit addressing mode.

Use the “Format-4” save area described in Section 37.4.2, Table 402.

3. Your calling program uses only 32-bit registers (and provides a standard 72-byte, 18-word
Format-0 save area), but your (called) program uses 64-bit registers. We'll assume that both
calling and called programs execute in 24- or 31-bit addressing mode.

Use the “Format-5” save area described in Section 37.4.3, Table 403 on page 775.

As before, we assume for sake of simplicity that save areas are internal to the programs.

37.4.2. Format-4 Save Area Conventions for 64-bit Registers (*)

We can't use a standard 18-word save area because forward and back chains are now 64-bit
addresses. Instead, we use the 144-byte “Format-4” save area shown in Table 402. The chain-
address fields are now at the end of a Format-4 save area. (Note that words are numbered
starting at zero.)

The second word of a Format-4 save area contains the identifying characters F4SA. This is used by
diagnostic tools to know how to display the contents of the save area.

Table 402. Standard Format-4 save area

A representation of a Format-4 save area is shown in Figure 501 on page 774.

Word Offset Offset How this field is used

0 0 X'0' Special Purpose Data; not to be modified

1 4 X'4' C'F4SA' (Used by diagnostic tools to properly
display register contents and locate chain addresses.)

2-3 8 X'8' c(GG14) (return address in the caller)

4-5 16 X'10' c(GG15) (entry point address in the called routine)

6-7 24 X'18' c(GG0)

8-9 32 X'20' c(GG1)

10-11 40 X'28' c(GR2)

...

30-31 120 X'78' c(GG12)

32-33 128 X'80' Address of the save area in the subroutine that called
this routine (back chain)

34-35 136 X'88' Address of the save area in the subroutine most
recently called by this routine; put here by that sub-
routine (forward chain)

Chapter X: Large Programs and Modularization 773

�──────────────── 8 bytes ────────────────
┌────────────────────┬────────────────────┐

 Offset 0│ Reserved │ C'F4SA' │
├────────────────────┴────────────────────┤

+8│ Save c(GG14) │
├───┤

+16│ Save c(GG15) │
├───┤

+24│ Save c(GG0) │
├───┤
: :
: :
├───┤

+112│ Save c(GG11) │
├───┤

+120│ Save c(GG12) │
├───┤

+128│ AD(previous save area) │
├───┤

+136│ AD(next save area) │
└───┘

Figure 501. Format-4 save area layout

To show how to use a Format-4 save area in a program executing in 64-bit addressing mode that
was called by a program providing a Format-4 save area, you might use instructions like those in
Figure 502:

CSECT64 CSect ,
CSECT64 AMode 64 Addressing mode 64
CSECT64 RMode Any Residence anywhere below the 2GB “bar”

STMG 14,12,8(13) Save 64-bit registers in caller's area
LARL 12,CSECT64 Set local base register
Using CSECT64,12 Establish addressability
LA 11,MySave Point to local save area
STG 11,136(,13) Save forward link in caller's area
STG 13,MySave+128 Save backward link in local area
LGR 13,11 Set GG13 to point to local area
- - - Do good things

Return LG 13,MySave+128 Retrieve caller's are address
LMG 14,12,8(13) Restore registers
BR 14 Return

MySave DC F'0',C'F4SA',17D'0' Format-4 save area
Figure 502. Example of using a Format-4 save area

37.4.3. Format-5 Save Area Conventions for 32- and 64-bit Registers (*)

In this case, we assume that the caller and your routine are executing in 24- or 31-bit addressing
mode, and that your (the called) routine wants to use all 64 bits of some of the general registers.
Your caller has provided a standard 18-word save area, but your routine needs to save the high-
order halves of the general registers because the calling program might also be using all 64 bits of
the registers.

In this case, you need a 208-byte Format-5 save area for your routine, as described in Table 403
on page 775 and illustrated in Figure 503 on page 775.

774 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 403. Standard Format-5 save area

Figure 503 shows the layout of a Format-5 save area.

Word Offset Offset How this field is used

0 0 X'0' Special Purpose Data; not to be modified

1 4 X'4' C'F5SA' (Used by diagnostic tools to properly
display register contents and determine chaining
links.)

2-3 8 X'8' c(GG14) (return address in A)

4-5 16 X'10' c(GG15) (entry point address in B)

6-7 24 X'18' c(GG0)

8-9 32 X'20' c(GG1)

10-11 40 X'28' c(GR2)

...

30-31 120 X'78' c(GG12)

32-33 128 X'80' Address of the save area in the subroutine (A) that
called this routine (B) (back chain)

34-35 136 X'88' Address of the save area in the subroutine most
recently called by B; put here by that subroutine (C)
(forward chain)

36-51 144 X'90' High halves of c(GG0)-c(GG15)

�──────────────── 8 bytes ────────────────
┌────────────────────┬────────────────────┐

 Offset 0│ Reserved │ C'F5SA' │
├────────────────────┴────────────────────┤ ─┐

+8│ Save c(GG14) │ │
├───┤ │ For

+16│ Save c(GG15) │ │ saving
├───┤ │ our (B)

+24│ Save c(GG0) │ │ registers
├───┤ │ when
: : │ calling
: : │ a lower
├───┤ │ level

+112│ Save c(GG11) │ │ routine (C)
├───┤ │

+120│ Save c(GG12) │ │
├───┤ ─┘

+128│ AD(previous save area) │
├───┤

+136│ AD(next save area) │
├────────────────────┬────────────────────┤ ─┐

+144│ HiHalf(GG0) │ HiHalf(GG1) │ │ For
├────────────────────┼────────────────────┤ │ saving our
: : : │ caller's (A)
: : : │ high-order
├────────────────────┼────────────────────┤ │ registers

+200│ HiHalf(GG14) │ HiHalf(GG15) │ │ before we
└────────────────────┴────────────────────┘ ─┘ use them

Figure 503. Format-5 save area layout

First, you save the caller's 32-bit registers in his save area, as in Figure 498 on page 772. Then,
you save the high-order halves of all 16 general registers in your Format-5 save area in the 16
words starting at offset +144, as illustrated in Figure 504 on page 776.

Chapter X: Large Programs and Modularization 775

BProg CSect ,
BProg RMode Any Residence below the 2GB “bar”
BProg AMode Any 24- or 31-bit addressing mode

Using *,15
STM 14,12,12(13) Save low-order halves of GG14-GG12
STMH 0,15,BSaveHiH Save high-order halves of GG0-GG15
STG 13,BSaveBCh Save 64-bit back chain address
LA 1,BSave5 31-bit addr of our Format-5 save area
ST 1,8(,13) Store forward chain in caller's area
LGR 13,1 Point GG13 to our save area
- - -

BSave5 DS 0D 208-byte Format-5 save area
DS F Reserved
DC C'F5SA' Format identifier
DS 15D Save area for GG14-GG12 (if we call C)

BSaveBCh DS D Back chain address
BSaveFCh DS D Forward chain address
BSaveHiH DS 8D Save high halves of GG0-GG15
Figure 504. Saving registers using a Format-5 save area

After executing these instructions your program can use the 64-bit general registers. When it's
time to return to the caller, the high-order halves of the registers must be restored, as in
Figure 505.

LG 13,BSaveBCh Get address of caller's save area
LMH 0,15,BSaveHiH Reload high-order halves
LM 14,12,12(13) Reload low-order halves
BR 14 Return to caller

Figure 505. Return from a routine using a Format-5 save area

To summarize the three main types of save area:

Format-0 The traditional 72-byte save area that saves only the low-order 32 bits of the general
registers.

Format-4 C'F4SA' in the second word indicates a 144-byte save area for all 64 bits of the
general registers.

Format-5 C'F5SA' in the second word indicates a 208-byte save area used when a program
executing in 24- or 31-bit addressing mode calls a program also executing in 24- or
31-bit addressing mode, and wants to use all 64 bits of the general registers. The
first 144 bytes are the same as in the Format-4 save area. The low-order 32 bits of
the caller's registers are saved in his Format-0 save area, and the high-order 32 bits
of the caller's registers are saved in the 64 bytes starting at offset 144.

If the caller or callee is executing in 64-bit addressing mode, many more instructions
may be needed to save and restore the status of the caller.

 Note

There are other forms of save area you can use if your application
involves Access Registers (not discussed here).

Exercises

37.4.1.(2)+ The second word of a Format-4 or Format-5 save area contains the characters F4SA
or F5SA. Why can this not be confused with the back-chain address of a standard save area?

37.4.2.(2) In Figure 505, the LMH instruction changes the high half of GG14. Why won't this
affect the return address?

37.4.3.(2)+ Give the lengths in hexadecimal of Format-0, Format-4, and Format-5 save areas.

776 Assembler Language Programming for IBM System z™ Servers Version 2.00

37.5. Additional Conventions (*)

Some other conventions can be used in subroutine calls: entry point identifiers, calling point
identifiers, return flags, and return codes. Other than return codes, they are used largely for
program debugging and error diagnostics: if your program terminates “abnormally” the Supervi-
sor's diagnostic programs can check for these three items and display them as part of memory
dumps and other “post-mortem” information. Also, entry point identifiers and calling point iden-
tifiers can be used to provide execution-time flow tracing information.

37.5.1. Entry Point Identifiers (*)

An entry point identifier is a string of characters describing the called routine's entry point in
some way; a typical identification is the name of the entry point. The entry point identifier (some-
times abbreviated EPID) is constructed as follows:

1. The first instruction at the actual entry point is an unconditional branch to the STM instruc-
tion that will save the registers.

2. The next byte contains a count of the number of characters in the following character string.

3. The identifier string of 1 to 255 characters follows immediately after the count byte.

4. The following instruction is the halfword-aligned STM instruction that saves the registers in
the caller's save area.

Figure 506 shows how an entry point identifier is created:

Using *,15 Use caller's preset GR15
Sample B Saver Branch to STM to save regs

DC AL1(L'EPID) Length of identifier
EPID DC C'Sample' Entry point identifying string
Saver STM 14,2,12(13) Save registers

- - - etc...
Figure 506. Example of an entry point identifier

In this case the ID string is the name of the entry point instruction, but it can be any useful
information:

Using *,15 Use caller's preset GR15
Sample B Saver Branch to STM to save regs

DC AL1(L'EPID) Length of identifier
EPID DC C'Sample routine''s EPID created 30 Feb 2035, 14:45 15 Mar 2016, 12:41'
Saver STM 14,2,12(13) Save registers

- - - etc...

To save you having to worry about the details of identifying an entry point and storing registers,
the “Library of Macro Instructions” available to the Assembler (see Figure 23 on page 72) will
usually contain a SAVE macro instruction. You use it in one of these three forms:

name SAVE (R1,R2)
name SAVE (R1,R2),,character-string
name SAVE (R1,R2),,*

where the name entry is optional.

The first form generates only the a STM instruction which saves registers R1 through R2 in the
caller's save area. The second generates the “character-string” as an entry point identifier, and then
the STM instruction. The third form generates an entry point identifier consisting either of the
name-field symbol name if it's present or the name of the control section in which the SAVE
appears, and then generates the STM instruction.

Thus, we could have written the last four statements of Figure 506 as the single statement

Chapter X: Large Programs and Modularization 777

Sample SAVE (14,2),,* Identify entry, save registers

and the generated instructions would look like these:

Sample B 12(0,15) BRANCH AROUND ID
DC AL1(6)
DC CL6'Sample' IDENTIFIER
STM 14,2,12(13) SAVE REGISTERS

For more about using macro instructions like SAVE, see the IBM publications for your operating
system environment.

37.5.2. Calling Point Identifiers (*)

A calling point identifier is a NOP instruction (described in Section 15.4) following the BAS or
BASR. It contains a halfword integer like an “identification number” or statement number. For
example, we can call a subroutine named Dummy with the two variable-length argument lists in
Figure 491 on page 767:

L 15,=A(Dummy) 'Dummy' is a separate subroutine
LA 1,List1 Point to first argument address list
BASR 14,15 Link to subroutine
NOP 1 Calling point ID = 1
L 15,=A(Dummy) As above (making sure GR15 is correct)
LA 1,List2 Point to second arg address list
BASR 14,15 Link to subroutine
NOP 2 Calling point ID = 2

Figure 507. Example of two calling point identifiers

When the called routine returns to the instruction whose address was passed to it in GR14,
control will immediately continue to the instruction after the NOP.245 The logic of your program
is not affected by the presence of a calling point identifier.

37.5.3. Save Area Return Flags (*)

A save area return flag is helpful as a diagnostic device for programs that might terminate
unexpectedly. Suppose there isn't enough information in the registers for you to determine which
routine was most recently in control. You can examine the chain of save areas in a memory
display to tell which routines have called one another, but you might not be able to tell which
routines have returned to their callers. This added bit of information is provided by a return flag.

After the caller's registers have been reloaded and just before branching to the instruction whose
address is in R14, the callee executes the instruction

OI 15(13),X'01'

This sets the low-order bit of the fourth word of the caller's save area to 1. Since the caller's
GR14 (saved at offset +12) has been reloaded before the OI is executed, the contents of GR14 on
return is the same as when the call was made. We can revise the example in Figure 500 on
page 772 to set the return flag:

L 13,BSave+4 Retrieve address of caller's area
LM 14,12,12(13) Restore all registers
OI 15(13),X'01' Set return flag in save area
BR 14 Return to caller

Figure 508. Setting a return flag

245 With certain options, the High Level Assembler will view the NOP instruction like any other branch, and check
whether the Effective Address appears to reference the lowest 4K bytes of memory without a base register. In such
cases, you might write NOP 1(,0), or specify other Assembler options.

778 Assembler Language Programming for IBM System z™ Servers Version 2.00

If you wonder why the low-order bit of the byte at offset +15 in the save area might not already
be 1: if your program was not invoked in 64-bit addressing mode with the BASSM or BSM
instructions, it's the address of an instruction to which control is returned, so it must be an even
address. If your program was invoked in 64-bit mode with BASSM or BSM instructions, then
this bit is already on and cannot be used to convey other information.

Be careful!

If your subroutine can execute in any addressing mode (including 64-bit
mode) and is called by a caller executing in 24- or 31-bit mode, don't use
this technique to set a return flag. If your program was invoked in 64-bit
mode, this bit was already set to 1 and can't be used to convey return
information.

We'll see the reasons for this when we discuss mode-changing instructions in Section 38.

37.5.4. Return Codes (*)

Return codes are used often when you communicate with Operating System services. They are
usually small nonnegative integers, returned to the caller in GR15. Normally, the calling routine
won't expect the contents of R15 to be restored, so the called routine can use GR15 to pass a
return code to the caller. This could be any value, but by convention only multiples of 4 such as
0, 4, 8, and so forth are used as return codes.

For example, suppose a subroutine does a calculation and returns the result in GR0, with GR15
set to zero. If the subroutine has been passed an invalid argument (so that it can't do the calcu-
lation correctly), it can set GR15 to +4 to indicate the error condition and let the caller analyze
and maybe correct the situation.

The instructions in Figure 509 show how the subroutine could set the return code for a “good”
and a “bad” return.

* - - - Valid calculated result is in GR0
GoodRet L 13,Save+4 Retrieve pointer to caller's area

L 14,12(0,13) Restore caller's GR14
LM 1,12,24(13) Restore GR1 through GR12
SR 15,15 Set return code to zero
OI 15(13),X'01' Set return flag
BR 14 Return to caller

* - - - Invalid argument, no result in GR0
BadRet L 13,Save+4 Retrieve addr of caller's save area

LM 14,12,12(13) Restore all the registers
LA 15,4 Set return code to +4
OI 15(13),X'01' Set return flag
BR 14 Return to caller

Figure 509. Setting a return code in register 15

Another way to set a return code that might have been given different values in the called
program:

L 13,4(,13) Retrieve caller's save area address
L 14,12(,13) Restore return address
L 15,Retcode Put return code in GR15
LM 0,12,20(13) Restore remaining registers
BR 14 Return to caller

 or
L 13,4(,13) Retrieve caller's save area address
MVC 16(4,13),Retcode Put return code in GR15 slot
LM 14,12,12(13) Restore registers
BR 14 Return to caller

Chapter X: Large Programs and Modularization 779

Figure 510 on page 780 shows how the calling program can test the return code to validate the
result:

L 15,=A(Sub) Entry point address in GR15
LA 1,ArgLst Argument address list
BASR 14,15 Link to subroutine
LTR 15,15 Test return code in GR15
JNZ Error If nonzero, error indicated
ST 0,Result Store valid result
- - -

ArgLst DC A(DataItem) Address of data for 'Sub'
Figure 510. Testing a return code returned in register 15

When the return code can take on more values, it can be used as an index into a list of branch
instructions.

- - - Set up registers for linkage
BASR 14,15 Link to subroutine as usual
CHI 15,MaxRC Check for return code too large
JH BadRC Go do something if so

Br2List B *+4(15) Indexed branch into list
J Ret000 Return code = 0
J Ret004 Return code = 4
J Ret008 Return code = 8
J Ret012 Return code = 12
- - - etc...

Figure 511. Using a return code as a branch index

If you are using relative branch instructions to minimize (or eliminate) the need for base registers
to address your instructions, you can't use the RX-type B instruction named Br2List in
Figure 511. Instead, use instructions like those in Figure 512:

- - - Set up registers for linkage
BASR 14,15 Link to subroutine as usual
LARL 14,JList Address of branch list
AR 14,15 Add return code to list address
BR 14 One-hop branch to correct routine

JList J Ret000 Return code = 0
J Ret004 Return code = 4
J Ret008 Return code = 8
J Ret012 Return code = 12
- - - etc...

Figure 512. Using a return code as a branch index with relative branch instructions

It is always prudent to check the value of the return code if the called program isn't known or
trusted:

- - - Set up registers for linkage
BASR 14,15 Link to subroutine as usual
CHI 15,0 Check for return code 0
JE Ret000 Return code = 0
CHI 15,4 Check for return code 4
JE Ret004 Return code = 4
CHI 15,8 Check for return code 8
JE Ret008 Return code = 8
J BadRetCd Unknown/invalid return code

Figure 513. Checking for valid return code values

780 Assembler Language Programming for IBM System z™ Servers Version 2.00

Subroutines that do very complex operations may need to give more detailed information about
the reason for a particular return code. A common convention is to put a reason code in GR0, as
illustrated in Figure 514 on page 781:

BadRet L 13,Save+4 Retrieve addr of caller's save area
L 0,ReasonCd Load the reason code into GR0
L 14,12(,13) Restore the return address
LM 1,12,24(31) Restore GR1 through GR12
LA 15,4 Set return code to +4
OI 15(13),X'01' Set return flag in caller's area
BR 14 Return to caller

ReasonCd DC X'0022006D' Reason code for a specific problem
Figure 514. Setting a reason code in register 0

As with the SAVE macro instruction, a RETURN macro is available in the macro library for use
by Assembler Language programs. You usually use one of these forms (where the name-field
entry name is optional):

name RETURN (R1,R2) Restore registers
name RETURN (R1,R2),T Restore regs, set return flag
name RETURN (R1,R2),T,RC=nn Restore regs, set flag and retcode
name RETURN (R1,R2),T,RC=(15) Restore regs, set flag and retcode

The first operand generates an LM instruction to reload registers R1 through R2, assuming that
GR13 contains the address of the caller's save area before the RETURN macro instruction is
executed. The second operand (“T”) causes the return flag to be set, and the third operand causes
the value “nn” or the existing contents of GR15 to be used as the return code. The second
operand can be omitted in the third and fourth forms of the RETURN macro instruction.

We can rewrite Figure 509 on page 779 to use RETURN macros:

* - - - Valid result in GR0
GoodRet L 13,Save+4 Restore caller's save area address

RETURN (14,12),T,RC=0 Restore registers, etc, RC = 0
BadRet L 13,Save+4 Restore save area pointer

RETURN (14,12),T,RC=4 Restore registers, set RC = 4
Figure 515. Using RETURN macros to set return flags and return codes

The RETURN macros put the specified return codes in GR15, and then reload GR14 and the
other registers.

Sometimes, an alternate return branch does not put a return code in GR15, but returns instead at
the equivalent offset from the address in GR14. A revision of Figure 509 on page 779 shows how
this might be done:

* - - - Valid calculated result is in GR0
GoodRet L 13,Save+4 Retrieve pointer to caller's area

LM 14,12,12(13) Restore GR14 through GR12
OI 15(13),X'01' Set return flag
BR 14 Return to caller

* - - - Invalid argument, no result in GR0
BadRet L 13,Save+4 Retrieve addr of caller's save area

LM 14,12,12(13) Restore all the registers
OI 15(13),X'01' Set return flag
B 4(,14) �── Return to caller at offset + 4

Figure 516. Returning to an error branch without a return code

For this to work, the caller must have placed enough 4-byte branch instructions after the BAS or
BASR, as in Figure 517 on page 782. Unlike Figure 511 on page 780, caller and callee must
agree which method will be used to handle error returns.

Chapter X: Large Programs and Modularization 781

- - -
BAS 14,MySub Call my subroutine
B Ret000 Return code 0, no problems
B Ret004 Return code 4, minor problem
B Ret008 Return code 8, middling problem
B Ret012 Return code 12, major problem
- - -

Figure 517. Call with error branch instructions

If the called routine returns at a larger offset (say, 16) in Figure 517 than the calling routine
expected, control would be given to something unexpected.

37.5.5. Conventions for Floating-Point Registers

If a called subroutine modifies the floating-point registers, it is responsible for saving some of
them: FPRs 0-7 are considered “volatile” and their contents need not be preserved, but the con-
tents of FPRs 8-15 must be saved and restored across calls. That is, the called routine must save
and restore modified non-volatile FPRs; this allows you to optimize certain variables into non-
volatile registers across calls.

37.5.6. Main-Program Parameters

When you invoke a main program you often pass parameters, typically in the PARM field of a
JCL statement:

// EXEC PGM=MYPROG,PARM='YES,NO,UP,DOWN'

The string of characters is passed to your program as shown in Figure 518:

GR1 2
┌───────────┐ ┌───────────┐ ┌─────┬──────────────┐
│ A(Addr1) │────│ A(Parms) │────│ Len │YES,NO,UP,DOWN│
└───────────┘ └───────────┘ └─────┴──────────────┘
Figure 518. Convention for passing main-program parameters

where the halfword Len contains the number of bytes in the following character string.

One of three methods may be used to indicate there are no parameters for the main program:

• The address in GR1, “A(Addr1)” may be zero.
• The address pointed to by GR1, “A(Parms)” may be zero.
• The halfword length Len may be zero.

Exercises

37.5.1.(4) In the early days of System/360, all programs executed in 24-bit addressing mode, and
a return flag was set with this instruction:

MVI 12(13),X'FF' Set return flag

which set the high-order byte of the return address to all 1-bits. Why could the high-order byte
of the return address not be all 1-bits resulting from a normal subroutine call? (You may have
to do some historical research to answer this question!)

37.5.2.(2)+ A programmer decided to use this calling sequence to his subroutine:

CNOP 2,4 Align to middle of fullword
LA 13,MySave Point GR13 to my save area
L 15,=A(SUB) Set GR15 to entry point address
LA 14,Return Set GR14 to return address
BASR 1,15 GR1 points to parm list; call SUB
DC A(P1,P2,P3) Argument address list, with
DC AL3(P4+X'80000000') ... variable-length flag bit

Return NOP 999 Calling point identifier

782 Assembler Language Programming for IBM System z™ Servers Version 2.00

Does this sequence conform to standard calling conventions?

37.5.3.(3)+ The instructions in Figures 511 and 512 on page 780 assume that the return code in
GR15 is a nonnegative multiple of 4. Assuming that the return code must be less than or equal
to 12, revise the instructions as follows:

• If the return code is negative, set it to 12.
• If the return code is greater than 12, set it to 12.
• If the return code is not a multiple of 4, round it to the next higher multiple of 4.

37.5.4.(3) Write a subroutine named WHO that determines if there is an entry point identifier at
the entry point of its caller, and print it if there is one. For example, if WHO was called from
WHAT, it might print

WHO called from WHAT

37.5.5.(3) Write a subroutine WHO2 (as in Exercise 37.5.4) that will also print the caller's calling
point identifier if it is present.

37.5.6.(2)+ The technique for using return codes illustrated in Figure 512 on page 780 is unsafe
if the called routine does not place a valid return code in GR15. Rewrite the code sequence so
that valid return codes 0, 4, 8, and 13 will branch as desired, and invalid codes will cause a
branch to InvCode.

37.5.7.(1) What is the maximum possible value of a calling point identifier?

37.5.8.(1)+ A programmer suggested this instruction sequence for returning to a caller with a
return code in GR15. Will it work? Explain.

L 13,4(,13) Restore caller's save area addr
MVC 16(4,13),RetCode Move my return code to GR15 slot
LM 14,12,12(13) Restore registers
BR 14 Return to caller

37.5.9.(2)+ Show how you can use a based branch to branch into a branch table (as in
Figure 512 on page 780) without requiring a base register.

37.5.10.(1) Show a way to test whether a return code is a multiple of four. If it isn't, branch to
BadRC.

37.5.11.(2)+ A programmer claimed that you can test whether the return code in GR15 is a
multiple of 4 using these instructions:

Choice CLI *+1,B'11111100'
EX 15,*-4
BNE Error Branch if not a multiple of 4

Prove or disprove his claim, and explain your proof.

37.6. Assisted Linkage (*)

Up to now we have discussed direct linkage: the calling program transfers control directly to the
subroutine's entry point. It is sometimes more convenient to use an indirect or assisted linkage:
instead of branching directly to the called program, control passes to an intermediate assisting
routine to do some useful activities (such as tracing, status preservation, and counting) and then
branch to the subroutine.

This technique can relieve caller and callee of much of the labor associated with subroutine link-
ages, but it requires careful planning of conventions used to communicate with the intermediate
assisting routine.

Chapter X: Large Programs and Modularization 783

To illustrate, suppose ShftRt and Print are two subroutines called in a complex program. To call
a routine, we place its “subroutine number” into GR15 and then link to an internal Caller
routine that eventually branches to the desired subroutine. We can create the “subroutine
numbers” by appending a “#” character to the actual routine name, and defining Equ statements
to generate the number. Figure 519 shows how you might use an assisted linkage:

- - -
LA 15,ShftRt# Load subroutine number for ShftRt
BAS 14,Caller Link to ShftRt via Caller routine
- - -
LA 15,Print# Load subroutine number for Print
BAS 14,Caller Link to Print routine via Caller

Figure 519. Example of calling with assisted linkage

A simple form of Caller could be written as in Figure 520:

Caller L 15,AdrTbl(15) Get true subroutine address
BR 15 Branch to subroutine

AdrTbl DC 0A(0) Align start of table
ShftRt# Equ *-AdrTbl Subroutine number for ShftRt

DC A(ShftRt) True address of ShftRt
Print# Equ *-AdrTbl Subroutine number for Print

DC A(Print) True address of Print
- - -

Figure 520. Example of a routine to implement assisted linkage

The called routine will not be aware of the indirect nature of the call, and the return from callee
to caller will be direct, bypassing the linkage routine.

This scheme apparently wastes instructions in getting from one routine to another. However, by
expanding information kept by the Caller routine it can, for example, display the name and
address of the routine being called and of its caller, the addresses of the arguments, the return
address, and so forth.

For example, the Caller routine could keep a count of the number of times each routine is
called. Figure 521 shows a way to do this; we assume that no base registers are available to
provide addressability in the Caller routine.

Caller ST 14,12(,13) Save GR14 in caller's area
LARL 14,AdrTbl Set c(GR14) = A(AdrTbl)
AR 14,15 Form address of table entry
L 15,4(,14) Get count for called routine
AHI 15,1 Add 1
ST 15,4(,14) Restore count
L 15,0(,14) Load true entry point address
L 14,12(,13) Restore caller's return address
BR 15 Branch to chosen subroutine

AdrTbl DC 0A(0) Align start of table
ShftRt# Equ *-AdrTbl Subroutine number for ShftRt

DC A(ShftRt) Address of ShftRt
DC F'0' Count of calls to ShftRt

Print# Equ *-AdrTbl Subroutine number for print
DC A(Print) Address of print
DC F'0' Count of calls to Print
- - -

Figure 521. Assisted linkage routine with counters

In large programs this tracing information can be extremely helpful in finding errors in logic and
flow of control. The routines called using assisted linkages may have been tested, but difficulties
always appear when smaller routines are combined into large programs.

784 Assembler Language Programming for IBM System z™ Servers Version 2.00

The value of such a tracing and diagnostic tool often far outweighs its minor costs; and the over-
heads of the indirect subroutine linkage can be minimized by setting a flag to indicate whether or
not traces and diagnostics are wanted, or if the indirect call should go directly to the chosen
routine.

Exercises

37.6.1.(2)+ Assuming each of the called routines in Figure 521 on page 784 has an entry point
ID, show the instructions you'd add to the Caller routine to load GR1 and GR2 with the
address and length of the called routine's ID.

37.6.2.(4)+ Assuming each of the called routines in Figure 521 on page 784 has an entry point
ID, show the instructions you'd add to the Caller routine to load GR1 and GR2 with the
address and length of the ID of the calling routine.

37.6.3.(2)+ In Figure 521 on page 784 the first instruction saves a register in the caller's save
area. Will it matter whether or not the called routine (that eventually receives control from
Caller) also executes the same instruction?

37.6.4.(2)+ Suppose the call to the Caller routine is changed to pass the subroutine number as
a halfword following the BAS instruction:

BAS 14,Caller Link to 'Caller' routine
DC Y(ShftRt#) With inline subroutine number
- - - Return here from called routine

The Caller routine could be modified like this:

LA 15,AdrTbl Address of zero-th target routine
AH 15,0(0,14) Add subroutine number to GR15
L 15,0(0,15) Load correct entry point address
AHI 14,2 Increment return address by 2
BR 15 Enter called routine

AdrTbl DC A(ShftRt) True address of ShftRt
DC A(Print) True address of Print
- - - ...etc...

Show how the interface could be slightly modified to not require incrementing the address in
GR14 by two.

37.6.5. Revise the instruction sequences in Exercise 37.6.4 to pass the subroutine number in
GR0 to the Caller program.

37.7. Lowest Level Subroutines

If a routine makes no calls to lower-level routines (including calls to I/O or other Supervisor ser-
vices), it need not contain a save area.

Suppose we need a subroutine that sets a string of bytes to zero; we will write a lowest level
subroutine ClearMem that will zero up to 256 bytes at a time. Its first argument gives the address
of the first byte of the area to be cleared, and the second is the address of a positive fullword
integer specifying the number of bytes.

Chapter X: Large Programs and Modularization 785

Using *,15 Caller will preset GR15
ClearMem STM 14,2,12(13) Save GR14 through GR2

XC 8(4,13),8(13) Zero the caller's forward chain
LM 1,2,0(1) Get argument addresses
L 2,0(0,2) Load number of bytes to zero
BCTR 2,0 Decrement by 1 for EX instruction
EX 2,Zero Execute XC instruction
LM 1,2,24(13) Restore modified registers
BR 14 Return to caller

Zero XC 0(0,1),0(1) Clear a variable-length area
Drop 15 Base in GR15 no longer available

Figure 522. Example of a lowest level subroutine

Because no calls are made by this routine, GR15 can be used as its base register. The only regis-
ters changed are GR1 and GR2, which are restored on return.

We could have saved only GR1 and GR2, but it's good practice to always save registers GR14
and GR15 in the caller's save area. Because those registers define the addresses from and to which
the call is made, those addresses in the save area can help diagnose difficulties if a program goes
astray.

The technique shown in Figure 522 should be used only if you are absolutely certain that the
routine will never be modified to call another lower-level routine. If that routine causes an inter-
ruption, debugging your program will be much more difficult.

Exercises

37.7.1.(2) Assume that the ShftRt5 routine in in Figure 489 on page 766 is a lowest level
routine that returns its result in GR0. Revise it to save and restore the minimum necessary
number of general registers.

37.7.2.(3)+ Write a RanInt subroutine that calculates random integers according to the formula

Xnew = A × Xold (modulo p)
where A = 16807 and p = 231 −1 = 2147483647. That is, given a previous random integer
Xold, Xnew is the remainder of (A×Xold)/p. The subroutine should conform to these con-
ventions:

• The return address is in GR14.
• GR13 contains the address of a save area.
• The entry point instruction should be named RanInt.
• When control reaches the entry point its address will be in GR15.
• The value of Xold is passed to the routine in GR0.
• The new random number Xnew is returned to the caller in GR0.
• Restore all registers except GR0 to their original contents.

Note: The quality of the random sequences generated by this routine is not high enough for
serious or lengthy simulations.

37.7.3.(2) Suppose in Figure 522 that the LM instruction to restore the registers had been
written with operand field entry 1,12,24(13) instead of 1,2,24(13). Describe what differences
this (not unusual) programming error might make in the behavior of the program.

786 Assembler Language Programming for IBM System z™ Servers Version 2.00

37.8. Summary

This section has discussed topics that can help you divide a complex application into smaller parts
that can be assembled and tested individually. We've seen conventions used for

• the registers used for standard linkage conventions

• techniques used for argument passing, including variable-length argument lists

• standard save areas

• status preservation

• useful instructions supporting these activities.

Internal subroutines246 can use any convenient convention for linkage and argument passing that
are agreed between caller and callee, and used consistently. These “local” conventions can be
simple and efficient, but subroutines using them can be difficult to extract for use in other pro-
grams.

Subroutines using standard linkage conventions can be written once, assembled, and installed in a
“Library of object and load modules” (see Figure 24 on page 73) for use by many programs.
Reusing existing subroutines makes it easier to share code, and simplifies and speeds application
development.

37.8.1. Standard Linkage Conventions

This is a summary of the standard linkage conventions used in many operating system environ-
ments on System z.

1. The entry point address is in general register 15 on entry to the called routine.

2. The return address is in general register 14 on entry to the called routine.

3. The address of the list of argument addresses is in general register 1 on entry to the called
routine. If there are no arguments, general register 1 is set to zero.

For calls to routines using 32-bit argument addresses and in which the number of arguments
is known to be fixed and invariable, it is not necessary to set the high-order bit of the last
argument address (but it's always a good practice!).

4. For calling programs using only 32-bit general registers, the address of an 18-word save area
is in GR13 on entry to the called routine.

5. The setting of the Condition Code on entry to the called routine need not be preserved.

6. Subroutines that calculate an integer value often return it in general register 0.

7. The contents of floating-point registers 0-7 need not be preserved by the called routine; if any
of floating-point registers 8-15 will be used their contents must be saved and restored before
returning to the caller. That is, FPR0-FPR7 are considered “volatile”.

Routines that calculate floating-point values often return them in FPR0 or (FPR0,FPR2).

8. General registers 2 through 14 must be saved by the callee and restored to their original
values before control is returned to the caller. (In general, it is best to restore the contents of
all registers not containing return values whenever practical.) Some operating system services
may not restore all registers; be sure to check the system's documentation.

If the called routine uses 64-bit registers, it must save and restore the low halves of general
registers 2-13 and the high halves of general registers 2-14.

Many Operating System services expect GR13 to point to a standard save area, and may not
restore general registers 14, 15, 0, and 1.

9. In the Floating-Point Control Register, preserve the mask and rounding bits. The flag bits
and Data Exception Code (DXC) need not be saved.

246 More precisely: internal subroutines within a single control section. We'll see why this is important in Section 38,
when we discuss separately assembled routines.

Chapter X: Large Programs and Modularization 787

10. Return codes, if used, are integer multiples of 4 in GR15 on return.

Sometimes more detailed information is returned than a single integer in GR15 can provide;
if so, a reason code is often returned in general register 0.

11. For programs executing in 64-bit addressing mode, the caller must provide a 144-byte
doubleword aligned Format-4 save area with the characters 'F4SA' in the second word.

Other conventions are used for identifying entry and calling points, and a return flag.

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode

BAS 4D BRAS A75

BASR 0D BRASL C05

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic

0D BASR A75 BRAS

4D BAS C05 BRASL

Terms and Definitions
argument

A value supplied by a calling program.

calling point identifier
A NOP instruction with a halfword identifying number in place of its addressing halfword, of
the form X'4700nnnn'.

entry point
The first instruction to receive control when a routine is invoked.

entry point identifier
A string of characters following the first instruction at an entry point, providing descriptive
information about the entry.

linkage convention
An agreed set of rules for transferring control between a calling and a called program, passing
arguments and receiving results, and preserving caller information during the execution of the
called program so it can be restored on return to the caller.

parameter
A place-holder in a called program, to be assigned a value from an argument provided by a
calling program.

return address
The address of an instruction to which control should be passed when a called routine com-
pletes its execution.

return code
A small integer value (usually a multiple of 4), often placed in GR15 prior to returning to a
calling program.

788 Assembler Language Programming for IBM System z™ Servers Version 2.00

Programming Problems

Problem 37.1. Write a program to print the 168 prime numbers less than 1000. Create an
internal subroutine to convert a number from its internal binary representation to character
form and print it.

Problem 37.2. Write a subroutine named PD2CH with two arguments: the first (input argu-
ment) is a valid packed decimal number 6 bytes long, and the second (output argument) is a
character string 12 bytes long containing a blank character followed by the digits of the result.
Your routine should replace leading zero digits by blanks.

Problem 37.3. Do as in Problem 37.2, but now write a subroutine named PD2CHN that
accepts two input arguments: the packed decimal number and its length in bytes. Use the
second argument to determine the minimum necessary length of the third (output) argument.

Problem 37.4.(3)+ Write a subroutine named GCD that calculates the greatest common divisor of
two positive 32-bit integer arguments, using standard linkage conventions. The subroutine
should accept either two or three arguments:

• The first two arguments are the integers whose GCD is to be found. In this case, return
their GCD in GR0.

• If a third argument address is provided, store the GCD at that address.

The greatest common divisor function GCD(x,y) can be defined by

GCD(x,y) = if x=0 then y else GCD(remainder[y/x],x).

Restore all registers other than GR0 and GR1.

Problem 37.5.(2)+ Write a subroutine with entry name PMax with a single argument: a pointer
in GR1 to a list of addresses. Each address in the list points to a packed decimal number
preceded by a single byte containing the length in bytes of the packed decimal number, as in

DC AL1(3),P'1234'

Only the address of the last item in the list has its high-order bit set to 1.

The subroutine should return in GR1 the address of the list item with the largest magnitude.
None of the data in the list may be modified.

Chapter X: Large Programs and Modularization 789

38. Large Programs, Control Sections, and Linking

3333333333 8888888888
333333333333 888888888888
33 33 88 88

33 88 88
33 88 88

3333 88888888
3333 88888888

33 88 88
33 88 88

33 33 88 88
333333333333 888888888888
3333333333 8888888888

As programs grow, we need to consider (at least) three issues:

1. How to provide addressability for parts of the program that require it.

2. How to subdivide a program into smaller, more manageable pieces

• within a single assembly,
• with separate assemblies.

3. How to combine the separate pieces into a complete application.

Thus far, we've discussed programs where a single base register was enough to provide address-
ability for the entire program. But programs frequently grow large enough that more than one
base register might be needed.

We'll consider two techniques for providing addressability in large programs:

1. We can allocate enough base registers to ensure that every byte of the program can be
addressed; we call this “uniform” addressability.

2. We can rearrange parts of the program into segments that require addressability, and seg-
ments that don't.

38.1. Uniform Addressability for Large Programs

If two or three general registers can be assigned as base registers for the duration of the program,
we use some simple techniques.

For the following examples, suppose we need three base registers to provide addressability for the
entire program, and that we have assigned GR10, GR11, and GR12 for this purpose. (Three
base registers can provide uniform addressability for up to 12K bytes.) A typical instruction
sequence for initializing these base registers is shown in Figure 523 on page 791.

790 Assembler Language Programming for IBM System z™ Servers Version 2.00

PROG Start 0 Start LC at zero
BASR 10,0 Establish first base register
Using BaseLoc,10 Inform assembler

BaseLoc LAY 11,4096(,10) Create c(GR10)+4096 in GR11
Using BaseLoc+4096,11 Inform assembler of 2nd base
LAY 12,8192(,10) Create c(GR10)+8192 in GR12
Using BaseLoc+8192,12 And inform the assembler again

Figure 523. Establish three base registers (1)

The USING statements need not appear exactly where they are placed in Figure 524. Because
none of the LAY instructions contains an implied address, we can place all the USING state-
ments after the BASR:

PROG Start 0
BASR 10,0 Set first base register
Using *,10 Addressability based on GR10
Using *+4096,11 Addressability based on GR11
Using *+8192,12 Addressability based on GR12
LAY 11,4096(0,10) Create second base
LAY 12,8192(0,10) And third base

Figure 524. Establish three base registers (2)

Or, we can place them after the LAY instructions:

PROG Start 0
BASR 10,0

BaseLoc LAY 11,4096(0,10) Create second base
LAY 12,8192(0,10) And third base
Using BaseLoc,10 Addressability based on GR10
Using BaseLoc+4096,11 Addressability based on GR11
Using BaseLoc+8192,12 Addressability based on GR12

Figure 525. Establish three base registers (3)

In situations like this it's easier to use a more general form of the USING statement. Instead of
writing a single register number after the first operand, we can write up to 15 register numbers:247

Using value,regnum1,regnum2,...,regnumk

When the Assembler processes this statement, the entries made in the Using Table (described in
Section 10.8 on page 125) are identical to the entries that would be made from these statements:

Using value,regnum1
Using value+4096,regnum2
Using value+8192,regnum3
- - -
Using value+(k-1)*4096,regnumk

That is, each register specified in the third and following operands is assumed to contain a value
4096 larger than the value assigned to the previous register. We could therefore have written
Figure 524 in the simpler form shown below.

247 A program needing 15 base registers for addressability wouldn't be able to do much with the one remaining register!
We'll see that relative addressing can help a lot.

Chapter X: Large Programs and Modularization 791

PROG Start 0
BASR 10,0 Establish base in r10
Using *,10,11,12 Using Table entries for GR10/GR11/GR12
LAY 11,4096(0,10) c(GR11) = c(GR10)+4096
LAY 12,8192(0,10) c(GR12) = c(GR10)+8192

Figure 526. Establish three base registers (4)

Similarly, Figure 525 on page 791 could have been written this way:

PROG Start 0
BASR 10,0

BaseLoc LAY 11,4096(0,10)
LAY 12,8192(0,10)
Using BaseLoc,10,11,12

Figure 527. Establish three base registers (5)

You can also use arithmetic instructions with immediate operands instead of the LAY
instructions:

PROG Start 0
BASR 10,0

BaseLoc LR 11,10
AHI 11,4096
LR 12,11
AHI 12,4096
Using BaseLoc,10,11,12

Even though the same number of bytes are generated, two more instructions must be executed.

38.1.1. Other Techniques (*)

You can create the base addresses in GR11 and GR12 shown in Figures 523 to 527 in other
ways. If a binary halfword integer constant 4096 is in an area named HW4096, we might write the
following:

PROG Start 0
BASR 10,0 Establish first base register
Using *,10,11,12 Make entries in using table
LR 11,10 Copy base to GR11
AH 11,HW4096 Add 4096 to old value
LR 12,11 Copy second base to GR12
AH 12,HW4096 Add 4096 to get third base

Figure 528. Establish three base registers with risks (6)

This example contains a serious pitfall: since we do not necessarily know where the constant
named HW4096 is located, we also do not know which base register will be chosen by the Assem-
bler when the implied addresses of the AH instructions are resolved into base-displacement form!
Indeed, the Assembler has been instructed by the USING statement to assume that R11 and R12
may be used for addressing at a point in the program which logically precedes the point where the
necessary addresses have been placed in the registers. Thus, we might find that the Assembler has
resolved the implied addresses in a way that leads to execution-time errors. (See Exercises 38.1.5
and 38.1.14.)

To be safe, we must place the constant in a part of the program where we know it will be
addressed relative to a register whose contents at execution time have been correctly established.

792 Assembler Language Programming for IBM System z™ Servers Version 2.00

PROG Start 0
BASR 10,0 GR10 will be okay as our base reg
Using *,10,11,12
LR 11,10 Move base to GR11
AH 11,HW4096 Add 4096 to get second base
LR 12,11 Move second base to GR12
AH 12,HW4096 Add 4096 more for 3rd base
J Next Jump over the constant

HW4096 DC H'4096' (addressed by GR10 as base)
Next - - - ...rest of program...
Figure 529. Establish three base registers (7)

We can also load base addresses into registers using address constants.248 Suppose we define two
fullword address constants with the statement

Addrs DC A(BaseLoc+4096,BaseLoc+8192)

We will see in Section 38.7.2 how the true execution-time addresses corresponding to the
expressions “BaseLoc+4096” and “BaseLoc+8192” are placed into the two fullword locations
when the Supervisor loads our program into memory for execution. Then we could write

PROG Start 0
BASR 10,0 Set initial base register
Using *,10,11,12

BaseLoc LM 11,12,Addrs Load GR11 and GR12
Figure 530. Establish three base registers (8)

Problems can also arise here if the constants at Addrs are far enough away from BaseLoc that the
value of the implied address of Addrs causes the Assembler to resolve the addressing halfword of
the LM instruction with GR11 or GR12 as the base register before its value has been established!
To be safe, we should rewrite Figure 530 to be sure that the symbol Addrs will be addressable
only by GR10.

PROG Start 0 Set value of location counter
BASR 10,0 Establish first base
Using *,10,11,12 Make Using Table entries

BaseLoc LM 11,12,Addrs Set GR11 and GR12 from adcons
J Next Jump over constants

Addrs DC A(BaseLoc+4096,BASELoc+8192)
Next - - - ...continuation of program...
Figure 531. Establish three base registers (9)

In Section 38.2 we will examine cases where it is either undesirable or impossible to use the above
techniques for maintaining addressability throughout an entire program.

Exercises

38.1.1.(2)+ In Figure 525 on page 791, why could we not write

Using *,10
Using *+4096,11
Using *+8192,12

as in Figure 524 on page 791?

38.1.2.(2)+ In Figure 525 on page 791 and Figure 527 on page 792, why isn't at least one
USING needed immediately following the BASR?

248 Or, adcons, for short. We first encountered them in Section 12.2, where we noted that the expression in an A-type
constant may be relocatable or absolute.

Chapter X: Large Programs and Modularization 793

38.1.3.(3)+ The addressing range of an instruction with a signed 20-bit displacement is about
± 512K bytes. Instead of the three base registers in Figures 523 to 525 ending on page 791, why
can't we write something like this, to be able to address over a million bytes with just one base
register?

Prog Start 0
BASR 10,0

BaseLoc LAY 10,512000(,10) Establish base register
USING BaseLoc+512000,10 Provide lots of addressability
- - -

The next three exercises illustrate suggested methods for providing uniform addressability
using address constants. Each contains an error for you to find.

38.1.4.(2)+ What's wrong?

Prog Start 0
Begin BASR 3,0

Using *,3,4,5
LM 4,5,=A(Begin+4096,Begin+8192)

38.1.5.(2)+ What's wrong?

Prog Start 0
Begin BASR 3,0

Using *,3,4,5
LM 4,5,=A(Begin+4096,Begin+8192)
B Exec
LTORG

Exec EQU *

38.1.6.(2)+ What's wrong?

Prog Start 0
Begin BASR 3,0

Using *,3,4,5
LM 4,5,BaseAdr
B Exec

BaseAdr DC A(Begin+4096,Begin+8192)
Exec EQU *

38.1.7.(2) A programmer was asked the following question: “Suppose your program is
‘covered’ by base registers 2, 3, and 4. A part of the code requires register 2 for another
purpose. Re-establish register 2 as a base after that computation is finished.” Criticize his pro-
posed solution below, assuming GR2 originally contained the address of Origin.

- - -
DROP 2 Don't use GR2 as a base
- - -
- - - Do arithmetic with GR2
- - -
LA 2,Origin Restore GR2 to original value
Using Origin,2 And re-issue USING

38.1.8.(2)+ In Figure 531 on page 793, what would happen if the statement

Using *,10,11,12

is placed after the LM instruction?

794 Assembler Language Programming for IBM System z™ Servers Version 2.00

38.1.9.(2)+ You have written a subroutine with entry point SubRtn and you know that GR15
will contain its address when control arrives there. Give an example to illustrate and explain
why the following USING statement may be incorrect:

Using *,15
SubRtn ST 2,SaveR2 First instruction of SubRtn

- - - Rest of subroutine

38.1.10.(2)+ A programmer initialized his base registers with these instructions. Why might this
not work?

Prog Start 0
Using *,15
LM 11,12,=A(Prog,Prog+4096)
Using *,11,12
Drop 15

The instruction sequences in Exercises 38.1.11 through 38.1.19 were proposed as solutions
to the problem of initializing multiple base registers at the beginning of a program; find
their errors. (If the errors are hard to find, try assembling each, study the assembled code,
and calculate what would actually appear in the designated registers when the instructions
were executed.)

38.1.11.(1)+ What's wrong?

Prog Start 0
BAS 10,0
Using *,10,11
LA 11,Prog+4096 What object code is generated?

38.1.12.(1)+ What's wrong?

Prog Start 0
BASR 10,0
Using *,10,11
LR 11,10
AH 11,=H'4096'

38.1.13.(2)+ What's wrong?

Prog Start 0
BASR 10,0
Using *,11
LA 11,Prog+4096

38.1.14.(1)+ What's wrong?

Prog Start 0
BASR 10,0
Using *,10,11,12
LA 11,Prog+4096
LA 12,Prog+8192

38.1.15.(1)+ What's wrong?

Prog Start 0
BASR 2,0

Here Using *,2,3,4,5
LA 3,Here+4096
LA 4,Here+8192
LA 5,Here+12288

Chapter X: Large Programs and Modularization 795

38.1.16.(1)+ What's wrong?

Prog Start 0
BASR 10,0
Using *,10,11
LA 11,*+4096

38.1.17.(1)+ What's wrong?

Prog Start 0
Here BASR 10,0

Using Here,10,11
LA 11,Here+4096

38.1.18.(1)+ What's wrong?

Prog Start 0
BASR 10,0
Using Here,10,11

Here LA 11,Here+4096

38.1.19.(2)+ What's wrong?

Prog Start 0
BASR 10,0
Using *,10
LA 11,4095(,10)
LA 11,1(,11)
Using *+4096,11

38.1.20.(2) A programmer decided not to use LAY instructions in Figure 524 on page 791, and
wrote

BASR 10,0
Using *,10
Using *+4095,11
Using *+8190,12
LA 11,4095(,10)
LA 12,4095(,11)

Is there anything wrong with this method? If so, what and why?

38.1.21.(2)+ Suppose the program segment in Figure 528 on page 792 is rewritten as follows:

Prog Start 0
BASR 10,0
Using *,10

BaseLoc LR 11,10
AH 11,HW4096
Using BaseLoc+4096,11
LR 12,11
AH 12,HW4096
Using BaseLoc+8192,12

If the halfword area of memory named HW4096 actually contains X'1000', and the program is
less than 10,000 bytes long, will this segment work correctly? Explain your answer.

38.1.22.(2)+ In Figure 529 on page 793, what would happen if the operand of the DC instruc-
tion is changed to H'4000'? If it is changed to H'5000'? What changes might be needed to the
other instructions?

38.1.23.(3) In Figure 528 on page 792, a risky method for initializing base registers is illus-
trated. Assuming that the value of the symbol HW4096 is X'1234', determine (1) the bases and

796 Assembler Language Programming for IBM System z™ Servers Version 2.00

displacements assigned to the implied addresses of the AH instructions, and (2) the addresses
that would be found in GR10, GR11, and GR12 if the program is loaded into memory begin-
ning at address X'20000', and the instructions in the program segment are executed. (That is,
the BASR is at address X'20000'.) Then repeat the above two calculations, on the assumptions
that the value of the symbol HW4096 is X'2234', and then X'3234'. Explain your results.

38.1.24.(2)+ In Figure 528 on page 792, show how to use immediate operands to eliminate the
memory references to the constant named HW4096.

38.1.25.(2)+ Revise Figure 523 on page 791 through Figure 529 on page 793 to use
arithmetic-immediate instructions.

38.1.26.(2) Modify the instructions in Figure 526 on page 792 to use LA instructions instead of
LAY instructions.

38.1.27.(1) Modify the instructions in Figure 531 on page 793 to initialize four base registers
rather than three.

38.1.28.(2)+ A programmer suggested using the following instructions instead of those in
Figure 530 on page 793:

PROG Start 0 Set location counter
BASR 10,0 Establish temporary base
Using *,10 Provide addressability
LM 10,12,Addrs Set GR10, GR11, and GR12 values
BR 10 Branch over the constants

BaseLoc DC A(BaseLoc,BaseLoc+4096,BaseLoc+8192) Base addresses
Drop 10
Using BaseLoc,10,11,12 Set program addressability

BaseLoc - - -

Will they work correctly? Might they have any advantages or disadvantages compared to
Figure 530 on page 793?

38.2. Simplifying Addressability Problems in Large Programs

As programs (inevitably) grow larger, more base registers may be needed to address the entire
program. For programs of reasonable size, this is usually not a problem. However, if a program
becomes large enough that many registers are required for addressability and few are left for the
“business” of the program, we need to find ways to simplify the program.

First, we'll look at cases where enough base registers are available; then we'll discuss several tech-
niques that can be used to reduce the number of required base registers.

38.2.1. Internal Subroutines Without Local Addressability

Most often, internal subroutines can use the “global” addressability provided for the entire
program.

Here is a ShftRt subroutine like the one we saw in Figure 477 on page 760:

* ShftRt Arguments in registers 0 and 1
ShftRt LTR 1,1 Test value of N

BNM ShftOK Branch if nonnegative
SR 1,1 Set N to zero if it was minus

ShftOK SRL 0,2(1) Shift (2+max(N,0)) bit positions
BR 14 Return to caller

Chapter X: Large Programs and Modularization 797

Because it contains an implied address reference, it requires local addressability. But if the con-
taining program has provided uniform addressability for the entire program, we need no local base
register(s) to provide addressability for the reference to the symbol ShftOK.

Occasionally we can rewrite a subroutine by replacing a based branch instruction with a relative
branch, and no base register may be needed.

* ShftRt Arguments in registers 0 and 1
ShftRt LTR 1,1 Test value of N

JNM ShftOK Branch relative if nonnegative
SR 1,1 Set N to zero if it was minus

ShftOK SRL 0,2(1) Shift (2+max(N,0)) bit positions
BR 14 Return to caller

We'll see more examples of this technique.

Internal subroutines typically use either the standard linkage conventions described in Section 37.2
on page 765, or local conventions specific to the needs of the internal subroutine. Figure 532
shows an unusual way to call a subroutine that doesn't need a local base register.

L 0,Logic Place arguments in GR0 ...
L 1,Shift ...and in GR1
L 14,AdShft Subroutine address in GR14 now
BASR 14,14 Funny branch to subroutine
ST 0,Result Store answer
- - - ...and move on

Logic DS F Logical datum
Shift DS F Shift amount
Result DS F
AdShft DC A(ShftRt) Address of subroutine
Figure 532. Calling a subroutine not needing local addressability

The unusual aspect of this program segment is that GR14 (not GR15!) is used to contain (briefly)
the entry point address, and also the return address!

While this technique is not very general, it can be useful when the number of available registers is
severely limited.

38.2.2. Internal Subroutines With Local Addressability

Some programs are so big it is impractical to provide addressability for the entire program. We
will look at simple ways to divide a large program into smaller and more manageable parts,
starting with internal subroutines.

Suppose the ShftRt subroutine in Figures 477 through 481 starting on page 760 is part of a large
program, and we know neither

• where the subroutine will be placed relative to the rest of the program, nor
• whether addressability will be available in the subroutine.

For now, we'll assume that the arguments are passed from the caller to the subroutine in registers
GR0 and GR1, as in Figures 477 and 478.

Because the caller can't always be sure the first instruction of the subroutine is addressable, he
can't safely call it using a

BAS 14,ShftRt

instruction as before. If the address of the instruction named ShftRt is available, we can load the
address into a register and branch to the subroutine. If the caller and the subroutine agree that
GR15 will contain the address of the first executed instruction of the subroutine (its entry point
address), we could write

798 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 0,Logic Get datum to be shifted in GR0
L 1,Shift Shift amount goes in GR1
L 15,AdShft Load GR15 with subroutine address
BASR 14,15 Branch to subroutine
ST 0,Result Store shifted result
- - - ...and continue

Logic DS F Logical datum
Shift DS F Shift amount
Result DS F
AdShft DC A(ShftRt) Address of subroutine
Figure 533. Calling a subroutine not locally addressable

As in Figure 472 on page 757 and those immediately following it, we assumed that GR12 pro-
vides addressability for the calling program, so the four fullwords of data are addressable (as we
expect from the implied addresses in the Load and Store instructions). Because the instruction
named ShftRt may not be addressable, we require only that the address constant named AdShft
containing its address be addressable. Also, choosing GR14 and GR15 to contain the return and
entry point addresses is a matter of convention; but a convention that assumes that neither GR14
nor GR15 provides addressability in the calling program.

The ShftRt subroutine now takes advantage of its address having been put in GR15 by the caller,
so we can write it as follows:

Using *,15 Caller will preset GR15
ShftRt LTR 1,1 Test shift count

BNM ShftOK Branch (based) if not negative
SR 1,1 Set count to zero

ShftOK SRL 0,2(1) Perform shifts
BR 14 And return to caller
DROP 15 Nobody should use GR15 hereafter

Figure 534. Subroutine with local addressability

We didn't execute a “BASR 15,0” before the USING statement because the USING statement
merely tells the Assembler what to assume for assigning bases and displacements. Because the
caller places the correct address in GR15 before branching to the subroutine, there is no need to
do anything more to establish addressability. Of course, if the caller neglects to preset GR15, the
BNM instruction (if taken) might cause a branch into unknown parts of memory; but that's the
fault of the caller, since the subroutine is correctly written.

The DROP statement at the end of the subroutine is important: if it's not present, the Assembler
must assume GR15 is available for addressing purposes in statements following the subroutine. If
GR15 is used as the base register in a subsequent implied address, serious errors could occur,
because GR15 may not contain the address of ShftRt after return to the caller.

It may seem we haven't gained much flexibility in this simple example. However, remember that
the instruction sequence in Figure 534 could have been part of a small test program for checking
that the subroutine worked correctly. By extracting the statements of the subroutine and putting
the USING and DROP statements before and after them, the subroutine can be put in any con-
venient part of a larger program.

This is a major reason for using subroutines: you can break your large problem into smaller and
more manageable pieces for testing before you combine them into a bigger program.

38.2.3. Minimizing the Number of Base Registers

We'll investigate two basic ideas:

• Replace based-addressing instructions wherever possible with relative-addressing instructions,
and replace references to constants and literals by instructions with immediate operands.

• Separate the instructions and data so that the instructions need no base registers to address
themselves.

Chapter X: Large Programs and Modularization 799

38.2.4. Relative Branches, Immediate Operands, and Long Displacements

First, we can take advantage of the relative branch instructions (and their extended mnemonics)
listed in Table 117 on page 330 to replace based branches with relative branches:

Before After
B Next J Next
BZ ZeroVal JZ ZeroVal
BC 12,NoCarry JC 12,NoCarry
BAS 14,Sub JAS 14,Sub

Figure 535. Replacing based branch instructions with relative-immediates

Each based branch instruction requires a base register to resolve its Effective Address; relative
branches require no base register.

Similarly, each (based) EX instruction can be replaced by its relative-addressing form, EXRL:

Before After
EX 2,MoveData EXRL 2,MoveData

Figure 536. Replacing a based EXecute instruction with EXRL

Next, we can use the instructions with immediate operands described in Section 21 on page 316
to replace based references to constants and literals:

Before After
S 8,=F'5000' AHI 8,-5000
LH 3,=Y(L'Buffer) LHI 3,L'Buffer
LG 5,=FD'2147483647' LGFI 5,2147483647

Figure 537. Replacing references to constants with immediate operands

Finally, we can use instructions with long 20-bit signed displacements to refer to much more of
the program than is possible with instructions using unsigned 12-bit displacements:

Before After
L 9,=A(SomeData) LY 9,SomeData
L 9,0(,9)
LA 1,ArgList LAY 1,ArgList

Figure 538. Replacing short unsigned displacements with long signed displacements

Using relative branches and immediate operands, we can replace some instructions with base-
displacement addressing that require base registers. However, instructions that load, store, and
move data typically require base-displacement addressing.

38.2.5. Separating Instructions and Data

To reduce the number of required base registers, you can put data that will be read, written, or
moved into an area addressable with a base register, and put as many of the instructions as pos-
sible into an area not requiring a base register to address them. For example, this program frag-
ment mixes instructions and data areas, and requires a base register for both instructions and data.

800 Assembler Language Programming for IBM System z™ Servers Version 2.00

Using *,12 Base register for entire program
L 2,X
A 2,Y
ST 2,Z
BP Positive
- - -

X DC F'123456789'
Y DC F'7654321'
Z DS F Some sum

- - -
Positive L O,PlusCode Indicate positive sum

- - -
PlusCode DC F'+12' A small number
Figure 539. A program fragment needing reorganization

The program fragment in Figure 539 can be reorganized this way:

Using Data,12 �── Note the different USING base
LGFI 2,123456789 �── Note immediate operand
AGFI 2,7654321 �── Note immediate operand
ST 2,Z
JP Positive Use a relative branch instead
- - -

Positive LHI O,+12 Indicate positive sum �── Moved!
- - -

Data DS 0D �── Eliminated 3 fullword constants
Z DS F Some sum

- - -
Figure 540. A program fragment after reorganization

Now, only the data areas following the symbol Data are addressable; none of the instructions is
addressable — and none needs to be! If this was part of a large program, it's possible we could
have eliminated the need for one or more base registers.

It seems logical to put the instructions at the start of the program and the constants and work
areas at the end. Because most programs will already have a register assigned to the entry point at
the start of the program, it's easier to use that register as the base register for data items referenced
by instructions that require base-displacement addressability, as shown in Figure 541:

┌───────────────────────────────────┐
│Prog Start │
│ J Entry │ �── Jump over read/write data area
│ Using Prog,15 │ �── Base register for read/write
│Data DC C'Message 1' │ work area
│Packed DS PL5 │
│TenE24 DC D'10E24' │
│ ... etc. │
│SaveArea DS 18F │
│ LTORG │
│ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ │
│Entry STM 14,12,12(13) │ �── Start of program instructions
│ LTR 1,1 │ that use only relative branch
│ JZ NoArglist │ instructions; all base─
│ CP Packed,=P'0' │ displacement references are
│ JE NoPacked │ are resolved with GR15
│ ... rest of program │
└───────────────────────────────────┘
Figure 541. Reorganizing a program to minimize base registers

Chapter X: Large Programs and Modularization 801

As a general rule it's best to keep groups of instructions and groups of data in separate areas, for
these reasons:

1. You'll very probably need fewer base registers, so you can use those registers for better pur-
poses.

2. There is less likelihood of overwriting instructions (yes, it happens...).

3. Keeping read-only data such as constants separate from read-write work areas can help
improve performance.

4. Modern processors buffer instructions and data from storage into different caches; if address
references to one overlap with references to the other, the CPU can be slowed considerably.

 Advice

To improve performance and minimize the number of base registers,
keep instructions and data separated in the generated program.

Exercises

38.2.1.(2)+ Usually, we put USING statements after the BASR instructions that set the con-
tents of the registers in the USINGs. In Figure 534 on page 799, why didn't we place the
USING statement after the instruction whose address is in GR15?

38.2.2.(2)+ Explain the operation of the BASR 14,14 instruction in Figure 532 on page 798.

38.2.3.(2)+ In Figure 532 on page 798, what would happen if the ShftRt subroutine contains a
USING *,14 statement at its entry point?

38.2.4.(1)+ In Figure 537 on page 800, suppose we had written the first instruction on the last
line as

L 5,=F'2147483647'

What results will be different between executing the L and LGFI instructions?

38.3. Separate Assemblies

Up to now we have treated all programs as self-contained. The entire program was translated in a
single assembly; all instructions and declared data were processed by the Assembler as a single
program. In practice it is often convenient (or even necessary) to assemble parts of programs sep-
arately, and link the parts later. While the parts could possibly be combined after debugging, and
assembled in one large assembly, doing so is unnecessarily clumsy.

We now examine preparing programs as separately assembled segments, and how external
symbols and address constants are used so that such routines can reference each other and their
data areas.

We usually don't care exactly where a routine is in memory, so long as we can call it and have it
produce the desired results. The ShftRt subroutine in Figure 534 on page 799 illustrates such a
situation; the routine in Figure 533 on page 799 that calls it makes no assumptions about the
actual location of the subroutine, only that the address constant at AdShft will contain the correct
address.

Writing a routine once and using it often is more economical, so System z operating systems
support various forms of program segmentation. The Linker combines separately assembled com-
ponents into a complete program; we'll see how this works in Section 38.7.

The basic elements managed by the Linker are control sections and external symbols.

802 Assembler Language Programming for IBM System z™ Servers Version 2.00

38.4. Control Sections

A control section is a segment of instructions or data (or both) that must be kept in one contig-
uous block in storage when the program is linked and executed. More precisely:

Control Section

A control section is the smallest indivisible contiguous segment of
instructions and/or data which may be relocated independently of all
other such segments, without affecting the logical operation of the
program.

Correct execution of a program requires certain of its parts to maintain known and fixed relation-
ships relative to one another. For example, the Assembler assigns Location Counter values within
each assembly so it can correctly resolve the positions of implied addresses; if those positions are
changed later, there's no guarantee the program will execute correctly

The following assembler instruction statements define a control section; for each, the name of the
control section is provided in the name field entry of the statement. The first three identify what
the High Level Assembler Language Reference calls executable control sections: they are part of
the completed, linked program. Despite the “executable” name, they need not contain any execut-
able instructions.

START START defines the beginning of a control section, and can set the initial value of
the Location Counter to the operand, if specified. This initial value is rounded up
to the next multiple of a doubleword (or other SECTALGN-specified) section
alignment. For example,

MyProg START 100 Set initial LC for MyProg

would (by default) cause the Assembler to round the initial LC setting to
104 = X'000068', the next doubleword boundary. If the operand is omitted, zero
is assumed. If a comment field is present when the operand is omitted, an isolated
comma must separate it from the mnemonic, as in

MyProg START , Control section for MyProg

A START statement must be the first or only executable control section definition
in a program. (It may be preceded by reference control sections, which are described
below.)

CSECT A CSECT statement249 defines a control section, and has no operand. Your
program may define many control sections. If a comment field is present, an iso-
lated comma should separate it from the mnemonic, as in

MySect7 CSECT , Control section for MySect7

Unlike START, multiple CSECT statements are allowed in a single assembly.

RSECT The RSECT statement is exactly the same as a CSECT statement, with the addi-
tional property that the Assembler will check for possible modifications of areas
within that control section. (This is sometimes called “reenterability” checking.)

The next three statements identify what the High Level Assembler Language Reference calls refer-
ence control sections: they generate no data or instructions. They can describe the organization of
a data structure; only COM allocates storage for it.

COM Common control sections define work areas that can be shared by multiple control
sections that may or may not be in the same assembly. They contain no assembly-
time generated machine language instructions or data, but are part of the completed,
linked program. COM statements have no operands.

DSECT A Dummy control section is a template or mapping of a memory area. A Dummy

249 Occasionally, a control section is called a “CSect” (pronounced “See-Sect”). We usually know from context whether
we are referring to a control section or to the assembler instruction statement with mnemonic CSECT.

Chapter X: Large Programs and Modularization 803

control section generates no machine language object code.250 Dummy sections are
typically used to provide detailed symbolic descriptions of a data structure. (We'll
see lots of examples in Chapter XI.)

DXD The DXD (“Define External Dummy”) instruction defines one component of a
DSect-like structure created by the Linker. (We'll describe DXD and related topics
in Section 38.7.3.)

The Assembler maintains a separate Location Counter for each control section, and associates the
control section name with the first byte of the control section. You can think of each control
section as having its own “addressing space”.

The only statements that may precede a control section definition are comments, PRINT con-
trols, macro instruction definitions, and a few others of minor interest.

Be Careful!

If any statement that depends on or affects the LC, or which defines or
declares a symbol, appears before any control section definition state-
ment, an unnamed control section is automatically started with the LC
initialized to zero. If a subsequent START statement appears, it is
flagged as an error.

Each control section has its own relocation attribute, so you can't make implied-address refer-
ences from one control section to another without additional USING statements. For example:

MyProg Start 0 My program
Using *,15 Establish local addressability
LA 1,SubData Address of subroutine's data (Bad!)
- - -

MySub CSect , My subroutine
- - -

SubData DC F'1234' Data in MySub
Figure 542. Incorrect implied reference to a different control section

The LA instruction will be diagnosed as an error, because there is no USING statement with the
relocation attribute of MySub. To reference a field in a separate control section, we need some-
thing like this:

MyProg Start 0 My program
Using *,15 Establish local addressability
L 12,ASub Get address of MySub
Using MySub,12 Establish addressability
LA 1,SubData Address of subroutine's data (Good!)
- - -

ASub DC A(MySub) Address of MySub
- - -

MySub CSect , My subroutine
- - -

SubData DC F'1234' Data in MySub
Figure 543. Correct implied reference to a different control section

After the second USING statement, the USING Table would contain two entries: one for register
15 with Relocation Attribute 01 and a second for register 12 with Relocation Attribute 02, illus-
trated in Figure 544 on page 805.

250 As with “CSECT”, a “DSECT” is often pronounced “Dee-Sect”.

804 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───────┬───────────────┬────┐
│basereg│ base location │ RA │
├───────┼───────────────┼────┤
│ 15 │ 00000000 │ 01 │
├───────┼───────────────┼────┤
│ 12 │ Loc of MySub │ 02 │
└───────┴───────────────┴────┘

Figure 544. USING Table with two entries

Suppose a main program and our ShftRt subroutine are assembled together, but the subroutine is
placed in a separate control section. Figure 545 shows how this can be done:

MyProg Start 0 Main program
BASR 12,0 Establish base for main program
Using *,12
- - -
L 0,Logic Load GR0 and GR1
L 1,Shift ...with parameters
L 15,AdShf GR15 has subroutine address
BASR 14,15 Link to subroutine
ST 0,Result Store result
- - -

Logic DS F
Shift DS F
Result DS F
AdShf DC A(ShftRt)

Drop 12 Don't want to use GR12 elsewhere

* ShftRt Subroutine *

ShftRt CSect , Separate control section for ShftRt

Using *,15 Use caller's preset base register
LTR 1,1 Test shift count
JNM ShftOK Branch if not minus
SR 1,1 Set shift count to zero

ShftOK SRL 0,2(1) Shift desired number of places
BR 14 Return to caller
END MyProg Begin execution in main program

Figure 545. Main program and subroutine in one assembly

The Assembler knows the location of ShftRt, and includes information in the object module so
that the adcon named AdShf will contain the correct address at execution time. The two control
sections (MyProg and ShftRt) are separately relocatable, so we should DROP the main program's
base register before starting the code of the subroutine. Because none of the implied addresses in
either control section refer to locations in the other, there is no need to provide addressability for
more than one control section at a time.

To show how a COMMON control section can be shared between two executable control
sections, we'll revise Figure 545 to put the items passed from MyProg to ShftRt in a common
section named ShfCom. Figure 546 on page 806 shows how this can be done:

Chapter X: Large Programs and Modularization 805

MyProg Start 0 Main program
BASR 12,0 Establish base for main program
Using *,12 Addressability for MyProg
L 11,AdCom Load address of ShfCom section
Using ShfCom,11 Provide addressability
- - - Calculate argument values
ST 0,Logic Store Logic argument in ShfCom
ST 1,Shift Store Shift argument in ShfCom
L 15,AdShf GR15 has subroutine address
BASR 14,15 Link to subroutine
ST 0,Result Store result
- - -

AdShf DC A(ShftRt) Address of ShftRt subroutine
AdCom DC A(ShfCom) Address of common section

- - -
DROP 12,11 Can't use GR12, GR11 elsewhere

ShfCom COM , Declare common control section
Logic DS F Work areas in ShfCom
Shift DS F - - -
Result DS F - - -

* ShftRt Subroutine *

ShftRt CSect , Separate control section for ShftRt

Using *,15 Use caller's preset base register
L 1,ACom Load address of common area
Using ShfCom,1 Establish addressability
L 0,Logic Get argument to be shifted
LT 1,Shift Load and test shift count
Drop 1 We just modified that base register
JNM ShftOK Branch if not minus
SR 1,1 Set shift count to zero

ShftOK SRL 0,2(1) Shift desired number of places
BR 14 Return to caller

ACom DC A(ShfCom) Address of common area
Drop 15 No longer needed for the subroutine
END MyProg Begin execution in main program

Figure 546. Main program, subroutine, and common section in one assembly

38.4.1. Resuming Control Sections

You need not put all the statements belonging to a given control section together. That is, you
can start a control section, then start another, and then resume the first one — and the Assembler
will keep all the related pieces together in the generated object code. For example:

First CSECT , Start a control section
A DC F'101'
B DC F'103'
Second CSECT , Start another control section
W DC F'-107'
X DC F'-109'
First CSECT , Resume the 'First' control section
C DC F'113'
Second CSECT , Resume the 'Second' control section
Y DC F'-127'
Figure 547. Resuming control sections

In the control section named First, the fullword constants named A, B, and C will have locations
X'0', X'4', and X'8' relative to the origin of the control section; similarly, the locations of the

806 Assembler Language Programming for IBM System z™ Servers Version 2.00

three constants W, X, and Y in control section Second will have the same offsets relative to the
origin of that control section.

As a more typical example to show how a CSECT statement can be used to resume a control
section, we will rewrite Figure 545 on page 805 in the form shown in Figure 548, where the con-
tributions to CSECT MyProg are defined in two separate segments.

MyProg Start 0 Start of main program
BASR 12,0 Make a base
Using *,12 Inform the assembler
- - -
L 0,Logic Set up arguments in GRO
L 1,Shift ... and GR1
L 15,AdShf Subroutine address to GR15
BASR 14,15 Link to subroutine
Drop 12 Can't use main base here

*
ShftRt CSect , Start of subroutine

Using *,15 Addressability provided by GR15
LTR 1,1 Test shift count
JNM ShftOK Skip next instruction if not minus
SR 1,1 Clear shift count

ShftOK SRL 0,2(1) Shift,
BR 14 And return
Drop 15 Can't use subroutine base here

*
MyProg CSect , Resume the main program CSECT

Using MyProg+2,12 Re-establish Using information
ST 0,Answer Store answer (GR12 is base)
- - -

Logic DS F Logical value to be shifted
SHIFT DS F Shift amount
Answer DS F Result
AdShr DC A(ShftRt) ...and continue with program
Figure 548. Main program and subroutine in one assembly, multiple CSects

The MyProg CSect is defined in two pieces, and the necessary USING and DROP statements are
inserted to ensure that implied addresses are correctly resolved. The USING MyProg+2,12 statement
is placed before the following ST instruction so that the implied address will be resolved with
GR12 as the base register. Because this very simple subroutine has no implied addresses (and
needs no local base register and no USING *,15) we could have omitted the “DROP 12” before
the subroutine; but it's always a good programming practice to limit the range of each USING
statement.

 Advice

Limit the range of USING resolution to the minimum necessary; other-
wise the Assembler may resolve implied addresses with base registers
whose contents are no longer valid.

We can now see how an expression can have a complex relocation attribute. Suppose in the
assembly in Figure 548 we wanted to calculate the offset of ShftRt relative to MyProg and wrote
this statement:

LA 2,ShftRt-MyProg

Because the two control sections are separately and independently relocatable (and the two
symbols ShftRt and MyProg therefore have different relocation attributes), there is no way the
Assembler can assign a base register and an absolute displacement to the instruction.

Chapter X: Large Programs and Modularization 807

38.4.2. Literals in Multi-Section Assemblies (*)

Be careful when you use literals in programs with more than one control section. Literals are
symbols, so they can have all the addressability problems of ordinary symbols. In particular, the
Assembler could place the literals in a part of the program that is not addressable!

If any literals are left in the Assembler's literal table at the end of the assembly, they are placed at
the end of the first executable control section defined in the program. This may or may not be
what you intended. Either (1) don't use literals in a multi-CSect assembly, or (2) use LTORG
statements at the end of each control section, so that the literals used in each control section will
be defined within it.

For example:

Section1 Start 0
- - -
L 2,=F'1'
- - -

Section2 CSect ,
- - -
L 7,=F'43'
- - -
End

Because there is no LTORG in control section Section2, both literals will be placed in a literal
pool at the end of Section1. This probably means that references in Section2 to literals will
generate addressability errors.

38.4.3. Location Counter Discontinuities (*)

Because the Assembler uses multiple, separate Location Counters for control sections, they can
also be used to manage discontinuities in the Location Counter. Suppose we write these state-
ments, and the Assembler knows the value of the Location Counter when it processes the first
statement:

Loc Statement
000046 A DS XL(N) N is not defined yet
? B DS F Aligned Fullword
? C DS CL(3*N) Another discontinuity
? D DS F Aligned Fullword
000005 N Equ 5 Finally, define N
Figure 549. Statements with Location Counter discontinuities

Because the value of the symbol N is not yet known, the location and alignment of the symbol B
can't be assigned. So, the Assembler assigns a temporary separate Location Counter to those two
statements and saves information about this “group” of two statements until the value of N is
known. Similarly, the statements named C and D represent another discontinuity group with their
own temporary Location Counter.

When the END statement is reached, the unresolved discontinuity-group segments are analyzed.
If they are resolvable (as in this case), the temporary Location Counter values are “stitched” into
their proper places among the preceding and following segments. Thus, if the value of the
Location Counter is X'000046' when the first statement in Figure 549 is processed, the value of
the symbol B will be X'00004C'.

If any group cannot be resolved, the Assembler issues a diagnostic and ignores the faulty state-
ment:

G DS XL(K) K is not defined yet
 ** ASMA080E Statement is unresolvable
H DS F Aligned Fullword
K Equ *-G Now, G is defined (?)
 ** ASMA044E Undefined symbol - G

808 Assembler Language Programming for IBM System z™ Servers Version 2.00

Because the symbol G couldn't be assigned a value (that is, be defined) until the value of K was
known, the alignment of H was unknown and therefore resolving the value of K could not be
completed.

38.4.4. Section Alignment (*)

The first byte of an executable or COMMON control section is always placed in memory on an
aligned boundary. By default, all control sections are aligned on a doubleword boundary, but
occasionally you may require a more stringent alignment. If you specify the SECTALGN option, the
Assembler will align all control sections on the boundary you specify.

For example, if you specify the SECTALGN(16) option, all control sections will be aligned on a
quadword boundary.251

When your program is linked with other control sections, this may waste a few bytes if the pre-
ceding control section does not end just before such a boundary. However, the Linker and
Program Loader will respect your alignment request and load the executing program on the
requested boundary. This means that boundary alignments within a control section (due to
CNOP, ORG, DC, or DS statements) are preserved relative to the start of the control section.

In some cases, you can adjust the LC within a CSECT to a stricter boundary than the default,
and then rely on Linker controls to request that the CSECT be aligned on (for example) a page
boundary, thus guaranteeing that the stricter internal alignment will be honored when the
program is linked. For example, suppose you want to force a CSECT to be an exact number of
4K “pages” long, by adding enough bytes at the end to force its length to be a multiple of 4096:

Prog CSECT , Start a control section
- - - Add lots of statements
LtOrg , Insert the literals now

* Round the LC to a page boundary
DC ((((*-Prog)+4095)/4096)*4096-(*-Prog))X'00'

ProgLen Equ *-Prog Will now be a multiple of X'1000'
End

Figure 550. Technique for rounding the length of a CSECT

38.4.5. Threaded Location Counters (*)

Location Counter values in multi-CSECT assemblies are occasionally puzzling: the leftmost
column of the Assembler's listing shows the value of the LC assigned to each statement. When a
single control section is being assembled, these LC values increase predictably as succeeding bytes
are assembled.

In a multi-CSect assembly, the values of the LC may appear to vary as the control section
changes. Even though the statements belonging to different CSects are interleaved, the LC values
look as though the statements had been rearranged within each control section, as noted in
Section 38.4.1 above.

Remember that the Assembler maintains a separate Location Counter for each control section in
an assembly. Except for the first CSECT (whose LC may be initialized to a nonzero value on a
START statement), these LC values are set to zero whenever a new control section is encount-
ered. Then, whenever a CSECT statement indicates that a different control section is to be begun
or resumed, the Assembler uses a new LC to continue the assembly.

After the first pass of the assembly is complete, the Assembler processes its collection of Location
Counters. First, the length of each CSECT is determined; this is possible because the Assembler
knows both the current and the maximum value of the LC for each control section. Then, begin-
ning with the first CSECT (whose initial LC value is known), the Assembler adds the initial LC
value for each control section to its length, rounds the sum up to the next alignment boundary,

251 Not every system Linker supports quadword alignment, so you should try a simple test. Section alignments stricter
than quadword require specifying the GOFF object-file option, or providing control statements to the Linker.

Chapter X: Large Programs and Modularization 809

and assigns the resulting value as the initial LC value of the next CSECT. In this way, the control
sections appear to have been “unscrambled” and assembled end-to-end.

During the second assembly pass, the Assembler uses these adjusted LC values to compute the
values of expressions involving symbols and Location Counter references. The relocation attribute
of the symbol tells which CSECT the symbol belongs in, and therefore what LC value should be
added to the symbol's value found in the symbol table.

Adjusting the LC values so that each control section starts at the next aligned boundary following
the end of the previous one is called threading the location counters. With no threading, each
control section starts at location zero.

Why does the Assembler perform threading? In the earliest days of System/360, programs were
not organized into complex load modules by the Linkage Editor, but were loaded directly into
memory from object modules. Because the address where loading began was often known in
advance, that address could be assigned as the initial LC value in a START statement. Thus, the
LC values printed on the Assembler's listing corresponded exactly to the addresses in memory
occupied by the assembled and loaded program. This made debugging simpler, because an inter-
ruption address could be immediately identified with the offending instruction in the listing.

Threading was intended as a convenience for you. We will see in discussing program linking that
the LC values must be “un-threaded” by the Linker so it can correctly relocate the program.
Whether threading is a help or hindrance is a matter of personal preference.

Sometimes it's easier to debug programs if each control section starts at location zero (except pos-
sibly the first if its LC value is set by a START statement). If you specify the NOTHREAD option,
the Assembler will not “thread” LC values for each new control section.

38.4.6. The “Location Counter” Instruction LOCTR (*)

As discussed in Section 38.4.2 on on page 808, the Assembler can create separate Location
Counters to handle discontinuities. The Assembler lets you create your own Location Counter
discontinuities in Assembler Language programs with the LOCTR252 instruction.

LOCTR can help you group segments of your program so that the order of statements in each
control section of the source program need not be the same as the order of the generated
instructions and data in the object program, as was done in all our previous examples.

The LOCTR instruction starts (or continues) a separate group of statements having its own
Location Counter. When the end of the source program is reached, the Assembler collects the
portions of each LOCTR group in the order they were declared into a single group, and assigns a
sequential Location Counter value to each item within each named group. Figure 551 on
page 811 illustrates this process:

252 The LOCTR instruction describes a Location Counter group, so its pronunciation would logically be LOKE-ter. But
the people who invented it called it LOCK-ter. Your preference?

810 Assembler Language Programming for IBM System z™ Servers Version 2.00

Source Sequence Object Sequence
┌─────────────────┐ ┌────────────────┐

Group X │X CSect │ │X CSect │
│ AAAAA │──────────────────│ AAAAA │
│ BBBBB │──────────────────│ BBBBB │
├─────────────────┤ ├────────────────┤

Group P │P LOCTR │ ┌──────────────│ DDDDD │
│ CCCCC │───│────┐ ├────────────────┤
├─────────────────┤ │ │ ┌───│ FFFFF │

Group X │X LOCTR │ │ │ │ ├────────────────┤
│ DDDDD │───┘ └─────│───│ CCCCC │
├─────────────────┤ │ ├────────────────┤

Group P │P LOCTR │ ┌─────│───│ EEEEE │
│ EEEEE │────────┘ │ └────────────────┘
├─────────────────┤ │

Group X │X LOCTR │ │
│ FFFFF │──────────────┘
└─────────────────┘

Figure 551. Rearrangement of source groups by LOCTR

The three portions of LOCTR group X appear first in the generated object code, followed by the
three portions of LOCTR group P. All the statements of the two LOCTR groups are part of the
control section named X.

Note that all the statements are in control section X and that we have simply reordered the
“normal“ connection between source and object components of that control section. Conversely,
multiple CSECT statements don't change the ordering relation between statement sequence and
the object code generated for each control section.

Figure 551 illustrates important properties of LOCTR groups:

1. A statement starting a control section (like CSECT) starts a LOCTR group with the name of
the control section. Thus, each control section is its own LOCTR group!

2. The name of a LOCTR group appears in the name field of the LOCTR assembler instruc-
tion statement. Statements following the LOCTR belong to that group. Thus, the two
groups in the figure are named X and P.

3. The object sequence of source statements is in the order of the first appearance of the group's
declaration on (1) a statement that initiates a control section (START, CSECT, DSECT,
RSECT, COM) or (2) a LOCTR statement.

4. A LOCTR group can be interrupted by other LOCTR groups, and then resumed later in the
source program. The same capability for control sections was described in Section 38.4.1..

These simple examples illustrate the effects of LOCTR:

1. This example starts LOCTR group ALoc and does not resume the LOCTR group of control
section A.

A CSect , Define LOCTR group A
DC X'00' Location = X'000000'

ALoc LOCTR , Define LOCTR group ALoc
DC X'01' Location = X'000001'
End

Figure 552. Simple example of LOCTR (1)

2. This example resumes the LOCTR of control section A after the ALoc LOCTR was defined.

Chapter X: Large Programs and Modularization 811

A CSect , Define LOCTR group A
ALoc LOCTR , Define LOCTR group ALoc

DC X'01' Location = X'000001'
A LOCTR , Resume LOCTR group A

DC X'00' Location = X'000000'
End

Figure 553. Simple example of LOCTR (2)

3. In this example, both LOCTR groups are first defined and then resumed.

A CSect , Define LOCTR group A
ALoc LOCTR , Define LOCTR group ALoc
A LOCTR , Resume LOCTR group A

DC X'00' Location = X'000000'
ALoc LOCTR , Resume LOCTR group ALoc

DC X'01' Location = X'000001'
End

Figure 554. Simple example of LOCTR (3)

While many programs don't need the capability provided by LOCTR, it can improve readability
and understandability by keeping related portions of the source program close together, while also
keeping them separated in the object program. For example, though the simple program fragment
in Figure 539 on page 801 may be more understandable in that form, we may eventually want
the generated instructions and data to appear as in Figure 540 on page 801.253 Figure 555 uses
LOCTR groups named Code and Data to do this:

Using Data,12
- - -

Code LOCTR , Start LOCTR group for instructions
L 2,X
A 2,Y
ST 2,Z
- - -
JP Positive
- - -

Data LOCTR , Start LOCTR group for data
X DC F'something'
Y DC F'something_else'
Z DS F Some sum
Code LOCTR , Resume LOCTR group for instructions

- - -
Positive L 0,PlusCode Indicate positive sum

- - -
Data LOCTR , Resume LOCTR group for data
PlusCode DC F'some number'
Figure 555. A program fragment using LOCTR for reorganization

The object code generated by this program fragment would be the same as that generated in
Figure 540 on page 801.

Organizing a program using LOCTR to keep instructions and data separated is sketched in
Figure 556 on page 813:

253 Closely mixing instructions and data as in Figure 539 on page 801 can have significant negative effects on program
performance.

812 Assembler Language Programming for IBM System z™ Servers Version 2.00

MyProg CSect , Start of My Program
J Start Relative branch to instruction LOCTR

Consts LOCTR , Start a LOCTR group for constants
Msg1L DC AL1(L'Message1) Length of message
Message1 DC C'This is a message string'
Data LOCTR , Start a LOCTR group for writable data
Number DS CL12 Binary number converted to dec. chars
Code LOCTR , Start of LOCTR group for instructions
Start STM 14,12,12(13) Save registers in caller's save area

LR 12,15 GR12 is base register for Consts/Data
Using MyProg,12 Addressability for Constants and Data
L 4,=F'-23456' Load value from literal pool
- - -
OI Number+L'Number-1,X'F0' Make last converted digit EBCDIC
- - -
LB 1,Msg1L Get length of Message 1
- - -

Consts LOCTR , Return to constants LOCTR group
LTORG , Put literals in Consts LOCTR group
End

Figure 556. Organizing a program to minimize addressability problems

After assembly, the program in Figure 556 appears as though it had been written this way:

MyProg CSect , Start of My Program
J Start Relative branch to instruction LOCTR

Msg1L DC AL1(L'Message1) Length of message
Message1 DC C'This is a message string'

LTORG , Emit literals in Consts LOCTR group
Number DS CL12 Binary number converted to dec. chars
Start STM 14,12,12(13) Save registers in caller's save area

LR 12,15 GR12 is base register for Consts/Data
Using MyProg,12 Addressability for Constants and Data
L 4,=F'-23456' Load value from literal pool
- - -
OI Number+L'Number-1,X'F0' Make last converted digit EBCDIC
- - -
LB 1,Msg1L Get length of Message 1
- - -
End

Figure 557. Organizing a program to minimize addressability problems

Aside from the reordered statements, note these differences between Figure 556 and Figure 557:

• All the constants and read-write areas are close to the origin of the control section, so will
probably be within the range of addressability of the single USING statement.

• The literal in the program follows the LTORG statement; but because LTORG appeared at
the end of the source program the literal will be generated with the other constants near the
start of the object program.

• Branch instructions in the Code LOCTR group can now be changed to relative-immediate
instructions, so no additional addressability is needed within that LOCTR group. In larger
programs, this can free up previous base registers for more productive use.

Thus, it may be possible that all based references to the Consts and Data LOCTR groups can
be addressed with a single base register. And, if you use relative-addressing branch instructions
in the Code LOCTR group, then you shouldn't need a base register to address any
instructions.

Chapter X: Large Programs and Modularization 813

LOCTR also facilitates correctly defining the target of an EX instruction, since its definition
will be close to the EX that references it. This helps ensure that the current USING
instructions will be honored in both the EX and the target instruction.

Program Loctr , Group for mainline instructions
- - -
EX 1,Target Reference the target instruction

Constant Loctr , Put the target with constants
Target <the target instruction>
Program Loctr , Resume the mainline instructions

Some unexpected behaviors may arise when you mix control section and LOCTR statements.

1. This example uses both CSECT and LOCTR, where we define LOCTR groups in more
than one control section:

A CSect , Define LOCTR group A
DC X'00' Location = X'000000'

B CSect , Define LOCTR group B
DC X'02' Location = X'000008'

A LOCTR , Resume LOCTR group A
DC X'01' Location = X'000001'

B LOCTR , Resume LOCTR group B
DC X'03' Location = X'000009'
End

Figure 558. Simple example of LOCTR (4)

While control section B is active, the following “A LOCTR” statement resumes control section
A. Resuming a LOCTR group can cause a change of control section.

2. This example inserts a second “A CSECT” statement, with “interesting” results:

A CSect , Define LOCTR group A
DC X'00' Location = X'000000'

ALoc LOCTR , Define LOCTR group ALoc
DC X'01' Location = X'000001'

A CSECT , Resume LOCTR group A? �── Note!
DC X'02' Location = X'000002' !
End

Figure 559. Example of unexpected LOCTR behavior (1)

Resuming CSECT A does not resume its Location Counter! You might have expected that the
last DC statement would follow the first. But, as the Location values of the constants indicate,
resuming a control section resumes the most recently active LOCTR group in that control section,
not the LOCTR group associated with the control section name.

3. Here's another example that illustrates this behavior:

814 Assembler Language Programming for IBM System z™ Servers Version 2.00

A CSect , Define LOCTR group A
DC X'00' Location = X'000000'

ALoc LOCTR , Define LOCTR group ALoc
DC X'01' Location = X'000001'

B CSect , Define LOCTR group B
DC X'02' Location = X'000008'

BLoc LOCTR , Define LOCTR group BLoc
DC X'03' Location = X'000009'

A CSect , Try to resume LOCTR group A
DC X'04' Location = X'000002' (not X'000001'!)

B CSect , Try to resume LOCTR group B
DC X'05' Location = X'00000A' (not X'000009'!)
End

Figure 560. Example of unexpected LOCTR behavior (2)

You might have expected both CSECT statements to resume their LOCTR groups; they instead
resume the most recently active LOCTR groups within their sections. That's why the constant
X'04' does not follow X'00', but X'04' instead follows X'01'. The constants in control section B
behave similarly.

We can summarize these rules for using LOCTR statements and statements naming control
sections.

1. A LOCTR group does not start a separate or different control section unless the LOCTR
statement is the first LC-dependent statement in the program (it does depend on the
Location Counter), in which case a Private Code control section is initiated by the Assem-
bler. (Starting a program with LOCTR isn't a good idea!)

2. A LOCTR group is part of the control section in which the group is first declared. The
portions of a LOCTR group belong to the control section being assembled when its first
LOCTR statement appears. That is, the statements in a LOCTR group have the same reloc-
atability attribute as the owning control section in which they appear.

3. Resuming a control section resumes the most recently processed LOCTR group in that
control section. If no LOCTR group has been defined in the control section, the control
section is resumed normally. That is, you can use a LOCTR group name to resume a
control section, but a control section name cannot safely be used to resume a LOCTR
group. Instead, it resumes the most recently used LOCTR group in that control section.

4. To resume a control section in which LOCTR groups have been defined, issue a LOCTR
statement with the name of the control section.

5. A change of LOCTR group may also change the current control section.

6. ORG in a LOCTR group pertains only to that group, and cannot be used to switch the
Location Counter to a different control section.

Thus, the Assembler knows how to manage groups of statements with their own temporary
Location Counters; the LOCTR statement lets you declare and determine the order of your own
groups of statements.

 Advice

Don't use a LOCTR name as a branch target, because you may not
know which of many possible occurrences of the name is the actual
target.

Exercises

38.4.1.(2)+ In this program fragment, where will the literals =F'1' be generated?

Chapter X: Large Programs and Modularization 815

AAA CSect ,
- - -
L 3,=F'1'
- - -
LTORG

BBB CSect ,
- - -
S 8,=F'1'
- - -
End

38.4.2.(2) In this program fragment, where will the literals =F'1' be generated?

CCC CSect ,
- - -
L 3,=F'1'
- - -
LTORG

DDD CSect ,
- - -
S 8,=F'1'
- - -
LTORG
End

38.4.3.(1) In Figure 545 on page 805, why is a DROP 15 statement not needed at the end of the
ShftRt subroutine?

38.4.4.(2)+ In Figure 545 on page 805, why is the USING statement in the ShftRt control
section not needed? Is there any reason why it should be retained?

38.4.5.(2) In Figure 548 on page 807, why is it a good idea to leave the USING *,15 statement
at the start of the ShftRt subroutine, even though it's not required?

38.4.6.(1)+ In Figure 549 on page 808, determine the values of all symbols if symbol A has
value X'001240'. Now, do Exercise 38.4.7.

38.4.7.(2)+ In Figure 549 on page 808, why is the value of the symbol B not the value of the
symbol A plus five, or X'00004B'?

38.4.8.(2)+ First, make a complete and correct Assembler Language program using the
instructions in Figure 546 on page 806. Then, assemble it twice: first with the THREAD
option, and again with the NOTHREAD option. Study the Assembler's Location Counter
values for each control section.

38.4.9.(2)+ What Location Counter values are assigned to the symbols naming DS statements
in this program?

Prog Start X'2000'
A DS X
NewGroup LOCTR ,
B DS H
Prog LOCTR ,
C DS F
NewGroup LOCTR ,
D DS F

End

38.4.10.(3)+ In Figure 550 on page 809, explain how the expressions in the DC statement gen-
erate the desired alignment.

816 Assembler Language Programming for IBM System z™ Servers Version 2.00

38.4.11.(2) In this little program, in which control sections will each constant reside? Assuming
normal doubleword section alignment, what will be their locations if the Location Counter
values are “threaded”?

A Start 0
DC X'1'

B CSect ,
DC X'2'

C CSect ,
DC X'3'

B CSect ,
DC X'4'

C CSect ,
DC X'5'

A CSect ,
DC X'6'

C CSect ,
DC X'7'
End

38.4.12.(2)+ What Location Counter values are assigned to the symbols naming DS statements
in this program?

Loc CSect ,
H DS X
ALoc LOCTR ,
A DS X
BLoc LOCTR ,
B DS X
Loc LOCTR ,
C DS X
ALoc LOCTR ,
D DS X
BLoc LOCTR ,
E DS X
Loc LOCTR ,
F DS X

End

38.4.13.(3)+ If you assemble this program, what will be the Location Counter values assigned
to each symbol?

SectA CSect ,
H DS X
ALoc LOCTR ,
B DS X
SectB CSect ,
A DS X
BLoc LOCTR ,
C DS X
ALoc LOCTR ,
D DS X
BLoc LOCTR ,
E DS X
SectA CSect ,
F DS X
BLoc LOCTR ,
G DS X
SectB LOCTR ,
N DS H

Chapter X: Large Programs and Modularization 817

38.4.14.(2) Section 38.4.2 noted that literals not previously generated by LTORG statements
are placed at the end of the first executable control section when the END statement is proc-
essed. How do you think the Assembler does that?

38.5. External Symbols

Usually, none of the symbols you used to write your program are available after the completion
of its assembly, except for the program name. To communicate among routines assembled or
compiled at different times, we need the additional information provided by external symbols..

An external symbol may be one of the following five types, and the statements used to declare
them are shown in parentheses.

1. Control section name (CSECT, RSECT, START)

A control section name is the name of a block of instructions or data. The name identifies the
control section; it is used by the Linker to build an executable load module. Names of
“executable” control sections — defined by START, CSECT, and RSECT instructions — are
always external symbols.

2. Common section definition (COM)

A common section is a reference control section that generates no assembly-time machine
language instructions or data. Typically, COM sections are shared work areas among exe-
cuting CSECTs in a loaded program. (That is, they are “commonly“ available to multiple
code CSECTs.) They provide an easy way to reference large data aggregates without passing
their addresses as subroutine arguments.

3. External reference (EXTRN, WXTRN)

An external reference is a symbol that is not assigned a value at assembly time. It is usually
the name of an instruction or data area that will be supplied and resolved during program
linking, often from the “Library of Object and Load Modules” illustrated in Figure 24 on
page 73. EXTRN and WXTRN statements are needed only for symbols not defined in the
assembly in which references to those symbols are needed.

External references are typically used in address constants that, after program linking is com-
plete, will contain addresses of other program segments.

V-type address constant operands are automatically declared EXTRN; they will be described
in Section 38.5.2.

4. Entry name (ENTRY)

An entry name is associated with a particular location within a control section. For example,
library routines calculating the trigonometric functions SIN and COS use nearly identical
algorithms, so a single control section may have separate entry names for SIN and COS.

5. Dummy external section (DXD, and DSECT in special cases)

Dummy external sections are sometimes called “PseudoRegisters”. They have specialized uses
that we'll describe briefly in Section 38.7.3. Their names may match other external symbol
names without conflict.

The Assembler maintains a special symbol table called the External Symbol Dictionary (ESD) for
external symbol information.254 Each item in the External Symbol Dictionary (other than
ENTRY names) is assigned an “ESD ID” number, or “ESDID”. (An ENTRY name is given an
“Owning ID”, the ESDID of the Section to which it belongs.)

254 Some of this information may also appear in the Symbol Table for “ordinary” (internal) symbols.

818 Assembler Language Programming for IBM System z™ Servers Version 2.00

38.5.1. EXTRN and WXTRN Statements

Suppose our ShftRt subroutine has already been assembled as a separate program, to be com-
bined by the Linker with our calling program. The symbol ShftRt will be defined somewhere
outside our calling program — to the caller, it is an external symbol. Thus, the Assembler must
provide information to the Linker indicating that we want to reference that symbol. This is done
with the EXTRN statement.

For example, the subroutine call in Figure 533 on page 799 can be modified to make ShftRt an
external symbol.

EXTRN ShftRt Declare 'ShftRt' to be external
- - -
L 0,Logic Datum to be shifted, in GR0
L 1,Shift Shift amount, in GR1
L 15,AdShft Subroutine address, in GR15
BASR 14,15 Link to subroutine
ST 0,Result Store shifted result
- - -

Logic DS F Space for arguments,
Shift DS F ...
Result DS F And result
AdShft DC A(ShftRt) Subroutine address
Figure 561. Calling ShftRt as an external routine

When we compare the examples in Figure 533 on page 799 and Figure 561 above, the only dif-
ference is the presence of the EXTRN statement. The true address of ShftRt in the address con-
stant named AdShft will be created by the Program Loader when the program is loaded into
memory.

We can write the ShftRt routine as a separately assembled routine. First, we create a complete
program in which the subroutine is defined as a control section named ShftRt. Because a control
section name is already an external name, no EXTRN declaration is needed.

ShftRt Start 0 Define control section name
Using *,15 GR15 preset by caller
LTR 1,1 Test shift count
JNM ShftOK Branch if not minus
SR 1,1 Set shift to zero

ShftOK SRL 0,2(1) Perform the shifts
BR 14 Return to caller
END

Figure 562. ShftRt subroutine as a separate assembly

This assembly generates an object module with the single ShftRt control section, 14 bytes long.
The only symbol in the External Symbol Dictionary in the object module will be the control
section name. The “program name” is not an operand of the END statement, because we are not
writing a main program that should be executed starting at ShftRt.

You can also use external symbols with relative branch instructions.255 For example, you can use
references like these:

255 While the Assembler supports relative-immediate external references, you should verify that the Linker(s) in your
operating system environment also supports them.

Chapter X: Large Programs and Modularization 819

EXTRN A,B
- - -
BRAS 14,A Call nearby external routine A
- - -
BRASL 14,B Call distant external routine B

Figure 563. External references using relative branch instructions

The Assembler encodes the 2-byte (for BRAS) and 4-byte (for BRASL) relative references in the
object module. BRAS would typically be used to refer to external routines in a linked program
not longer than (say) 50K bytes, while BRASL can be used for very large programs or programs
in which different parts are widely separated.

Note: If you use instructions like those in Figure 563, GR15 will not contain the entry point
address!

The EXTRN and WXTRN assembler instruction statements have no name-field entry. The
operand field is a symbol or list of symbols separated by commas. Each symbol is entered in the
Assembler's External Symbol Dictionary, and given its own relocation attribute because the
Assembler must assume it is independently relocatable.

The only difference between EXTRN and WXTRN symbols occurs during linking: if all the
input object and load modules provided to the Linker do not have a definition of the symbol,
EXTRN causes a library search for a definition, while WXTRN does not.

You can use WXTRN to declare and test for external symbols that are not linked with the com-
pleted program. The example in Figure 564 shows how you can do this:

WXTRN Sub1 Weak reference for Sub1
EXTRN Sub2 Strong reference for Sub2
- - -
LT 15,ASub1 Test if Sub1 was linked
JZ CallSub2 Branch if it's not available
BASR 14,15 It's available, call it
- - -

CallSub2 L 15,ASub2 Get the address of Sub2
BASR 14,15 ... and call it
- - -

ASub1 DC A(Sub1) Address of Sub1, if linked
ASub2 DC A(Sub2) Address of Sub2
Figure 564. Using WXTRN to test whether a routine was linked

An external name declared in a WXTRN statement will not cause any Linker diagnostics if the
name cannot be linked. Then, you can test the address constant referencing the name for zero to
determine whether or not it is present in the linked program.

A symbol cannot appear both as an operand of an EXTRN or WXTRN statement and also as
the name-field symbol in a statement which would cause the Assembler to assign a value to it,
because this combination would be an attempt to declare that the symbol both is, and is not,
defined external to this program.

EXTRN NotGood
NotGood DC C'Not So Good' Internal symbol
** ASMA043E Previously defined symbol - NotGood

38.5.2. V-Type Address Constants

Calling an external subroutine can be simplified if you use V-type address constants. The presence
of a symbol in a V-type adcon automatically and implicitly declares the symbol as external. We
could rewrite Figure 561 on page 819 as shown in Figure 565 on page 821. The differences are
the omission of the EXTRN statement, and using a V-type adcon in place of an A-type adcon.

820 Assembler Language Programming for IBM System z™ Servers Version 2.00

* EXTRN ShftRt Not needed, we're using a V-con
- - -
L 0,Logic Datum to be shifted, in GR0
L 1,Shift Shift amount, in GR1
L 15,AdShft Subroutine address, in GR15
BASR 14,15 Link to subroutine
ST 0,Result Store shifted result
- - -

Logic DS F Space for arguments,
Shift DS F ...
Result DS F And result
AdShft DC V(ShftRt) Subroutine address in a V-con
Figure 565. Calling ShftRt as an external routine

Before converting programs using EXTRN declarations and A-type address constants to use
V-type adcons, take note of these considerations:

1. The operand of a V-type address constant may be a symbol only.

2. In the object module, an additional flag is attached to the external symbols that appear in
V-type address constants. This flag means that the symbol is the name of a routine or entry
point to which control may be passed, as well as possibly the name of a data area.

There is no distinction between a V-type adcon and an A-type plus EXTRN unless the
routine to which control may be transferred might use an assisted linkage.256 In this special
case, the branch will actually go to a linkage-assist routine that loads the target routine into
memory if necessary and then branches to it.

This is why an expression cannot be allowed in a V-type adcon: the branch may go not to
the target routine but to a linkage-assist routine, so no added factors can be allowed in the
address. Assisted linkage is (fortunately) usually invisible.

3. The symbol in a V-type constant may also be explicitly declared in an EXTRN or WXTRN
statement.

Some useful programming conventions for V-type constants and external symbols are:

1. All external symbols should be explicitly declared in EXTRN statements, even though an
implicit declaration could have been used.

2. All external branch addresses should be referenced through V-type constants. If you know
that calling a routine will never use an assisted linkage, you can replace V-type constants by
A-type constants (but retain the EXTRN declarations you've done already).

3. Data areas should never be addressed using V-type address constants: if assisted linkages are
used at some later time, the address in the V-con might not be the address of the data area!
And, if you store data at the address referenced by the constant, you might be destroying
important linkage information.

38.5.3 ENTRY Statement

In addition to specifying ShftRt as a control section name, you can use an ENTRY statement to
identify ShftRt as the name of a location in a control section with a different name. As with
EXTRN, symbols identified as entry points are written as operands of an ENTRY statement,
separated by commas.

ENTRY symbols must be defined in the program in which the ENTRY statement occurs. Other-
wise, there would be no position in the control section that could be identified as the desired entry
point.

256 This was particularly true for load modules formed into overlay structures, which are little used today; but other
forms of assisted linkage exist, such as Dynamic Link Libraries (DLLs).

Chapter X: Large Programs and Modularization 821

Suppose we rewrite the ShftRt subroutine as part of a control section named SubShf2. (We use
the argument-passing convention of Figure 489 on page 766 in which the result address is also
provided as an argument, and all registers are preserved.)

SubShf2 Start 0 Set control section name and LC
ENTRY ShftRt Identify entry point
Using *,15 Assume standard linkage

ShftRt STM 0,4,Save Save GR0 through GR4
LM 2,4,0(1) Get argument and result addresses
L 0,0(0,2) Logical datum to GR0
L 1,0(0,3) Shift amount in GR1
SRL 0,2 Perform initial shift
LTR 1,1 Test additional shift count
JNP Finish Branch if not positive
SRL 0,0(1) Perform rest of shift

Finish ST 0,0(0,4) Store result at given location
LM 0,4,Save Restore all registers we used
BR 14 And return to caller via r14

Save DS 5F GR0-GR4 register save area
END

Figure 566. ShftRt subroutine in a different CSect

The External Symbol Dictionary for this assembly contains the CSect name SubShf2 and the
entry name ShftRt, and information to indicate the type of each symbol.

To illustrate a typical use of the ENTRY statement, suppose a Main routine calls a subroutine
Subr. The data for the subroutine is in the main program, named Data. Rather than passing the
address of the data area to the subroutine, the main program identifies it with an ENTRY state-
ment.

Main Start 0 Main program
ENTRY Data Identify entry point of 'Data'
BASR 12,0 Establish base register
Using *,12 Assembler resolves displacements
- - - Compute something in data area
L 15,ASubr Get subroutine address
BASR 14,15 Branch to subroutine
- - - Do something with the results

ASubr DC V(Subr) External subroutine address
Data DS 200F Data area

END Main Start execution in main program
Figure 567. Main program with ENTRY for data

The separately assembled subroutine Subr could be written as in Figure 568:

Subr Start 0 Define control section 'Subr'
EXTRN Data Mark 'Data' as external
Using *,15 Standard linkage assumed
STM 0,6,Save Assume we need only GR0-GR6
L 6,AData Get address of data area
L 0,0(0,6) First data word to GR0
- - - Work with all the data
LM 0,6,Save Restore GR0-GR6
BR 14 Return to master

AData DC A(Data) Address of external data area
Save DS 7F Save area for registers GR0-GR6

END
Figure 568. Subroutine using EXTRN to reference data

822 Assembler Language Programming for IBM System z™ Servers Version 2.00

Each of these programs refers to a name defined in the other by using an EXTRN declaration
and an appropriate address constant.

We can use address constants for addressing data in many ways. For example, suppose the data
area accessed by the subroutine contains several sub-areas that begin at DATA, DATA+60, and at
DATA+453. We also suppose the subroutine refers to these sub-areas often enough that it keeps
their addresses in registers. Because A-type address constants may contain expressions involving
external symbols, we can define three adcons to point to the parts of the data area.

Subr Start 0 Define the CSect name
EXTRN Data Indicate external symbol
Using *,15 Caller will preset GR15

Subr STM 0,6,SAVE Save GR0-GR6
LM 4,6,ADatas C(GR4) = A(start of data area),

* GR5 points to second data area,
* And GR6 points to the third

- - - ... work with the data
LM 0,6,Save Restore registers we used
BR 14 Return to caller

ADatas DC A(Data) Address of base of data area
DC A(Data+60) Address of next sub-area
DC A(Data+453) Address of last data sub-area

Save DS 7F Register save area
END

Figure 569. Subroutine using EXTRN and adcons to reference data

The usage illustrated in Figure 569 cannot be “simplified” by using V-type constants such as
V(DATA+60).

Because multiple operands are allowed in address constants, we could also have written

ADatas DC A(Data,Data+60,Data+453)

or we could have used a literal, and written the LM instruction as

LM 4,6,=A(Data,Data+60,Data+453)

Adcons containing expressions involving external symbols must be used with care. If the refer-
enced routine reorders the statements defining the data, the offsets encoded in the adcons will
probably be incorrect. It's better to identify such entry points by name, not by offset from
another symbol.

Sometimes we must write two or more subroutines that do almost the same thing, but only
minor variations are needed in each. We can combine the routines into a single CSect and use as
much common coding as possible.

Suppose we need not only the ShftRt subroutine, but also one with identical parameters named
ShfLft, which does a logical left shift instead. First, we will sketch an example with no common
coding; assume the parameters are passed in GR0 and GR1:

Chapter X: Large Programs and Modularization 823

Shifter CSect , Control section with 2 entry points
ENTRY ShftRt,ShfLft Declare the two entry points
Using *,15 Caller presets R15

ShftRt LTR 1,1 Test right shift count
BNM ShfOKR Branch if not negative
SR 1,1 Set to zero if it was negative

ShfOKR SRL 0,2(1) Shift right
BR 14 Return
Using *,15 Caller presets R15

ShfLft LTR 1,1 Test left shift count
BNM ShfOKL Branch if not negative
SR 1,1 Set to zero if it was negative

ShfOKL SLL 0,2(1) Shift left
BR 14 Return
End ,

Figure 570. Subroutine with entries for two similar functions

Now, we will rewrite the example to use some instructions common to the two subroutines. The
routine isn't shorter, but illustrates a technique you can use when multiple entry points in a
routine have common instruction sequences that can be shared by each entry.

Shifter CSect , Control section with 2 entry points
ENTRY ShftRt,ShfLft Declare the two entry points
Using *,15 Caller sets base register

ShftRt MVI ShFlag,0 Set flag byte for right shift
B ShftAA And enter common code
Using *,15 Using for second entry point

ShfLft MVI ShFlag,1 Set flag byte for left shift
ShftAA BASR 15,0 Reset base register for local use

Using *,15 And set up correct using info
LTR 1,1 Test shift count
BNM ShftOK Branch if not minus
SR 1,1 Otherwise set to zero

ShftOK TM ShFlag,1 Test direction of shift
BZ ShfR Branch if 0, meaning right
SLL 0,2(1) Perform left shifts
BR 14 Return to caller

ShfR SRL 0,2(1) Perform right shifts
BR 14 Return to caller

ShFlag DS X Flag byte
Drop 15

Figure 571. Subroutine with two similar functions and some common code

The BASR instruction named ShftAA and its associated USING are needed to establish a base
register with a known value for the following instructions. If they had been omitted, the implied
addresses of the subsequent instructions might use the wrong base. If the entry had been at
ShftRt GR15 would contain its address, whereas the USING in effect later will assume that
GR15 contains the address of ShfLft.

38.5.4. The External Symbol Dictionary Listing

When the assembly is complete, the ESD information is encoded into the object module and dis-
played in the Assembler listing's External Symbol Dictionary.257 For example, if we assemble this
little program:

257 You can suppress this part of the listing by specifying the Assembler's NOESD option.

824 Assembler Language Programming for IBM System z™ Servers Version 2.00

Main Start X'2400' Main control section
DS 24D
EXTRN SomeSym External symbol declaration

ASection CSect , Second control section
DS XL137

ASecEnt Equ * Declare internal symbol
ENTRY ASecEnt Declare internal entry point
DS XL131

RSection RSect , Third control section
DS XL149

ComSect COM , Fourth control section
DS 200F

ADummy DXD CL44 Dummy external section
End

Figure 572. Sample assembly with external symbols

the Assembler's External Symbol Dictionary listing looks like Figure 573:

External Symbol Dictionary

Symbol Type Id Address Length Owner Id Flags

MAIN SD 00000001 00002400 000000C0 00
SOMESYM ER 00000002
ASECTION SD 00000003 000024C0 0000010C 00
ASECENT LD 00002549 00000003
RSECTION SD 00000004 000025D0 00000095 08 �── RSECT flag
COMSECT CM 00000005 00000000 00000320 00
ADUMMY XD 00000006 00000000 0000002C

Figure 573. External symbol dictionary from sample assembly

The seven fields in Figure 573 are:

1. Symbol: the external symbol, converted to upper-case letters.258

2. Type: the type of external symbol, described in Section 38.5 on page 818.

3. Id: the ESDID of the symbol. Note that the symbol ASECENT has no ESDID of its own,
because it is in the control section ASECTION, identified by “Owner Id” X'00000003'.

4. Address: the location at which the control section begins. For entry names (identified by
Type LD), the address is the location of the entry point within the “owning” control section.

Note that each section address has been rounded up to the next doubleword boundary. For
example, ASECTION starts at location X'24C0' and is X'10C' bytes long, so the first available
location is X'25CC' and RSECTION starts at the next doubleword, X'25D0'.

5. Length: the length of the control section.

6. Owner Id: for entry names (Type LD), the ESDID of the control section in which the entry
point resides.

7. Flags: bits indicating the addressing and residence modes and RSECT status declared for
each control section. In this example, all have specified 24-bit addressing mode and residence
below the 16MB “line”.

We can now give a complete definition of a symbol's relocation attribute:

258 Upper-cased external symbols have roots in the days of System/360, when almost all programs were created on
punched cards using upper-case letters. You can generate external symbols with mixed-case letters and other charac-
ters using the ALIAS instruction; see the High Level Assembler Language Reference for details.

Chapter X: Large Programs and Modularization 825

1. If a symbol appears in the ESD only, or in the ESD and in the ordinary symbol table, its
relocation attribute is its ESDID.

2. If a symbol appears only in the ordinary symbol table, its relocation attribute is the ESDID
of the control section in which it appears. (Undefined symbols may have ESDID zero.)

A special Type indication (PC) appears in the Assembler's External Symbol Dictionary listing for
unnamed control sections; PC stands for “Private Code”.259 As noted on page 804, Private Code
sections may be generated if you put some statements that could affect the Location Counter
ahead of the first START or CSECT statement; the Assembler automatically creates a blank-
named CSECT.

For example, this set of statements:

R1 Equ 1 EQU can affect the Location Counter!
Main Csect , Start of a control section

- - - Rest of 'Main' CSect
End

could produce an External Symbol Dictionary listing like this:

Symbol Type Id Address Length

PC 00000001 00000000 00000000 �── Unnamed zero-length CSect
MAIN SD 00000002 00000000 000002D4

Unfortunately, PC sections can sometimes cause the generated load module to have unintended
addressing and residence modes.

ESD records describe four types of external symbols. These two-letter Type abbreviations identify
the symbol's type:

SD,CM,PC Section Definition: the name of a control section, CM identifies COMmon sections
having no machine language “text”, and PC identifies a blank-named control section;
these three are doubleword aligned by default.

LD Label Definition entries identify the name of a position at a fixed offset within an
“owning” Control Section. They are used to identify entry points. Because Label Defi-
nitions belong to another CSect, they are the only symbol type having no ESDID of
their own.

ER,WX These two external symbol types are for External References to symbols not defined
in this module, but to a symbol defined elsewhere to which this module wants to
refer. A special form of external symbol is called WX or “Weak EXternal”; this type of
reference might not be resolved at link time, without error.

XD The name of an “EXternal Dummy Section”; sometimes called a PseudoRegister
(PR). XD names are in a separate link-time “name space” from all other external
symbols, and may match non-XD external names without conflict. Section 38.7.3 will
discuss their use.

If you specify the SECTALGN(16) option, three different Type identifiers are used for quadword-
aligned control sections:

SQ for a quadword-aligned control section,

CQ for a quadword-aligned COMMON control section.

PQ for a quadword-aligned private (unnamed) control section,

To illustrate, we'll assemble the simple program in Figure 574 on page 827 with each SECTALGN
option:

259 “Private” because you can't refer to such a control section by its nonexistent section name!

826 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───┐
│ CSect , Blank CSect name (Private Code) │
│ DS XL5 │
│Section CSect , Named control section │
│ DS XL7 │
│Common COM , Common section │
│ DS XL3 │
│ End │
└───┘
Figure 574. Program assembled with different SECTALGN options

Then, Figure 575 shows the key parts of the External Symbol Dictionary listing with each option;
only the Type and Address columns are different.

┌────────────────────────────────────┬────────────────────────────────────┐
│ With SECTALGN(8) │ With SECTALGN(16) │
├────────────────────────────────────┼────────────────────────────────────┤
│ Symbol Type Id Address Length │ Symbol Type Id Address Length │
│ PC 00001 0000000 0000005 │ PQ 00001 0000000 0000005 │
│ SECTION SD 00002 0000008 0000007 │ SECTION SQ 00002 0000010 0000007 │
│ COMMON CM 00003 0000000 0000003 │ COMMON CQ 00003 0000000 0000003 │
└────────────────────────────────────┴────────────────────────────────────┘
Figure 575. Example of ESD listings with different SECTALGN options

The forms of ESD data in an object module, and how each is processed, will be discussed starting
in Section 38.6.

38.5.5. External Symbol Addressing and Residence Modes

External symbols defining executable control sections (START, CSECT, and RSECT) or COM
reference sections can be assigned mode attributes specifying where in memory you want the
section to be loaded (its residence mode or RMODE), and what addressing mode (its AMODE)
should be assigned by the Program Loader when it passes control to that symbol (assuming the
symbol is designated as the program's entry point). These attributes are assigned by the AMODE
and RMODE assembler instruction statements.

The allowed values of AMODE and their meanings are shown in Table 404.

Table 404. AMODE values

The allowed values of RMODE and their meanings are shown in Table 405 on page 828. (For
an illustration of the 16MB “line” and the 2GB “bar”, see Figure 149 on page 308.)

AMODE Meaning

24 The instructions in this control section, or at this entry point,
should receive control in 24-bit addressing mode.

31 The instructions in this control section, or at this entry point,
should receive control in 31-bit addressing mode.

64 The instructions in this control section, or at this entry point,
should receive control in 64-bit addressing mode.

ANY,
ANY31

The instructions in this control section, or at this entry point,
may receive control in 24-bit or 31-bit addressing mode.

ANY64 The instructions in this control section, or at this entry point,
may receive control in any addressing mode.

Chapter X: Large Programs and Modularization 827

Table 405. RMODE values

If either AMODE or RMODE (or neither) is specified for a section, the Assembler assigns the
values shown in Table 406.

Table 406. Default AMODE and RMODE values

Only certain combinations of AMODE and RMODE values are valid, as shown in Table 407.

Table 407. Valid combinations of AMODE and RMODE values

Figure 576 shows how mode values are assigned to external symbols:

RMODE Meaning

24 The control section should be loaded below the 16MB “line”.

31, ANY The control section should be loaded below the 2GB “bar”,
either above or below 16MB

64 The control section may be loaded anywhere in memory.

Declared Mode Assigned Mode

none AMODE 24,
RMODE 24

AMODE 24, AMODE 31, AMODE ANY,
AMODE ANY31 RMODE 24

RMODE 24 AMODE 24

RMODE 31, RMODE ANY AMODE 31

AMODE 64, AMODE ANY64 RMODE 31

RMODE 64 AMODE 64

Mode Valid values

AMODE 24 RMODE 24

AMODE 31, AMODE ANY,
AMODE ANY31 RMODE 24, RMODE 31

AMODE 64, AMODE ANY64 RMODE 24, RMODE 31,
RMODE 64

SR24A24 CSect ,
SR24A24 RMODE 24 Assign residence mode 24
SR24A24 AMODE 24 Assign addressing mode 24

STM 14,12,12(13) Entry point: save registers, ...
- - -

SR24A31 CSect ,
SR24A31 RMODE 24 Assign residence mode 24
SR24A31 AMODE 31 Assign addressing mode 31

DR 2,11
- - -

SR31A31 CSect ,
SR31A31 RMODE 31 Assign residence mode 31
SR31A31 AMODE 31 Assign addressing mode 31

- - -
SR31A64 CSect ,
SR31A64 RMODE 31 Assign residence mode 31
SR31A64 AMODE 64 Assign addressing mode 64

- - -
Figure 576. Assigning RMODE and AMODE to a section name

The ESD listing from assembling this little fragment is shown in Figure 577 on page 829:

828 Assembler Language Programming for IBM System z™ Servers Version 2.00

Symbol Type Id Address Length Owner Id Flags

SR24A24 SD 00000001 00000000 00000004 01
SR24A31 SD 00000002 00000008 00000002 02
SR31A31 SD 00000003 00000010 00000000 06
SR31A64 SD 00000004 00000010 00000000 14
Figure 577. ESD showing RMODE and AMODE of section names

To help you understand the “Flags” field, do Exercise 38.5.17.

The addressing mode in effect when your program runs determines which register bits are used to
form Effective Addresses, as shown in the following figures:

0 40 63
┌──┬─────────────────────────────────┐
│�────────────── ignored ───────────────────────────�│�─────── 24─bit address ────────�│ AMode 24
└──┴─────────────────────────────────┘

 0 33 63
┌───┬──┐
│�────────────── ignored ──────────────────�│�──────────── 31─bit address ────────────�│ AMode 31
└───┴──┘

 0 63
┌──┐
│�───────────────────────────────────64─bit address ──────────────────────────────────�│ AMode 64
└──┘

Exercises

38.5.1.(2)+ Assemble the program in Figure 572 on page 825 with the NOTHREAD option. Which
values in the ESD portion of the listing have different values from those in Figure 573 on
page 825? Why?

38.5.2.(1)+ Which assembler instruction statements define define executable control sections
and which define reference sections? Which define space in the object module?

38.5.3.(2)+ Rewrite Figure 571 on page 824 so that the MVI instructions modify the operation
code of a single shift instruction, so that it will perform the shifts in the desired direction.
Remove all references to the flag byte.

Note! This is a very poor coding technique; this exercise is included only to show (what were
believed to be clever) techniques used in “olden days” that now cause programs to run much
more slowly.

38.5.4.(1) Why would specifying the SECTALGN(16) option be useful?

38.5.5.(1) Can you think of any use for Private Code sections?

38.5.6.(2) Write, assemble, and link a small program with unnamed CSECT and COM state-
ments. Describe what happens.

38.5.7.(4) In Exercise 38.5.6 you wrote and assembled a small program with unnamed CSECT
and COM statements. How could you refer to each from separately assembled modules?

38.5.8.(2)+ Determine whether the following variation on Figure 571 on page 824 will work
correctly, and correct it if you think it won't. Explain your conclusions in either case.

Chapter X: Large Programs and Modularization 829

Using *,15
ShftRt MVI ShFlag,0 Set flag to zero

B SHFTAA Branch to common code
ShfLft LA 15,ShftRt Set common base register

MVI ShFlag,1 Set flag for left shift
SHFTAA LTR 1,1 ...etc...

38.5.9.(4)+ Suppose a programmer wrote Figure 571 on page 824 without the BASR at
ShftAA and the following USING, and then attached the name ShftAA to the LTR instruction.
Compute bases and displacements for all the instructions in the program (or, assemble it if nec-
essary), and determine exactly what happens for correct calls to ShftRt and ShfLft.

38.5.10.(2)+ Write an external subroutine named BYTE with two arguments passed using
standard conventions. The first argument is a byte, and the second argument is an 8-byte area
where the subroutine will place 8 EBCDIC zero and one characters representing the bits of the
byte argument.

38.5.11.(2)+ Write a separately-assembled subroutine named SIGNUM with a word integer argu-
ment that returns in GR0 the value −1 if the argument is negative, +1 if the argument is strictly
positive, and 0 if the argument is zero. Assume standard linkage conventions, and restore all
modified registers except GR0.

38.5.12.(2)+ In Figure 568 on page 822, the first Load instruction places the address of Data in
GR6. Why can't it be replaced by this instruction?

LA 6,Data

38.5.13.(3) Suppose you are writing a large program that needs an internal debugging aid that
will dump areas of memory in hexadecimal in some readable format. Write a separately-
assembled subroutine named MemDump with this standard calling sequence:

L 15,=V(MemDump)
CNOP 2,4 Align to halfword boundary
BASR 14,15
DC A(start_address)
DC A(end_address)

You can use the PRINTLIN macro instruction to print the formatted lines.

38.5.14.(3) Revise your solution to Exercise 38.5.13 to allow either one or two memory
addresses to be specified in the list following the BASR instruction, in this form:

BASR 14,15
DC A(X'80000000'+start_address) For one argument

or
BASR 14,15
DC A(start_address)
DC A(X'80000000'+end_address) For two arguments

where the high-order bit indicates the last memory address. If only a single argument is given,
display 32 bytes starting at the start_address.

38.5.15.(3) Write an external subroutine named I2D that converts the signed 32-bit integer value
in GR0 to a long hexadecimal floating-point value in FPR0.

38.5.16.(3) Write an external subroutine that converts the short hexadecimal floating-point
number in FPR0 to a fullword integer in GR0. If the result is valid, set return code 0 in
GR15. If the floating-point number is too large, return the maximum negative number in GR0
and set return code 4 in GR15.

38.5.17.(3)+ The rightmost six bits of the “Flags” field indicate the AMODE and RMODE
associated with the external symbol (remember that bit numbering starts at zero):

830 Assembler Language Programming for IBM System z™ Servers Version 2.00

Bit 2 (R bit): 1 = RMODE 64; 0 = use “r” bit 5
Bit 3 (A bit): 1 = AMODE 64; 0 = use “aa” bits 6 and 7
Bit 4 (s bit): 1 = RSECT
Bit 5 (r bit): 1 = RMODE 31
Bits 6,7 (aa bits): 00 = AMODE 24 (default)
Bits 6,7: 01 = AMODE 24 (declared)
Bits 6,7: 10 = AMODE 31
Bits 6,7: 11 = AMODE ANY

Using the information in Table 407 on page 828, determine all valid values of the “Flags” field.

38.5.18.(1)+ Write an instruction sequence to call the SubShf2 subroutine in Figure 566 on
page 822.

38.6. Object Modules

While you don't usually need to know what's in your object modules, every executable program
begins as an (un-executable) object module that must be transformed to a loadable/executable
format. Any functional limitations in what can go into an object module260 will also limit how we
can think about and build our programs.

We'll first look at how the Assembler generates object modules from your source program, and
then in Section 38.7 at how object modules are linked into executable load modules. Finally, in
Section 38.8 we'll see how load modules and program objects are loaded into storage for exe-
cution.

The traditional (“OBJ”) object module consists of 80-byte card-image records, with X'02' in
column 1, and an identifying 3-character “tag” in columns 2-4. The 3-character tags are:

SYM This identifies records describing the internal symbols of your program. SYM records are
rarely used now.

ESD ESD records contain the external symbols of your program and their types. Each symbol
(except LD) is identified by an ID number called its “External Symbol Dictionary ID”, or
ESDID. Each ESD entry for a control section specifies its length and starting address.

The four types of external symbols are:

• Section Definition: the name of a control section
• Label Definition: the name of an entry point
• External Reference and Weak EXternal reference
• EXternal Dummy section

TXT These records contain the machine language instructions and data (the “Text”) of your
program. Each record indicates how many bytes of data it contains (the length of the
data), which control section it belongs to (its “position ID”, the ESDID of the control
section owning the text), and where within that control section it goes (its starting
address).

There are no “gaps” in the data on TXT records, even though there may have been unin-
itialized gaps visible in the listing.

RLD Relocation Dictionary records contain data about each relocatable address constant in
your program: its type, where it is within its control section (its “Position ID”, identified
by the control section's ESDID), its location within that control section (its address), and
what should be put in that field (specified by the ESDID of another external symbol, its
“Relocation ID”).

RLD records encode information about four types of address constant:

260 The format of an object module is described in detail in the High Level Assembler Programmer's Guide. The GOFF
(“Generalized Object File Format”) object module allows more freedom than the traditional object module format; it
is described in Section 38.8.1., and documented in the MVS Program Management Advanced Facilities manual.

Chapter X: Large Programs and Modularization 831

1. A-type: resolves directly to the target address.
2. V-type: resolves directly to the target address, or to an indirect linkage assist.
3. Q-type: resolves to an offset value provided by the Linker (used for referring to

external dummy sections).
4. Cumulative External Dummy: a length constant; the Linker inserts the total length of

all external dummy sections in the bound program. (More about this in Section
38.7.3.)

END The END record is the last record of an object module, and contains some additional
“IDR” data identifying the program that created the object module. If your source
program specifies an operand on the END statement (as in Figure 33 on page 81)
requesting that the executed program receive control at that operand, that information is
also encoded on this record.

There is at least one control section per object module, and one object module per assembly. If
you specify the Assembler's “BATCH” option, one invocation of the Assembler may produce
multiple object modules.

38.6.1. Relocation Dictionary and External Symbol Dictionary

Suppose we assemble the statements in the following figure; its listing extract shows how the
Assembler describes relocation information:

 Loc Object Code ... Stmt Source Statement

000000 ... 1 AA CSect , Start of a control section
... 2 EXTRN XX External symbol
... 3 ENTRY YY Entry name
... 4 DummyX DXD D Dummy External Section

000000 00000000 ... 5 DC A(XX) A-type constant
000004 00000000 ... 6 YY DC V(XX) V-type constant
000008 00000000 ... 7 DC Q(DummyX) Q-type constant
00000C 00000000 ... 8 CXD , Cumulative external dummy size

... 9 End ,

The Assembler's External Symbol and Relocation Dictionaries in the listing look like this:

External Symbol Dictionary

Symbol Type Id Address Length Owner Id

AA SD 00000001 00000000 00000010
 ┌──XX ┌──ER 00000002
 │ YY │ LD 00000004 00000001
│ DUMMYX │ ┌XD 00000003 00000007 00000008
│ │ │
 │ │ │ Relocation Dictionary
 │ │ │
│ Pos.Id │ │ Rel.Id Address Type Action
� � │
 ├�──00000001 │ │ 00000000 0000000C J 4 ST �── CXD─type constant
 ├�──00000001 ├�┼─00000002 00000000 A 4 + �── A─type constant
 ├�──00000001 └�┼─00000002 00000004 V 4 ST �── V─type constant
└───00000001 └─00000003 00000008 Q 4 ST �── Q─type constant

• All the RLD items have Position ID (“Pos. Id”) X'00000001', meaning that all the adcons are
found in control section AA with that ESDID.

• The Relocation ID (“Rel. Id”) gives the ESDID with respect to which the relocation will be
done.

832 Assembler Language Programming for IBM System z™ Servers Version 2.00

For example, both the A-type and V-type adcons are relocated with respect to the symbol XX
which has ESDID 2. The Q-type constant relocates with respect to the symbol DUMMYX which
has ESDID 3. CXD items have Relocation ID zero.

• The Address field shows the position within the owning control section (identified by the Posi-
tion ID) where the adcon starts.

For example, the V-type adcon resides in section AA with ESDID 1, at location X'00000004'.

• The Type field indicates the type and length of the adcon. Type J is used for length constants.

• The Action field indicates whether the relocation value will be added (+) or subtracted (-) from
the contents of the field in the object text identified by the Position ID and Address, or
whether the relocation value is stored (ST) in the object-text field.

Exercises

38.6.1.(4)+ Assemble this little program with the OBJECT option.

Prog CSect , Control section name
Extrn X External name
Entry B Entry name
DC F'-987' Constant

B DC A(X,PRVLen) A-type address constant
DC V(Y) V-type address constant

D DXD 3H External dummy section item
DC Q(D) Offset of D

PRVLen CXD , Cumulative external dummy length
C COM , Common section

DS 4F Space in the common section
End

Use any convenient method to display the object module in hexadecimal format. With the
High Level Assembler Programmer's Guide as a guide, study the object module to understand
how the ESD, TXT, and RLD records are encoded.

38.6.2.(2)+ What are the differences in the effects of these two types of statements?

DC V(X) and EXTRN X
DC A(X)

38.7. Program Linking: Combining Object Modules

We will use a simple example to show how two object modules are linked and loaded directly
into memory. The principles are very similar to creating a load module; we'll explain the differ-
ences in Section 38.8. Suppose a program consists of these two source modules:

Chapter X: Large Programs and Modularization 833

Module 1 Module 2
Loc ┌────────────────────────────┐ Loc ┌────────────────────────────┐
000 │MAIN Start 0 │ 000 │SUB Start 0 │

│ ─ ─ ─ │ │ ─ ─ ─ │
│ CALL SUB │ │ EXTRN XDATA │
│ ─ ─ ─ │ │ ─ ─ ─ │

200 │ASub DC A(Sub) │ 700 │AWork DC A(Work) │
204 │ACom DC A(Work) │ 704 │AXData DC A(XDATA) │
208 │ADat DC A(XData) │ │ ─ ─ ─ │

│ ─ ─ ─ │ │Work COM , │
 │ Entry XData │ │ DS XL(X'400') │

│ ─ ─ ─ │ │ End │
260 │XData DC 160X'01' │ └────────────────────────────┘

│ ─ ─ ─ │
 │Work COM , │
 │ DS XL(X'600') │
 │ End MAIN │
 └────────────────────────────┘
Figure 578. Example of two source modules to be linked

• Program MAIN contains the XDATA entry point, and refers to the subroutine SUB and the
common control section WORK, which it requires to be X'600' bytes long.

• Subroutine SUB refers to the external name XDATA and to the common control section WORK,
which it requires to be X'400' bytes long.

Assembling the source modules produces two object modules. The object module for Module 1
would look roughly like this:

┌───┐
│ESD SD ID=1 MAIN Addr=000 Len=300 │ SD for CSECT MAIN, ESDID=1, Len=300
│ESD CM ID=2 WORK Addr=000 Len=600 │ CM for COMMON WORK, ESDID=2, Len=600
│ESD LD ID=1 XDATA Addr=260 │ LD for Entry XDATA, ESDID=1, Addr=260
│ESD ER ID=3 SUB │ ER for reference to SUB, ESDID=3
│TXT ID=1 Addr=000 'abcdefghijk...' │ Text in MAIN, address 000
│TXT ID=1 ... etc. │ Text in MAIN
│TXT ID=1 Addr=100 'mnopqrstuvw...' │ Text in MAIN, address 100
│TXT ID=1 Addr=208 00000260 │ Text in MAIN, internal adcon offset
│TXT ID=1 Addr=260 '010101010101...' │ Text in MAIN, address 260
│TXT ID=1 ... etc. │ Text in MAIN
│RLD PID=1 RID=3 Addr=200 Len=4 Type=V Dir=+ │ RLD item for Addr(SUB)
│RLD PID=1 RID=2 Addr=204 Len=4 Type=A Dir=+ │ RLD item for Addr(WORK)
│RLD PID=1 RID=1 Addr=208 Len=4 Type=A Dir=+ │ RLD item for Addr(XDATA)
│END Entry=MAIN │ Module end; request entry at MAIN
└───┘
Figure 579. Sketch of object module from source module 1

The object module contains:

• ESD records for two control sections (MAIN and WORK), one entry (XDATA), and one external
reference (to SUB).

• RLD records with information about the three address constants. “PID” represents the Posi-
tion ID, “RID” the Relocation ID, and “Dir” indicates whether the relocation value will be
added or subtracted.

• TXT records with machine language instructions and data. The TXT record for Addr(XDATA)
contains the location (X'00000260') within control section MAIN because the target of the adcon
is internal to the section.

The object module for Module 2 would look roughly like this:

834 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───┐
│ESD SD ID=1 SUB Addr=000 Len=800 │ SD for CSECT SUB, ESDID=1, Len=800
│ESD CM ID=2 WORK Addr=000 Len=400 │ CM for COMMON WORK, ESDID=2, Len=400
│ESD ER ID=3 XDATA │ ER for reference to XDATA, ESDID=3
│TXT ID=1 Addr=040 'qweruiopasd...' │ Text in SUB, address 040
│TXT ID=1 ... etc. │ Text in SUB
│TXT ID=1 Addr=180 'jklzxcvbnm...' │ Text in SUB, address 180
│TXT ID=1 ... etc. │ Text in SUB
│RLD PID=1 RID=2 Addr=700 Len=4 Type=A Dir=+ │ RLD item for Addr(WORK)
│RLD PID=1 RID=3 Addr=704 Len=4 Type=A Dir=+ │ RLD item for Addr(XDATA)
│END │ Module end; IDR data
└───┘
Figure 580. Sketch of object module from source module 2

• The ESD records define two control sections (SUB and WORK) and one external reference (to
XDATA).

• The RLD records contain information about two address constants.

Note that both object modules assign ESDIDs starting at 1.

First, the Linker/Loader must reserve some memory to hold the loaded program; we'll suppose
that block of memory starts at X'00123500'; this is called the load address.

As the object modules are read by the Linker/loader, the external symbols are entered into a
“Composite External Symbol Dictionary” (CESD). It will contain all external symbols used in
each of the object modules being linked and loaded. After the first object module has been read
and the TXT data has been moved into memory starting at the load address, the CESD would
look like this:

┌────────────┬──────┬───────┬─────────┬────────┐
│ Symbol │ Type │ ESDID │ Address │ Length │
├────────────┼──────┼───────┼─────────┼────────┤
│ MAIN │ SD │ 0001 │ 123500 │ 300 │
├────────────┼──────┼───────┼─────────┼────────┤
│ WORK │ CM │ 0002 │ │ 600 │
├────────────┼──────┼───────┼─────────┼────────┤
│ XDATA │ LD │ *0001 │ 123760 │ │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ ER │ 0003 │ │ │
└────────────┴──────┴───────┴─────────┴────────┘
Figure 581. Composite ESD after reading first object module

In the CESD entry for XDATA, the * on the ESDID means that 0001 is its “owning” section's
ESDID. That is, XDATA is an entry point in control section MAIN.

When the second object module is read, its ESDIDs also start at 1. For those of its ESDIDs that
differ from symbols already in the CESD, new ESDIDs must be assigned to prevent conflicts; this
process is called “renumbering”. The Position and Relocation IDs of address constants are also
renumbered.

The Linker adds new external names to the CESD (in this case, there are no new names) and
adjusts the start address of SUB to start at the next doubleword boundary after the end of MAIN.
The CESD would then look like this:

Chapter X: Large Programs and Modularization 835

┌────────────┬──────┬───────┬─────────┬────────┐
│ Symbol │ Type │ ESDID │ Address │ Length │
├────────────┼──────┼───────┼─────────┼────────┤
│ MAIN │ SD │ 0001 │ 123500 │ 300 │
├────────────┼──────┼───────┼─────────┼────────┤
│ WORK │ CM │ 0002 │ │ 600 │
├────────────┼──────┼───────┼─────────┼────────┤
│ XDATA │ LD │ *0001 │ 123760 │ │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ SD │ 0003 │ 123800 │ 800 │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ ER │ 0003 │ 123800 │ │
└────────────┴──────┴───────┴─────────┴────────┘
Figure 582. Composite ESD after loading second object module

The symbol SUB appears twice in the Composite ESD because it is both a section definition and
an external reference.

38.7.1. Assigning COMMON Sections

When reading the ESD of the second object module, the Linker notes that the requested length of
the common block WORK is X'400', which is less than the X'600' length requested by the MAIN
program. The Linker always retains the longest requested length for common sections, so the
length X'600' remains unchanged.

The Linker can now assign an address to WORK at the next doubleword boundary following the
end of Sub. The final, updated CESD then looks like this:

┌────────────┬──────┬───────┬─────────┬────────┐
│ Symbol │ Type │ ESDID │ Address │ Length │
├────────────┼──────┼───────┼─────────┼────────┤
│ MAIN │ SD │ 0001 │ 123500 │ 300 │
├────────────┼──────┼───────┼─────────┼────────┤
│ WORK │ CM │ 0002 │ 124000 │ 600 │
├────────────┼──────┼───────┼─────────┼────────┤
│ XDATA │ LD │ *0001 │ 123760 │ │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ SD │ 0003 │ 123800 │ 800 │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ ER │ 0003 │ 123800 │ │
└────────────┴──────┴───────┴─────────┴────────┘
Figure 583. Composite ESD after assigning memory addresses

38.7.2. Relocating Address Constants

We'll use the three adcons from sample program module 1 (see Figure 579 on page 834) to show
how address constants are relocated.

1. A(XDATA):

The Linker finds an RLD item referring to XDATA. Its position is in MAIN (ESDID=0001) at
offset X'208', and it relocates relative to Relocation ID 0001 because the target is an entry in
MAIN. Because it's an A-type constant, and the object text at the adcon's address contains
X'00000260', the Linker loads that word. And because the Dir field indicates that the relo-
cation value is to be added, the loader adds the relocation address X'123500' to the contents
of the field at address X'123708' and stores the result, X'123760', back in Main at address
X'123708'.

The same process is used for the A(XDATA) adcon in routine SUB.

2. A(WORK):

836 Assembler Language Programming for IBM System z™ Servers Version 2.00

The Linker finds an RLD item referring to WORK. Its position is in MAIN (ESDID=0001) at
offset X'204', and it relocates relative to Relocation ID 0002. Because it's an A-type constant
with no offset, the loader adds the relocation address X'124000' to the (zero) contents of the
field at address X'123704' and stores the result back in MAIN at address X'123704'.

The same process is used for the adcon referencing WORK in subroutine SUB.

3. V(SUB):

The Linker finds an RLD item referring to SUB. Its position is in MAIN (ESDID=0001) at
offset X'200', and it relocates relative to Relocation ID 0003. Because a V-type constant
cannot have an offset, the loader stores the relocation address X'128000' at address X'123700'
in MAIN.

Now that addresses have been assigned to all external symbols, the address constants have been
relocated by adding or subtracting the relocation value to or from each adcon's P-field contents
(for A-type adcons), or by storing the relocation value in V-cons.

After loading and relocation are complete, the program in memory would look like this:

123500 (MAIN) 123800 (SUB) 124000 (WORK) 124600
┌────────────────────────────┬─────────────────────────┬───────────────┐(end)
│abcdefghijk... ┌───│...text... ┌────────│ length=600 │
│...more text... │ │qweruiopasd... │ │ │
│...more text... │ │...text... │ │ │
│mnopqrstuvw... │ │...text... │ │ │
│... │ │jklzxcvbnm... │ │ │
│ ┌────────┐ │ │...text... │ │ │
│ A(SUB)│00123800├───┘ │ │ │ │
│ A(WORK)│00124000├────────┼──────────────┤ │ │
│ A(XDATA)│00123760├───┐ │ │ │ │
│ └────────┘ │ │ ┌────────┐ │ │ │
│ Adcons � │ │00124000├──┘ A(WORK) │ │
│┌──────────────────────┴────┼�──┤00123760│ A(XDATA)│ │
│�(XDATA) │ └────────┘ │ │
│010101010101... │ Adcons │ │
│... │... │ │
└────────────────────────────┴─────────────────────────┴───────────────┘

Figure 584. Memory layout of loaded program

To summarize:

• Storage was allocated for three control sections (two SD, one CM); any excess memory
(including that for the CESD) is freed.

• Address constants were resolved to the designated addresses.

• The program was given control at the entry point requested by the END statement of the
MAIN program, at address X'123500'.

• The loaded program is X'1100' bytes long.

This example has ignored what happens to unresolved strong external references after all object
modules have been read. In practice, the Linker searches a “library” for names matching the
remaining ERs and loads them in the same way it loaded the object modules. For example, if the
MAIN program had contained an EXTRN for COS and COS was not defined in one of the input
modules, the Linker will search the library for a member of that name. It's important that this
search is done after all primary inputs have been processed, because you may have written your
own COS routine!

Chapter X: Large Programs and Modularization 837

38.7.3. External Dummy Sections (*)

External Dummy Sections261 are used in situations like these:

• Separately assembled or compiled modules must share access to a resource by name, such as
an output file like FILE1.

• The complete linked program may be loaded into memory once, but executed simultaneously
by more than one invoker. Thus, it cannot safely modify any of its own internal areas. Such
programs are called “reenterable”.262

None of the programs declaring the name of an external dummy item component of an External
Dummy Section defines the area of storage it names; the allocation of memory to the External
Dummy Section is done at execution time, as we'll see.

Using an External Dummy Section requires actions at three different stages: during assembly,
during linking, and at execution time. We'll see shortly why it's called an “External Dummy
Section”, and will give an example to show how these three stages work together.

Assembly time: You declare your external dummy item contributions to the External Dummy
Section in one of two ways:

1. Write a DXD statement defining the name, length, and alignment of your external dummy
item component of the External Dummy Section. This example defines two External
Dummy Sections:

FILE1CB DXD A 4 bytes, word aligned
RANDOM DXD D 8 bytes, doubleword aligned
Figure 585. Sample DXD declarations

2. Define a Dummy control section (DSECT) and use its name in a Q-type address constant;
this automatically makes the DSECT name an External Dummy Section:

TreeHead DSect , Head of a binary tree for symbols
LftLink DS A
RgtLink DS A
SymLen DS X
Symbol DS CL63
Figure 586. External dummy section declaration

Then, define a Q-type constant referring to the DSECT or DXD name:

File1CBP DC Q(FILE1CB) External Dummy Section offset
RandomP DC Q(RANDOM) External Dummy Section offset
TreeHdP DC Q(TreeHead) External Dummy Section offset
Figure 587. Referencing external dummy items with Q-cons

The Assembler's External Symbol Dictionary entries for these three symbols are shown in this
excerpt:

261 “Ordinary” Dummy Control Sections (DSects) will be discussed extensively in Chapter XI.
262 The more common term is “reentrant”, but this also refers to a type of mathematical curve, which doesn't apply

here.

838 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───┐
 │ Symbol Type Id Address Length │
 │ │
 │ FILE1CB XD 00000002 00000003 00000004 │
 │ RANDOM XD 00000003 00000007 00000008 │
 │ TREEHEAD XD 00000004 00000007 00000048 │
 └───┘
Figure 588. External dummy items in ESD listing

The “Address” field is actually an alignment mask: the requested alignment for the External
Dummy Section item as a power of two, less one. (See Exercise 38.7.3.)

Link time: The Linker collects all the External Dummy Section contributions from the set of
object modules it is linking, and constructs the template for the complete External Dummy
Section. Each item is aligned according to its definition, and space is reserved according to its
length. If more than one contribution has the same name, the Linker assigns the strictest align-
ment and longest length to that name. Thus, the Linker is creating something like a link-time
Dummy Section; like a DSECT, it only describes an area of memory without actually allocating
it.

For example, if a separate module also defined the DXD symbol RANDOM as in Figure 589,

RANDOM DXD L 16 bytes, doubleword aligned
Figure 589. Separate DXD declaration

the Linker would use the longer of this value and the one in Figure 585 on page 838, and assign
length 16 and doubleword alignment to that name.

The completed External Dummy Section might look like this:

Offset
┌──────────────────────────┐

0 │ ─ ─ ─ │ other items...
├──────────────────────────┤

38 │FILE1CB XD item │ length 4, word aligned
40 │RANDOM XD item │ length 16, doubleword aligned

├──────────────────────────┤
50 │ ─ ─ ─ │

├──────────────────────────┤
6C │TreeHead XD item │ length 72, word aligned

├──────────────────────────┤
B4 │ ─ ─ ─ │

└──────────────────────────┘
DC Total length of the External Dummy Section

Figure 590. Example of a completed External Dummy Section

After the Linker has assigned all external dummy items offsets in the External Dummy Section, it
then resolves the Q-type address constants by placing the offset from the start of the External
Dummy Section of the operand name. Thus, for example, any Q-type address constant referring
to FILE1CB would contain X'00000038'; if the Q-con had explicit length 2, it would contain
X'0038'.

Finally, the Linker puts the accumulated length (X'000000DC') of the entire External Dummy
Section into each CXD-type address constant. (You can now understand why CXD means
“Cumulative External Dummy“. Usually, there's only one CXD in a completed program; we'll
see why in a moment.)

When linking is complete, all address constants of types A, V, Q, and CXD have been resolved:
A- and V-type for internal and external symbol references, Q-type for External Dummy Section
offsets, and CXD-type for the cumulative length of the External Dummy Section.

Chapter X: Large Programs and Modularization 839

Execution time: During initialization, each invocation of the main program uses operating
system services to allocate an area of memory whose length is determined by the link-time value
placed in the CXD-type constant, and sets the area to zeros. The address of this new area is put
in a general register known to all routines that will access fields in the External Dummy Section.

Suppose GR11 has been assigned to hold this address:

L 0,EDSLen Get length of External Dummy Section
GetMain R,LV=(0) Get storage
LR 11,1 Carry E.D.S. address in R11
- - - Initialize contents to zero

EDSLen CXD , Linker inserted total length of E.D.S.

Now, suppose one of several modules in the complete program wants to write records to FILE1,
and has declared an external dummy item as in Figure 585 on page 838. It retrieves the FILE1CB
item (a “file control block” giving access to the I/O routines) from the External Dummy Section:

L 2,=Q(FILE1CB) Get EDS offset of FILE1CB pointer
AR 2,11 Storage address of FILE1CB pointer
L 2,0(,2) Pointer to FILE1CB now in R2

Figure 591. Retrieving an External Dummy Section item

The routine can now call the routine that writes records, passing the addresses of the record, its
length, and the address of the FILE1CB field in the External Dummy Section (which will initially
be zero). The write routine notes the zero FILE1CB field and allocates more storage to hold the
control blocks and other items needed to complete the write operation. It then stores the address
of these control blocks back in the FILE1CB field in the External Dummy Section.

Later, any other routine that wants to write records to FILE1 will retrieve the updated FILE1CB
pointer from the External Dummy Section as in Figure 591; the write routine can then access the
already-established control blocks to write the record.

Some history:

• External Dummy Sections and external dummy items were originally used in OS/360 for reen-
terable PL/I applications to allow sharing by name of dynamically managed external objects
such as files, areas, and controlled variables that were defined in separately translated reenter-
able programs.

• PL/I called the external dummy items “PseudoRegisters” (PRs), and the External Dummy
Section a “PseudoRegister Vector” (or “PRV”). Each PR item was a 4-byte address, so it was
natural to think of them as representing additional “registers”, and the External Dummy
Section as a “vector” of PRs.

• Instructions referring to PR items were usually RX-type Load instructions. For example, the
generated instruction was carefully arranged to do the same as in Figure 591, but saving one
instruction:

L 2,0(11,0) Zero displacement and base fields!
ORG *-2
DC QL2(FILE1CB) Displacement (and zero base)

Figure 592. PL/I technique for loading Pseudo Registers

so that the generated instruction would be X'582B 0xxx' where 0xxx is the PR offset in the
QL2-con, and the assigned External Dummy Section address (in GR11) is specified in the
index register field of the L instruction. Thus, PL/I's PRV allowed up to 1024 more 32-bit
“pseudo registers”.

PseudoRegisters are not used frequently today.

COMMONs and DXD items have similarities and differences, as outlined in Table 408 on
page 841.

840 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 408. Differences in linking COMMONs and External dummy items

To summarize:

• An External Dummy Section is like a component of a DSECT, but no space allocated in the
programs that define the external dummy items that compose it. It is a template, a data-
structure mapping created at link time. (Hence the Assembler's name, “External Dummy”, as
indicated by the XD type in the External Symbol Dictionary listing.)

• An external dummy item can have internal structure if it is mapped by a DSECT whose name
appears in a Q-type constant.

38.7.4. Loading Object Modules (*)

To show how linkers load object modules, we will sketch the behavior of a simple loader; a real
loader must handle complexities that we'll ignore here. The basic steps are

1. Clear the ESDID Translation Table at the start of reading each object module.

2. Get an external symbol.

3. Search the CESD to see if the symbol is already known from previous object modules.

For each input symbol type, search for a possible match among symbols of the types shown in
Table 409. (During processing, LD types are sometimes “re-typed” as LR, meaning “Label
Reference”.) As mentioned previously, PR symbols need not differ from the other types of
symbols.

Table 409. ESD symbol search types

Different processing is required, depending on whether the incoming symbol already exists in the
CESD (“match processing”) or not (“no-match processing”).

No-Match Processing

If the incoming symbol is not found in the CESD, the loader takes these steps:

COMMON External dummy item

Link-time
behavior

Space allocated in the load
module

No space allocated; a mapping of all items
into a virtual External Dummy Section

Storage
Allocation

Static: part of the load
module Dynamic: at execution time

Initialization None Execution-time responsibility

Copies One per load module; not
reenterable

One per reenterable load module,
instantiated during each execution

External
names

One per common, one per
load module

One per item; no conflict with non-External
Dummy Section names

Internal
names As many as you want None (but you can map the item's inner

structure with a DSECT)

References Direct, with adcons
One level of indirection via Q-con offsets
and the base register anchoring the allocated
storage

Input
Type Search These Types

SD ER, LD, SD, CM

LD ER, LD, SD, CM

ER ER, LD, SD, CM

CM ER, LD, SD, CM

PR PR Only

Chapter X: Large Programs and Modularization 841

1. Make an entry in the ESDID Translation Table, unless the symbol is type LD (its ESDID is
that of its owning section).

┌─────────────┬─────────────┐
Indexed by │ Input ESDID │ CESDID │
ESDID ├─────────────┼─────────────┤

 │ │ 1 │ 5 │
 │ ├─────────────┼─────────────┤
 � │ 2 │ 17 │�── Newly assigned CESDID value for

├─────────────┼─────────────┤ the new symbol identified by this
│ │ │ ESDID
├─────────────┼─────────────┤
│ │ │
└─────────────┴─────────────┘

Figure 593. ESDID Translation Table entry for an incoming symbol

2. Perform processing, depending on symbol type:

SD

a. Determine the next available memory location (by adding the lengths of all pre-
vious control sections to the initial load address, rounding up each CSect address
(origin+Length) to the next doubleword boundary.

b. Enter the name and start address of the new CSect in its CESD entry. Assign a
new translation ID in the ESDID translation table to convert the ESDID of the
current entry to the newly assigned CESDID of the symbol, as shown in
Figure 593. Chain RLDs in this section to the CESD entry.

A typical CESD entry might look like this:

┌────────┬──────┬──────────────┬────────────────────┬────────┐
│ Symbol │ Type │ Load address │ Rel. Reloc. Const. │ � RLDs │
└────────┴──────┴──────────────┼────────────────────┼────────┘

│ Length, Alignment │ �── for PR items
└────────────────────┘

Figure 594. A typical load-time CESD entry

where the Load Address is the true address assigned to the symbol, and the Rela-
tive Relocation Constant is used to adjust translator-assigned addresses to true
addresses.

c. Test for table overflows, and terminate loading if any.

d. Determine the relative relocation constant from the expression

(Linker-assigned CSect address) - (translator-assigned address)

where the translator-assigned address in the address field of the ESD entry.

e. Set a flag if this is a zero-length CSect; otherwise add its length to the current load
address and round up to the next doubleword boundary.

LD

a. Make a CESD entry for the symbol.

b. Determine the true address of the symbol by adding the relative relocation con-
stant (address) of the CSect owning this LD item (the owning ID can be found in
the CESD by using the ESDID Translation Table) to the input address of the LD
item.

c. Make no ESDID Translation Table entry for this LD symbol (it has no separate
ESDID entry).

ER Make a CESD entry for the symbol, and chain any associated RLD items to it.

842 Assembler Language Programming for IBM System z™ Servers Version 2.00

CM

a. Make a CESD entry, and chain related RLDs to it. Set the Load Address to zero.

b. Enter the Common's length and input address to the CESD entry.

PR

a. Make a CESD entry for the symbol, enter the PR length and alignment, and
chain related RLD items (Q-type constants) to it.

Match Processing

If the incoming symbol is found in the CESD, the loader must take more complex actions,
depending on the types of the new and existing CESD symbols. Because Private Code (PC)
names are not unique, treat each PC as a new, unique SD: make a Translation Table entry, and
create a CESD entry with its load address, length, and relative relocation constant, and chain any
associated RLD items to the entry.

(1) Existing CESD Symbol is SD

Table 410. Matching existing CESD SD symbol to incoming symbols

(2) Existing CESD Symbol is LD

Table 411. Matching existing CESD LD symbol to incoming symbols

(3) Existing CESD Symbol is CM

Table 412. Matching existing CESD CM symbol to incoming symbols

New Symbol Processing

SD Error: duplicate section. Set a flag to ignore TXT and RLD items for this
ESDID.

CM Check for CM length > SD length; error if so (CM references could over-
write subsequent CSects). Relocate RLDs referencing this symbol.

LD Error: conflicting types.

ER Make a Translation Table entry referring to the SD in the CESD.

PR Ignore.

New Symbol Processing

SD Error: ESDID SD symbol matches an existing entry point. Set a flag to
ignore TXT and RLD items for this ESDID.

CM Error: ESDID CM symbol matches an existing entry point.

LD Error: matching symbols with conflicting types.

ER Make a Translation Table entry referring to the CESD LD.

PR Ignore.

New Symbol Processing

SD Assign the greater of the lengths of the CESD CM and the incoming ESDID
CM, and change the CESD CM symbol to SD.

CM Assign the greater of the lengths of the CESD CM and the ESDID CM to
the CESD CM.

LD Error: matching symbols with conflicting types.

ER Make a Translation Table entry referring to the CM.

PR Ignore.

Chapter X: Large Programs and Modularization 843

(4) Existing CESD Symbol is ER

Table 413. Matching existing CESD ER symbol to incoming symbols

(5) Existing CESD Symbol is PR

Table 414. Matching existing CESD ER symbol to incoming symbols

TXT Record Processing: The loader checks the ESDID of the TXT record; if invalid, it discards
the record. If valid, it checks the length of the TXT data against the current load address to see if
available storage would be exceeded, and terminates loading if so. Otherwise it moves the text to
the assigned address, and updates the load address.

END Record Processing: If no entry-point address has been assigned by other means, and one
is defined on this END record, save it. If an entry address has already been assigned, ignore the
END record.263

Final Processing

1. Unresolved ERs: If any unresolved ER items remain, search the Load Library (if requested),
and load and relocate the members whose names match the unresolved ER names.

2. Commons: After the text has been loaded, space for each CM section is allocated, checking
the length against the amount of available storage. The storage address of each CM is
updated in the CESD.

3. PR Processing: Knowing the length and alignment of each PR item, the loader assigns a
virtual offset to each, respecting the requested alignments, and noting the maximum final
offset. These offsets are used in relocating Q-type address constants referring to the PR
symbols, and the total length (the maximum offset) is assigned to CXD-type address con-
stants.

4. RLD Processing: The address of each symbol in the CESD is now known, so the RLD
items assigned to each can be relocated. (Remember that the address of the operand of a
V-type address constant is stored in its text field, while the address of the operand of an
A-type address constant is added to its text field.)

5. Release working storage, and enter the loaded module at its entry address.

New Symbol Processing

SD Change the CESD entry to SD, and update the cumulative length of the
loaded program. Relocate RLDs chained to the ER item.

CM Change the CESD entry to CM. Make a Translation Table entry for the
ESDID CM.

LD Change the CESD ER symbol to LD. Update the relocation constant to
refer to the assigned LD address, and relocate RLDs.

ER Make a Translation Table entry referring to the CESD ER symbol. If both
ERs are WX, leave the WX flag on; otherwise set it off.

PR Ignore.

New Symbol Processing

SD Ignore.

CM Ignore.

LD Ignore.

ER Ignore.

PR Set the CESD length to the greater of the CESD and ESDID PR lengths,
and the alignment to the stricter of the two alignments.

263 If no entry-point address has been assigned at the end of the linking process, the Linker will usually assign the entry-
point address to the first byte of the CSect at the lowest address.

844 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

38.7.1.(1)+ In Figure 583 on page 836, why does the symbol XDATA have the same ESDID as
the symbol MAIN?

38.7.2.(3) Common sections cannot have entry points. Suppose you are expected to write a
routine that uses a symbol YourData that is defined at an unknown offset in another program's
common section named MyCom, but you have no way of knowing in advance what that offset is,
nor can you define an EXTRN for YourData.

Can you devise a way for the owner of the MyCom common section to help you determine the
address of YourData? (It can be done!)

38.7.3.(2)+ Show how the Address fields in Figure 588 on page 839 can be used as alignment
masks.

38.7.4.(2)+ The comment following Figure 592 on page 840 says that this technique allowed
PL/I to define up to 1024 PRs. Why at most 1024, and not more?

38.8. Load Modules and Program Objects

We often want to save a linked program so it can be executed more than once without repeating
the full linkage process. This is done by having the Linker create a load module or a program
object (described in Section 38.2.2).

We will describe the load module format used on MVS-based operating systems (including z/OS).
Other operating environments use different formats, but the general principles are similar.

An executable load module that can be loaded and executed many times is created following the
same steps illustrated in Section 38.7, with these differences:

• Instead of allocating an area of memory and loading the object text directly into that area, the
Linker builds a file with assumed origin zero. Thus, the first control section is assigned address
X'000000', and subsequent control sections are added in order, following alignment of their
offset from the origin.

• The completed load module file is written into a Partitioned Data Set (PDS) “library” from
which it can be loaded for execution, or used as input to the Linker for relinking.

• The final assignment of memory addresses and adcon relocation happens when the Program
Loader brings the load module into memory for execution; we'll describe that process in
Section 38.9 on page 855.

Suppose we use the two object modules in Figure 579 on page 834 and Figure 580 on page 835
to create a load module. Now, all addresses in the CESD are assigned relative to a zero origin, as
shown in Figure 595:

┌────────────┬──────┬───────┬─────────┬────────┐
│ Symbol │ Type │ ESDID │ Address │ Length │
├────────────┼──────┼───────┼─────────┼────────┤
│ MAIN │ SD │ 0001 │ 000000 │ 300 │
├────────────┼──────┼───────┼─────────┼────────┤
│ WORK │ CM │ 0002 │ 000300 │ 600 │
├────────────┼──────┼───────┼─────────┼────────┤
│ XDATA │ LD │ *0001 │ 000260 │ │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ SD │ 0003 │ 000900 │ 800 │
├────────────┼──────┼───────┼─────────┼────────┤
│ SUB │ ER │ 0003 │ 000900 │ 800 │
└────────────┴──────┴───────┴─────────┴────────┘
Figure 595. Composite ESD after assigning load module addresses

Chapter X: Large Programs and Modularization 845

As in Figure 583 on page 836, the symbol SUB appears twice; in this case the ER belongs to the
MAIN program, while the SD belongs to SUB. If the subroutine SUB is replaced by a newer
version, you won't want the ER to be deleted because MAIN must still be able to call SUB.

The address fields of all RLD items are adjusted relative to zero. The text fields of adcons (such
as those referencing WORK and XDATA) are updated to contain the offset relative to the zero assumed
origin of their respective targets.

The length of the bound program is the same, X'1100' bytes.

As before, if there are unresolved external references the Linker will search one or more libraries
and include them in the load module. When this process is completed, the load module is written
to the library.

The records of a load module are similar to the records of an object module (which simplifies
processing each):

SYM Object-module SYM records are copied directly into load modules. They are included
only at user request.264

IDR Identification records (from object module END records, the Linker, the user, and
other maintenance programs).

CESD The Composite External Symbol Dictionary; this is needed if the load module will be
relinked.

TEXT Machine language instructions and data.

CTL/RLD Control records, for reading and relocating text records, and including Relocation Dic-
tionary information.

EOM End of module (a flag field in a control record).

A sketch of a load module as it is written to the library is shown in Figure 596. (The “library”
for load modules is a “Partitioned Data Set”, or PDS.)

┌───────────────────┐
│ SYM │ (If any)
├───────────────────┤
│ CESD │
├───────────────────┤
│ IDR │
├───────────────────┤
│ CTL │ Length/address of first text record
├───────────────────┤
│ Text │ First text record, placed at load address
: :
├───────────────────┤
│ CTL/RLD │ Relocation data for first text record;
│ │ length/address of second text record
├───────────────────┤
: :
├───────────────────┤
│ Text │ Last text record
├───────────────────┤
│ EOM/RLD │ Relocation data for last text record
└───────────────────┘
Figure 596. Sketch of a load module

264 SYM records were originally used to help debuggers, but are rarely used now.

846 Assembler Language Programming for IBM System z™ Servers Version 2.00

When loaded into memory, a load module is a single one-dimensional set of contiguous control
sections: This means that a load module created from CSects with different RModes will neces-
sarily be assigned its RMode from the lowest RMode of its components.

┌───────────────────────────── ─ ─ ──────────────────────────────────┐
│ �──── Loaded Text ──── �─── Data Never Loaded ──── │
│ ┌───────┬───────┬───────┐ ┌───────┬──────┬──────┬──────┐ │
│ │ │ │ │ │ │ │ │ │ │
│ │ CSECT │ CSECT │ CSECT │ │ SYM │ IDR │ RLD │ ESD │ │
│ │ AA │ BB │ CC │ │ Data │ Data │ Data │ Data │ │
│ │ │ │ │ │ │ │ │ │ │
│ └───────┴───────┴───────┘ └───────┴──────┴──────┴──────┘ │
│ �─────────────────────── �──────────────────────────── │
│ What you see in storage Hard to access │
└───────────────────────────── ─ ─ ──────────────────────────────────┘
Figure 597. A load module after loading

The format of a load module was fixed very early in System/360 days, and many tools and pro-
ducts depended on its format not changing; this made it nearly impossible to add new function.
The z/OS Binder now supports “Application Programming Interfaces” (APIs) that can extract
and update any interesting information in a load module.

38.8.1. External Subroutines and Assisted Linkage: Overlay (*)

Assisted linkages with external subroutines are more complicated than for the internal subroutines
we discussed in Section 37.6 on page 783, where uniform addressability was assumed.

If the routine providing the assisted linkage (such as the Caller routine in Figure 519 on
page 784) is external to the routines making the calls, the subroutine numbers will have been
defined there, so the values of subroutine numbers like Print# won't be known to the calling
routines.

There are several ways to solve this problem, such as defining a table of subroutine numbers that
can be copied into any program using Caller. Another is to create a macro instruction that
defines the subroutine numbers, and any calling program can invoke the macro.

Overlay: An early technique for providing indirect linkage was called overlay. It was used exten-
sively in programs that needed more memory than was economically available at the time.

For example, suppose you had a MAIN program that needed to call subroutines SUBA and
SUBB, but neither subroutine was called by the other. A typical arrangement in storage might
look like this, if there was enough room in memory:

┌──────────────┐
│ MAIN │

┌────│ CALL SUBA │
│ ┌──│ CALL SUBB │
│ │ ├──────────────┤
│ └─│ SUBB │
│ ├──────────────┤
└───│ SUBA │

│ │
└──────────────┘

In this case, the V-type address constants in MAIN for each of SUBA and SUBB would be
resolved directly to their targets.

But if there wasn't enough room for all three at the same time, you could arrange them like this,
if you had a way to tell the Linker and Program Loader how to arrange the three routines:

Chapter X: Large Programs and Modularization 847

┌──────────────┐
│ MAIN │

┌───────┴──────┬─┬─────┴───────┐ �── SUBA and SUBB can overlay each other
│ SUBA │ │ SUBB │
│ │ └─────────────┘
└──────────────┘

The solution was provided by the Linker's “overlay” control statements. The Linker would
arrange the routines so that the contents of memory looked like this when MAIN was loaded:

┌──────────────┐
│ ENTAB │ �── Small “Entry Table”

 ┌───│ SUBB stub │──┐
 │ ┌─│ SUBA stub │──┤
 │ │ ├──────────────┤ │
 │ │ │ MAIN │ │
 │ └──│ CALL SUBA │ │
 └────│ CALL SUBB │ │

├──────────────┤ │
: SUBA or SUBB :�─┘ �── Where SUBA or SUBB will be loaded
└──────────────┘

The Entry Table is constructed by the Linker, and contains short “stub” routines to which the
V-type address constants in MAIN were resolved. Each stub called the Supervisor to load either
SUBA or SUBB into memory if it wasn't already there. The stub also contained an A-type
address constant with the memory address of the subroutine's entry point where it would be after
is was loaded. The stub could then branch directly to the subroutine.

For example, suppose MAIN called SUBA first, so it was loaded into memory by the Supervisor.
When SUBA returned control to MAIN it called SUBB; the Supervisor would then load SUBB
into the same area of memory just occupied by SUBA, “overlaying” it.

If an area of working memory needed to be shared among MAIN, SUBA, and SUBB, the usual
solution was to define a Common section that would be loaded with MAIN. Because its address
would be known to all three routines, A-type address constants were used for direct references.

The cost of memory has dropped rapidly since the days when overlay was needed, so it's little
used today. But it's an interesting example of how to manage assisted linkage among separately
translated routines.

38.8.2. Program Objects (*)

Program objects are the newest form of z/OS loadable module.265 A program object provides
many enhancements compared to Load Modules: they can be much larger, portions can be
loaded into distinct areas of memory, and they can retain many more forms of useful information
that need not be loaded into memory along with machine instructions and data. The summary in
Section 38.11 will compare these differences in greater detail.

A key feature of program objects is support for classes.266 Whereas a load module is a collection
of control sections loaded as a single entity into one area of memory, a program object is a col-
lection of independently relocatable classes that can be loaded into multiple disjoint areas of
memory. We'll describe program object loading in Section 38.9 on page 855.

You can create classes with the Assembler in several ways:

1. Generate traditional object modules as described in Section 38.6 on page 831. At link time,
direct the Binder (the z/OS Linker) to save the generated result in a PDSE (Partitioned Data

265 Some support is provided on z/CMS.
266 These are not the same as classes as defined in object-oriented programming languages.

848 Assembler Language Programming for IBM System z™ Servers Version 2.00

Set Extended), a more modern form of “library”. The Binder will create default classes for
you. (Section 38.8.4 on page 854 explains how this is done.)

2. Specify the GOFF (Generalized Object File Format) option to the Assembler for the same
source program. The Assembler will generate the new-format object file and assign default
classes for you. The presence of classes will usually require the Binder to save the generated
program object in a PDSE.

3. Specify the GOFF Assembler option, and create your own Classes using the CATTR (Class Attri-
butes) Assembler instruction.

The first two of these ways to generate a program object require no changes to your source
program.

Classes and Sections: It's easiest to think of the structure of a program object as having two
dimensions, one defined by a Section and the other by a Class.

�────── Classes ──────
Sections Class X Class Y Class Z

│ ┌───────────┬───────────┬───────────┐
� │ │ │ │

Section A │ Element │ Element │ Element │
│ │ │ │
├───────────┼───────────┼───────────┤
│ │ │ │

Section B │ Element │ Element │ Element │
│ │ │ │
└───────────┴───────────┴───────────┘

Figure 598. Sketch of program object structure

The term “Section” is used in a different sense with program objects. Rather than naming a
control section (as with load modules), it names a set of contributions to one or more Classes.
The contribution of a Section to a Class is called an “Element“. Elements are analogous to
control sections from ordinary assemblies: they are an indivisible collection of machine language
instructions and data.

Thus in Figure 598, Sections A and B each contribute instructions or data (or both) to Classes
X, Y, and Z. A Section can contribute (or not) to any number of Classes.

Each Class in a program object has uniform binding and loading attributes and behavior; these
are assigned when the Class is defined in your program.

As an example, suppose we assemble this little program and specify the GOFF option:

A CSect ,
STM 14,12,12(13)

* - - -
B CSect ,

DC 3A(*-B+1)
End

Figure 599. Sample program assembled with the G O F F option

Key parts of the External Symbol Dictionary listing from this assembly look like this:

Chapter X: Large Programs and Modularization 849

Symbol Type Id Address Length Owner Id
A SD 00000001 �── Section
B_IDRL ED 00000002 00000001 �── Class for IDR data
B_PRV ED 00000003 00000001 �── Class for DXD items
B_TEXT ED 00000004 00000000 00000004 00000001 �── Class for object text
A LD 00000005 00000000 00000004 �── Entry
B SD 00000006 �── Section
B_IDRL ED 00000007 00000006 �── Class
B_PRV ED 00000008 00000006 �── Class
B_TEXT ED 00000009 00000008 0000000C 00000006 �── Class
B LD 0000000A 00000008 00000009 �── Entry
Figure 600. ESD from program assembled with the G O F F option

There are many differences from what you'd see if the program had been assembled without the
GOFF option:

• Although CSects A and B are shown as SD items, they have no address or length. They are
simply “owners” or “containers” for the contributions to Classes.

• For each executable control section, the Assembler automatically generates three Classes, as
indicated by the ED (for “Element Definition”) in the Type column:267

B_IDRL A Class to contain IDR (identification) data for each Section.

B_PRV A Class to contain external dummy item data for each Section, in case any are gener-
ated.

B_TEXT A Class that contains the generated object code for each Section. Each ED item in
this class has an address (the starting address of the element) and a length. This is
the default Class if no Class was explicitly defined by the CATTR instruction.

• Each ED item has its own ESDID, and its “Owner Id” is the ESDID of the section to which it
belongs.

• Because you may want to refer to instruction or data items in a CSect by name, the Assembler
generates an LD entry-point item for each control section's name at the origin of the B_TEXT
Class into which the object code is generated. Thus, the LD entry for symbol A indicates it is
at location 0 in the Class with ID 00000004, B_TEXT.

• Each LD item has an ESDID, because it can be assigned attributes not available without the
GOFF option.

• Because program objects can be much larger than load modules (which are limited to 16MB
in size), all address fields in the listing are 8 digits long rather than the 6 digits for an assembly
without the GOFF option.

Similar comments apply to the External Symbol Dictionary entries generated by CSect B.

Because the little program in Figure 599 on page 849 (and others like it) don't specify more than
a single Class for instructions and data, either a load module or a program object can be created
by the z/OS Binder.

When you specify the GOFF option, you can assign AMODEs to entry (LD) and external (ER)
symbols. For example:

267 These three classes are generated so that older programs that define no explicit classes can be linked more easily by
the Binder into program objects, giving compatible behavior between the load module and program object forms of
the same program.

850 Assembler Language Programming for IBM System z™ Servers Version 2.00

AModes CSect ,
A DC V(B) External symbol
A AMODE 24
B AMODE 64

Extrn B
Entry A Entry point

Figure 601. Assigning AMODE to an entry symbol

The corresponding ESD listing is shown in Figure 602. (the AMODE for symbol B is properly
encoded in the GOFF object file.)

Symbol Type Id Address Length Owner Id Flags

AMODES SD 00000001
B_IDRL ED 00000002 00000001
B_PRV ED 00000003 00000001
B_TEXT ED 00000004 00000000 00000004 00000001 00
AMODES LD 00000005 00000000 00000004 00
B ER 00000006 00000001
A LD 00000007 00000000 00000004 01
Figure 602. ESD showing AMODE assigned to entry and external symbols

This technique can be useful if you create a module with more than one entry point, and wish to
receive control in the intended addressing mode.

38.8.3. The “Class Attribute” Instruction CATTR

As sketched in Figure 598 on page 849, we need to specify both the Section and the Class to
define the elements to which our data and instructions belong. The Section is defined by the
traditional CSECT and RSECT instructions, and the Class is defined by the CATTR instruction.
For example, the following assembly defines two Sections (SECT_A and SECT_B and three Classes
(B_TEXT, CLASS_X, and CLASS_Y):

SECT_A CSect ,
STM 14,12,12(13) Appears in Class B_TEXT

CLASS_X CATTR ,
Msg_1 DC C'A message' Appears in Class CLASS_X
SECT_B CSect ,

LM 14,12,12(13) Appears in Class B_TEXT
CLASS_X CATTR ,
Msg_2 DC C'Good News' Appears in Class CLASS_X
SECT_A CSect ,
CLASS_Y CATTR ,
Msg_3 DC C'Better News' Appears in Class CLASS_Y
SECT_B CSect ,
CLASS_Y CATTR ,
Msg_4 DC C'Enough!' Appears in Class CLASS_Y
Figure 603. Sample program defining two Sections and three Classes

The assignment of instructions and data to the six elements defined by the Sections and Classes
looks like this:

B_TEXT CLASS_X CLASS_Y
┌─────────┬─────────┬─────────┐

SECT_A │ STM │ Msg_1 │ Msg_3 │
├─────────┼─────────┼─────────┤

SECT_B │ LM │ Msg_2 │ Msg_4 │
└─────────┴─────────┴─────────┘

Figure 604. Assignment of instructions and data into elements

Chapter X: Large Programs and Modularization 851

The (slightly abbreviated) assembly listing of the program is shown in Figure 605 on page 852:

 Loc ... Stmt Source Statement
00000000 ... 1 SECT_A CSect ,
00000000 ... 2 STM 14,12,12(13) Appears in Class B_TEXT
00000008 ... 3 CLASS_X CATTR ,
00000008 ... 4 Msg_1 DC C'A message' Appears in Class CLASS_X
00000020 ... 5 SECT_B CSect ,
00000020 ... 6 LM 14,12,12(13) Appears in Class B_TEXT
00000011 ... 7 CLASS_X CATTR ,
00000011 ... 8 Msg_2 DC C'Good News' Appears in Class CLASS_X
00000004 ... 9 SECT_A CSect ,
00000028 ... 10 CLASS_Y CATTR ,
00000028 ... 11 Msg_3 DC C'Better News' Appears in Class CLASS_Y
00000024 ... 12 SECT_B CSect ,
00000033 ... 13 CLASS_Y CATTR ,
00000033 ... 14 Msg_4 DC C'Enough!' Appears in Class CLASS_Y
Figure 605. Assembly listing for sample program

This listing excerpt shows several things:

1. The Location Counter values are 8 hexadecimal digits long. This is because portions of a
program object can be larger than 16MB and can be loaded above the 16MB “line”.

2. Each Class starts on a doubleword boundary. (You can use the ALIGN operand of the
CATTR instruction to modify this.)

3. The contributions to CLASS_X are the constants named Msg_1 and Msg_2, both being 9 bytes
long. Thus the contributions to CLASS_X total 18 bytes.

4. The contributions to CLASS_Y are the constants named Msg_3 and Msg_4, respectively 11 and 7
bytes long. Thus the contributions to CLASS_Y also total 18 bytes.

The External Symbol Dictionary created from assembling the program in Figure 599 on page 849
looks like this:

Symbol Type Id Address Length Owner Id
SECT_A SD 00000001 �── Section
B_IDRL ED 00000002 00000001 �── Generated by Assembler
B_PRV ED 00000003 00000001 �── Same
B_TEXT ED 00000004 00000000 00000004 00000001 �── STM instruction
SECT_A LD 00000005 00000000 00000004 �── SECT_A entry
CLASS_X ED 00000006 00000008 00000012 00000001 �── Class
SECT_B SD 00000007 �── Section
B_IDRL ED 00000008 00000007
B_PRV ED 00000009 00000007
B_TEXT ED 0000000A 00000020 00000004 00000007 �── LM instruction
SECT_B LD 0000000B 00000020 0000000A �── SECT_B entry
CLASS_Y ED 0000000C 00000028 00000012 00000007
Figure 606. External symbol dictionary for sample program

From this ESD listing, we see that:

1. The address assigned to each Class starts on a doubleword boundary.

2. The lengths of classes CLASS_X and CLASS_Y are both X'00000012' or 18 bytes.

3. The contributions to Class B_TEXT are each 4 bytes long.

The CATTR instruction supports several operands; the most useful are the RMODE and loadability
attributes:

RMODE(n) This allows you to specify the region of memory where the Program Loader should
place the Class. The allowed values of n are 24, 31, and 64.

852 Assembler Language Programming for IBM System z™ Servers Version 2.00

ALIGN(n) You can specify other than the default alignment for the Class. The value of n is an
exponent of 2 and takes values from 0 to 12, meaning byte to page alignment.

DEFLOAD A Class with this attribute can be loaded by the Program Loader when requested. It
is used by reenterable programs to contain data and instructions needed for each of
many simultaneous executions of the same program.

NOLOAD A Class with this attribute will be included in the program object by the Binder, but
will not be loaded by the Program Loader. NOLOAD classes are typically used for
symbol tables, source code, and other record-oriented information you want to keep
with the executable program.

If neither DEFLOAD nor NOLOAD operands are specified, the default is LOAD, meaning
that the class will be loaded when the program object is put in memory by the
Program Loader.

PART(name) A Part is a named subdivision of an element that can have internal structure and be
addressed by its name.

An example of defining a PART is shown in Figure 607:

PartSect CSect ,
ClassA CATTR Part(P1)

DC 2D'1.23'
ClassA CATTR Part(P2)

DC C'Hello!'
Figure 607. Example of declaring parts in a G O F F Class

The corresponding ESD is shown in Figure 608; note that Parts are given type PD by the Assem-
bler.

Symbol Type Id Address Length Owner Id Flags

PARTSECT SD 00000001
B_IDRL ED 00000002 00000001
B_PRV ED 00000003 00000001
B_TEXT ED 00000004 00000000 00000000 00000001 00
PARTSECT LD 00000005 00000000 00000004 00
CLASSA ED 00000006 00000000 00000000 00000001
P1 PD 00000007 00000000 00000010 00000006 00
P2 PD 00000008 00000000 00000006 00000006 00
Figure 608. ESD for parts in a G O F F Class

An Element in a given Section and Class may contain several Parts; you can visualize them like
this:

: :
─ ─ ─┼───────────────────────┼─ ─ ─ ┐

│ Part T │ │
├───────────────────────┤ │ An Element in a Load Class
│ │ │ or a Deferred-Load Class
│ Part P1 │ │
│ │ │
├───────────────────────┤ │
│ Part P2 │ │

─ ─ ─┼───────────────────────┼─ ─ ─ ┘
: :

Chapter X: Large Programs and Modularization 853

38.8.4. Programming for Program Objects

When writing programs that utilize classes and parts:

1. You must specify the GOFF option. If not, CATTR statements are simply checked for
correct syntax, and are otherwise ignored.

2. Literals are generated wherever a LTORG statement appears; be careful where you write
your LTORGs.

3. If any literals appear in your program after the last LTORG statement, check carefully that
the Assembler generates them where you intended.

4. To resume a class, use its name in a CATTR statement with no operands. LOCTR state-
ments can't be used to resume a class.

5. Be careful when using ORG with a Class or Part name, especially if the Class name appears
in more than one section.

6. You can specify an AMODE for entry point names and external references that can be used
in some situations to help set the correct addressing mode for references to such symbols. For
example:

Prog CSect ,
DC C'1'

ClassA CATTR ,
XA DC C'2'

ENTRY XA
XA AMODE 31 �── Entry XA has AMODE 31

EXTRN XB
XB AMODE 64 �── External symbol XB has AMODE 64

The ESD listing from assembling this little program with the GOFF option is:

Symbol Type Id Address Length Owner Id Flags

PROG SD 00000001
B_IDRL ED 00000002 00000001
B_PRV ED 00000003 00000001
B_TEXT ED 00000004 00000000 00000001 00000001 00
PROG LD 00000005 00000000 00000004 00
CLASSA ED 00000006 00000008 00000001 00000001
XA LD 00000007 00000008 00000006 02 �── AMODE 31
XB ER 00000008 00000001

Even though the AMODE of symbol XB isn't shown in the “Flags” column, it is properly
defined in the GOFF object file.

38.8.5. Comparing Load Modules and Program Objects

The z/OS Binder can create either a load module or a program object from old OBJ-format
object modules. If the generated executable is a program object, the Binder makes a few internal
changes:

• SD items: in addition to the control section name, the Binder creates an ED (Element Defi-
nition) for Class B_TEXT with the RMODE of the section, and an LD (Label Definition) at the
origin of this element with the AMODE attribute of the original control section.

• CM (Common) sections are treated almost like SD items, and a “Common” flag is set.

• TXT records for the control section are assigned to the B_TEXT element. (There are no TXT items
for Common sections.)

• XD items cause the Binder to create an ED item for the B_PRV class.

In creating a program object, the Binder may note that several classes may have identical binding
and loading attributes, and combine the elements in those classes into single segments, to reduce
loading time. The segments inherit boundary alignments of member classes.

854 Assembler Language Programming for IBM System z™ Servers Version 2.00

From GOFF or OBJ object modules, the Binder can create either a load module or a program
object, but a generated load module is necessarily limited to a narrower range of capabilities, as
shown in Table 415 on page 855:

Table 415. Comparing load modules and program objects

Exercises

38.8.1.(2)+ Assemble the little program in Figure 599 on page 849 with and then without the
GOFF option, and compare their External Symbol Dictionaries. Which fields are significantly dif-
ferent?

38.8.2.(2) Compare the CESDs in Figure 583 on page 836 and Figure 595 on page 845 and
explain the differences.

38.8.3.(1) The older Linkage Editor supported an extended form of overlay called “regions” that
provided up to four distinct areas in which distinct overlays were supported. Try to find (and
study) information about overlay regions.

Load Modules Program Objects

Library type PDS PDSE, z/OS Unix HFS

Executable
module

One-dimension; single AMODE,
RMODE

Two-dimensions; multiple seg-
ments and A/RMODEs

Size limit 16MB 1GB

External
symbols 8 characters 32K characters

Symbol types SD, LD, ER, WX, PR Same, plus ED

Additional
module data

IDR only; no system support for
access

Any data; Binder Programming
Interfaces for access

Extensibility Not possible Open-ended architecture

38.9. Loading Saved Modules into Storage

The Program Loader brings load modules and program objects into storage, and relocates all
address constants.

38.9.1. Loading Load Modules

As indicated in Figure 597 on page 847, a load module is a single unit of instructions, data, and
uninitialized space. It has a single set of attributes: AMODE, RMODE, and reenterability
(RENT) status, used by the Program Loader to load the module in the proper area of memory,
and set the addressing mode before transferring control to the module's entry point.268

Adcon relocation is simple: the module's single load address is added to the text field at the offset
given by the (linker-adjusted) Position address in the RLD item. This relocation is fast and effi-
cient. It's important to remember that two stages of relocation are involved:

1. When the load module is created, the Linker (or Binder) relocates addresses relative to the
zero module origin.

2. When the load module is brought into memory by the Program Loader, it relocates addresses
relative to the module's load address.

268 If the RENT option was specified during linking, the Program Loader will enable memory protection on the area
where the module is loaded, so that any attempt to store in that area will cause a memory-protection program inter-
ruption.

Chapter X: Large Programs and Modularization 855

To save having to read (and discard) the SYM, IDR, RLD, and CESD records, a copy of the first
control record is saved in the PDS directory. It is used so the Program Loader can start reading
the load module at the first text record. Each control record contains the length and the relative
address of the following text record, and RLD information for adcons in that block of text.

The first block of text is loaded starting on a boundary aligned as specified by the SECTALGN option
or by Linker and Binder control statements. If RMODE(ANY) was specified, the load module
can be placed either above or below the 16MB “line”.

38.9.2. Loading Program Objects

Program objects add flexibility by allowing you to arrange groups of Classes that are loaded into
more than one area of memory. With System z, available memory is divided into three areas, as
sketched in Figure 609, showing the three areas into which programs and data can be loaded.269

┌───────────────────────┐ �── 2**64 bytes
│ RMODE(64) │
│ │
│ │
: :
│ │
│ │
├───────────────────────┤ �── 2**31 bytes (the 2GB “bar”)
│ RMODE(31) │
│ │
: :
│ │
├───────────────────────┤ �── 2**24 bytes (the 16MB “line”)
│ RMODE(24) │
: :
└───────────────────────┘ �── 0
Figure 609. Sketch of virtual memory

The RMODE operand of the CATTR statement lets you indicate into which of these three areas you
want the Class to be loaded by the Program Loader. Suppose the little program in Figure 603 on
page 851 has been revised as in Figure 610, where we have simply added an RMODE(31)
operand to the first CATTR statement for CLASS_Y:

SECT_A CSect ,
STM 14,12,12(13) Appears in Class B_TEXT

CLASS_X CATTR ,
Msg_1 DC C'A message' Appears in Class CLASS_X
SECT_B CSect ,

LM 14,12,12(13) Appears in Class B_TEXT
CLASS_X CATTR ,
Msg_2 DC C'Good News' Appears in Class CLASS_X
SECT_A CSect ,
CLASS_Y CATTR RMODE(31) Specify RMODE(31) for CLASS_Y �──
Msg_3 DC C'Better News' Appears in Class CLASS_Y
SECT_B CSect ,
CLASS_Y CATTR ,
Msg_4 DC C'Enough!' Appears in Class CLASS_Y
Figure 610. Sample program defining two Sections and three Classes

269 At the time of this writing, only data can be loaded into the area “above the bar”.

856 Assembler Language Programming for IBM System z™ Servers Version 2.00

If the GOFF object file from this assembly is linked into a program object, the Binder creates
three segments from classes having the same attributes. The segments contain the items shown in
Figure 604 on page 851, but now CLASS_Y has a different RMODE:

B_TEXT Residence mode 24 (the default)

CLASS_X Residence mode 24 (also the default)

CLASS_Y Residence mode 31 (as declared)

The Binder creates a program object with these segments; when the Program Loader brings the
program into memory, the first two segments will be loaded “below the line” in the RMODE(24)
area, and the CLASS_Y segment will be loaded “above the line, below the bar” in the RMODE(31)
area.

To simplify loading, the Binder may combine segments with identical attributes into a single
loading segment. In Figure 611, the B_TEXT and CLASS_X segments may be combined, so the
loaded program could look somewhat like this:

┌──────────────────────┐ �── 2**64 bytes
│ │
: :
│ │
├──────────────────────┤ �── 2**31 bytes (the 2GB “bar”)
│ │
: :
│ Msg_3 │
│ Msg_4 │ �── Load address for CLASS_Y segment
│ │
├──────────────────────┤ �── 2**24 bytes (the 16MB “line”)
│ STM │
│ LM │
│ Msg_1 │
│ Msg_2 │ �── Load address for B_TEXT, CLASS_X segments
: :
│ │
└──────────────────────┘ �── 0
Figure 611. Sketch of classes in virtual memory

Loadable segments are loaded as separately relocatable discontiguous entities. Each is loaded as a
single “block”, similar to a load module, and inter-segment references are resolved correctly, even
across different RMODEs.

The great value of loading different parts of a program into different areas of memory is that each
segment may contain address constants referencing positions loaded into a different area! Unlike
Load Modules that are loaded into only one area (and therefore can use address constants to refer
only to positions within the loaded module), program objects can reference other areas.

In Section 38.10 we will see how to pass control among routines using different addressing modes,
and how to reference different areas of memory.

Exercises

38.9.1.(2)+ Create a program with more than one control section, with references among the
sections and their entry points. When the program is loaded into memory, dump its contents
and verify that all address constants have been relocated correctly.

38.9.2.(1)+ Create a loadable module on your system and use whatever tools are available to
display or dump its format prior to loading.

Chapter X: Large Programs and Modularization 857

38.10. Changing Addressing Modes

Most application programs don't need to change addressing mode. They can access Operating
System services that may change mode, but they restore your addressing mode on completion so
the process is invisible to you.

These are typical situations where you might want or need to change addressing mode:

• Your application is loaded “above the line” and executes in 31-bit mode. It needs to call a
program loaded below the line that runs in 24-bit mode.

• Your application is loaded below the line and runs in 24-bit mode, and needs to access data
that resides above the line.

• Your application needs to access data above the 2GB “bar”.

First, we describe five instructions you can use to change addressing mode, and one to test the
current addressing mode. Of these instructions, BASSM and BSM are the most useful. Then
we'll see how to use them.

Table 416. Instructions to change addressing mode

Op Mnem Type Instruction Op Mnem Type Instruction

0B BSM R R Branch and Set Mode 0C BASSM R R Branch and Save and Set
Mode

010C SAM24 E Set Addressing Mode (24) 010D SAM31 E Set Addressing Mode (31)

010E SAM64 E Set Addressing Mode (64) 010B TAM E Test Addressing Mode

SAM24, SAM31, and SAM64 simply change the addressing mode to the indicated value, and
TAM sets the Condition Code according to the current addressing mode:

Table 417. CC settings for TAM instruction

As noted in Section 20.2 on page 307, the two PSW bits that determine the addressing mode, the
Extended addressing mode bit E and the Basic addressing mode bit B, are shown in Figure 612.

AMODE TAM CC

24 B'00'

31 B'01'

64 B'11'

 �────────────────────────────────── 128─bit PSW ──────────────────────────────────�
┌──────────────────┬─┬─┬──────────────────┬───┐
│ │E│B│ │ Instruction Address (IA) │
└──────────────────┴─┴─┴──────────────────┴───┘
0 31 32 63 64 127

Figure 612. System z PSW showing addressing-mode bits

The meanings of the E and B bit settings are:

Table 418. PSW addressing-mode bits

Note that the CC bit settings for TAM (in Table 417) are the same as the PSW E and B bit
values (in Table 418).

E B Addressing mode

0 0 24-bit mode

0 1 31-bit mode

1 0 Invalid combination

1 1 64-bit mode

858 Assembler Language Programming for IBM System z™ Servers Version 2.00

The easiest way to change addressing modes is to execute one of the SAMxx instructions; this
requires keeping track of the current and the new addressing modes in case you need to change
back to the previous mode.

38.10.1. The BASSM Instruction

If your program (the caller) wants to call another program (the callee, or target program) in
another addressing mode, use the BASSM instruction:

BASSM R1,R2

The important b and e bits in the R1 and R2 registers are shown in Figure 613.270

0 32 63
┌───────────────────────────────────────┬─┬─────────────────────────────────────┬─┐
│�────────────── 32 bits ──────────────�│b│�─────────────30 bits ──────────────�│e│
└───────────────────────────────────────┴─┴─────────────────────────────────────┴─┘

Figure 613. Important addressing mode bits for BASSM

When BASSM is executed, the CPU first completes the contents of GR R1 or GG R1, as shown
in Figure 614. Thus, the R1 register contains the return address, the address of the instruction
following the BASSM, and bits indicating the addressing mode of the calling program. This lets
the called program return to the caller in the addressing mode the caller used before the call.

0 32 39 40 63
┌───────────────────────────────────────┬────────┬────────────────────────────────┐ AM24:
│�──────────32 bits unchanged ─────────�│00000000│�─────── 24─bit address ───────�│ b=0
└───────────────────────────────────────┴────────┴────────────────────────────────┘ e=0

0 32 63
┌───────────────────────────────────────┬─┬───────────────────────────────────────┐ AM31:
│�──────────32 bits unchanged ─────────�│1│�─────────── 31─bit address ──────────�│ b=1
└───────────────────────────────────────┴─┴───────────────────────────────────────┘ e=0

 0 62 63
┌───┬─┐ AM64:
│�───────────────────────────────64─bit address ───────────────────────────────�│1│ e=1
└───┴─┘

Figure 614. BASSM setting of first-operand register for 24-, 31-, and 64-bit addressing modes

If the R2 digit is 0, the instruction is complete; no branch occurs, and the current addressing
mode is unchanged.

If the R2 digit is not 0, the CPU examines the b and e bits of GR R2 to determine what change
(if any) should be made to the addressing mode.271

1. If the e bit is zero (as you might expect for the even address of the callee), then the PSW
addressing mode is set according to the value of the b bit:

• If b = 0, the E and B bits in the PSW are set to B'00', to set the new addressing mode to
24.

• If b = 1, the E and B bits in the PSW are set to B'01', to set the new addressing mode to
31.

270 It's important to note the difference between the E and B bits in the PSW, and the e and b bits in a register.
271 If you want to set R1 = R2 (a rare combination) consult the z/Architecture Principles of Operation first.

Chapter X: Large Programs and Modularization 859

2. If the e bit of GR R2 is one, the addressing mode E and B bits in the PSW are set to B'11',
and the CPU will now execute in 64-bit addressing mode.

To complete the instruction, the CPU takes these additional steps:

1. If the new addressing mode is 24 or 31, the branch is taken and the next instruction will
come from the 24- or 31-bit address in GR R2.

2. If the new addressing mode is 64, the low-order bit of GG R2 was set to one (so the branch
address will appear to be odd!), but the CPU ignores the low-order one bit and takes the next
instruction from the even address, without changing that low-order bit. (We'll see why this is
done when we describe the BSM instruction.)

The new value for the PSW is computed before R1 is changed.

Instruction fetching then continues at the target address in the new addressing mode.

A summary of the operation of BASSM is shown in Table 419.

Table 419. BASSM actions summary

BASSM to 24/31 to 64

from
24/31

GR R1: bits 0-31 unchanged
bit 32 = B bit
bits 33-63 = PSW IA

PSW IA = Addr in GR R 2 (bit 63 = 0)
PSW E bit = 0
PSW B bi t = GR R2 bit 32
Note: GR R 2 bit 63 = 0

same
same
same

PSW IA = 64-bit addr in GR R 2 (bit 63=0)
PSW E bit = 1
PSW B bit = 1
Note: GR R 2 bit 63 = 1

from 64 GR R1 bits 0-62 = PSW IA (bit 63 = 1)

PSW IA = Addr in GR R2 (bit 63 = 0)
PSW E bit = 0
PSW B bi t = GR R2 bit 32
Note: GR R 2 bit 63 = 0

GR R1 bits 0-62 = PSW IA (bit 63 = 1)

PSW IA = 64-bit addr in GR R 2 (bit 63=0)
PSW E bit = 1
PSW B bit = 1
Note: GR R 2 bit 63 = 1

38.10.2. The BSM Instruction

The BSM instruction is used to restore the addressing mode of a calling program before returning.
Its operation is summarized in Table 420; we'll use the notations in Table 417 on page 858 and
Figure 613 on page 859 to refer to specific PSW and register bits.

Table 420. Operation of BSM instruction

Value R1 operand R2 operand

0 R1 register unchanged No branch, no change to addressing mode

≠ 0 • In AMODE 24 or 31, put
the PSW B bit into the b bit
of GR R1; remainder of
G R R1 is unchanged.

• In AMODE 64, insert a
1-bit into the e bit of
G R R1; remainder of
G R R1 is unchanged.

• If the e bit of GR R2 is zero, set the PSW E bit to 0; the
b bit of GR R2 is put in the PSW B bit; AMODE is now
24 or 31. The 24- or 31-bit branch address replaces the
PSW IA.

• If the e bit of GR R2 is one, set the PSW EB bits to
B'11'; AMODE is now 64. The branch address in bits
0-62 of GR R2 with a low-order zero bit appended
replaces the PSW IA.

Of these combinations, the R1 operand is almost always zero.

As noted above for BASSM, the new value for the PSW is computed before R1 is changed.

A similar summary of the operation of BSM is shown Table 421 on page 861.

860 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 421. BSM actions summary

BSM to 24/31 to 64

from
24/31

GR R1: bits 0-31 unchanged
bit 32 = B bit
bits 33-63 unchanged

PSW IA = 24-/31-bit addr in GR R 2
PSW E bit = 0
PSW B bi t = GR R2 bit 32
Note: GR R 2 bit 63 = 0

same
same
same

PSW IA = 64-bit addr in GR R 2
(bit 63 = 0)

PSW E bit = 1
PSW B bit = 1
Note: GR R 2 bit 63 = 1

from 64 GR R1 bits 0-62 unchanged
GR R 1 bit 63 = 1

PSW IA = 24-/31-bit addr in GR R2
(bit 63 = 0)

PSW E bit = 0
PSW B bi t = GR R2 bit 32
Note: GR R 2 bit 63 = 0

same
same

PSW IA = 64-bit addr in GR R 2
(bit 63 = 0)

PSW E bit = 1
PSW B bit = 1
Note: GR R 2 bit 63 = 1

38.10.3. Branch and Return With Addressing Mode Change

The BASSM and BSM instructions are quite similar to BASR and BR, respectively. Both are
used for calling and returning from other routines. The major difference is that BASSM and
BSM can change addressing modes during the call and the return.

Changes of addressing mode are usually used for calls among programs loaded into different areas
of memory, that execute in different addressing modes. Such programs or memory areas may not
be accessible in the current addressing mode, or must execute in a different mode.

1. Suppose your program A executes in AMode 31 and you must call a program B that executes
in AMode 24 (and was therefore loaded below the 16MB “line”).

L 15,=V(B) Address of B (X'00xxxxxx')
BASSM 14,15 Call B

B will be entered in 24-bit mode because bit 32 of GR15 is 0 (remember that the Program
Loader sets the high-order 8 bits of a 4-byte adcon to zero if the target symbol is below
16MB). The b bit in GR14 will be set to 1 because the BASSM instruction was executed in
AMode 31. B will then return with

BSM 0,14 Return from B to A

and the addressing mode will be changed from 24- to 31-bit mode because the b bit in GR14
was 1.

2. Suppose your program C executes in AMode 24 and you must call a program D that executes
in AMode 31. If C and D are in separate classes in a program object, then D could have been
loaded above the 16MB “line”. If, however, C and D are components of a load module, then
the load module will be loaded below the 16MB “line”.

EXTRN D D is an external routine
L 15,=A(D+X'80000000) Address of D with bit 32 = 1
BASSM 14,15 Call D

D will be entered in 31-bit mode because bit 32 of GR15 is 1; we set the b bit of R2 by
adding X'80000000') to the address of D. (Remember that if D had been loaded below the
16MB “line”, it will still be addressable in AMode 31.) The b bit in GR14 will be set to 0
because the BASSM instruction was executed in AMode 24. D will then return with

BSM 0,14 Return from D to C

and the addressing mode will be changed from 31- to 24-bit mode because the b bit in GR14
was 0.

3. Suppose your program E executes in AMode 31 and you must refer to data named F that
resides below the 16MB “line”.

Chapter X: Large Programs and Modularization 861

L 15,=V(F) Address of F (with bit 32 = 0)

You can now refer to the data at F because 31-bit mode lets you address anything below the
2GB “bar”.

4. Suppose your program G executes in AMode 24 and you must refer to data named H that
resides above the 16MB “line” but below the 2GB “bar”.

L 15,=V(H) Address of H
SAM31 , Set addressing mode 31

You can now refer to the data at H because 31-bit mode lets you address anything below the
2GB “bar”. If your program must later execute in 24-bit addressing mode, you will need to
execute a SAM24 instruction.

The following Table 422 shows combinations of instructions that may safely be used by pro-
grams executing in the “From” addressing mode to call programs that execute in the “To” mode,
and return to the caller restoring the caller's addressing mode.

Table 422. Instruction pairs for call/return with possible AMODE change

Note that the BAL instruction appears in the table only for branch to and and return from the
same addressing mode. When your program is executing in addressing mode 24, BAL should be
used only in combination with BR (and never with BSM) as the return instruction.272 If BAL or
BALR is the target of an EX or EXRL instruction, only BR can be used to return to the caller.
(See Exercise 38.10.7.)

Table 423 on page 863 shows ways you can do internal subroutine calls that change addressing
modes within a single assembly.

From
To AM24 To AM31 To AM64

Call Return Call Return Call Return

AM24 BAL
BALR BR

AM24

BAS
BASR
BRAS
BRASL

BR
BSM BASSM BSM BASSM BSM

AM31 BASSM BSM

BAL
BALR
BAS
BASR
BRAS
BRASL

BR
BSM BASSM BSM

AM64 BASSM BSM BASSM BSM

BAL
BALR
BAS
BASR
BRAS
BRASL

BR

272 The official term describing BAL and BALR is that their use is “deprecated”. This means that if you get in trouble
using them, you can't say you weren't warned.

862 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 423. Calling among addressing modes within an assembly

When a program executes in 64-bit addressing mode, it can address any byte with address between
0 and 264 −1. However, on z/OS systems the addresses between 231 and 232 −1 are not made avail-
able; this area is sometimes called the “Blackout Area”, as sketched in Figure 615.

Caller Subroutine Entry

* To 24-bit mode from any mode
LARL 15,Code24
BASSM 14,15

* Entry to 24-bit mode
Code24 DC 0H Must be below the line

- - -
BSM 0,14 Return to caller

* To 31-bit mode from any mode
LARL 15,Code31
OILH 15,X'8000'
BASSM 14,15

* Entry to 31-bit mode
Code31 DC 0H Above or below the line

- - -
BSM 0,14 Return to caller

* To 64-bit mode from any mode
XGR 15,15 (For 24 or 31 to 64)
LARL 15,Code64
OILL 15,X'0001'
BASSM 14,15

* Entry to 64-bit mode
Code64 DC 0H Anywhere in memory

- - -
BSM 0,14 Return to caller

┌──────────────────────┐ �── 2**64 bytes
│ RMODE(64): │
│ Addressing requires │
│ AMODE 64 │
│ │
: :
├──────────────────────┤ �── 2**32 bytes
│ “Blackout Area” │
├──────────────────────┤ �── 2**31 bytes (the “bar”)
│ RMODE(31): │
│ Addressable with │
│ AMODEs 64 and 31 │
│ │
: :
├──────────────────────┤ �── 2**16 bytes (the “line”)
│ RMODE(24): │
│ Addressable with │
│ AMODEs 64, 31, 24 │
│ │
: :
└──────────────────────┘
Figure 615. Sketch of residence and addressing modes

This was done because many existing programs used the convention shown in Section 37.3.1 on
page 767 that set the high-order bit of a 4-byte address to 1 to indicate the last argument address
in a list. If such an address is used in 64-bit addressing mode it will (accidentally) try to refer to an
address in the Blackout Area, rather than the intended address below the 2GB “bar”.

38.10.4. Load Logical Thirty-One Bits Instructions

To help avoid such problems we can use the LLGT and LLGTR instructions:

Table 424. LLGT and LLGTR instructions

Op Mnem Type Instruction Op Mnem Type Instruction

E317 LLGT RXY Load Logical Thirty One Bits B917 LLGTR RRE Load Logical Thirty One
Bits

These two instructions load a 32-bit word into the low-order 32 bits of the GR R1 register, set bit
32 to 0 (the bit that could potentially be 1) and set the remaining 32 high-order bits of GR R1 to

Chapter X: Large Programs and Modularization 863

zero. This means that the resulting address can safely be used by a program executing in 64-bit
mode to refer to addresses below the 2GB “bar”. For example:

LLGT 4,=X'FEDCBA98' c(GG4=X'00000000 7EDCBA98')

Note that bit 32 of GG4 has been set to zero.

The example in Figure 616 shows why this can be important. Suppose your program runs in
AMode 31, and then changes to AMode 64.

Prog31 CSect ,
Prog31 AMODE 31 Execute in AMode 31

BASR 12,0 Establish base register
USING *,12 Establish addressability
- - -
SAM64 , Change to AMode 64
- - -

Move MVC A,B Move some data
- - -

A DS CL10 Target field
B DC C'A Message!' Source field
Figure 616. Example showing why LLGT/LLGTR are necessary

The MVC instruction named Move may cause a protection exception for either of two reasons.
The BASR instruction, because it is executed in AMode 31, sets bit 32 of GG12 (the b bit) to 1.
When the Effective Addresses of the MVC operands A and B are generated, the presence of the
1-bit means that

• if bits 0-31 of GG12 are zero, the Effective Address of A lies in the “Blackout Area”;

• otherwise, if bits 0-31 of GG12 are not zero, the Effective Address of A lies somewhere above
232, in an area very probably not accessible to your program.

To avoid both forms of this problem, insert a LLGTR instruction:

LLGTR 12,12 Force bits 0-32 of GG12 to zero
SAM64 , Change to AMode 64
- - -

Move MVC A,B Move some data

The following example shows other reasons why LLGTR can be important. Suppose you have
written a program named Code64 that executes in AMode 64, and is called by another program
that executes in 24- or 31-bit addressing mode. The caller provides a standard Format-0 save area
addressed by R13, and a pointer in R1 to two word addresses referencing to arguments. The call
is made using a BASSM 14,15 instruction. We assume that the calling sequence is like this:

LA 13,SaveArea Point to local Format-0 save area
LA 1,ArgList Point to argument addresses
LLGT 15,=V(Code64) Get address of called routine
AHI 15,1 Set 64-bit mode indicator bit
BASSM 14,15 Branch and set mode 64
- - -

ArgList DC A(Arg1,Arg2) Argument addresses

The called routine in Figure 617 on page 865 could look like this:

864 Assembler Language Programming for IBM System z™ Servers Version 2.00

Code64 CSect ,
Code64 AMode 64 64-bit addressing mode

Using *,15 Local base register
NILL 15,X'FFFE' Turn off low-order bit of GG15
LLGTR 13,13 Clean address of caller's area in GG13
STMH 14,12,HighRegs Save high halves of registers locally
STM 14,12,12(13) Store low halves of R14-R12
LLGTR 1,1 Make a valid arg-list pointer
LM 1,2,0(1) Load argument addresses
LLGTR 1,1 Usable pointer to argument 1
LLGTR 2,2 Usable pointer to argument 2
- - -

Return LMD 14,12,HighRegs,12(13) Restore both halves of registers
BSM 0,14 Return to caller

HighRegs DS 15F Save area for high halves of registers
Figure 617. Example showing why LLGTR is important

• Without the first LLGTR instruction, any nonzero bits in positions 0-33 of GG13 could cause
a protection exception. The same applies to the LLGTR instructions referencing GGR1 and
GGR2.

• We assume that we can return to the caller with the high-order 33 bits of GG13 set to zero.
This should not cause a problem, because the address of the caller-provided save area is in his
program.

• On return, we did not restore the low-order 1-bit in GG15 because it was set only for the use
of BASSM.

Be Careful!

It is important that calling and called routines agree on their respective
addressing modes, linkage conventions, register-preservation expectations,
and argument-passing conventions.

Exercises

38.10.1.(1)+ When a program is loaded into memory, what is the maximum allowed difference
between the addresses of BRAS and BRASL instructions and their targets?

38.10.2.(1) Show which PSW addressing mode bits (Figure 612 on page 858 may help) are set
to what values by each of the SAMxx instructions in Table 416 on page 858.

38.10.3.(1)+ Show how the CC settings in Table 417 on page 858 correspond to the settings of
the E and B addressing-mode bits in the PSW, as illustrated in Figure 612 on page 858.

38.10.4.(2)+ Describe the differences among BALR r,0 and BASR r,0 and BASSM r,0.

38.10.5.(1)+ The z/Architecture Principles of Operation states that if the current addressing
mode is 24 or 31, the BSM instruction can be used to return from a program that was entered
using a BAS, BASR, BRAS, and BRASL instruction. Explain why this is so.

38.10.6.(1) Can BASSM 0,0 or BSM 0,0 be used as a no-operation instruction, like NOPR 0?

38.10.7.(2)+ The paragraph after Table 422 on page 862 states that BAL should never be used
with BSM as its return instruction when your program executes in AMODE 24. Why? Why is
AMODE 31 not included in this warning?

38.10.8.(2) In Table 422 on page 862, why not use BASSM and BSM for a branch and return
within the same addressing mode?

Chapter X: Large Programs and Modularization 865

38.10.9.(4) In Figure 617, it was assumed that the calling and called routines executed in the
same addressing mode. Write instructions to handle the case(s) where the calling and called
routines might execute in different addressing modes.

38.10.10.(2)+ In example 2 on page 861, the text says that routine D “could have been loaded
above the 16MB ‘line’.” What determines where it is loaded?

38.11. Summary

This chapter has covered a wide variety of topics. Key suggestions include:

1. Put all constants that can't be replaced by immediate operands in one LOCTR group. It will
probably need addressability.

2. Put all read/write data areas in one LOCTR group. It will probably need addressability.

3. Arrange for all instructions to be in one LOCTR group. Use relative branch, immediate, and
long-displacement instructions wherever possible. Ideally, this LOCTR group will not need
addressability.

4. Avoid using BAL/BALR except in applications with no changes of addressing mode.

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

BASSM 0C LLGTR B917 SAM64 010E

BSM 0B SAM24 010C TAM 010B

LLGT E317 SAM31 010D

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

010B TAM 010E SAM64 B917 LLGTR

010C SAM24 0B BSM E317 LLGT

010D SAM31 0C BASSM

Terms and Definitions
A-type address constant

A field containing an absolute, relocatable, or complex relocatable expression. Absolute
expressions are resolved by the Assembler, the others during linking and loading.

address constant (“adcon”)
A field within a control section into which a value (typically, an address) is placed during
program binding, relocation, and/or loading.

AMODE
Addressing mode: one of 24, 31, or 64.

866 Assembler Language Programming for IBM System z™ Servers Version 2.00

Class
(1) A cross-section of program object data with uniform format, content, function, and
behavioral attributes. (2) A component of a program object with specified loading proper-
ties, containing elements supplied by sections. Loadable classes are independently relocatable.
Indicated in the External Symbol Directory listing with type ED.

Common
A CSECT having length and alignment attributes (but no text) for which space is reserved in
the load module or Program Object.

CXD-type address constant
A word holding the length (not the address) of the virtual area created at link time from all
the Dummy External Sections (or PseudoRegisters) in the complete program.

element
A component of a program object Class, defined by the combination of its section name and
its Class name. The smallest indivisible and separately relocatable portion of a program
object.

executable control section
A control section containing machine language instructions or data, defined by CSECT,
RSECT, or START instructions.

External Symbol Dictionary
The set of external symbols created by an assembly. They are displayed in the Assembler's
listing and are encoded in the ESD records of the generated object module.

linking loader
Links and places modules into storage with linking, immediately prior to program execution.

load module (LM)
The original form of MVS executable, stored in a Partitioned Data Set (PDS) program
library in “record format”.

object module
Records containing the external symbols, machine language text, and relocation dictionary
information required for program linking, in either the older 80-byte card image “OBJ”
format or in the newer GOFF format.

program linking
The process of resolving external names into offsets or addresses; combining multiple input
name spaces into a composite output name space.

program object (PO)
A newer form of executable on z/OS, stored in a PDSE (Partitioned Data Set Extended)
program library.

PseudoRegister (PR), External Dummy Section (XD)
A PseudoRegister or external data item having length and alignment attributes. Space in the
loaded module is reserved for Common control sections; space for External Dummy Sections
must be obtained at execution time.

Q-type address constant
A field containing the offset (not the address) of an External Dummy Section (or
PseudoRegister) from the start of a virtual area mapped at link time and allocated at exe-
cution time.

reference control section
A control section containing no machine language instructions or data, defined by DSECT,
COM, or DXD instructions.

relocate
Assign actual-storage or module-origin-relative addresses to address constants.

relocating loader
Places modules into storage and adjusts addresses to their correct “final” value.

relocation
The load-time conversion of address constants from module or Class displacements to virtual
addresses. The assignment of actual or module-origin-relative addresses to address constants.

Chapter X: Large Programs and Modularization 867

Relocation Dictionary
A summary of each relocatable address constant in an assembly, displayed in the Assembler's
listing and encoded in the RLD records of the generated object module.

RMODE
Residence mode, an indication of the desired placement in memory of a Control Section or
Class.

section
(1) A generic term for control section, dummy section, common section, etc.. A collection of
items that must be bound or relocated as an indivisible unit. (2) A collection of elements
belonging to specified Classes in a program object. Elements defined by a section are added
or deleted as a group. (A program object section is not the same as a control section.)

segment
A component of a program object containing classes with the same properties such as
RMODE and loadability.

text
(1) The instructions and data generated by an assembly, encoded in the TXT records of an
object module. (2) A program object Class attribute indicating that locations within the class
may contain and/or be the target of address constants.

V-type address constant
A field containing the address of an external symbol, resolved during linking and loading.

Programming Problems

Problem 38.1.(2) Use the external subroutines you wrote in solving Exercises 38.5.15 and
38.5.16 to create a complete program calling the subroutines. Verify your results by converting
word integers to hexadecimal floating-point and then back to word integers; display the original
and final integer values and the hexadecimal floating-point intermediate value. Be sure to test
values such as

DC F'-0'
DC F'2147483647'
DC F'-2147483648'

Problem 38.2.(4)+ Days of the week can be calculated using Zeller's Congruence:273

D_W = (D_M + ((M+1)*13)/5) + Y + Y/4 + 6*(Y/100) + Y/400) (mod 7)

where D_M is the day of the month, M is the month, and Y is the year. D_W is the day of
the week, starting with 0=Saturday through 7=Friday. All divisions (except the one calcu-
lating the day of the week “(mod 7)”) discard remainders.

Write a separately assembled subroutine Zeller to accept three integer arguments Y, M, and
D_M and return D_W in GR0. Then, write a calling program that reads records with the three
argument values right-justified in columns 1-10, 11-20, and 21-30. For example, some input
records might be

2009 6 30
2000 1 1
1900 1 1

Create several test cases that display the day of the week, the month, day of the month, and the
year. Even better, provide the names of the day and month.

Problem 38.3.(2)+ Using the definitions of ulp(x) in Section 32.8 on page 580, and with the
assumptions in Exercises 33.19.3, 33.19.5, and 33.19.7, write three callable subroutines using
standard calling conventions that are all in a single control section named HexUlp. Your
CSECT should have three entry points: HxUlpE, HxUlpD, HxUlpL, having a short, long, and
extended precision hexadecimal floating-point argument respectively.

273 Due to Christian Zeller, in 1882-85. The formula is valid only for the Gregorian calendar.

868 Assembler Language Programming for IBM System z™ Servers Version 2.00

Each entry should calculate the ulp of its argument and return the result in floating-point reg-
ister 0 (for HxUlpE and HxUlpD) and in floating-point registers 0 and 2 for HxUlpL.

Your routines should preserve the contents of general registers 2-15 and floating-point registers
8-15 if they are modified in any way. Assume that the values of the arguments are large
enough that no exponent underflows will occur in calculating each ulp.

Problem 38.4.(3) As you did in Problem 38.3, write a program in a CSECT named BinUlp with
three similar entry points that will evaluate an ulp of a short, long, and extended precision
binary floating-point argument.

Problem 38.5.(2) Write a callable routine named ConvI with two arguments: a 32-bit binary
integer, and a 12-byte character string. Convert the binary integer to characters, right-adjusted
in the string, and preceded by a minus sign if the integer is negative. Insignificant leading zeros
should be omitted, and at least one digit must be produced. Be sure to test values like

DC F'0'
DC F'-1'
DC F'2147483647'
DC F'-2147483648'

Problem 38.6.(2) Write a callable routine named ConvZ with two arguments: a 32-bit word and
an 8-byte character string. Convert the word to 8 EBCDIC characters representing the
hexadecimal representation of the word.

Problem 38.7.(4)+ Write a program to display the contents of an 80-byte “OBJ” object module
in hexadecimal.

Problem 38.8.(2)+ Write at least two separately-assembled routines referring to DXD items,
some of which have identical names. Include Q-type address constants of lengths 2 to 4 refer-
ring to each item, and at least one CXD-type item. Link the routines together and execute the
linked program.

Examine (and print) the contents of all the Q-cons and CXD constants to understand how the
Linker allocated the entries in the External Dummy Section.

Problem 38.9.(1) Write a short program to illustrate the settings of the R1 register when you
execute BASSM and BASR instructions with R2 = 0, in each of the three addressing modes.
(Be careful if you use the PRINTOUT macro to print the results, because it executes only in
AMODE 24.)

Problem 38.10.(2) Write and test a subroutine named HexExp that will evaluate and return in
GR0 the exponent of a hexadecimal floating-point argument passed using standard linkage con-
ventions. (You need not restore the contents of GR1.)

Chapter X: Large Programs and Modularization 869

870 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter XI: Dummy Sections, Enhanced USINGs, and Data
Structures

XX XX IIIIIIIIII
XX XX IIIIIIIIII
XX XX II
XX XX II
XX XX II
XXXX II
XXXX II
XX XX II
XX XX II
XX XX II
XX XX IIIIIIIIII
XX XX IIIIIIIIII

This chapter describes some basic techniques for arranging and describing data items in memory,
including arrays, stacks, linked lists, and hash tables.

• Section 39 introduces the Dummy Control Section (DSECT) for mapping data objects, and
then reviews the ordinary USING statement before introducing the enhanced Labeled USING,
Dependent USING, and Labeled Dependent USING assembler instruction statements.

• Section 40 describes some basic techniques for arranging data items in memory, including
arrays, stacks, linked lists, and hash tables.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 871

39. Dummy Control Sections and Enhanced USING Statements

3333333333 9999999999
333333333333 999999999999
33 33 99 99

33 99 99
33 99 99

3333 999999999999
3333 999999999999

33 99
33 99

33 33 99 99
333333333333 999999999999
3333333333 9999999999

This section describes two powerful programming aids: Dummy Control Sections and enhanced
USING statements.

Dummy Control Sections are powerful tools for symbolic description of any area of memory.
They are especially valuable when programs work with shared or multiple instances of data struc-
tures such as records.

Any addressing method should provide as many of the following benefits as possible:

1. Coding should be simple, clear, understandable, and efficient. These help with simplicity,
readability, and maintainability.

2. All instructions should use fully symbolic references. These help with readability and main-
tainability.

3. Base registers and displacements should always be automatically assigned by the assembler
from information provided in USING statements, and never as constants or by manual cal-
culations. These also help with quality, readability, and maintainability.

Ordinary USINGs can easily fail in one or more of these respects, as some of the following illus-
trations will show; we will see how the new USING statements can avoid most of them.

39.1. Dummy Control Sections

In Sections 6.4 and 6.5 we mentioned that the START and CSECT assembler instruction state-
ments initiate a control section containing instructions and data.274 A Dummy Control Section (or
DSECT) is a control section like a control section initiated by CSECT or START, with these
similarities and differences:

• A DSECT never generates any machine language object code, even if it contains instructions
and constants.

274 The Assembler defines two types of control section: (a) an “executable” control section containing machine-language
instructions and data (even though it might contain only data and no executable instructions, or even nothing at all!),
and (b) a “reference” control section, most often a DSECT. (A reference control section can also be a COM section
or an external dummy section, described in Section 38.4.)

872 Assembler Language Programming for IBM System z™ Servers Version 2.00

• A DSECT has its own relocation attribute (RA). Because it generates nothing that will appear
in the object module, its RA starts at (unsigned) X'FFFFFFFF' and counts down for each new
DSECT. (You may remember from Section 38 that external symbols have relocation attributes
defined by their ESDIDs, which count up from 1.)

• The Location Counter (LC) for a DSECT always starts at zero, which is treated as a
doubleword boundary.275 Normal alignment rules apply to each statement in a DSECT.

A DSECT is a template or mapping of an area of memory, and is used to make symbolic refer-
ences.276 To illustrate, suppose we declare a DSECT named DummyS:

DummyS DSect , Declare dummy control section DummyS
A DS F Fullword named A
B DS H Halfword named B
C DS CL25 25-byte character string named C
D DS D Doubleword named D
Figure 618. Example of a dummy control section

The symbol table entries for the four symbols might look like this:

Table 425. Symbol table entries for DSECT symbols

The Relocation Attribute of each symbol in the DSECT is the same as the RA of its “owning”
control section.

Now, suppose we can address a work area named WorkA. We can use symbols to refer to fields in
the work area, as in Figure 619:

Symbol Location RA

A X'000000' X'FF'
B X'000004' X'FF'
C X'000006' X'FF'
D X'000020' X'FF'

Sample Start 0
BASR 12,0 Establish a base register
Using *,12 Provide addressability
- - -
LA 7,WorkA c(GR7) = Address of WorkA
Using DummyS,7 Provide symbolic mapping of WorkA
L 3,A Load a fullword from WorkA
AH 3,B Add a halfword from WorkA
CLC C,0(12) Compare 25 bytes of WorkA
JE ElseWhere Do something about the comparison
LM 0,1,D Load two words from doubleword
- - -

WorkA DS 0D,XL84 Work area
Figure 619. Example using a dummy control section

The instructions referencing symbols defined in the DSECT are generated using the normal resol-
ution rules for implied addresses. With the same notation as in Sections 10.8-10.10, the USING
Table would look like Figure 620:

275 If you need to include items in a DSECT that require quadword alignment, specify the SECTALGN(16) option for
the assembly.

276 You can think of a DSECT as though it's a transparent overlay that lets you make symbolic references to fields
anywhere in memory. (This description is attributed to Jim Morrison.)

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 873

┌───────┬───────────────┬────┐
│basereg│ base location │ RA │
├───────┼───────────────┼────┤
│ 12 │ 00000002 │ 01 │
├───────┼───────────────┼────┤
│ 7 │ 00000000 │ FF │ �── Relocation ID for the DSECT
└───────┴───────────────┴────┘

Figure 620. USING Table with two entries, one for a dummy section

References to the symbols defined in the DSECT can be resolved only with base register GR7,
because the RA of the implied addresses in Figure 619 must match the RA of a base address in
the USING Table. The generated instructions are shown in Figure 621:

Loc Object Code Statement
.... 5830 7000 L 3,A
.... 4A30 7004 AH 3,B
.... D518 7006 C000 CLC C,0(12)
.... A784 JE ElseWhere
.... 9801 7020 LM 0,1,D

Figure 621. Object code from references to a dummy control section

The symbol C is at location X'000006' in the DSECT; the second USING statement tells the
Assembler that the base address is location X'000000', so the addressing halfword is X'7006'.

Now, suppose we refer to a different work area, so that the address in GR7 is different:

- - -
LA 7,WorkA+43 c(GR7) = A(WorkA)
Using DummyS,7 Provide symbolic mapping of WorkA
L 3,A Load a fullword from WorkA
AH 3,B Add a halfword from WorkA
CLC C,0(12) Compare 25 bytes of WorkA
JE ElseWhere Do something about the comparison
LM 0,1,D Load two words from doubleword
- - -

WorkA DS XL84 Work area
Figure 622. Example using a dummy control section

The generated object code is identical to that in Figure 621, because exactly the same base
expression and register are declared in the USING statement. In resolving the implied addresses,
the Assembler doesn't know that the address in GR7 may not be aligned on proper boundaries; it
only knows about alignments within the DSECT.

The examples in Figures 619 and 622 show how the DSECT template can be “overlaid” on any
area of storage to provide symbolic references (the symbols A, B, C, and D to fields in the storage
area.

Because a DSECT generates no machine language object code, we could have defined the
DSECT in Figure 618 with DC (rather than DS) statements, with exactly the same results:

DummyS DSect , Declare dummy control section DummyS
A DC F'0' Fullword named A
B DC H'-45' Halfword named B
C DC CL25'String' 25-byte character string named C
D DC D'-1.732' Doubleword named D

The Length Attribute of a symbol naming a DSECT is 1, and not the total length of the DSECT
itself.

874 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

39.1.1.(1) In this DSECT, show the values of each symbol.

D39_1_1 DSect ,
A DS CL9
B DS F
C DS X
D DS H
E DS D
F Equ *-D39_1_1

39.1.2.(1)+ Figure 57 on page 161 shows statements describing a typical Assembler Language
statement. Create a DSECT named ALStmt with those statements.

39.1.3.(2)+ In the DSECT you wrote in Exercise 39.1.2, what are the values and length attri-
butes of all symbols?

39.2. Multiple Data Structures

You will often find that your program must work with more than one copy of an identical data
structure. For example, suppose your program must read a data record from an old master file
and update it in two ways:

• Copy the Old record to a New copy.

• Put the current processing date in the Old record and write it to an “archive” file for backup
(and auditing) purposes.

• Make updates to the New record and write it to a master file.

In outline form, the main steps of your program might look like this:

BAS 14,Read_Old_Master Read a record for processing
BAS 14,Copy_Record Copy the old record to new area
BAS 14,Do_Old_Date Put date stamp in old record
BAS 14,Write_Archive_Record Write old record to archive
BAS 14,Update_New_Record Make updates to new record
BAS 14,Write_New_Master Write new record to master file

When you work with more than one copy of a data structure, your programs are simpler when
the structures are described by a DSECT. Thus, each subroutine needs to know the structure and
length of the record. Suppose the two record descriptions had been written as two separate groups
of statements:

New Record Description Old Record Description
──┬──────────────────────
NewRec DS 0D │OldRec DS 0D
NewType DS CL10 Record type │OldType DS CL10
NewID DS CL4 Record ID │OldID DS CL4
NewName DS CL40 Name │OldName DS CL40
NewAddr DS CL66 Address │OldAddr DS CL66
NewPhone DS CL12 Phone number │NewPhone DS CL12

─ ─ ─ etc. │ ─ ─ ─
─ ─ ─ etc. │ ─ ─ ─

NewYear DS F Processing year │OldYear DS F
NewDay DS F Day of year │OldDay DS F

─ ─ ─ etc. │ ─ ─ ─
Figure 623. A poor method for describing two instances of a record

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 875

and so forth for many fields. Any error in keeping the New and Old descriptions exactly the same
could lead to serious errors if fields appeared at different offsets.

It is much better to describe the record with a DSECT:

Record DSect , Record description
RecType DS CL10 Record type
RecID DS CL4 Record ID
RecName DS CL40 Name
RecAddr DS CL66 Address
RecPhone DS CL12 Phone number

- - - etc.
- - - etc.

RecYear DS F Processing year
RecDay DS F Processing day of year

- - - etc.
RecLen Equ *-Record Record length
Figure 624. A better record description with a DSECT

and then use the DSECT in each subroutine to process the data. (Section 39.4 describes Labeled
USINGs, which make it even easier to handle multiple instances of a data structure.)

 Advice

If your program references more than a single copy of a record or struc-
ture, or if a record or structure is shared by more than one program, all
references should (must!) use the same DSect mapping. It's best to write
only a single description of any data structure.

Your program can contain a mixture of both “regular” control sections and dummy control
sections. Standard programming practice usually groups all DSECT definitions either at the very
start or the very end of your program.

Exercises

39.2.1.(2)+ Suppose you want to refer to the Record structure in Figure 624 as a string of
RecLen bytes. Define a symbol RecBase at offset zero in the DSECT having Length Attribute
RecLen.

39.2.2.(1)+ Define a storage area named NewRec described by the Record DSECT in Figure 624
to start on a doubleword boundary, and have the correct length.

39.3. Shortcomings of Ordinary USING Statements

By “ordinary USING” we mean the USING statement we've seen many times previously, written
as in Figure 625:

USING base_location,register(s) Ordinary USING statement
Figure 625. Ordinary USING statement syntax

The other three forms of USING statement we'll discuss are variations on this basic syntax.

We will use the DSECT describing a typical data record shown in Figure 624 to illustrate several
methods for copying the RecID field from the old record to the new. Each method has shortcom-
ings; we'll see in Section 39.4 that these are easily overcome with Labeled USING statements.

Suppose our program refers to the new and old and instances of the Record DSECT, and that we
must move the RecID field from the Old instance of the record to the New instance, as sketched in
Figure 626:

876 Assembler Language Programming for IBM System z™ Servers Version 2.00

* New record * Old record
Record DSect Record DSect
RecType DS - - - RecType DS - - -
RecID DS CL4 �─── copy ─── RecID DS CL4
- - - etc. - - - - - - etc. - - -
Figure 626. Copying a field from Old record to New

First, we will see examples of five ways we might move the data, specifying only ordinary USING
statements:

• Example 1: Incorrect addressing with ordinary USINGs.

• Example 2: Ordinary USINGs, with manually-specified displacements.

• Example 3: Unusual ordinary USINGs, with manually-specified displacements.

• Example 4: Ordinary USINGs and an intermediate temporary variable.

• Example 5: Duplicated (but differently-named) copies of the DSECT.

For each example, we will assume that

• GR5 and GR7 contain the addresses of the New and Old record instances respectively, and

• a single MVC instruction is the desired efficient solution.

39.3.1. Ordinary USINGs

We will illustrate several approaches to managing the two copies of the Record DSECT with ordi-
nary USING statements. Some of them are clearly incorrect; they are included to show how
(apparently) obvious and simple solutions can lead to unexpected pitfalls.

Example 1 — Obviously Incorrect Usage: Suppose we wrote either of the two following
sequences of statements:

Using Record,5 Using Record,7
Using Record,7 or Using Record,5
MVC RecID,RecID MVC RecID,RecID

We want the Assembler to generate the machine language instruction X'D203 500A 700A'.

Both sequences fail because only GR7 will be used to address the fields of the Record DSECT.
(If two registers are based on the same location, the assembler chooses the higher-numbered reg-
ister for base-displacement resolutions.) Thus, the generated machine language instruction is
X'D203 700A 700A', and the MVC instructions will move the RecID of the Old record onto itself,
producing no result whatever!277

The defects of this first technique are:

• incorrect code.

Example 2 — Correct (But Poor) Usage with Manually-Specified Displacements and
Registers: Suppose now that we now rewrite these simple statements to avoid the previous
problems, by specifying the displacement and base to be used:

Using Record,5 Map New instance of Record
MVC RecID,RecID-Record(7) Move from Old to New

This sequence has the disadvantage that the displacement and base register are assigned by the
programmer, rather than by the assembler. If there is ever a need to reassign base registers (so
that GR7 is given a different use), all references to GR7 must be located and inspected to see if
they need changing.

277 The Assembler can provide a diagnostic message warning about the fact that GR5 has been “nullified” as a base
register to alert you to this situation.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 877

In summary, the defects of this technique are

• more complex coding;
• more difficult maintenance.

Having seen that you can explicitly assign the base and displacement this way, you might be
tempted to use the same technique for the first operand of the MVC instruction:

Using Record,7 Map Old instance of Record
MVC RecID-Record(5),RecID Move from Old to New

Figure 627. Incorrect addressing with ordinary USING

While this is syntactically correct it will undoubtedly be wrong. The syntax rules of the Assem-
bler Language state that if the first operand of an SS-type instruction is written in the form
expr1(expr2), then expr1 provides the implied address and expr2 provides the operand's explicit
Length Expression.

The more serious flaw is that because expr1 is absolute, the first operand will be resolved with
base register zero, and therefore refer to the low-addressed end of storage, and may cause an inter-
ruption during program execution!278 (See Exercise 39.3.2.)

Consider how much more difficult this problem would have been to find if you had used a
common register notation:

USING Record,R7 Map Old Record with GR7
MVC RecID-Record(R5),RecID Move Old to New (based on GR5)

The symbol R5 in the MVC statement could lead many readers to believe that it was a correct
register reference, while in fact it is the Length Expression! It will be a rare coincidence if the
implied length of the RecID field is the same as the value of the symbol R5, so this might be
“correct” by chance (but almost always incorrect) despite the lack of any diagnostics.

The correct form requires a comma in the first operand to indicate that its implied length should
be used:

USING Record,7 Map Old instance of Record
MVC RecID-Record(,5),RecID Move from Old to New

Figure 628. Correct but awkward addressing with ordinary USING

This requires remembering an obscure Assembler Language rule that may not be obvious to
everyone. (See Exercise 39.3.3.)

Another potential trap in manually assigning registers is that USINGs may be in effect for both
the Old and New register numbers, in such a way that a statement may assemble correctly but its
operand(s) may be resolved with respect to the wrong register.

Example 2a — A Digression about Devious Programming: To avoid these syntactic difficulties,
a clever programmer might observe that a manually-calculated displacement can be resolved
without having to specify a base register explicitly by specifying a zero base address and the
desired register:

USING Record,5 Map new instance of Record
USING 0,7 Map old instance of Record (??)
MVC RecID,RecID-Record Move from Old to New

and the MVC instruction will now resolve correctly.279

However, if you forget to DROP register 0, later statements that depend on absolute expressions
resolving with register 0 may not give the correct object code:

278 The Assembler will try to diagnose such low-storage references if you specify the FLAG(PAGE0) option.
279 The Assembler will tell you that your USING with absolute base address zero overlaps with its implicit USING 0,0.

878 Assembler Language Programming for IBM System z™ Servers Version 2.00

- - - More statements (forgetting to drop R7)
LA 1,100 Resolved by GR7! (X'41107064')

Clever programming has its limits.280

Example 3 — Problems with Manual Assignment: Suppose the data structure mapped by the
Record DSECT grows to be larger than 4096 bytes. You would establish two base registers to
map each of the two instances:

LAY 6,4096(0,5) Increment GR5 by 4096 into GR6 ...
USING Record,5,6 Map New instance of Record
LAY 8,4096(0,7) Increment GR7 by 4096 into GR8 ...

* USING Record,7,8 Implicit map of Old instance of A

Then, if you write

MVC RecID,RecID-Record(7) Is (RecID-Record) now > 4095?

The correctness of the second operand depends on whether the manually-assigned displacement
RecID−Record is less than 4095. If not, the displacement will be too large, and the manually-
assigned register (7) will be incorrect. Thus, you might have to write something like this:

MVC RecID,RecID-Record-4096(8) If (RecID-Record) > 4095
Figure 629. Manual coding of base and displacement for a large DSECT

This is obviously error-prone, since it depends on the current size of the Record DSECT and the
known offset of the RecID field; both could change as the program evolves.

In summary, the defects of the techniques in Examples 2 and 3 are

• greater likelihood of undetected error;
• deeper understanding required of language details;
• more complex coding;
• more difficult maintenance.

Example 4 — Correct (But Still Poor) Usage with an Intermediate Temporary: Correct refer-
ences to the specific instances of the Record DSECT can be obtained (apparently) by using an
intermediate temporary storage area:

USING Record,7 Map Old instance of Record
MVC Temp(L'RecID),RecId Move from Old to Temp
USING Record,5 Map New instance of Record
MVC RecId,Temp Move from Temp to New

Unfortunately, this version fails because if two registers are based at the same location, the higher-
numbered register will be used for calculating displacements. Thus, the second MVC instruction
will move the data from Temp back to where it started in the Old record!

The solution for ordinary USINGs is to insert a DROP statement for GR7:

280 To avoid the danger of improper resolutions using base register zero, a very clever programmer observed that setting
a large absolute offset in the USING statement and in the manually calculated displacement avoids contaminating
later resolutions intended for GR0:

USING Record,5 Map New instance of Record
USING 0+X'F999',7 Map Old instance of A (differently)
MVC RecID,RecID-Record+X'F999' Move from Old to New

The code is correct, but at the cost of complexity and obscure coding unlikely to be understood by later maintainers.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 879

USING Record,7 Map Old instance of Record
MVC Temp(L'RecID),RecId Move from Old to Temp
Drop 7 Delete mapping of Old instance
USING Record,5 Map New instance of Record
MVC RecId,Temp Move from Temp to New

In summary, the defects of these two techniques are

• greater likelihood of undetected error;
• deeper understanding required of language details;
• more complex coding;
• less efficient instruction sequences;
• more difficult maintenance.

Example 5 — Correct (But Not Recommended) Usage with Duplicated DSECTs: A pro-
grammer observing the defects of the above methods of managing two instances of the Record
DSECT might decide that the best solution is to make a second copy with a different name, to
avoid having to write confusing USING and DROP statements. Thus, he might define an exact
copy of Record now named Record2:

Record2 DSect , Record description
RecType2 DS CL10 Record type
RecID2 DS CL4 Record ID
RecName2 DS CL40 Name
RecAddr2 DS CL66 Address

- - - etc.
RecLen2 Equ *-Record2 Record length

Then, the desired instruction sequence is much cleaner and simpler:

USING Record2,7 Map Old instance of Record (Record2)
USING Record,5 Map new instance of Record
MVC RecID,RecID2 Move from Old to New

While it gives the desired sequence, this technique can lead to difficulties in maintenance if the
maintainer doesn't appreciate that Record2 must be an exact duplicate of Record. If changes are
made to the Record DSECT, the differences in DSECT and symbol naming make it easy to over-
look the need to make equivalent and identical changes to Record2.

It is also less obvious that the symbols in this code fragment actually refer to the same objects.

In summary, the defects of this technique are

• greater likelihood of maintenance problems;
• greater difficulty in understanding the code.

Example 5a — Another (But Still Not Recommended) Way with Macro-Duplicated DSECTs:
Occasionally, this “duplicate definition” technique is encapsulated in a macro definition. If
someone writes a macro named DDSECT to define copies of the Record DSECT, the macro can
generate as many copies of the DSECT as needed, adding a specified prefix to each of the gener-
ated symbols, as illustrated in the following (where the + sign is the Assembler's indication that
the statement was generated by a macro-instruction):

880 Assembler Language Programming for IBM System z™ Servers Version 2.00

DDSECT Prefix=Old Record DSECT, symbols prefixed 'Old'
+OldRec DSECT
+OldType DS - - -
+OldID DS CL4
+ - - -

DDSECT Prefix=New Record DSECT, symbols prefixed 'New'
+NewRec DSECT
+NewType DS - - -
+NewID DS CL4
+ - - -

USING NewRec,5
USING OldRec,7
MVC NewID,OldID Move RecID from OldRec to NewRec

This technique (the most satisfactory of the approaches discussed so far) ensures that only a single
source file containing the DSECT's definition is maintained (inside the macro). The defects of
this approach are:

• it introduces new symbols and DSECTs into the program, many of which are alternate names
for what is really one object;

• it requires that an additional and complex piece of code (the macro definition) be defined and
maintained;

• all references to the fields in the DSECT must use prefixed names, even when only a single
instance of the object is active (unless a third set of names is generated, with no (or a default)
prefix!).

These examples illustrate one of several problems with Ordinary USING statements:

1. You cannot make “simultaneous” symbolic references to a symbol belonging to multiple of
instances of a given control section (usually, a DSECT).

2. Ordinary USING statements offer only meager solutions to basic problems of symbolic refer-
ence to symbols in multiple instances of a data structure.

We will see other shortcomings that are removed by enhanced USING statements.

Exercises

39.3.1.(1)+ In Figure 629, explain the presence of -4096 and GR8 in the second operand of the
MVC instruction.

39.3.2.(2)+ In Figure 627, these statements are said to be a poor programming practice:

Using Record,7 Map Old instance of Record
MVC RecID-Record(5),RecID Move from Old to New

Assuming that RecID-Record=X'00A', what object code is generated by the MVC instruction?
Why is it wrong?

39.3.3.(2)+ In Figure 628, the final instruction in Example 2 was written

USING Record,7 Map Old instance of Record
MVC RecID-Record(,5),RecID Move from Old to New

Again assuming that RecID-Record=X'00A', what object code is generated by the MVC instruc-
tion? Why is it correct?

39.3.4. In Example 2a on page 878 (and in the footnote at the end of the example), what would
happen if the LA 1,100 instruction had been written instead as

LAY 1,100000 ?

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 881

39.4. Labeled USING Statements and Qualified Symbols

We want to use fully symbolic references to the fields of the records in Figure 624 on page 876,
and not have to use explicit addressing for one of the operands. This capability is provided by
Labeled USING statements, which let you symbolically reference more than one instance of a
given DSECT at the same time.

Unlike ordinary USING statements, Labeled USING statements have a name field entry. The
name field entry of a Labeled USING is called a qualifier, as illustrated in Figure 630.

qualifier USING base_location,register(s) Labeled USING statement
USING base_location,register(s) Ordinary USING statement

Figure 630. Labeled USING statement syntax

A key concept in using Labeled USING statements is the qualifier or qualifying label. A qualifier
follows the rules for proper forms of ordinary symbols. A symbol is defined to be a qualifier only
by its appearance in the name field of a USING statement, and it may not be used as an ordinary
symbol. The presence of this name field symbol distinguishes Labeled USINGs from other
USING statements.

39.4.1. Qualified Symbols

A qualified symbol is a pair of symbols separated by a period: the first symbol is the qualifier and
the second is the ordinary symbol. The syntax for qualified symbols is shown in Figure 631.

qualified_symbol = qualifier.ordinary_symbol
Figure 631. Qualified symbol syntax

Some examples of qualified symbols are:

A.B
Left.Data

Record.Field4

In these examples, the qualifiers are A, Left, and Record; the ordinary symbols are B, Data, and
Field4.

Only symbols may be qualified. Other terms may not be qualified.

We can write USING statements defining these qualifiers as in Figure 632:

A Using Z,5 Qualifier “A”
Left Using Block,9 Qualifier “Left”
Record Using Mapping,3 Qualifier “Record1”
Figure 632. Examples of qualifier definitions

If a qualifying symbol is not present, the USING statement is interpreted by the Assembler as an
ordinary USING. Because qualifiers are kept in the same symbol table as ordinary symbols, they
must be distinct from other symbols. Thus, a qualified symbol like X.X is invalid.

The resolution rule for Labeled USINGs and qualified symbols is simple: if a symbol is qualified,
it may be resolved only with respect to the base register(s) specified in the Labeled USING state-
ment with the qualifier label.

Symbol qualification is no guarantee of addressability! Address resolution still requires that dis-
placements not exceed 4095 (for unsigned 12-bit displacements) or ± 500K (for signed 20-bit dis-
placements), and that the relocation attributes of the addressing expression and the base location
in the USING statement must match.

882 Assembler Language Programming for IBM System z™ Servers Version 2.00

 Remember!

Base-displacement resolution of qualified symbol operands is restricted to
symbolic operands whose qualifier matches the qualifier defined on a
valid Labeled USING statement.

Labeled USINGs provide a clean and simple solution to our problem of copying the RecID field
from the Old record to the New. Suppose the Record DSECT has been defined as in Figure 624
on page 876. By specifying two Labeled USING statements and by writing qualified symbols, the
resulting code is much simpler and easier to understand. Again supposing that GR7 and GR5
contain respectively the addresses of the old and new instances of the record, we can write:

Old �1� USING Record,7 Map old instance of Record
New �2� USING Record,5 Map new instance of Record

MVC New.RecID,Old.RecID Move field from Old to New
�4� �3�

Figure 633. Copying a field with Labeled USINGs

The Labeled USING with qualifier Old (at �1�) qualifies the second occurrence of the symbol
RecID (at �3�). Similarly, the Labeled USING with qualifier New (at �2�) qualifies the first occur-
rence of the symbol RecID (at �4�). Because both occurrences of RecID are qualified, they can be
resolved into base-displacement form only with respect to the register with the corresponding
qualifier, thus generating the desired X'D203 500A 700A'.

Appropriate choices of qualifier names also make the code easier to read and understand!

This example illustrates several advantages of Labeled USINGs:

1. Data objects need be defined only once, no matter how many times they may are referenced
concurrently.

2. All references are fully symbolic, and neither explicit base registers nor manually-calculated
displacements need to be assigned.

3. The desired, efficient solution is simple, direct, and readable.

4. You need not understand the details of instruction syntax or the address resolution rules for
ordinary USING statements.

39.4.2. Dropping a Labeled USING Statement

You can DROP a Labeled USING statement with the DROP statement, but with a qualifier
name in place of the register number:

DROP qualifier
Figure 634. DROP statement for Labeled USING

Thus, to DROP the Labeled USINGs in Figure 633, we would write

Drop Old,New Drop two Labeled USINGs

39.4.3. Labeled USING Statement Summary

Labeled USING statements have interesting properties:

• Though it is written like an ordinary symbol, a qualifier cannot be used both as a qualifier and
as an ordinary symbol.

• No symbol without a qualifier matching the qualifying label can be resolved with that USING.

• Because symbol resolution for unqualified symbols and qualified symbols relies on different
USING information, you could have more than one USING statement active for a particular
base register at the same time. For example:

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 883

Using A,9 Ordinary USING
QQ Using A,9 Labeled USING, qualifier QQ

- - -
LA 0,A+40 Resolved only with Ordinary USING
LA 1,QQ.A+40 Resolved only with Labeled USING
Drop 9 Drop ordinary USING; Labeled still active
LA 2,QQ.A+40 Resolved only with Labeled USING

Figure 635. Concurrently active Ordinary and Labeled USINGs

Implied addresses containing symbols without qualifiers will be resolved with the ordinary
USING, and qualified symbols will be resolved only with the matching Labeled USING. As
Figure 635 shows, the DROP statement deletes the Using Table entry for the ordinary
USING, but the Labeled USING remains in effect.

This style of programming should be avoided because it could cause resolution errors as well
as making the code more confusing and difficult to understand. Don't use more than a single
USING based on a given register.

• DROP statements for Labeled USINGs must be specified by the qualifier, not by the register.

• Normal base-displacement address resolution rules are still in effect:

− The relocation attribute of the qualified symbol's implied address must match one of the
entries in the USING Table before a displacement can be calculated.

− Valid displacements still cannot exceed 4095 (for 12-bit displacements) or ± 500K (for
20-bit displacements).

 Warning

An ordinary and a Labeled USING based on the same register should be
avoided because it is potentially very confusing and error-prone.

Exercises

39.4.1.(2)+ Suppose you write instructions like these:

Using *,12
LA 1,ABC

Qual Using *,9
LA 2,Qual.ABC

* - - -
ABC DS F

What object code will be generated for the two LA instructions?

39.4.2.(2)+ Suppose you write instructions like these:

Qual Using *,9
Using *,6
LA 1,ABC
LA 2,Qual.ABC

* - - -
ABC DS F

What object code will be generated for the two LA instructions? How are the Addressing
Halfwords resolved, and why?

39.4.3.(2)+ Suppose you used the statements in Figure 635 in a program like this:

884 Assembler Language Programming for IBM System z™ Servers Version 2.00

Using A,9 Ordinary USING
QQ Using A,9 Labeled USING, qualifier QQ
*

LA 0,A+40 Resolved only with Ordinary USING
LA 1,QQ.A+40 Resolved only with Labeled USING
Drop 9 Drop ordinary USING; Labeled still active
LA 2,QQ.A+40 Resolved only with Labeled USING

* - - -
A DS XL80

What addressing halfword will be generated for each of the three LA instructions?

39.4.4.(2) Suppose you wrote

A Equ 1024
Qual Using 512,7

LA 3,Qual.A

What do you expect the generated object code to be for the LA instruction?

39.5. Dependent USING Statements

Complex data structures often have sub-structures that are described by their own DSECTs. For
example, in Figure 624 on page 876, the RecAddr field of the Record DSECT describes an
address. Because an address is itself a complex data structure, it should be defined by its own
DSECT, as in Figure 636:

Addr DSect , Address-field dummy section
AddrNum DS CL8 Street number
AddrStrt DS CL22 Street name
AddrApt DS CL4 Apartment number
AddrCity DS CL20 City name
AddrStat DS CL2 State abbreviation
AddrPost DS CL8 Postal code
PostCtry DS CL2 Country code
AddrLen Equ *-Addr Length of address field
Figure 636. Dummy control section for record address

We should immediately rewrite the Record DSECT to utilize the length information in the Addr
DSECT, as shown in Figure 637:

Record DSect , Record description
RecType DS CL10 Record type
RecID DS CL4 Record ID
RecName DS CL40 Name
RecAddr DS CL(AddrLen) Address (length from Addr DSect)
RecPhone DS CL12 Phone number

- - - etc.
- - - etc.

RecYear DS F Processing year
RecDay DS F Processing day of year

- - - etc.
RecLen Equ *-Record Record length
Figure 637. Improved definition of a record description

The only change from Figure 624 is that the length of the RecAddr field is now defined by the
length of the Addr DSECT, rather than by a hand-counted length. This technique should be used
whenever possible.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 885

Now, suppose GR7 contains the address of a record in memory, and we must update the postal
code field AddrPost from the new value stored at NewPost. With ordinary USING instructions,
we could map the address structure with the Addr DSECT, as in Figure 638:

Using Record,7 GR7 maps the entire record structure
LA 9,RecAddr Put address of RecAddr field in GR9
Using Addr,9 Map the address substructure
MVC AddrPost,NewPost Update the postal code
Drop 9 No further updates to Addr fields

Figure 638. Mapping a substructure with a second DSECT

But because we have addressability to the entire Record structure (provided by GR7), we know
the RecAddr field is already addressable. The displacement of the LA instruction with operand
RecAddr will be (RecAddr-Record).281 Unfortunately, we have used a second and unneeded base
register to map the Addr DSECT in the proper position. Assigning an extra register can be quite
inconvenient if many of the general registers are already needed for arithmetic or other addresses.

Thus, we want a way to tell the Assembler that it can use a single base register (GR7 in Figure
638) to address both the Record and Addr structures, while letting us make fully symbolic refer-
ences to fields in the “inner” Addr DSECT. Dependent USINGs let us do this.

39.5.1. Definition of Dependent USING Statements

Dependent USING statements look like ordinary USING statements:

USING base_location,operand2 Ordinary USING (usually!)

but with an important difference!

If the second operand of the USING statement (operand2) is absolute, then it must have a value
between zero and fifteen to designate the base register of an ordinary USING statement.
However, if the second operand is relocatable, it is used as the “base location” at which the first
operand is to be “based” or “anchored”. The USING statement is then a Dependent USING
statement.

This base or anchor location must itself be within the range of, or depend on an existing ordinary
USING statement: implied operand addresses must still be addressable so they can be resolved
into base-displacement form with respect to a declared base register and base location.

The syntax of a Dependent USING statement is therefore:

USING base_location,addressable_location Dependent USING statement
Figure 639. Dependent USING statement syntax

Dependent USINGs let you address multiple DSECTs with a single base register.

39.5.2. Examples of Dependent USING Statements

Dependent USING statements allow any object — normally, a DSECT — to be “anchored” or
“based” at any location already addressable by an existing USING statement.

We can now revise the instructions in Figure 638 to use a Dependent USING instruction and a
single base register, where the two now-unnecessary statements have been “commented out” with
the *** asterisks:

281 We have assumed that the Record DSECT is less than 4096 bytes long. Even if the Record DSECT is much larger,
we can either assign more than one base register to provide addressability to all its fields, or use instructions with
signed 20-bit displacements.

886 Assembler Language Programming for IBM System z™ Servers Version 2.00

Using Record,7 GR7 maps the entire record structure
*** LA 9,RecAddr Put address of RecAddr field in GR9

Using Addr,RecAddr Map the address substructure
MVC AddrPost,NewPost Update the postal code

*** Drop 9 No further updates to Addr fields
Figure 640. Anchoring an internal DSECT with a Dependent USING

One fewer instruction and one fewer base register are needed now.

The Assembler requires the second operand of a Dependent USING to be addressable at the time
the Dependent USING is encountered. This addressability may actually support more than one
Dependent USING. For example, suppose we want to describe two subordinate DSECTs B and
C within an outer DSECT A, as sketched in Figure 641:

Offset
X'000' ┌────────────────────────────┐

│ │ DSECT A
X'020' │ ┌────────────────────────┐ │

│ │B1 DS D │ │ DSECT B
│ │B2 DS D │ │
│ └────────────────────────┘ │

X'030' │ ┌────────────────────────┐ │
│ │C1 DS CL80 │ │ DSECT C
│ │C2 DS XL8 │ │
│ └────────────────────────┘ │
│ │
: :
│ │

X'100' └────────────────────────────┘
Figure 641. Outer DSECT with two nested DSECTs

The Assembler listing extract in Figure 642 shows how addresses of various fields are resolved:

• The ordinary USING at statement 9 maps the location of the outer DSECT A, to provide
addressability for all three DSECTs.

• The Dependent USING at statement 10 anchors DSECT B at offset X'20' from the start of
DSECT A.

• DSECT C is anchored by the Dependent USING at statement 14 at offset X'10' from the start
of DSECT B.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 887

R:F 00000 9 USING A,15 Ordinary: Addr(A) in R15
�1� F 020 00000 00020 10 USING B,A+32 Dependent: B offset X'20' from A

11 *
00058 4100 F028 00008 12 LA 0,B2 B2 at offset X'28' from A

13 *
�2� F 030 00000 00010 14 USING C,B+16 Dependent: C offset X'10' from B

15 *
0005C 4100 F080 00050 16 LA 0,C2 C2 at offset X'80' from A

17 *
00000 18 B DSECT
00000 19 B1 DS D Offset 0 from B
00008 20 B2 DS D Offset 8 from B

21 *
00000 22 C DSECT
00000 23 C1 DS CL80 Offset 0 from C
00050 24 C2 DS XL8 Offset X'50' from C

25 *
00000 26 A DSECT
00000 27 DS XL256

Figure 642. Assembler listing of multiple Dependent USINGs and DSECTs

In statement 10, the Assembler indicates (at �1�) that the anchoring base location of the first
Dependent USING is at offset X'020' from the location specified for base register X'F'. State-
ment 14 shows (at �2�) that the anchoring base location of the second Dependent USING is at
offset X'30'.282 Even though three distinct DSECTs are referenced, only one base register (GR15)
is needed for the two LA instructions.

If the three DSECTs in Figure 641 are mutually independent, they need not be “nested” and can
still be defined to use only a single base register, as sketched in Figure 643:

Offset
X'000' ┌────────────────────────────┐

│ │ DSECT A
│ │
: :
│ │
│ │

X'100' ├────────────────────────────┤
│B1 DS D │ DSECT B
│B2 DS D │

X'110' ├────────────────────────────┤
│C1 DS CL80 │ DSECT C
│C2 DS XL8 │
│C3 DS H │

X'170' └────────────────────────────┘
Figure 643. Three independent data structures with one base register

We can define the three independent data structures mapped by DSECTs A, B, and C with these
statements:

282 Unfortunately, two of the USING statements in Figure 642 use absolute offsets. See Exercise 39.5.4 for a better
approach.

888 Assembler Language Programming for IBM System z™ Servers Version 2.00

B DSect
B1 DS D
B2 DS D

DS 0D Round up length to a doubleword
BLen Equ *-B
C DSect
C1 DS CL80
C2 DS XL8
C3 DS H

DS 0D Round up length to a doubleword
CLen Equ *-C
A DSect

DS XL256
DS 0D Round up length to a doubleword

ALen Equ *-A
Figure 644. Defining DSECTs for three independent data structures

Unlike the DSECT definitions in Figure 642, each DSECT defines a symbol for its length after
rounding to a doubleword boundary. This is a good practice in case you need to allocate storage
for multiple structures to be based on a single base register, because you should ensure proper
alignment of each structure. Suppose we allocate enough storage for all three structures:

TotalLen Equ ALen+BLen+CLen Total amount of storage needed

Now, suppose GR7 contains the address of TotalLen allocated bytes aligned on a doubleword
boundary. We can use one ordinary and two Dependent USINGs to map all three structures:

* 'TotalLen' bytes addressed by GR7
- - -
Using A,7 Map DSECT A first
Using B,A+ALen Map DSECT B following A
Using C,B+BLen Map DSECT C following B
- - -

Figure 645. Defining a mapping of three independent but contiguous data structures

Instructions referencing any of the fields within the three structures will be resolved with base reg-
ister 7, assuming that TotalLen is small enough that a single base register can address all the fields.

39.5.3. Mapping a CSECT as a DSECT

Dependent USINGs let you do very interesting things. For example, suppose you need to con-
struct a message into which several insertions will be made in known positions. First, construct
the message skeletons in a separate CSECT in the same assembly as the Program CSECT:

MsgSkels CSect , Message skeletons
Msg1 DC C'This message for ' Message 1
Msg1To DC C'totototo' Modified field: 'To' name

DC C' is from ' Additional message characters
Msg1From DC C'fromfrom' Modified field: 'From' name
Msg1L Equ *-Msg1 Length of message 1

- - -
- - - Other messages follow

Figure 646. Example of a message-skeleton CSECT

We complete the message in the Program CSECT by first moving the message skeleton from the
MsgSkels CSECT to an output area named OutMsg. Then, the Dependent USING maps the
structure of the skeleton on the OutMsg where the completed message is constructed:

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 889

Program CSect ,
BASR 12,0 Set base register
Using *,12 Provide local addressability
L 10,AddrMsgs Point to messages
L 11,AOutMsg Point to buffer area
Using MsgSkels,10 Addressability for Messages CSECT
Using OutMsg,11 Addressability for OutMsg area
MVC OutMsg(Msg1L),Msg1 Move skeleton to buffer
Drop 10 Don't reference original skeleton
Using Msg1,OutMsg Map original skeleton onto buffer
MVC Msg1To,ToName Move ″To″ name
MVC Msg1From,FromName Move ″From″ name
Drop 11 Done with buffer addressing
- - -

ToName DC CL(L'Msg1To)'You' Addressee name
FromName DC CL(L'Msg1From)'Me' Sender name
AddrMsgs DC A(MsgSkels) Address of Messages CSECT
AOutMsg DC A(OutMsg) Address of OutMsg area

- - -
OutMsg DS CL121 Area for constructing messages
Figure 647. Example of mapping a CSECT as though it is a DSECT

The key statement is the Dependent USING statement:

Using Msg1,OutMsg Map original skeleton onto buffer

directs the Assembler to resolve the first-operand addresses in the two following MVC
instructions with offsets defined in the MsgSkels CSECT, but mapped on the OutMsg area. Note
that when those two MVCs are executed, the MsgSkels CSECT is no longer addressable! The
Dependent USING statement mapping the skeleton constant onto the OutMsg buffer avoids the
need to define a DSECT for each message, and also avoids manually calculating displacements
and assigning base registers.

39.5.4. Dropping Dependent USINGs

Unlike ordinary and Labeled USING statements, you must DROP a Dependent USING by
dropping the ordinary USING on which it depends. For example, in Figure 641 on page 887, we
can't remove addressability to DSECT C separately; we must DROP the USING statement that
provides addressability for all three DSECTs. In Figure 647, to drop the USING in the statement

Using Msg1,OutMsg Map original skeleton onto buffer

we must drop the USING on which it depends:

Drop 11 Drop GR11

because the mapping of Msg1 is anchored at OutMsg which in turn is based on GR11.

We'll see in Section 39.6 how Labeled Dependent USING statements can help.

39.5.5. Dependent USING Statement Summary

Dependent USINGs can provide elegant solutions to problems involving the management of data
structures that are adjacent, nested, or overlapping in storage.

• They provide addressability with a minimum number of registers.

• They allow fully symbolic structure and substructure mappings with independent DSECTs.

• They encourage simple mappings of complex data structures.

• They let you map “variant” records in which the structure of parts of the record depend on
preceding data values, with different mappings along different code paths.

One way to view the difference between ordinary Dependent USINGs is by the way the first-
operand location is “based” or “anchored”.

890 Assembler Language Programming for IBM System z™ Servers Version 2.00

• For ordinary USINGs, the first operand is “based” on the base register specified by the second
operand. Instructions set the register contents at execution time.

• For dependent USINGs, the first operand is “based” or “anchored” on the location specified
by the second operand; this location must already be addressable. The relative position of the
first operand is set at assembly time by the Assembler.

Exercises

39.5.1.(2)+ Using the instructions sketched in Figures 646 and 647, create a program that can
be correctly assembled. Study the displacements in the MVC instructions to verify that the
intended data is moved to the correct fields.

39.5.2.(2) In Figure 643, will it make any difference if the three DSECTs are arranged in a dif-
ferent order?

39.5.3.(2)+ The first paragraph in Section 39.5.3 says that the MsgSkels CSECT containing the
message skeletons is in the same assembly as the Program CSECT. What will happen if it is in a
separate assembly?

39.5.4.(2)+ Revise the DSECT statements in Figure 642 on page 888 to make all references
fully symbolic, without offsets like A+32 and B+16.

39.6. Labeled Dependent USING Statements

Labeled Dependent USINGs combine the benefits of Labeled USINGs and Dependent USINGs:

• multiple copies of an object may be active simultaneously (Labeled)

• many objects may be addressed with a single base register (Dependent).

We start with several examples that illustrate typical problems when we use ordinary USINGs,
and how easily we can solve them with Labeled Dependent USINGs.

The syntax of a Labeled Dependent USING requires a qualifying label in the name field of the
USING statement, and a relocatable second operand indicates where the first operand is to be
“anchored” or “based”.

qualifier USING base_location,addressable_location Labeled Dependent USING
Figure 648. Labeled Dependent USING statement syntax

As with unlabeled Dependent USINGs, the second operand must be addressable with reference to
an ordinary USING statement somewhere earlier in the program.

Suppose we have a data structure containing several data items, including two identical substruc-
tures described by a single DSECT. The substructure is defined by a DSECT named Inner:

Inner DSect ,
IVarJ DS XL5
IVarK DS XL7
InnerLen Equ *-Inner Length of Inner structure

and the containing data structure is described by a DSECT named Outer:

Outer DSect ,
OutVarA DS CL12
Out_Inr1 DS XL(InnerLen) First substructure
OutVarB DS CL33
Out_Inr2 DS XL(InnerLen) Second substructure
OutVarC DS XL3
OuterLen Equ *-Outer Length of Outer structure
Figure 649. Nesting two identical structures within a third

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 891

Out_Inr1 and Out_Inr2 are the positions within the Outer DSECT where the two sub-structures
are mapped.

We will examine three approaches to managing the description and addressing of the data ele-
ments in these structures:

• first, we consider ordinary USINGs and the problems they present;

• second, we examine Labeled USINGs;

• third, we will see how Labeled Dependent USINGs provide a solution free of the defects of
the two previous approaches.

39.6.1. Nesting Structures Addressed with Ordinary USINGs

To address the three structures with ordinary USINGs, we need to provide three base registers
and three USING statements. As in Section 39.4, we want to manage two active instances of the
Inner DSECT, but only one active instance is allowed with ordinary USINGs.

We could make a second copy of the Inner DSECT, and then address it and the “original” copy
with separate USINGs.

Znner DSect ,
ZVarJ DS XL5
ZVarK DS XL7
ZnnerLen Equ *-Znner Length of Znner structure

The three DSECTs can now be addressed with statements like the following:

Using Outer,10 GR10 points to the Outer DSECT
LA 11,Out_Inr1 GR11 points to 1st copy of Inner
Using Inner,11 USING for 1st copy of Inner
LA 12,Out_Inr2 GR12 points to 2nd copy of Inner
Using Znner,12 USING for 2nd copy (now named Znner)

We've already described the defects and difficulties with ordinary USINGs in this context: mainte-
nance and readability problems are much greater when more than one name is used for the same
thing.

39.6.2. Nesting Structures Addressed with Labeled USINGs

A somewhat better solution involves Labeled USINGs. They allow the two instances of the
Inner DSECT to be addressed using a single definition of Inner, eliminating any need for a Znner
DSECT:

Using Outer,10 GR10 points to Outer DSECT
LA 11,Out_Inr1 GR11 points to 1st copy of Inner

In1 Using Inner,11 Labeled USING for 1st copy of Inner
LA 12,Out_Inr2 GR12 points to 2nd copy of Inner

In2 Using Inner,12 Labeled USING for 2nd copy of Inner

The implied addresses in both LA instructions will be resolved with register 10 as the base reg-
ister.

The remaining defect in this example is the need to use three addressing registers when only one is
actually needed. Labeled Dependent USINGs provide the desired saving.

39.6.3. Nested Structures Addressed with Labeled Dependent USINGs

The best solution involves Labeled Dependent USINGs: they allow the entire structure and all its
components to be addressed with the minimum number of registers, and with proper naming for
all components.

Assume again that the address of the containing Outer structure is placed in GR10; then, we can
write:

892 Assembler Language Programming for IBM System z™ Servers Version 2.00

Using Outer,10 GR10 addresses Outer DSECT
In1 Using Inner,Out_Inr1 Labeled Dependent USING for 1st Inner
In2 Using Inner,Out_Inr2 Labeled Dependent USING for 2nd Inner
Figure 650. Addressing two nested DSECTs with Labeled Dependent USINGs

The first instance of Inner is “anchored” at Out_Inr1, and references to its components are made
using qualifier In1. Similarly, the second instance of Inner is anchored at at Out_Inr2, and its
components can be qualified with In2. References to the fields in the three structures can then be
made freely, and only a single register is needed to address the entire structure. Figure 651 shows
how references can be made to fields within the three DSECTs:

CLC In1.IVarK,In2.IvarK Compare the two IVarK fields
- - -
MVC OutVarC,In2.IVarK Copy 3 bytes of 2nd IVarK
- - -
PACK In1.IvarK,OutVarC Pack OutVarC to 1st IVarK

Figure 651. Data in nested DSECTs addressed with Labeled Dependent USINGs

39.6.4. Multiple Nesting of Identical Structures

As the number and nesting of data structures increases, addressing the components becomes more
difficult. For example, suppose we wish to create a data structure in which an outermost struc-
ture described by the Top DSECT contains three copies of a structure described by the Mid
DSECT, and each of those contains three copies of a structure described by the Bot DSECT. The
complete structure might look somewhat like Figure 652, where the three Mid DSECTs are identi-
fied as M1, M2, and M3, and the Bot DSECTs are identified as B1, B2, and B3.

┌────────────┬────────────┬────────────┐
│ Top │ Mid M1│ Bot B1│
│ │ ├────────────┤
│ │ │ Bot B2│
│ │ ├────────────┤
│ │ │ Bot B3│
│ ├────────────┼────────────┤
│ │ Mid M2│ Bot B1│
│ │ ├────────────┤
│ │ │ Bot B2│
│ │ ├────────────┤
│ │ │ Bot B3│
│ ├────────────┼────────────┤
│ │ Mid M3│ Bot B1│
│ │ ├────────────┤
│ │ │ Bot B2│
│ │ ├────────────┤
│ │ │ Bot B3│
└────────────┴────────────┴────────────┘
Figure 652. Multiply-Nested Data Structures

If ordinary USINGs address all components of this set of structures, we will need thirteen base
registers! This is beyond the capabilities of most programs, so that we would be forced to use
“unnatural” solutions if we are restricted to ordinary USING statements.

Dependent USINGs will help only a little, because of the high degree of repetition among the
inner structures.283

283 This example is rather artificial, but helps show the power of Labeled Dependent USINGs. Two more-realistic exam-
ples are described in Sections 39.6.6 and 39.7.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 893

Suppose the three DSECTs named Top, Mid, and Bot in Figure 652 are described by the DSECTs
in Figure 642:

Bot DSect , Third-level DSECT (bottom level)
X1 DS XL5 First data element
X2 DS XL5 Second data element

DS 0D Round length to a doubleword
L_Bot Equ *-Bot Length of Bot DSect

Mid DSect , Second-level DSECT (middle level)
MidVar1 DS CL40 Data in second-level DSect
B1 DS XL(L_Bot) First third-level DSect
MidVar2 DS CL60 Data in second-level DSect
B2 DS XL(L_Bot) Second third-level DSect
MidVar3 DS CL20 Data in second-level DSect
B3 DS XL(L_Bot) Third third-level DSect
MidVar4 DS CL30 Data in second-level DSect

DS 0D Round length to a doubleword
L_Mid Equ *-Mid Length of Mid DSect

Top DSect , First-level DSECT (top level)
M1 DS XL(L_Mid) First second-level DSect
M2 DS XL(L_Mid) Second second-level DSect
M3 DS XL(L_Mid) Third second-level DSect

DS 0D Round length to a doubleword
L_Top Equ *-Top Length of Top DSect
Figure 653. Doubly Nested DSECT definitions

Addressing this structure with ordinary USINGs is nearly impossible to do cleanly, and a solution
with Labeled USINGs also requires thirteen registers to address the thirteen different active
DSECTs.

Labeled Dependent USINGs provide the only manageable solution. Though the example in
Figure 654 looks somewhat complicated, it has a simple basic structure.

Using Top,7 1 Top level
* |
Mid1 Using Mid,M1 �1� | 2 Map Mid into Top at M1
* | | Bottom level:
M1B1 Using Bot,Mid1.B1 �2� | | 3 Map Bot into Mid1 at B1
M1B2 Using Bot,Mid1.B2 �2� | | 3 Map Bot into Mid1 at B2
M1B3 Using Bot,Mid1.B3 �2� | | 3 Map Bot into Mid1 at B3
* | 2 Middle level:
Mid2 Using Mid,M2 �1� | | Map Mid into Top at M2
* | | Bottom level:
M2B1 Using Bot,Mid2.B1 �3� | | 3 Map Bot into Mid2 at B1
M2B2 Using Bot,Mid2.B2 �3� | | 3 Map Bot into Mid2 at B2
M2B3 Using Bot,Mid2.B3 �3� | | 3 Map Bot into Mid2 at B3
* | 2 Middle level:
Mid3 Using Mid,M3 �1� | | Map Mid into Top at M3
* | | Bottom level:
M3B1 Using Bot,Mid3.B1 �4� | | 3 Map Bot into Mid3 at B1
M3B2 Using Bot,Mid3.B2 �4� | | 3 Map Bot into Mid3 at B2
M3B3 Using Bot,Mid3.B3 �4� | | 3 Map Bot into Mid3 at B3
Figure 654. Addressing doubly nested DSECT definitions

The three Labeled Dependent USING statements in Figure 654 (tagged �1�) map the middle-level
DSECT Mid into the outermost DSECT Top. Because there will be three instances of Mid simul-
taneously active, the qualifiers Mid1, Mid2, and Mid3 distinguish the first, second, and third

894 Assembler Language Programming for IBM System z™ Servers Version 2.00

instances of Mid within Top. The three instances of Mid are anchored at the positions within Top
defined by the fields named M1, M2, and M3 respectively.

The three innermost instances of the Bot DSECT are mapped into the three instances of Mid simi-
larly. For example, the three Labeled Dependent USING statements for the first instance of Mid
(tagged �2�) anchor the three instances of Bot within Mid at the positions named B1, B2, and B3
respectively. (Referring to Figure 652 may help.)

Because there will be three different active instances of those labels, we use the qualifier Mid1 to
qualify the references to B1, B2, and B3. Thus the second operand of each of the three Labeled
Dependent USING statements tagged �2� is qualified with Mid1. The qualifiers on those three
USINGs, M1B1, M1B2, and M1B3, are used to qualify references to the first three of the nine pos-
sible instances of the fields X1 and X2. The qualifier M1B3 means “first Mid and third Bot”. This
shows how appropriately chosen qualifiers can help you to understand complex structures more
easily.

The mappings of the second and third sets of instances of the Bot DSECT are defined similarly, in
the sets of three Labeled Dependent USINGs tagged �3� and �4�. The qualifiers M2B1 through
M3B3 are then used to qualify references to the fields within the DSECT named Bot.

We can then write instructions to reference these fields, with appropriate qualifiers, as illustrated
in Figure 655. All symbolic references will be resolved with the base register (or registers) specified
in the USING statement for Top.

* Move fields 'X1' and 'X2' within 'Bot' DSECTs
MVC M1B1.X1,M1B1.X2 Within bottom-level DSECT M1B1
MVC M1B3.X2,M1B1.X1 Across bottom-level DSECTs in M1
MVC M3B2.X2,M3B3.X2 Across bottom-level DSECTs in M3
MVC M2B1.X1,M3B2.X2 Across bottom-level DSECTs in M2, M3

* Move complete 'Bot' DSECTs within 'Mid' DSECTs
MVC Mid3.B1,Mid3.B3 Within mid-level DSECT Mid3
MVC Mid1.B3,Mid2.B1 Across mid-level DSECTs Mid1, Mid2

* Copy fields across 'Mid' DSECTs
MVC Mid2.MidVar1,Mid3.MidVar1 Across two middle DSECTs

* Move complete 'Mid' DSECTs within 'Top' DSECT
MVC M1,M2 Across top-level DSECTs Top

Figure 655. Using the Labeled Dependent USINGs to move data

As you can appreciate, coding instructions like these with ordinary USING statements would be
much more difficult to write and understand.

 Remember!

Qualified symbols may be used to declare the “anchor” operand in a
Labeled Dependent USING statement that itself defines another qualifier!

39.6.5. Mapping an Array of Identical Data Structures

Suppose you have a small array of identical data structures, and you want to refer to fields within
different array elements. First, you could define a DSECT describing the data structure:

Struc DSect , Structure of an array element
StrF1 DS CL8 First field
StrF2 DS F Second field
StrF3 DS A Third field
LStruc Equ *-Struc Structure Length

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 895

Then, suppose GR9 contains the address of the first element of the array. You can then map the
first few elements of the array with Labeled Dependent USINGs:

EL1 Using Struc,9 Map first element
EL2 Using Struc,EL1.Struc+1*LStruc Map second element
EL3 Using Struc,EL1.Struc+2*LStruc Map third element
EL4 Using Struc,EL1.Struc+3*LStruc Map fourth element
EL5 Using Struc,EL1.Struc+4*LStruc Map fifth element

- - - etc.

Then, you can refer to fields within each element of the array:

L 1,EL3.StrF2 Get field 2 from element 3
A 1,EL5.StrF3 Add field 3 from element 5
MVC EL2.StrF1,EL4.StrF1 Move field 1 from element 4 to 2

This technique is limited to small arrays because the number of Labeled Dependent USING
statements grows with the number of elements to be referenced. If you need to refer to fields in
two widely separated elements, it may be easier to assign a base register to each and map the
elements with Labeled USINGs instead.

39.6.6. Two MVS Data Control Blocks (DCBs) in a Program

This small example shows how you can benefit from Labeled Dependent USINGs in a program,
where the program base register also addresses two embedded DSECT-mapped structures.

Many programs contain two or more Data Control Blocks (DCBs) for input and output data
sets, and are often coded in the same program as the instructions that refer to them. If only
ordinary USINGs are available, (at least) three registers must be used for addressability: one (or
more) for the program itself, and one for each DCB. Furthermore, only one of the DCBs can be
mapped with the IBM-provided IHADCB DSECT284 because both cannot be mapped simultane-
ously with distinct registers.

With ordinary USING statements, a typical instruction sequence to copy the two-byte logical
record length (DCBLRECL) from the input DCB to the output DCB might look like this:

Using *,12 Program base register
- - -
LA 3,OutDCB Point GR3 to Output DCB
LA 2,InDCB Point GR2 to Input DCB
Using IHADCB,2 Map Input DCB
MVC DCBLRECL-IHADCB(,3),DCBLRECL Copy InDCB LRECL to OutDCB
- - -

InDCB DCB DDNAME=..., etc. Input DCB
OutDCB DCB DDNAME=..., etc. Output DCB

- - -
DCBD ...,etc. Generate IHADCB DSECT

Figure 656. Addressing two DCBs with ordinary USINGs

Three registers must be assigned, and one of the operands in the MVC instruction must be
written with explicitly assigned base and displacement.

It's better to make symbolic references to fields in both DCBs at the same time. Iin Figure 657,
the two Labeled Dependent USINGs with qualifiers In and Out let you make fully symbolic ref-
erences to both DCBs, and without needing additional base registers.

284 Generated by the DCBD macro. (IHADCB is sometimes nicknamed “I Had A Control Block”.)

896 Assembler Language Programming for IBM System z™ Servers Version 2.00

Using *,12 Program base register
- - -

In �1� Using IHADCB,InDCB Labeled Dependent USING
Out �2� Using IHADCB,OutDCB Labeled Dependent USING

- - -
MVC Out.DCBLRECL,In.DCBLRECL Addresses resolved with GR12

�2� �1�
- - -

InDCB DCB DDNAME=..., etc. Input DCB
OutDCB DCB DDNAME=..., etc. Output DCB

- - -
DCBD ...,etc. Generate IHADCB DSECT

Figure 657. Addressing instructions and DCBs with one register

The base address in the first USING can be “anchored” at any addressable location that provides
addressability to the two DCBs and the MVC instruction.

To DROP a Labeled Dependent USING, simply DROP the qualifier, as is done for a Labeled
USING.

Exercises

39.6.1.(2) Referring to Figure 652, sketch the movement of data caused by the instructions in
Figure 655.

39.6.2.(1) In Figure 649, write ordinary USING statements to provide addressability to all three
DSECTs.

39.6.3.(2)+ In Figures 653 and 654, what are the offsets from the origin of the Top DSECT of
these qualified symbols?

• M1B1.X1
• Mid1.MidVar1
• M3B2.X2
• Mid3.MidVar4

39.6.4.(3)+ Create a complete program and assemble the statements in Figures 653, 654, and
655. Study the generated object code to verify that all addressing halfwords are generated cor-
rectly.

39.7. Example of a Large “Personnel-File” Record (*)

The power of Dependent and Labeled Dependent USINGs is most evident when you must
handle complex data records, especially when the structure of fields in later parts of the record
depends on data values in earlier fields, or where repeated identically-structured fields (mapped by
the same DSECT) appear several times within the record's structure.

Note: This example, while rather complex, shows how you can use the Assembler's Dummy
Control Sections and Labeled Dependent USINGs for tasks once thought to be manageable only
by a high-level language.

Suppose our program must refer to various fields in records maintained in a personnel file. Each
record contains information about an employee, and fields within the record contain different
kinds of information.

First, we define the layout of the employee record with an Employee DSECT. All symbols start
with the letter E.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 897

Employee DSect , Employee record
EPerson DS CL(PersonL) Person field
EHire DS CL(DateL) Date of hire
EWAddr DS CL(AddrL) Work (external) address
EPhoneW DS CL(PhoneL) Work telephone
EPhoneF DS CL(PhoneL) Work Fax telephone
EMarital DS X Marital Status
ESpouse DS CL(PersonL) Spouse field
E#Deps DS PL2 Number of dependents
EDep1 DS CL(PersonL) Dependent 1
EDep2 DS CL(PersonL) Dependent 2
EDep3 DS CL(PersonL) Dependent 3
EmployeL EQU *-Employee Length of Employee record
Figure 658. Define a personnel-file record

The record contains information about the employee: a description of the person, the employee's
spouse and first three dependents, work address, date of hire, work telephone, and so forth. Space
is provided in the Employee DSECT for several other “nested” or “overlaid” DSECTs described
below.

The description of each person (employee, spouse, dependents) is similarly defined by a Person
DSECT shown in Figure 659:

Person DSect , Define a ″Person″ field
PFName DS CL20 Last (Family) name
PGName DS CL15 First (Given) name
PInits DS CL3 Initials
PDoB DS CL(DateL) Date of birth
PAddr DS CL(AddrL) Home address
PPhone DS CL(PhoneL) Home telephone number
PSSN DS CL9 Social Security Number
PSex DS CL1 Gender
PersonL EQU *-Person Length of Person field
Figure 659. Employee-record Person DSECT

The fields in the Person DSECT describe their name, date of birth, home address and telephone,
and other items. Again, space has been reserved for three other “nested” DSECTs describing a
date, an address, and a telephone number.

Three more DSECTs might be defined as follows. First, the Date DSECT:

Date DSect , Define a calendar date field
Year DS CL4 YYYY
Month DS CL2 MM
Day DS CL2 DD
DateL EQU *-Date Length of Date field

ORG Date
DateF DS 0CL(DateL) Full YYYYMMDD date field

ORG ,
Figure 660. Employee-record Date DSECT

The last three statements are used to define the symbol DateF as a single field containing the
entire contents of the three Date fields.

The Addr DSECT, describing a postal address, is defined in a similar way:

898 Assembler Language Programming for IBM System z™ Servers Version 2.00

Addr DSect , Define an address field
AStr# DS CL30 Street number
APOBApDp DS CL15 P.O.Box, Apartment, or Department
ACity DS CL24 City name
AState DS CL2 State abbreviation
AZip DS 0CL9 U.S. Post Office Zip Code
AZipP DS CL5 Primary Zip Code
AZipX DS CL4 Secondary Zip Code extension
AddrL EQU *-Addr Length of Address field

ORG Addr
AddrF DS 0CL(AddrL) Full address structure

ORG ,
Figure 661. Employee-record Address DSECT

Again, the last three statements are used to define the symbol AddrF as a single field containing
the entire contents of all the Addr fields.

Finally, we define the Phone DSECT, describing a (U.S.) commercial telephone number:

Phone DSect , Define a Telephone field
PhCtry DS CL2 Country code
PhArea DS CL3 Area Code
PhLocal DS CL7 Local number
PhExt DS CL4 Extension
PhoneL EQU *-Phone Length of Phone field

ORG Phone
PhoneF DS 0CL(PhoneL) Full telephone number structure

ORG ,
Figure 662. Employee-record Phone DSECT

As before, the last three statements define the symbol PhoneF to name a single field containing the
entire contents of all the Phone fields.

At this point, it's worth sketching the nesting of these various DSECTs.

• The Date DSECT appears at two different levels of nesting: the Date-of-Hire field (EHire) in
the Employee DSECT is nested two levels deep, and the Date-of-Birth fields (PDoB) in each
Person DSECT are nested three levels deep (because the Person DSECT is nested two levels
deep in the Employee DSECT).

• The Addr DSECT is nested two levels deep (as the employee's work address), and three levels
deep (as the home-address field (PAddr) within each Person DSECT).

• Finally, the Phone DSECT is also nested two levels deep (PPhone, for the employee's home)
and three levels deep (EPhoneW, the employee's work number).

These nesting levels are shown in the upper right corners of the boxes in Figure 663.

While this example may seem a bit complex, we will use it again in discussing Labeled Dependent
USINGs, where the full power of those statements can be shown.

Assume that the Employee, Person, Date, Addr, and Phone structures have been defined as illus-
trated in Figures 658 through 662.

First, we show how Dependent USINGs can help with mapping this structure. Suppose such an
employee record has been placed in memory and its address is in GR10; we now wish to manipu-
late various fields within the record. The necessary DSECT addressing can be established as
follows:

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 899

Employee ┌──Employee─────────────────────────1─┐
| EPerson │┌──Person─────────────────────────2─┐│
| | PFName ││ ││
| | PGName ││ ││
| | PInits ││ ││
| | PDoB ││┌──Date─────────────────────────3─┐││
| | | Year │││ │││
| | | Month │││ │││
| | | Day ││└──End of Date────────────────────┘││
| | PAddr ││┌──Addr─────────────────────────3─┐││
| | | AStr# │││ │││
| | | APOBApDp │││ │││
| | | ACity │││ │││
| | | AState │││ │││
| | | AZip ││└──End of Addr────────────────────┘││
| | PPhone ││┌──Phone────────────────────────3─┐││
| | | PhArea │││ │││
| | | PhLocal │││ │││
| | | PhExt ││└──End of Phone───────────────────┘││
| | PSSN ││ ││
| | PSex │└──End of Person────────────────────┘│
| EHire │┌──Date───────────────────────────2─┐│
| | Year ││ ││
| | Month ││ ││
| | Day │└──End of Date──────────────────────┘│
| EWAddr │┌──Addr───────────────────────────2─┐│
| | AStr# ││ ││
| | APOBApDp ││ ││
| | ACity ││ ││
| | AState ││ ││
| | AZip │└──End of Addr──────────────────────┘│
| EPhoneW │┌──Phone──────────────────────────2─┐│
| | PhArea ││ ││
| | PhLocal ││ ││
| | PhExt │└──End of Phone─────────────────────┘│
| EPhoneF │┌──Phone──────────────────────────2─┐│
| | PhArea ││ ││
| | PhLocal ││ ││
| | PhExt │└──End of Phone─────────────────────┘│
| EMarital │ │
| ESpouse │┌──Person─────────────────────────2─┐│
| | PFName ││ ││
| | PGName ││ ││
| (omitted) :: (and so forth) ::
| | | │└──End of Person────────────────────┘│
| E#Deps │ │
| EDep1 │┌──Person─────────────────────────2─┐│
| | PFName ││ ││
| | PGName ││ ││
| | (omitted) :: (and so forth) ::
| | │└──End of Person────────────────────┘│
| (omitted) : (and so forth) :
| │ │
| └──End of Employee────────────────────┘
Figure 663. DSECT nesting in an employee record

900 Assembler Language Programming for IBM System z™ Servers Version 2.00

USING Employee,10 R10 points to Employee record
USING Person,EPerson Anchor Person DSECT at EPerson
USING Date,PDoB Anchor Date DSECT at PDoB field
USING Addr,PAddr Anchor Addr DSECT at PAddr field
USING Phone,PPhone Anchor Phone DSECT at PPhone field

Figure 664. Anchoring various DSECTs within Employee record

The five USING statements in Figure 664 provide addressability to five different DSECTs:

• The Employee DSECT is based on an ordinary USING statement with base register GR10. All
other implied address resolutions within the Employee DSECT will be resolved using GR10 as
the base register.

• The Person DSECT is anchored by the first Dependent USING at the Eperson field in the
Employee DSECT.

• Within the Person DSECT, the Date DSECT is anchored by the second Dependent USING
at the PDoB field in the Person DSECT.

• Within the Person DSECT, the Addr DSECT is anchored by the third Dependent USING at
the PAddr field in the Person DSECT.

• Within the Person DSECT, the Phone DSECT is anchored by the fourth and last Dependent
USING at the PPhone field in the Person DSECT.

All symbolic references to fields in any of the five DSECTs will be resolved with a single base
register, so long as the size of the Employee record does not exceed 4096 bytes. If it does, the
problem is easy to fix: simply add another base register to the ordinary USING statement in
Figure 664, and another 4096 bytes will be addressable automatically.

We can now use these definitions to access and manipulate some fields described by those five
DSECTs, as in Figure 665:

CLC PGname,Input_Name Compare record name to input
- - -
MVC PhExt,=CL(L'PhExt)' ' Blank phone extension field
- - -
CLC AZipP,=C'95141' Check for a specified Postal Zip Code

Figure 665. Manipulating fields within an Employee record

The primary limitation of the Dependent USINGs shown in this example is that only a single
instance of each DSECT is addressable at any one time. In many applications this may be ade-
quate; if not, Labeled Dependent USINGs will help.

If ordinary USING statements had been required in Figure 664, the resulting burden on the
general registers could have been severe. Statements such as these might have been required:

USING Employee,10 R10 points to Employee record
LA 9,Eperson Address of EPerson field
USING Person,9 Anchor Person DSECT at EPerson field
LA 8,PDoB Address of PDoB field
USING Date,8 Anchor Date DSECT at PDoB field
LA 7,PAddr Address of PAddr field
USING Addr,7 Anchor Addr DSECT at PAddr field
LA 6,PPhone Address of PPhone field
USING Phone,6 Anchor Phone DSECT at PPhone field

Figure 666. Addressing DSECTs within Employee record with ordinary USINGs

The coding is likely to be less efficient, and the number of opportunities for misunderstanding and
error has also increased.

Now, we will consider addressing multiple active instances of the inner structures in this Employee
record. We assume that the program has placed the Employee record into memory at an address
referenced by GR10 again.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 901

39.7.1. Personnel-File Record Example: Comparing Birth Dates

Suppose we must compare the birth dates of the employee and the employee's spouse. Because
the birth date is a component of the Person DSECT, we must establish mappings of the two
instances of that DSECT. In Figure 667 this is done with two Labeled Dependent USING state-
ments:

* Example 1: Compare Employee and Spouse Family Dates of Birth

USING Employee,10 Assume R10 points to the record

PE �1� USING Person,EPerson Overlay Person DSECT on Empl. field
PS �2� USING Person,ESpouse Overlay Person DSECT on Spouse field

CLC PE.PDoB,PS.PDoB Compare Employee/Spouse birth dates
�1� �2�

Figure 667. Comparing dates of birth in Employee record

The first Labeled Dependent USING statement (�1�) maps the Person structure onto the
Employee record at the position defined by EPerson with qualifier PE; this describes information
about the employee. The second Labeled Dependent USING statement (�2�) maps the Person
structure onto the Employee record at the position defined by ESpouse with qualifier PS, describing
information about the employee's spouse.

The CLC instruction compares the dates. Both instances of the Person structure are nested at the
same level within the Employee structure, so that similar styles of qualification are used for the two
occurrences of the symbol PDoB.

39.7.2. Personnel-File Record Example: Comparing Different Dates

Suppose our second requirement is to check the employee record to see if the date of birth of the
first dependent is later than the employee's date of hire. In this case, we must deal with two dif-
ferent levels of nesting of the Date structure: one (the employee's date of hire) is nested directly
within the Employee DSECT at the position named EHire, while the birth date of the first
dependent is nested in the Employee DSECT at position EDep1 within the first-dependent Person
DSECT at position PDoB. Thus, we will need additional Labeled Dependent USINGs to properly
establish addressability to the PDoB field.

* Example 2: Compare Date of Hire to Birth Date of Dependent 1

EHD �3� USING Date,EHire Overlay Date DSECT on Date of Hire

PD1 �4� USING Person,EDep1 Overlay Person DSECT on Dependent 1
DD1 �5� USING Date,PD1.PDoB Overlay Date DSECT on Dependent 1

�4�

CLC EHD.DateF,DD1.DateF Compare hire date to Dep 1 DoB
�3� �5�

DROP EHD,DD1 Remove both date associations
Figure 668. Comparing date fields in different parts of an Employee record

In order to map the two instances of the Date DSECT, we first issue a Labeled Dependent using
with qualifier EHD to describe the employee's date of hire (at EHire, �3�). Then, to map the first
dependent's date of birth, we must first map a Person DSECT onto the employee record (at
EDep1, �4�) with qualifier PD1. Finally, within that Person DSECT, we describe the dependent's
date of birth by mapping the Date DSECT onto the Person structure (at PDoB, �5�) with qualifier
DD1.

The CLC instruction refers to two complete date fields DateF, qualified to associate one with the
date of hire and the other with the first dependent's date of birth.

902 Assembler Language Programming for IBM System z™ Servers Version 2.00

This example, while not obvious at first encounter, is worth some study: it shows how you can
use Labeled Dependent USINGs to map very complex structures in a natural, readable way that
does not require you to understand what pointers may have been established in which registers
many lines earlier in the program.

Note that the DROP statement, by specifying the two qualifiers, removes the mappings of both
Date DSECTs.

39.7.3. Personnel-File Record Example: Copying Addresses

Suppose our third requirement is to update the employee record so that the second dependent's
address is made to be the same as that of the employee. In this case, the addresses are at the same
level of nesting: the person's home address is nested within the Person DSECT at the position
Labeled PAddr. This means that we must provide addressability to two different Addr DSECT
instances, as shown in Figure 669.

* Example 3: Copy Employee Address to Dependent 2 address

AE �6� USING Addr,PE.PAddr Overlay Addr DSECT on Employee name
�1�

PD2 �7� USING Person,EDep2 Overlay Person DSECT on Dependent 2
AD2 �8� USING Addr,PD2.PAddr Overlay Addr DSECT on Dep. 2 Person

�7�

MVC AD2.AddrF,AE.AddrF Copy Employee Addr to Dependent 2
�8� �6�

DROP PD2 Remove all Dependent-2 associations
Figure 669. Copying addresses with an Employee Record

This technique is like that of the previous example: we establish addressability to the instances of
the Addr DSECT within the two instances of the Person DSECT, one for the employee at
EPerson, qualified with PE (�1�) in Figure 666, and one for the second dependent at EDep2, quali-
fied with PD2 (�7�).

Within the two instances of the Person DSECT are the two instances of the Addr DSECT, one for
the employee at PE.PAddr, qualified by AE (�6�), and one for the second dependent at PD2.PAddr
(�7�), qualified by AD2 (�8�). The move instruction then uses the “address qualifiers” AE and AD2
to qualify the names of the field to be moved, AddrF.

The DROP statement specifies qualifier PD2. Because the Labeled Dependent USING with the
AD2 qualifier was based (or “anchored”) on that with qualifier PD2, dropping PD2 automatically
causes AD2 to be dropped also.

Exercises

39.7.1.(1)+ What are the lengths of the Date, Addr, and Phone DSECTs?

39.7.2.(2)+ Using the values you found in Exercise 39.7.1, find the lengths of the Person and
Employee DSECTs.

39.7.3.(2)+ Assemble a program containing the five DSECTs used in the personnel record and
the statements in Figures 664, 667, 668, and 669. Study the generated object code to see how
the single ordinary USING statement provides a base register for all the instructions.

39.7.4.(2)+ Create a definition of a 95-byte data structure named Person containing these items,
where their lengths are shown in parentheses:

• Name, consisting of
− Family name (20)
− Given name (15)

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 903

− Initial (1)
• Address, consisting of

− Number (5)
− Street name (18)
− Apartment number (3)
− City (15)
− State (13)
− Postal ZIP code (5)

1. First, define each field using EQU statements as an offset from the symbol Person.
2. Second, define each field with DS statements.
3. Third, define each field in a Dummy Control Section named Person.

39.7.5.(2)+ Suppose the last three statements in Figure 660 are replaced by

DateF Equ Date,DateL,C'C'

Will all symbols in the Date DSECT have identical attributes? (Write and assemble a short
program to verify your answer.)

39.8. Summary

Enhancements to the USING and DROP statements can help you to write simpler and more
efficient programs.

39.8.1. USING Statement Summary

The Assembler provides two major extensions to the USING statement: Labeled and Dependent.
They may also be used in combination, as Labeled Dependent USINGs, providing a choice of
four different types of USING statement.

This gives you much greater control over assignment and resolution of base addresses in symbolic
expressions and helps improve the reliability, maintainability, and efficiency of Assembler Lan-
guage applications.

• Labeled USINGs let you simultaneously address multiple instances of a DSECT (or CSECT)
without additional ordinary USING and DROP statements, and without the need to explicitly
code offsets and base registers. Thus, you can concurrently manage multiple copies of the same
DSECT- or CSECT-defined data structure using the full symbolic capabilities of the Assem-
bler Language.

• Dependent USINGs let you address multiple DSECTs anchored by a single base register, so
you can describe adjacent, nested, or overlapping code and data structures. This means that
you can reduce the number of general registers required for addressing DSECTs and assign
them to other uses, creating more efficient code while retaining the advantages of fully sym-
bolic addressing.

Dependent USINGs are “dynamic” because declarations can specify different mappings on dif-
ferent code paths.

• Labeled Dependent USINGs combine the benefits of both. For example, you can describe
record structures containing multiple instances of nested substructures, or of substructures that
depend on a variable elsewhere in the containing structure. Such complex data structures are
commonly used in higher level languages; you can use them in your Assembler Language pro-
grams.

Here's another way of viewing the difference between Labeled and unlabeled USING statements:

• An unlabeled USING requires a register to reference the data; or the base register implies the
data that can be addressed.

• For a Labeled USING, the qualified data name implies the register: that is, the qualifier desig-
nates a specific base register.

904 Assembler Language Programming for IBM System z™ Servers Version 2.00

The properties and behavior of the four types of USING statement are shown in Table 426:

Table 426. Summary of USING Statements

USING
Type Label Register

Usage

Operand
1 Based
on

Operand 2
Operand 2
Location in
Storage

Number of
Instances of
Active Objects

Ordinary No
1 register
per
object

Register Absolute
[0,15]

Anywhere in
storage

Only one active
instance of an
object at a time

Labeled Yes
1 register
per
object

Register Absolute
[0,15]

Anywhere in
storage

As many active
instances of an
object as registers
assigned

Dependent No

Multiple
objects
per reg-
ister

Operand
2

Relocat-
able,
addressable

Addressable by
ordinary USINGs

Multiple active
objects of dif-
ferent types

Labeled
Dependent Yes

Multiple
objects
per reg-
ister

Operand
2

Relocat-
able,
addressable

Addressable by
ordinary USINGs

Multiple different
active objects of
the same or dif-
ferent types

39.8.2. DROP Statement Summary

The DROP statement supports the enhancements to the USING statement, as summarized in
Table 426:

Table 427. Summary of DROP Statement Behaviors

USING Type DROP Statement

Ordinary By register number

Labeled By qualifying label (dropping the register has no effect)

Dependent By register number (all sub-dependent USINGs are dropped automatically)

Labeled Dependent By qualifying label (dropping the register has no effect)

These may be described as follows:

• Ordinary USINGs

The normal rules for DROP statements apply, and the entry for the specified register is
removed from the Assembler's Using Table.

• Labeled USINGs

The qualifying label from a previous Labeled USING is specified as the operand of the DROP
statement. Only the USING with that qualifier is inactivated; other USINGs specifying the
same base register (if any) are still active.

• Dependent USINGs

The syntax of the ordinary DROP statement is used: a register is specified as the operand. Any
further Dependent USINGs based on the same register are automatically dropped at the same
time. The Assembler's Using Table entry for that register is removed.

• Labeled Dependent USINGs

The qualifying label from a previous Labeled or Labeled Dependent USING is specified as the
operand of the DROP statement. Any dependent or Labeled Dependent USINGs that relied
on the qualifying label are also dropped. Other USINGs specifying the same base register (if
any) are still active.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 905

Terms and Definitions
Dependent USING

A USING statement allowing implicit references to symbols in areas mapped by more than
one control section to be resolved with a single base register.

DSECT
(1) An assembler instruction defining the start or continuation of a Dummy Control
Section. (2) A Dummy Control Section used to map the components of a data structure.

Labeled Dependent USING
A USING statement allowing implicit references to symbols in areas mapped by more than
one control section to be resolved by a specific base register.

Labeled USING
A USING statement directing resolution of implicit references to a specific base register. It is
distinguished from an ordinary USING statement by the presence of a qualifier in the name
field.

Ordinary USING
A USING statement directing resolution of unqualified implicit references to a specific base
register or registers.

qualified symbol
An ordinary symbol prefixed by a qualifier and separated from it by a period, as in
qualifier.symbol.

qualifier
A symbolic identifier defined in the name field of a Labeled USING or Labeled Dependent
USING statement. It may be used only as a qualifier, and not as an ordinary symbol.

906 Assembler Language Programming for IBM System z™ Servers Version 2.00

40. Basic Data Structures

 44 00000000
 444 0000000000
 4444 00 00

44 44 00 00
44 44 00 00
44 44 00 00
44444444444 00 00
444444444444 00 00

44 00 00
44 00 00
44 0000000000

 44 00000000

In this section we discuss several widely used data structures such as arrays, stacks, lists, queues,
trees, and hash tables.

The data structures used in computer programs are incredibly varied. For most purposes, under-
standing the simpler forms provides a basis for understanding all of the more complex ones.

• The simplest data structure is the table or array, a grouping of elements of uniform type and
length into regularly spaced (and usually contiguous) memory locations. The major advantage
of the array is that the address of an array element can be calculated and the element accessed
directly, rather than searching the array to find the element.

• A stack is a specialized form of array, often represented in memory in varied ways.

Other data structures involve multiple elements of (usually) uniform type and length that are not
contiguous or regularly spaced. Dummy Control Sections (“DSECTs”) and extended USING
statements provide powerful mechanisms for describing, mapping, and manipulating them.

• A list or linked list is a linearly ordered structure in which each element contains a link to its
successor.

• A queue or doubly linked list is a linearly ordered structure in which each element contains
links to its successor and to its predecessor.

• The elements of a tree contain links to zero, one, two, or more successors.

Lists and trees can be used to store data in forms not well adapted to arrays, but their elements
must be searched for, instead of addressed directly.

• A hash table provides a method for rapid retrieval of unordered data, by transforming an item
into a “pseudo-subscript” to locate its value quickly.

We will examine each of these basic structures in turn.285 Because we often arrange data in linear,
rectangular, or other array-like tabular formats, we will first examine some methods used to
manipulate data stored in this form.

285 The classic reference for data structures is Chapter 2 of The Art of Computer Programming, Volume 2: Fundamental
Algorithms, by Donald Knuth.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 907

40.1. One-Dimensional Arrays

Many examples of loops in Section 22 involved indexing in an array, but we didn't describe
formal techniques for doing indexing arithmetic and selecting initial and final index values.

The most important new concept concerning array manipulation is that we may compute the
position of an element at execution time. Up to now we have discussed many basic assembly-
time addressing expressions; now we consider instruction sequences that evaluate more complex
execution-time addressing expressions.

Suppose you have eleven halfword integers to manage as a group; the simplest arrangement is
successive halfwords in memory. Here is an array of halfwords, starting at the halfword named B.

┌──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┬──────┐
│ │ │ │ │ │ │ │ │ │ │ │
└──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘
B B+2 B+4 B+6 B+8 B+10 B+12 B+14 B+16 B+18 B+20

Figure 670. Example of a one-dimensional array of halfwords

One-dimensional arrays are relatively simple: each successive data item or element is accessed by
adding the element spacing (usually, the element length) to the address of the preceding element.
If for example the eleven halfword integers in Figure 670 are stored starting at B, then the n-th
element Bn is found at B+2n. That is, if the element with zero subscript (B0) is found at B, the
address of an element with subscript n is simply B+2*n. If the array elements were fullwords or
doublewords, the corresponding addresses would be B+4*n and B+8*n respectively.

However, arrays may not contain a “zero-th” element, or the zero-th element may not be the
lowest-numbered element. For programs in many higher-level languages, the first element of an
array has subscript 1. Indeed, if the three low-numbered elements of the array are omitted, so
that B4, B5, ..., B14 are stored beginning at B, and the length of a single array element is L, then
the n-th element Bn is found at address addr(B)+L*(n−4).

We can see how to do the required subscript arithmetic: if the subscripts start at m, and the
lowest-subscripted element Bm is stored at B, then the address of element Bn is

addr(B(n)) = addr(B)+L*(n-m).

An example will help to illustrate this. Suppose an array of 13 fullword integers X5, X6, ..., X17 is
stored beginning at XX, and we want to store their sum at XSum. Thus, the array starts with the
element with subscript 5. In Figure 671, we assume that the lower and upper subscript bounds
of 5 and 17 are stored at LowerSub and UpperSub respectively. Because there are 13 elements in
the array starting at XX, we could simply add the 13 words. However, we want to illustrate a more
general technique for accessing array elements.

SR 0,0 Initialize sum in GR0 to zero
L 1,LowerSub Initialize subscript n to c(Lower)

SetNdx LR 2,1 Index N is calculated in GR2
S 2,LowerSub (n-m)
SLL 2,2 4*(n-m): element length is 4
A 0,XX(2) Sum = Sum + X(n)
LA 1,1(,1) Increment subscript by 1
C 1,UpperSub Compare subscript to upper bound
JNH SetNdx If not greater, branch to repeat
ST 0,XSum Store sum
- - -

LowerSub DC F'5' Lower subscript bound
UpperSub DC F'17' Upper subscript bound
XSum DS F Space for sum
XX DC 13F'12345' ... for example
Figure 671. Sum of array elements with known subscript bounds

908 Assembler Language Programming for IBM System z™ Servers Version 2.00

Now, suppose the lower and upper subscript bounds of the elements used in forming the sum
don't have known values like 5 and 17; we only know that the element with subscript 5 (X5) is
stored at XX. We can then include a portion of the indexing arithmetic into the program at
assembly time. We extract the factor L*(−m) from the implied address XX+L*(n-m); m has value 5
in this example, and L has value 4.

SR 0,0 Initialize sum to zero
LA 4,L'XX Increment = element length = 4
L 2,LowerSub Get initial (lowest) subscript
SLL 2,2 Multiply by element length, 4
L 5,UpperSub Get highest subscript
SLL 5,2 Multiply by length, = 4 also

AddElem A 0,XX-5*4(2) Add elements starting at X(5)
JXLE 2,4,AddElem Increment index and loop
ST 0,XSum ... etc.

Figure 672. Sum of array elements with unknown subscript bounds

In this more-efficient example, we see that if the contents of LowerSub and UpperSub are 5 and 17
respectively, the same result will be obtained as before. The address of the first element to be
added will be XX-20+(4*5), which is the same as XX. The Assembler requires that the location of
the implied address XX-5*4 be addressable; this requirement is sometimes a limitation on the use
of this time-saving technique.

The loop in this program segment needs only two instructions, while the loop in Figure 671 on
page 908 uses seven. You can often improve the efficiency of array accesses by doing as much
subscripting arithmetic as possible at assembly time.

Even though we usually store arrays with ascending subscripts, the array elements could also be
stored in “reverse” order, from highest subscript to lowest: you can still calculate the address of
B(n) this way, even if n is not greater than m.

Exercises

40.1.1.(2) Suppose the instructions in Figure 671 on page 908 had been written so that the
lower and upper subscript bounds were defined instead by the statements

LBound Equ 5
HBound Equ 17

Rewrite the three DC statements so that all values depending on the subscript bounds are
defined through references to the symbols LBound and HBound.

40.1.2.(2)+ A programmer suggested the following technique as a method of indexing through a
table of words:

- - - Initialize, etc.
GetIt L 0,Table Get a table entry

- - - Do something with it
LH 1,GetIt+2 Fetch the addressing halfword
AH 1,=H'4' Add 4 to displacement
STH 1,GetIt+2 Replace halfword in instruction
- - - Eventually branch back to 'GetIt'

Assuming that this code sequence contains proper tests for reaching the end of the table, are
there any grounds (other than aesthetic) for criticizing this method of address modification?

40.1.3.(2) An array contains 523 elements. Each element is 7 bytes long: a 2-byte binary integer
followed by 5 characters.

┌───────┬───────┬───────┬───────┬───────┬───────┬───────┐
│ integer │ �──── 5 bytes of character data ──── │
└───────┴───────┴───────┴───────┴───────┴───────┴───────┘

Give reasons for or against spacing successive elements of the array 8 bytes apart.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 909

40.1.4.(2) In the example in Figure 672, what will happen if c(UpperSub) is less than
c(LowerSub)?

40.1.5.(2)+ Each element of the array of 523 elements in Exercise 40.1.3 should be mapped by
a DSECT; create one.

40.2. Two-Dimensional Arrays

Two- and higher-dimensional arrays present added considerations, but they can be handled easily;
we will examine two simple methods for addressing array elements. In illustrating these methods,
we discuss only the two-dimensional array, or matrix. Figure 673 illustrates a small matrix:

┌───────────┬───────────┬────────────┐
│ A(1,1) │ A(1,2) │ A(1,3) │ Row 1
├───────────┼───────────┼────────────┤
│ A(2,1) │ A(2,2) │ A(2,3) │ Row 2
└───────────┴───────────┴────────────┘
 Column 1 Column 2 Column 3

Figure 673. Typical arrangement of elements of a matrix

The element Ai,j in the i-th row and j-th column of a matrix A is often denoted A(i,j). The row
subscript is traditionally given first, followed by the column subscript.

The basic problem is that we rarely know the values of the subscripts i and j at assembly time.
Instead, i and j are variables whose values are determined at execution time, so we must write
instructions using those values to find the address of the array element A(i,j).

First, we must reorganize this rectangular array form into a linear structure conforming to the
machine's linear addressing of memory. This can be done in two ways:

• Store successive columns of the array one after another. This is called “column order” or
“column-major order”, and is used, for example, by Fortran for storing its arrays. If the
column-ordered array A in Figure 673 has two rows and three columns, it would be stored as
shown in Figure 674. Note that the leftmost subscript is “cycled” most rapidly, so the linear
order of the elements is first column, then second column, etc.

┌──────────┬──────────┬──────────┬──────────┬──────────┬──────────┐
│ A(1,1) │ A(2,1) │ A(1,2) │ A(2,2) │ A(1,3) │ A(2,3) │
└──────────┴──────────┴──────────┴──────────┴──────────┴──────────┘

Figure 674. Storing an array in column order

• Store successive rows of the array one after another. This is called “row order” or “row-major
order”, and is used, for example, by PL/I for storing its arrays. The same array stored in row
order would appear in storage as shown in Figure 675. Note that the rightmost subscript is
“cycled” most rapidly, so the linear order of the elements is first row, then second row, etc.

┌──────────┬──────────┬──────────┬──────────┬──────────┬──────────┐
│ A(1,1) │ A(1,2) │ A(1,3) │ A(2,1) │ A(2,2) │ A(2,3) │
└──────────┴──────────┴──────────┴──────────┴──────────┴──────────┘

Figure 675. Storing an array in row order

Either linear arrangement may be used; a choice between possibilities must be based on consider-
ations such as convenience, the time and space required to retrieve a particular element, and (if
your array-handling instructions will be called from a program written in another language) the
requirements of that programming language.286

286 Many programming language standards require that arrays be stored in a specific ordering of rows and columns.

910 Assembler Language Programming for IBM System z™ Servers Version 2.00

To retrieve element A(i,j) of the column-ordered array in Figure 674, we must calculate its
address: suppose A(1,1) is stored at AA. To obtain the address of the first element in the j-th
column, A(1,j), we need the address

addr(AA) + L * (j-1) * 2

where L is the element length in bytes, and the factor of 2 is the number of rows, accounting for
the presence of two elements in each column. Having obtained that address, the address of the
i-th element in the indicated column is found by adding L*(i-1) to the partially computed
address, giving finally an address

addr(A(i,j)) = addr(AA) + L * [(i-1)+2*(j-1)]

For example, if the elements of the array are halfwords (L=2), then the address of element A(2,3)
is

addr(A(i,j)) = addr(AA) + 2 * [(2-1)+2*(3-1)]
= addr(AA) + 10

as we would expect from Figure 674 on page 910.

The quantity added to addr(AA) is sometimes called a subscripting expression, a subscripting func-
tion, or a mapping function. We start with the address of the base element A(1,1) and the array
subscripts i and j of a particular element, and use them to compute the linear subscript that gives
the difference between the addresses of A(i,j) and A(1,1).

If a two-dimensional column-ordered array has r rows, the subscripting function is

L * [(i-1)+r*(j-1)]

Our choice of column ordering means that the subscripting function depends only on the number
of rows r of the array, and not on the number of columns.

Suppose a column-ordered array of words having 5 rows and 7 columns is stored with base
element A(1,1) at AA. We want to retrieve element A(i,j) and store it at AIJ. The subscripts i
and j are contained in fullwords stored at ISub and JSub respectively. We assume values have
been stored in the array at AA by other parts of the program.

NRow Equ 5 Number of rows
NCol Equ 7 Number of columns

L 6,JSub Get column index j
BCTR 6,0 Form (j-1)
MHI 6,NRow Multiply by number of rows
A 6,ISub Add row index, i
BCTR 6,0 Decrease by 1 to form ((i-1)+r*(j-1))
SLL 6,2 Multiply by element length, 4
L 0,AA(6) Retrieve element A(i,j)
ST 0,AIJ Store it at AIJ
- - -

ISub DC F'3' Possible value for i
JSub DC F'6' Possible value for j
AIJ DS F Element A(i,j) stored here
AA DS (NRow*NCol)F ... Values already placed here
Figure 676. Retrieving a specified element of an array

As in Figure 672 on page 909 for one-dimensional arrays, part of the execution-time subscripting
arithmetic can be absorbed into the assembly-time address of the instruction that references the
array element. To do this, we must know the size of the array (at least, the number of rows, for a
column-ordered array) when the program is assembled. We now see that

addr(A(i,j)) = [addr(AA) - (L*(r+1))] + [L * (i + r*j)].

Only the second square-bracketed expression depends on i and j, so it must be computed at exe-
cution time. The instructions in Figure 676 can be rewritten as in Figure 677 on page 912:

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 911

NRow Equ 5 Number of rows
NCol Equ 7 Number of columns

L 6,JSub Column index
MHI 6,NRow * (Number of rows)
A 6,ISub + Row index
SLL 6,2 (All this) * (element length)
L 0,AA-L'AA*(NRow+1)(6) c(GR0) = A(i,j)
ST 0,AIJ Store result at AIJ

Figure 677. Retrieving a specified element of an array efficiently

The address addr(AA)-L*(r+1) is the address of the “element” A(0,0), which may not actually be a
member of the array.287 The term “virtual origin” describes the base element A(0,0), and the term
“actual origin” describes the address in memory where the array actually begins.

Most programming languages that support arrays allow many more than two dimensions, but the
terms “row” and “column” ordering are still used for higher-dimension arrays, even though these
names may seem misleading. (Should the third dimension be called a plane? The fourth dimen-
sion a cube or a parallelepiped?) Whatever the terminology, remember that the leftmost subscript
varies fastest for column ordering, and the rightmost for row ordering.

We will assume for now that all subscripts begin at 1, unless stated otherwise.

Exercises

40.2.1.(3) Suppose an N by N array of words is stored starting at SqArray, where N is greater
than 6 and is defined symbolically. Write a sequence of statements that will transpose the array:
that is, for all subscripts i and j, swap element SqArray(i,j) with element SqArray(j,i).

Do you need to know whether the array is stored in row order or column order?

How many swaps are needed?

40.2.2.(3)+ There are two symbolically defined integers M and N, both greater than 5, and
M ≠ N. Given an N by M matrix of fullwords stored at AA, store at BB the M by N transpose
matrix of the matrix at AA, whose elements are defined by B(i,j) = A(j,i).

Do you need to know the ordering of the array?

40.2.3.(3)+ Suppose you are given the address of the actual origin of a column-ordered array,
addr(A(1,1)). You also know the number of rows R and the number of columns C of the array,
and the length L of each element. Suppose the word at ElemAddr contains the address of an
unknown array element A(i,j).

First, write expressions that determine the values of i and j. Then, write instructions that calcu-
late the subscripts i and j, and store them at ISub and JSub respectively.

40.2.4.(2) Row-ordering an array requires that the linear arrangement corresponds to cycling the
rightmost subscript most rapidly, then the next to last, and the leftmost most slowly. Show that
the subscripting function for a two-dimensional array of r rows and c columns is

addr(A(i,j)) = addr(A(1,1)) + L * [c*(i-1)+(j-1)].

where L is the byte length of each array element.

40.2.5.(4) A physicist needed a table of values of a function S(i,j) for integer values of i = 2, 4,
6, ..., 20, and j = −3, −2, −1, 0, ..., 10. He found that S(i,j) obeys the recurrence relations

(a) S(i,j+2) = ((j+1)*S(i,j)+1/(i+j+2))/(j+3)
(b) S(i+2,j) = S(i,j) − 1/((i+1)*(i+j+2)),

and that

287 Unfortunately, it's sometimes called the “base address” of the array, which can be confused with the address where
the array starts, or with a base address specified in a USING statement.

912 Assembler Language Programming for IBM System z™ Servers Version 2.00

S(2,-3) = 0.5, S(2,-2) = 0.3068528, and S(2,-1) = 0.23370055.

Write instructions to compute the complete table of 140 values in hexadecimal or binary
floating-point, applying first the relation (a) to compute S(2,j) for j = 0, 1, ..., 10, and then
using (b) to fill out the table.

40.2.6.(3) We can define two “norms” of a matrix as (1) the sum of the magnitudes of its ele-
ments, and (2) as the magnitude of of the largest element. Write a program segment which will
evaluate both norms of a square matrix of short hexadecimal or binary floating-point numbers
stored beginning at Matrix, and the dimension of the matrix is stored as a fullword integer at
MatDim.

40.3. General Array Subscripts

In the examples above we assumed that the subscripts took positive values only, and always had a
lower bound of 1. (This is why our subscripting expressions contain terms like (i-1) and (j-1).)
This is not a necessary condition; if the lower subscript bounds on i and j are i0 and j0 respec-
tively, then the subscripting function for a two-dimensional column-ordered array with r rows
becomes

L * [(i-i0)+r*(j-j0)]

and for a two-dimensional row-ordered array with c columns,

L * [c*(i-i0)+(j-j0)]

In such cases it may be more difficult to include the constant factor that determines the array's
“virtual origin”,

-(L*(i0+r*j0)) or -(L*(c*i0)+j0))

in an expression at assembly time, since the resulting implied address may not be addressable.

Many high-level programming languages let you define arrays dynamically, so that subscript
bounds and origins are not known until execution time. References to such arrays customarily use
array descriptors containing the necessary information.

Arrays can take many forms. We will examine two: arrays of many dimensions, and arrays whose
columns are not identical.

40.3.1. Multi-Dimensional Arrays (*)

When you use arrays with more than two dimensions, you will need to calculate the linear index
of an element. For example, suppose D is the base element of a three-dimensional column-
ordered array with R rows, C columns, and P “planes” (for want of a better name for the third
dimension). Then to access element D(i,j,k) you can generalize the expression given in Section
40.2 as follows:

Addr(D(i,j,k)) = addr(D) + L * [(i-1) + R*[(j-1) + C*(k-1)]]
To help understand this expression, consider the element D(1,1,2): to access it starting at
D(1,1,1) you would cycle the i subscript R times, and the j subscript C times, once for each cycle
of the i subscript. Thus,

Addr(D(1,1,2)) = Addr(D) + L * [(1-1) + R*(1-1) + R*C*(2-1)]
= Addr(D) + L * (R*C)

where R*C is the number of elements in the first “plane”, so the accessed element will be the first
one in the second “plane” as desired.

In general, if an array A has p dimensions, and the subscripts k1, k2, ..., kp in each dimension
range from 1 to Maxj (where “j” is the number of subscript kj), then the subscripting function for
an element A(k1,k2,k3, ..., kp) is

addr(A(k1,k2,k3,...,kp)) = addr(A(1,1,1,...,1)) +
L * [(k1-1) + (k2-1)*Max1 + (k3-1)*Max1*Max2 + ... (kp-1)*Max1*Max2*...*Max(p-1)]

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 913

Not obvious, perhaps, but sometimes useful to know!

As we noted in describing subscripts for two-dimensional arrays, the range of values for the right-
most subscript in a column-ordered array isn't used in the subscripting function. That is, for a
two-dimensional array, only the number of rows us important, not the number of columns. For a
row-ordered array, the range of the leftmost subscript is not used in the subscripting function.

40.3.2. Non-Homogeneous Arrays (Tables)

The term “table” often describes a one-dimensional array in which the columns don't necessarily
contain data items with the same type and length. For example, you might have a table of names
and identification numbers, where the numbers in the first column are 4-byte binary integers and
the names in the second column are 36-byte character strings.

Table 428. Example of a non-homogeneous array

The methods for indexing one-dimensional arrays are used to access the rows of such tables; the
increment from row to row is the length of each row (40 in this example).

For example, suppose this table starts at DataTbl and there is an ID number at WhoIsIt. You
want to find the table entry corresponding to that ID number, and put its address in GR1. A
typical code fragment might look like Figure 678. (Note that it doesn't test whether all table
entries have been compared, to indicate there's no matching entry.)

ID Number Name

14142135 Billy Uss
17320508 Norm D. Plume
16180339 Anna Lepsis
28571428 Carol F. DeBelz
31415926 Warren Pease
33550336 Sarah Bellum
22360679 Pete Moss
40353607 Polly Andress
31622776 Hugo Furst
24137569 Lou Gubrius
16777215 Anna Lemma
27182818 Dad Gummitt
11235813 Polly Connick

EntryLen Equ 40 Each table entry is 40 bytes long
LA 1,DataTbl c(GR1) = start of data table
L 0,WhoIsIt c(GR0) = IDNumber being sought

Search C 0,0(,1) Check for a matching ID number
JE FoundIt They're equal, we have a match
LA 1,EntryLen(,1) Add length of each table entry
J Search And repeat the search

FoundIt - - -
Figure 678. Searching for a matching table entry

Each element in Table 428 might be described by this DSECT:

ID_Name DSECT , Dummy Control Section
IDNumber DS F 4-byte integer ID number
Name DS CL36 36-character name

Because DSECTs generate no object code, you could also write the DSECT with DC statements:

ID_Name DSECT , Dummy Control Section
IDNumber DC F'-1' 4-byte dummy integer ID number
Name DC CL36'Dummy Entry' 36-character dummy name

914 Assembler Language Programming for IBM System z™ Servers Version 2.00

The result is the same in both cases. Using DC statements can be helpful in cases where the
same statements can be included288 in both a CSECT for a declaration and in DSECTs for refer-
ences.

We can rewrite the example in Figure 678 on page 914 to use the DSECT this way:

LA 1,DataTbl c(GR1) = start of data table
Using ID_Name,1 Base reg for ID_Name data structure
L 0,WhoIsIt c(GR0) = IDNumber being sought

Search C 0,IDNumber Check for a matching ID number
JE FoundIt They're equal, we have a match
LA 1,EntryLen(,1) Add length of each table entry
J Search And repeat the search

FoundIt - - -
- - -

ID_Name DSECT
IDNumber DS F 4-byte integer ID number
Name DS CL36 36-character name
EntryLen Equ *-ID_Name Calculate length of each table entry
Figure 679. Searching for a table entry mapped by a DSECT

The second USING statement tells the Assembler that implicit references to any symbol in the
DSECT ID_Name should be resolved using GR1 as a base register. The USING Table is sketched
in Figure 680:

┌─────────┬───────────────┬────┐
│ basereg │ base location │ RA │
├─────────┼───────────────┼────┤
│ 15 │ 00000002 │ 01 │
├─────────┼───────────────┼────┤
│ 1 │ 00000000 │ FF │ �── Relocation ID for the DSECT
└─────────┴───────────────┴────┘

Figure 680. USING Table with two entries, one for a DSECT

Important differences between Figures 678 on page 914 and 679 include:

• The instruction named Search makes no explicit reference to GR1, but relies on the Assem-
bler to calculate the correct base and displacement.

• The second operand is the name of the field, and not its (known) offset in the table entry.

Advantages of this technique include:

• Readability: the referenced field is identified by name, so you need not know its offset within
the table entry mapped by the DSECT.

• If other data elements are later added to the table entries in the table, only the DSECT needs
to be changed. If explicit base and displacements had been used to reference components of a
table entry, each would have to be found and modified.

• The length of the table entry is calculated by the Assembler from information it knows about
the length of the DSECT.

• If new components are added to the table entry, the Equ statement in Figure 678 on page 914
isn't needed, because the symbol EntryLen is automatically updated by the Assembler.

288 The COPY assembler instruction statement inserts a block of statements in its place.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 915

Exercises

40.3.1.(2) Do the same as in Exercise 40.2.2, but use no memory locations for temporary
storage. A simple solution will be satisfactory! “Optimal” solutions to this problem can be
rather complex.

40.3.2.(3)+ Given two N by N square matrices of fullword integers stored in column order at
AA and BB respectively, the “product matrix” CC is defined by

C(i,j) = Sum(for k=1 to N) [(A(i,k) × B(k,j))]
Assuming that N is defined symbolically and is greater than 4, write statements to store at CC in
column order the product matrix whose elements are given by the above rules for a product
matrix. Assume that no overflows occur in calculating C(i,j).

40.3.3.(2) Write the subscripting function for a p-dimensional row-ordered array.

40.3.4.(3)+ It often occurs in processing square matrices that a matrix is symmetric: that is,
A(i,j) = A(j,i) for all subscripts i and j. To save space, such matrices are usually stored in
either

• upper triangular form, where A(i,j) is not stored if (i>j); or
• lower triangular form, where (i,j) is not stored if (i<j).

This saves roughly half the space needed to store the matrix.

For an N by N matrix of elements of length L, determine the subscripting function needed to
retrieve element A(i,j) for each type of triangular matrix.

40.3.5.(3)+ Using your solution to Exercise 40.3.4, write instructions that place in GR1 the
address of the element A(i,j) of an upper triangular matrix, given that A(1,1) is stored at AA,
and the quantities i, j, N, and L are fullword integers stored at II, JJ, NN, and LL respectively.
Assume that the subscript values are valid.

40.3.6.(4) Suppose you have an n-dimensional column-ordered array for which the subscripts
range from 1 to Upper_k for each dimension k between 1 and n. Write an instruction sequence
that calculates the linear subscript of an arbitrary element, assuming:

• The (1,1,...,1) element of the array is stored at ARRAY.
• The subscripts from 1 to k of the desired element are fullword integers stored in an array at

SubScrs.
• The upper limits Upper_k for each subscript are word integers stored in an array at

UpperLim.
• The number of dimensions is stored in the word at NumDimen.
• The length of each array element is stored in the halfword integer at ElLength.

40.3.7.(2)+ In some applications involving large matrices, there may be few nonzero elements;
they are called “sparse” arrays. Instead of allocating storage for all N2 elements of an N× N
matrix, space can be saved by storing only the nonzero elements A(I,J) and their subscripts I
and J.

Suppose there are three linear arrays representing a sparse array A: IVal and JVal contain the
word subscripts I and J of the element stored at AVal, and the number of elements in each
linear array is stored in the word at NbrEls. Write an instruction sequence that forms the trans-
pose of the matrix A. That is, for each element A(I,J), swap I and J.

40.3.8.(0) For fun: deduce the meanings of the ID Numbers in Table 428 on page 914.

916 Assembler Language Programming for IBM System z™ Servers Version 2.00

40.4. Address Tables

A second method of array addressing is useful when processing speed is important, and occa-
sionally finds application to arrays of irregularly-spaced or irregular-length data. We precompute
the addresses of portions of the array, and store those addresses in a separate address table or
access table. For example, suppose the addresses of the elements A(1,1), A(1,2), and A(1,3) in
Figure 673 on page 910 are stored as words in a list beginning at ColAddr, as shown in
Table 429.

Table 429. Array addressing with a table of addresses

The following example uses this table to retrieve element A(i,j) and store it at AIJ.

Location Contents

ColAddr addr(A(1,1))

ColAddr+4 addr(A(1,2))

ColAddr+8 addr(A(1,3))

L 7,JJ Get column index j from JJ
BCTR 7,0 Decrease by 1 for indexing
SLL 7,2 Multiply by address length, 4
L 6,ColAddr(7) Get address of column j
L 5,II Get row index i from II
BCTR 5,0 Decrease by 1 for indexing
SLL 5,2 Multiply by element length, 4
L 0,0(5,6) Get A(i,j) from array
ST 0,AIJ Store at AIJ

Figure 681. Creating a table of addresses

An advantage of this scheme is that it avoids the previously required multiplication by the
number of rows. The added expense is (1) the space required for the table, (2) the time required
for forming it, either during assembly or at execution time, and (3) the cost of an additional
memory access.

As a final example, suppose we want to store at AIJ the element A(i,j) of a 5-by-5 array of
fullwords stored in column order at AA. First, we construct a table of column addresses and store
them at AddrTab. If we actually compute the addresses of the first element in each column minus
4 (the length of each element), we can use the subscript “i” directly without subtracting 1 when
accessing the desired array element.

NRows Equ 5 Number of rows
NCols Equ 5 Number of columns

LA 6,NRows c(GR6) = number of rows
SLL 6,2 Multiply by element length
LA 5,NCols c(GR5) = No. Columns = loop count
LA 9,AddrTab Beginning address of table
LA 0,AA-4 (array address)-(element length)

StoreAdr ST 0,0(0,9) Store an address in the table
AR 0,6 Increase to address of next column
LA 9,4(0,9) Increase table address to next word
JCT 5,StoreAdr Loop until all addresses computed
- - -

AddrTab DC (NCols)F Space for column addresses
Figure 682. Creating a better table of addresses

Table 430 on page 918 shows the table's contents after executing this code segment. The zero
subscript in the elements A(0,j) indicates that one element length has been subtracted from the
address of the beginning of the j-th column of the array.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 917

Table 430. Example of an address table's contents

Now, we can use this table to retrieve the desired element:

L 2,II Get row index i from II
L 3,JJ Get column index j from JJ
SLDL 2,2 Multiply both indexes by 4
L 3,AddrTab-4(3) Get column address from table
L 0,0(2,3) Retrieve the element A(i,j)
ST 0,AIJ Store it at AIJ.

This example gives much faster access to the desired array element. It also uses the SLDL
instruction to take advantage of the fact that the array elements and the entries in the table of
addresses have the same length, which might not be true in general.

The address table can be constructed by the Assembler if the array dimensions are known. The
items in the middle column of Table 430 can be used as operands in DC statements, because the
expression in an A-type constant can be relocatable. Thus, we can generate the same address
table at assembly time.

Location Contents Element
Addressed

AddrTab addr(AA-4) A(0,1)

AddrTab+4 addr(AA-4+20) A(0,2)

AddrTab+8 addr(AA-4+40) A(0,3)

AddrTab+12 addr(AA-4+60) A(0,4)

AddrTab+16 addr(AA-4+80) A(0,5)

NRows Equ 5 Number of rows
L Equ 4 Length of array element
AddrTab DC A(AA-L) Addr(first column) - L

DC A(AA+L*(NRows)-L) Addr(second column) - L
DC A(AA+L*(NRows*2)-L) Addr(third column) - L
DC A(AA+L*(NRows*3)-L) Addr(fourth column) - L
DC A(AA+L*(NRows*4)-L) Addr(fifth column) - L

Figure 683. Creating a table of addresses at assembly time

The expressions in the address constants are written so that you need only specify the value of
NRows in the first EQU statement, and the required addresses will be calculated by the Assembler.

The extension of address tables to higher-dimensioned arrays is straightforward. Each subscript is
used in turn to retrieve the address of the next lower-level address table, and the next-to-last sub-
script accesses a table like the one in Figure 683. The final subscript then accesses the desired data
element. This method is useful when the array cannot be kept entirely in storage, since only the
top-level table and some “availability flags” need be retained; the lower-level tables and the array
itself can be kept on secondary storage.

Exercises

40.4.1.(2) Create an address table (or address tables) for a three-dimensional array starting at
Box having 3 rows, 4 columns, and 5 “planes”. Thus, the array element with highest subscripts
is Box(3,4,5).

40.4.2.(2)+ Construct an address table for a three-dimensional array A that has maximum sub-
scripts of 4, 7, and 5 for the first, second, and third subscripts, respectively. How do the entries
in the address tables depend on the choice of row-ordering or column-ordering for the array?

40.4.3.(3) Improve the coding of Table 429 on page 917 and Figure 681 on page 917 by
including factors of L*(−m) in the statements wherever possible.

918 Assembler Language Programming for IBM System z™ Servers Version 2.00

40.4.4.(4) Given an N by M array P of fullword integers stored in column order at PP, replace
each element by the average of its four “nearest neighbors”. That is, calculate

P(i,j) = [(P(i+1,j) + P(i-1,j) + P(i,j+1) + P(i,j-1))]/4

For the “edge” elements, assume that the missing term (or terms) has value zero.

40.4.5.(3)+ A two-dimensional array of fullword integers is stored in column order with element
X(1,1) at XX. The lower and upper bounds for the subscripts in each dimension are word inte-
gers stored at Lower1 and Upper1, and at Lower2 and Upper2, respectively. Write a program
segment to load into GR9 the element of the array whose subscripts are the word integers at
Sub1 and Sub2 respectively. That is, the desired element is X(c(Sub1),c(Sub2)).

If the subscripts lie outside the lower or upper bounds, branch to SubsErr.

40.4.6.(2)+ Generate the address table in Figure 683 on page 918 with a single DC statement,
retaining the symbolic definitions of NRows and L.

40.4.7.(3) The instructions following Table 430 on page 918 show how you can use an address
table to access an array element without lengthy subscript calculations. Determine practical
limits on the values of the subscripts i and j.

40.5. Searching an Ordered Array

We must often search an ordered array to find a match for a given value (called the key or search
argument). Once found, that array element may be modified; more often, its index is used to
retrieve associated data in other columns, or in similarly ordered arrays.

For a short array (of perhaps 10 or less elements), it is simplest to search the array linearly. To
illustrate, suppose an array of word integers at AA is arranged in order of increasing values, and
GR2 contains a positive integer. If a match is found between the search argument in GR2 and
one of the array elements, branch to Found with GR9 containing the offset of the matching
element; if no match occurs, branch to NoMatch.

N Equ 10 Number of table entries
LA 10,4 Increment = element length in GR10
LA 11,4*(N-1) Comparand = last element index in GR11
SR 9,9 Initial index value = 0 in GR9

Test C 2,AA(9) Compare c(GR2) to array element
JE Found Branch if a match occurs
JXLE 9,10,Test Increment index, try again
J NoMatch No match found

These instructions make no use of the fact that the array at AA is ordered. If the value in GR2
matches none of the array elements, we always scan the entire array before branching to NoMatch.
We rectify this oversight with one added instruction, as follows:

N Equ 10 Number of table entries
LA 10,4 Increment = element length
LA 11,4*(N-1) Comparand = index of last element
SR 9,9 Initial index = 0

Test C 2,AA(9) Compare c(GR2) to array element
JL NoMatch No match if element is too small
JE Found Branch if a match occurs
JXLE 9,10,Test Bump index by 4 and try again
J NoMatch c(GR2) is too big to match

In this example, we will exit from the loop whenever we know the number in GR2 cannot match
an array element. We might make use of the fact that taking the second branch to NoMatch
implies that c(GR2) is greater than any array element.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 919

A major weakness of this linear search technique becomes apparent as the length of the array
increases. If we assume that GR2 contains one of the array elements chosen at random, then on
the average we must compare it to half the array elements to find a match. If the array contains N
elements, we will need an average of N/2 comparisons, which can become fairly expensive if the
array contains (say) 2000 elements.

There are two good solutions to this problem of rapidly increasing search costs, binary search and
hashing. Hash tables will be discussed in Section 40.10 on page 941.

For large ordered arrays, it is helpful to use the binary search or binary chop method.289 Rather
than scan through the array in a sequential fashion, we start at the middle. If the search argument
(the “key”) is less than that array element, we ignore the second half of the array, because all its
elements must exceed the key; if the key is greater than the middle element, we ignore the first
half of the array, because all its elements are smaller than the key.

Next, we compare the key to the middle element of the remaining half of the array. By “chopping
off” half of the remaining array elements each time, we can greatly reduce the number of compar-
isons needed. Instead of the previous average of N/2 comparisons needed for a linear search, the
binary chop requires a number close to log2(N), the base 2 logarithm of N. For an array of 2000
elements, there will be at most 11 comparisons, instead of as many as 2000 and an average of
1000 for a linear search.

We illustrate a binary search in Figure 684 on page 921, using symbolically-defined registers and
values. Its main feature is two registers symbolically named LP and HP that point to the low-
addressed and high-addressed elements of the portion of the array AA being searched. The
sequence of instructions beginning at Setup determines the address of a byte halfway between the
low and high addresses. Because this midpoint might fall on an incorrect boundary, the NR
instruction aligns the midpoint address properly.

289 You can impress your mathematically inclined friends by calling it the “Bolzano-Weierstrass Algorithm”.

920 Assembler Language Programming for IBM System z™ Servers Version 2.00

L Equ 4 Length of an array element, which...
* ...must be a power of two (for mask)
N Equ 2000 Number of array elements
SA Equ 2 Search argument register (key)
X Equ 1 Indexing register
HP Equ 3 High-address pointer register
LP Equ 4 Low-address pointer register
M Equ 0 Mask register (will contain -L)
* Initialize

LHI M,-L -L used as mask and increment
L LP,=A(AA) Initial low pointer
L HP,=A(AA+L*(N-1)) Initial high pointer

* Set midpoint address
Setup LR X,HP Move high pointer, ...

SR X,LP ... - low pointer = portion size
JM NoMatch No match if pointers have crossed
SRL X,1 Halve size to get midpoint index
NR X,M Mask for proper alignment

* Compare, and adjust the pointers
C SA,0(X,LP) Compare to selected element
JE Matched If equal, found a matching element
JL Lower Branch if below midpoint
LAY LP,L(X,LP) Move low pointer upwards
J Setup And test for finish

Lower LAY HP,-L(X,LP) Move high pointer downwards, ...
J Setup And test for finish

* Construct address of the item we found
Matched LA 9,0(X,LP) Set addr of matched element in GR9

J Found And go away happy
Figure 684. Example of a binary search

The last two instructions place the address (rather than the index) of the matching element into
GR9.

There are many ways to sort arrays of data items, some very simple and some quite complex.290

For small arrays, you can use a simple “exchange” sort:

• Take the first element and compare it to the second. If the first is larger, exchange them.

• Now, compare the second and third, and again exchange them if the second is larger than the
third.

• Continue this way until the last two elements have been compared (and possibly exchanged).
The largest element will now be in the last element of the array.

• Start again with the first element, but continue only to the next to last item; this will become
the second-largest item in the array.

• Repeat these steps until you have compared and exchanged only the first two elements; the
first element will then be the smallest in the array.

The number of comparisons in an exchange sort is proportional to the square of the number of
elements, so it should be used only for very small arrays.

290 The classic reference for sorting and searching is The Art of Computer Programming, Volume 3: Sorting and
Searching, by Donald Knuth.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 921

Exercises

40.5.1.(1) If we must search through an entire two-dimensioned array for some value, is it pref-
erable for the array to be stored in row order or in column order?

40.5.2.(2) Suppose the array AA in Figure 684 on page 921 was ordered in descending order
(the wrong way). What will happen?

40.5.3.(3) In Figure 684 on page 921 we assumed that the byte length of an array element was
a power of two: in this case, 4. Rewrite the code sequence assuming that the length of an array
element is contained in the word at ElemLen. To simplify, assume also that the part of the
element to be matched will be fullword-aligned at the start of the element.

40.5.4.(2) Suppose an ordered array contains both positive and negative values. Write a code
sequence that takes advantage of this fact by searching the array sequentially in a forward direc-
tion if the search argument is negative, and in a backward direction if it is positive.

40.5.5.(3) Assume the same ordered array as in Exercise 40.5.4. Write instructions that take
advantage of this fact to improve a binary search. What improvement do you expect?

40.5.6.(3)+ Given an array of N word integers stored at Data, write instructions to sort the
integers using an exchange sort.

40.5.7.(3) What will happen if you do a binary search for an element in an array that is not
strictly ordered? Give an example.

40.5.8.(3) The discussion of an exchange sort above says that the number of comparisons is
proportional to the square of the number of elements. Give a more precise estimate.

40.5.9.(3) Suppose we must search an ordered array at Data that contains 2000 elements, each
53 bytes in length. The first 30 characters of an array element hold a name, and the remaining
23 bytes contain related data. The 30-byte search argument to be sought in the array is at SArg.
A branch to Found is to be made with the address of the matched element in R9, or to None if
no match occurs. Write instructions to perform a binary search of the array, matching on the
30-character name.

40.5.10.(2) Compare the instructions you wrote in Exercise 40.5.9 to the following, and deter-
mine which is more efficient for an array of 2000 elements. Assume that matches are equally
likely for all elements.

LA 0,53 Element length, for compares
L 3,=A(1024*53) Initial increment = (El Length)*..

* ..(Largest power of 2 contained in (number of elements))
L 1,=A(Data) Bottom address
L 2,=A(Data+53*2000) Top address, after last element
LA 9,0(1,3) Set initial compare address

Test CR 9,2 Check addr against top
JNL Low If off top, subtract increment
CR 9,1 Check addr against bottom
JL High If off bottom, add increment
CLC SArg(30),0(9) Compare search arg to element
JE Found Branch out if that's it
JH High Jump if arg bigger than element

Low SR 9,3 Subtract current increment
J ChkEnd Jump to test for end

High AR 9,3 Add current increment
ChkEnd CR 3,0 Compare increm to element length

JL None If smaller, no match
SRL 3,1 Halve increment
J Test And try again

922 Assembler Language Programming for IBM System z™ Servers Version 2.00

What modifications would be required to these instructions if we wanted to scan an array con-
taining (1) 3 elements, (2) 2047 elements, (3) 2048 elements?

40.5.11.(3)+ In Figure 684 on page 921, the search argument is in a register and the array AA is
a table of word integers. Revise the instructions in Figure 684 on page 921 assuming the array
contains the addresses of character strings of length SL and your search argument is the address
of a similar character string.

In this case, the strings can be anywhere in storage, but their addresses in the array AA refer to
them in sort order.

40.6. Stacks

Unlike an array, which usually contains a fixed number of elements, stacks, linked lists, and trees
usually contain varying numbers of elements. They are dynamic data structures, containing dif-
ferent numbers of elements as your program executes. Also, the organization of an array is tightly
constrained, usually to a contiguous grouping of elements. (If it wasn't, we couldn't use efficient
addressing expressions!) Stacks can be organized somewhat more loosely, while linked lists and
trees may be quite disjointed in their arrangement in memory.

A stack, as its name implies, is a data structure to which elements are added, and from which
elements are removed, at the “top”. The requirement that data be added and removed at only one
end is a characteristic property of a stack.

The terminology describing stack operations helps us visualize what is happening. When an
element is added to the top of the stack, the other elements are “pushed down” one level; hence
the name “push-down stack”. Similarly, removing an element from the top allows the others to
“pop up” one level.

40.6.1. An Example Using a Stack

Stacks can be used to convert expressions from their familiar infix form291 such as 2+3*5, to a
form more readily adapted to evaluation or (as in a compiler) code generation. For example, the
expression 2+3*5 is by convention the same as 2+(3*5), because we assign a higher priority to
multiplication than to addition. This form of expression is inconvenient for direct evaluation: if in
scanning this “infix” expression from left to right, we might place the value 2 in a register and
prepare to add it to something, we would then find that the “something” should have been evalu-
ated first. It helps to have converted from the standard infix notation to an “operator suffix” or
postfix form, but we won't show how to do that conversion here.*

To evaluate an expression in postfix form, two simple rules are used. When an operand is
encountered in the left-to-right scan, its value is pushed onto the stack, and when an operator is
encountered, the top two elements of the stack are removed, the operator is applied to them, and
the result is pushed back onto the stack. For example, the infix expression 9*3+2 becomes 93*2+
in postfix form, and is evaluated this way:

1. Push 9 and then 3 onto the stack;

2. Remove them and apply the * operator, and place the result 27 back on the stack;

3. Push 2 onto the stack;

4. Remove the two values 27 and 2 from the stack, apply the + operator, and push the result 29
back onto the stack.

The stack now contains a single element, the value of the expression.

291 Our traditional form of writing arithmetic expressions puts the operators between operands, with parentheses to indi-
cate sub-expressions. Two forms more convenient for computer processing are the prefix and postfix notations. Both
involve the use of stacks.

* Almost any textbook on compilers will show how it's done.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 923

The infix expression 3+5*7 is represented in postfix notation as 357*+, so that all three operands
are on the stack before the * operator is applied. The value of the expression will be (5*7)+3, or
38. If the infix expression had been written (3+5)*7, its postfix equivalent would be 35+7*,
implying a very different order of evaluation: the operands 3 and 5 are stacked and then replaced
by their sum 8; the operand 7 is pushed onto the stack, and then the * operator replaces the 8 and
7 by 56, the value of the expression.

40.6.2. An Example Implementing a Stack

The simplest implementation of a stack uses two items: a linear array of elements, and a “stack
pointer” that may be either the subscript or the address of one of the array elements. By conven-
tion, the stack pointer locates the element on top of the stack. For example, Figure 685 shows a
stack containing the values 9, 2, and 6. It might be represented in memory as the first three ele-
ments of an array of fullwords.

┌───────────┐
Stack │ 9 │ �─ bottom element

├───────────┤
│ 2 │
├───────────┤

stack pointer──│ 6 │ �─ top element
├───────────┤
│ │
├───────────┤
� � higher addresses

Figure 685. A stack growing toward higher addresses

The element 6 is at the top of the stack, and the element 9 is at the bottom.

We might implement this stack by allocating an array of 20 fullwords at Stack, and carrying the
index of the top element in GR1.

SP EQU 1 GR1 contains stack pointer
StkSize EQU 20 Stack size (20 elements maximum)

LM 2,4,=F'9,2,6' Initialize with 3 elements
STM 2,4,Stack Put 3 items onto stack
LA SP,8 Set index of stack top to 3rd word
- - -

Stack DS (StkSize)F Allocate space for the stack
Figure 686. A stack implemented as an array

Now, suppose the number in GR0 is to be pushed onto the stack: we simply increment the stack
pointer and store GR0 using the new index.

AHI SP,4 Increment stack pointer by 4
ST 0,Stack(SP) Store value at new top position

Figure 687. Pushing a data item onto a stack

If we think of the stack as an array, we have simply increased the subscript denoting the stack
pointer by one; this is a common way to visualize a stack.

To remove an element from the stack, we need only move the stack pointer “down” one element,
toward the bottom of the stack. Nothing need be done to the old top element, since it is now no
longer a part of the stack.292

AHI SP,-4 Remove top element from the stack

292 There may be situations where you will want to erase or remove the data left in deleted stack elements, to protect the
data from being visible to other programs using the same stack (or peeking at activities in your program).

924 Assembler Language Programming for IBM System z™ Servers Version 2.00

Now, suppose we want to replace the two elements at the top of the stack by their sum. We can
do this by (1) popping the top two elements off the stack, (2) adding them, and (3) pushing the
sum back onto the stack.

L 0,Stack(SP) Retrieve top stack element
AHI SP,-4 Now delete it from the stack
A 0,Stack(SP) Add the new top element

* AHI SP,-4 (**) Remove it from the stack
* AHI SP,+4 (**) Push the sum back on the stack

ST 0,Stack(SP) Store new top element
Figure 688. Adding top two elements of a stack

The second and third AHI instructions (marked “(**)” in the comment statements) aren't
needed: their actions mutually cancel. Because we know that something will immediately go back
onto the stack, it is safe to omit those two statements and leave the stack pointer momentarily
referring to an element that was removed.

Because we may want to refer to several elements at the top of the stack, we can take advantage
of the System z base-displacement addressing structure by placing the bottom of the stack at the
highest-addressed element.

� � lower addresses
├───────────┤
│ │
├───────────┤

stack pointer──│ 6 │ �─ top element
├───────────┤
│ 2 │
├───────────┤
│ 9 │ �─ bottom element
└───────────┘

Stack ─ ─ ─ ─ ─ ─
Figure 689. A stack growing toward lower addresses

The advantage of using instructions with nonnegative displacements may not be needed if you can
access your stack elements using long-displacement instructions.

Pushing and popping are done as in Figure 688, except that the stack pointer now moves (arith-
metically) in the opposite direction. We can refer to elements at and below the top of the stack
using nonnegative displacements for instructions referring to the stack via the stack pointer. The
example in Figure 690 evaluates the same sum as in Figure 688, except that the stack pointer
now contains the address of the stack top rather than its index.

SP EQU 1 Register GR1 contains stack pointer
StkSize EQU 20 Stack size

- - - Program puts data on stack
L 0,0(,SP) Get top stack element
A 0,4(,SP) Add next-to-top element
ST 0,4(,SP) Store sum at next-to-top position
LA SP,4(,SP) Pop stack once to adjust
- - -
DS (StkSize)F Define space for stack elements

Stack DS 0F Define stack name just past bottom
Figure 690. Add top two elements of a stack

Because we assigned the stack name to the first element position past the bottom of the stack, all
legal values of the stack pointer in GR1 must be less than the address of Stack. We can use this
property to test for the possibility of stack underflow, which occurs when too many elements have
been removed from the stack. If the pointer is greater than or equal to the address of Stack, an
underflow is indicated.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 925

LA SP,4(,SP) Pop an element off the stack
CL SP,UStack Compare to underflow address
JNL UndrFlow Branch to error routine if underflow
- - -

UStack DC A(Stack) One past bottom of stack

Similarly, we can test for the possibility of stack overflow (too many elements have been pushed
onto the stack).

AHI SP,-4 'Push' stack pointer one element
CL SP,OStack Check against stack overflow address
JL OverFlow Branch to overflow error routine
ST 0,0(,SP) It's safe to store on the stack
- - -

OStack DC A(Stack-StkSize*L'Stack) Overflow-test address

Checking for possible error conditions in manipulating stacks is strongly advised.

All these examples of stacks have used arrays as the underlying data structure. In Section 40.8, we
will see how a linked list can also provide the structure needed to implement a stack.

Exercises

40.6.1.(1) Given the stack arrangement in Figure 689 on page 925, which of the following
statements cannot be used to push a new element on the top of the stack, and why?

(1) ST 0,Stack-4(SP)
AHI SP,-4

(2) AHI SP,-4
ST 0,Stack(SP)

(3) ST 0,Stack(SP)
AHI SP,-4

40.6.2.(1) Using the stack illustrated in Figure 689 on page 925 and the instruction sequence in
Figure 690 on page 925, write instructions to initialize the stack and the stack pointer to the
contents shown in Figure 689 on page 925.

40.6.3.(1) In Figure 685 on page 924, an element can be pushed on the top of the stack by
writing code as in Figure 687 on page 924, or by writing

ST 0,Stack+4(SP)
LA SP,4(,SP)

Is one method preferable to the other? Why?

40.6.4.(2)+ Show the result of evaluating the following postfix expressions, and show the con-
tents of the operand stack at each step.

(1) 7 3 2 5 * * *
(2) 7 3 2 * 5 + *
(3) 7 3 + 2 5 * *

What would these expressions look like in “infix” notation?

40.6.5.(3)+ Suppose a postfix expression is represented in memory as an array of pairs of
halfword integers. The first integer of the pair is a code describing the second integer: if the first
integer is 0, the second is an operand; if the first is +4, the second is an operator; if the first is
-1, it indicates “end-of-expression”. The values used to indicate operators are 0 for + , and +1
for *. Thus the expression 234*+ is represented by the integers

0, 2, 0, 3, 0, 4, 4, 1, 4, 0, -1.

926 Assembler Language Programming for IBM System z™ Servers Version 2.00

Assuming that this representation is stored in an array at Expressn, write a program segment
that will evaluate the expression and leave its value in GR1.

40.6.6.(3)+ Extend your solution to Exercise 40.6.5 to include tests for valid operator codes and
for the possibility of stack overflow and underflow. Also, allow for subtraction and division,
which have operator codes +2 and +3 respectively.

For subtraction, treat the stack top as the minuend, the number to be subtracted from the
element below it; and for division, treat the stack top as the divisor and the element below it as
the dividend.

40.6.7.(3)+ Show how two stacks of word elements Stk1 and Stk2 can be built in a single array
A of N words, in such a way that either stack could use all N words if the other stack is empty;
the two stacks grow from each end of the array toward each other.

Show how to implement Push1, Push2, Pop1, and Pop2 routines that will push and pop ele-
ments onto and from either stack, being careful to detect overflow and underflow conditions for
each stack.

40.7. Lists

Most people use the word “list” to mean a linear table of items, like a shopping list. In
computer-speak, a list has a more specific meaning.

The basic element of a linked list has two components, a data field and a link field. The data
field may contain more than one data value. The link (or successor or chain) field contains a
“pointer” to the next list element; the pointer may be its address, its offset relative to the current
element, its array subscript, or whatever is appropriate to the application. Often, the actual
address is used, especially when new list elements are allocated from available memory.

List head List tail
 ┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐

│ link ├────│ link ├────│ link ├─────│ null │
 ├────────┤ ├────────┤ ├────────┤ ├────────┤

│ data │ │ data │ │ data │ │ data │
 └────────┘ └────────┘ └────────┘ └────────┘

Figure 691. Sketch of a linked list

There are two ends to a list. The first element is sometimes called the head; it has no predecessor;
and the last element, the tail, has no successor. The absence of a link in the link field of a list
element is usually indicated by storing a special and easily identifiable null value such as 0 or −1.

Two basic operations on linked lists are insertion and deletion.

40.7.1. List Insertion

Suppose we have a list with elements E1 and E3 as shown in Figure 692 on page 928, and we
want to insert element E2 between them.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 927

┌────┐ ┌────┐
│ E1 ├─────────────│ E3 │ before
└────┘ ┌────┐ └────┘

│ E2 │ patiently awaiting insertion
└────┘

┌────┐ ┌────┐
│ E1 ├─┐ ┌──│ E3 │ after
└────┘ │ ┌────┐ │ └────┘

└─│ E2 ├─┘
└────┘

Figure 692. Inserting an element into a linked list

The insertion proceeds in two steps:

1. Move the link field pointing from E1 to E3 into the link field of E2, so that E2 now points
to E3.

2. Store a link pointing to E2 into the link field of E1.

E3 is not referenced during the insertion, only the link to it from E1.

To illustrate, suppose a list element consists of two successive fullwords, the first containing the
link and the second containing the data, as illustrated in Figure 691 on page 927. (The link
could be the actual address of the successor element.) Suppose also that GR1 contains the
address of E1, and GR2 contains the address of E2. First, we'll do this without using a DSECT:

Link Equ 0 Offset of link field in list element
L 0,Link(,1) Copy Link(E1) into GR0
ST 0,Link(,2) Link E3 to E2
ST 2,Link(,1) Now link E1 to E2

Figure 693. Example of inserting an element into a linked list

These instructions will work correctly even when E1 is the last element and E2 is to become the
new tail, because the previous link field of E1 was a null link.

The example in Figure 693 uses explicit addresses in the three instructions. Now, we define a
DSECT to describe the list element:

List_El DSECT , Describe a linked list element
Link DS A Link address to successor
Data DS XL20 20-byte Data field
Elem_Len Equ *-List_El Length of a list element
Figure 694. DSECT describing a list element

We will use the DSECT mapping for each reference to a list element. It has the benefits of
DSECT mappings while letting the Labeled Using statements direct symbol resolutions to specific
registers; E1 and E2 are symbol qualifiers.

E1 Using List_El,1 Map the E1 list element
E2 Using List_El,2 Map the E2 list element

L 0,E1.Link Load link to E3 from E1
ST 0,E2.Link Store link to E3 in E2's link field
ST 2,E1.Link Store link to E2 in E1's link field
Drop E1,E2 DROP both Labeled Usings

Figure 695. Mapping multiple list elements with Labeled USINGs

This is much simpler (and clearer) than similar statements based on Ordinary USING statements.

928 Assembler Language Programming for IBM System z™ Servers Version 2.00

40.7.3. List Deletion

Removing an element from a list is very simple. To delete E2 from its position between E1 and
E3, move the link field from E2 into the link field of E1, replacing the previous link to E2.

┌────┐ ┌────┐ ┌────┐
│ E1 ├─────│ E2 ├─────│ E3 │ before
└────┘ └────┘ └────┘

┌────┐ ┌────┐ ┌────┐
│ E1 ├──┐ │ E2 ├─────│ E3 │ after
└────┘ │ └────┘ ┌──└────┘

│ │
└───────────┘

Figure 696. Deleting an element from a linked list

First, we delete E2 assuming the same register contents and definition of the Link offset as in
Figure 693 on page 928:

L 0,Link(,2) Link from E2 to E3 in GR0
ST 0,Link(,1) Now link E1 directly to E3

Figure 697. Example of deleting an element from a linked list

These instructions work even when E2 is the last element of the list, because the link field of E2
(which then becomes the link field of E1) is then a null link.

With Labeled USINGs, the instructions in Figure 697 can be written as in Figure 698, where all
symbol references are implicit.

E1 Using List_El,1 Map the E1 list element
E2 Using List_El,2 Map the E2 list element

L 0,E2.Link Load link from E2 from E3
ST 0,E1.Link Store link to E3 in E1's link field

Figure 698. Example of deleting an element from a linked list

As your data structures become more complex, Labeled USINGs and qualified symbols let you
write much clearer code.

These brief examples raise three questions that we'll need to answer:

1. Where do list elements come from? For example, Figure 692 on page 928 shows a new
element E2 without indicating how it was created.

2. When an element is deleted, what happens to it? In Figure 696, element E2 has no link
pointing to it; is it lost?

3. How do you find the first element (the head) of the list? In Figures 692 on page 928 and
696, how should we find E1?

The simplest answers to these questions are a free storage list and a list header or anchor.

40.7.4. Free Storage Lists

There are may ways to obtain new list elements. Requesting the needed bytes from the program's
operating environment each time you need a new element can be expensive, so the more usual
technique is to create a Free Storage List, or FSL. The program first acquires memory to hold
enough list elements for the application, either by defining space at assembly time or by
requesting the memory space when the program starts. For simplicity, our examples will define
the FSL at assembly time.

The FSL initially contains all the unused and available list elements in a single list. As elements
are needed for other lists, they are removed from the FSL, and as elements are deleted from other
lists, they are added back onto the FSL.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 929

To define a free storage list of 20 two-part elements like the one in Figure 694 on page 928, we
could write

NLstItms Equ 20 Number of items on free storage list
FSLCount DC A(NLstItms) Count of free-storage list items
FSLHLink DC A(FSLHead) List anchor: link to head element
FSLTLink DC A(FSLTail) List anchor: link to tail element
* Now, define the FSL
FSLHead DC (NLstItms-1)A(*+Elem_Len-4,0,0,0,0,0) All but FSL tail
FSLTail DC (Elem_Len/4)A(0) Tail element with null link field
Figure 699. Defining a free storage list as an array

Figure 699 shows why it may be better to initialize a FSL at execution time. The statement
named FSLHead required knowing the number of words in a list element, and the Assembler,
Linker, and Program Loader must process blocks of list elements. Also, the number of elements
in the FSL might be specified at execution time, when more elements can be added to the FSL as
needed.

We can also initialize a FSL at execution time, as shown in Figure 700:

Using List_El,1 Map the elements of the FSL
L 1,FSLHLink Point to first list element
LA 0,NLstItms-1 Count (no. elements)-1 in GR0

FSLoop LA 2,Elem_Len(,1) Addr of next element
ST 2,Link Store link in this element
LR 1,2 Move 'next' addr to 'this'
JCT 0,FSLoop Repeat for all but last
ST 0,Link Store 0 for null link in tail

Figure 700. Initializing a free storage list as an array

A simple way to locate the head element of a list is to maintain a separate list anchor whose
location is known, and that points to the first (head) element on the list. If the list anchor con-
tains a null link, the list it anchors is empty; otherwise it points to the head element.293

In addition to a pointer to the first list element, the list header might contain a count of list ele-
ments and a pointer to the last element in the list. Figure 701 illustrates such a list anchor.

┌─────────────────────┐
│ Count of list items │
├─────────────────────┤
│ link to first item │──
├─────────────────────┤
│ link to last item │──
└─────────────────────┘

Figure 701. Example of a list anchor

The free-storage list anchor can be mapped by its own DSECT:

FSLDSECT DSect , Map a free storage list anchor
FSLCount DC A(0) Count of list items
FLSHLink DC A(0) Link to head element
FSLTLink DC A(0) Link to tail element
Figure 702. DSECT mapping a list anchor

The “count of list items” field and the link to the list tail are optional, but they can help if you
need to know how many items are in the list. Also, keeping a count of the number of free ele-

293 Sometimes it is convenient to include the first list element in the list anchor. Then, the list is never empty, and the
function of the list head is performed by the list anchor.

930 Assembler Language Programming for IBM System z™ Servers Version 2.00

ments makes it easier to know when you may need to allocate more free elements. These fields
can also help you check to make sure no list elements have vanished.294 The link to the last item
is useful if you need to insert an item at the end of the list, so you won't have to search the entire
list to find the last element.

If your program needs frequent access to the list anchor and a general register is readily available,
you can keep the anchor in a register and never need to store it.

An anchor for a “working” list could take the same form as the anchor for the FSL shown in
Figure 699 on page 930:

WorkList DSECT , Map a free storage list anchor
LstCount DC A(0) Count of list items
LstHLink DC A(0) Link to head element
LstTLink DC A(0) Link to tail element
Figure 703. Defining an anchor for a working list

As items are taken from the FSL and added to the working list, the fields of the list anchor are
updated. For example, suppose we remove an element from the FSL defined in Figure 699 on
page 930 and insert it at the head of the working list shown in Figure 703:

- - - Assume c(GR9) = A(FSL anchor)
Using FSLDsect,9 Mapping of the FSL anchor
LT 0,FSLCount Check count of free elements
JNP NoneLeft Must take some corrective action
L 1,FSLHLink Addr of first free element in GR1
Using List_El,1 Map the new list element
L 2,Link Link to next free element in GR2
ST 2,FSLHLink Previous 2nd element now FSL head
AHI 0,-1 Decrement availability count; set CC
ST 0,FSLCount Store updated free-element count
JNZ FSLOK FSL still has elements
ST 2,FSLTlink Empty FSL; update tail address also

FSLOK DC 0H Address of new element in GR1
- - - Assume c(GR5) = A(work list anchor)
Using WorkList,5 Mapping of the work list anchor
L 2,LstHLink Get link to current work list head
ST 1,LstHLink Link to new list-head element
ST 2,Link Old head becomes second element
L 0,LstCount Get current working list count
AHI 0,1 Increment by 1
ST 0,LstCount Restore updated working list count
CHI 0,1 Is the new element the only one?
JNE WorkOK No, we're done with the work list
ST 1,LSTTLink Make new element be the tail also

WorkOK DC 0H Work list ready to use
Drop 9,5 Release mappings of list anchors

Figure 704. Moving a list element from the FSL to the working list

GR1 will contain the address of the newly acquired WorkList element.

Removing an element from the working list and returning it to the FSL uses a similar sequence of
instructions.

294 Leaving chunks of previously referenced and now inaccessible storage (known as “memory leaks”) is a very poor
programming practice. Some programming languages provide “garbage collection”, but garbage collectors still must
know what can safely be collected and what cannot.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 931

The sum of the element counts in FSLCount and LstCount should always be the same as the
number of items originally on the FSL.

Sometimes it's useful to link the list tail back to the list head, making the list circular. (See Exer-
cises 40.7.2 through 40.7.6.)

If we restrict list insertion and deletion to the head element, we have an implemented a stack!
This can be useful in applications where a stack must share or compete for space with other list
structures, because you can allocate stack elements as needed.

The examples in Figures 699 on page 930 and 700 used addresses as links. Another way to imple-
ment a linked list is with a two-column array as the underlying structure. To illustrate, suppose
we have an array of NLItms rows and two columns: the first column contains a “link” index to a
successor element, and the second column holds the data for that element. Figure 705 shows
how this might look:

Index Link Data
┌─────────┬───────────────────────────┐

1 │ │ │
├─────────┼───────────────────────────┤

2 │ │ │
├─────────┼───────────────────────────┤

3 │ │ │
├─────────┼───────────────────────────┤

... : : :
├─────────┼───────────────────────────┤

NLItms │ │ │
└─────────┴───────────────────────────┘

Figure 705. A two-dimensional array to implement a linked list

We need two additional values: HeadNdx, the index of the first element in the working list, and
FreeNdx, the index of the first element of the free-element list. First, we initialize the “list” so that
all elements are on the “free” list:

1. Set HeadNdx to zero (no elements in the list).

2. Set FreeNdx to 1.

3. Set each Link to the index of its successor, except the last, which is set to zero to indicate the
end of the free list.

The list would then look like this:

Index Link Data HeadNdx = 0
┌─────────┬───────────────────────────┐

1 │ 2 │ │ �── FreeNdx = 1
├─────────┼───────────────────────────┤

2 │ 3 │ │
├─────────┼───────────────────────────┤

3 │ 4 │ │
├─────────┼───────────────────────────┤

... : : :
├─────────┼───────────────────────────┤

NLItms │ 0 │ │
└─────────┴───────────────────────────┘

Figure 706. Initializing a two-dimensional array implementing a linked list

Exercises 40.7.10 through 40.7.14 use this form of a linked list.

932 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

40.7.1.(2) In Figure 703 on page 931 will happen to the fields a the working list anchor at
LstAnchr if deletions remove all list elements?

40.7.2.(1) Write instructions to initialize a circular free storage list.

40.7.3.(2) Write instructions to add an element to the end of a circular list.

40.7.4.(2) Write instructions to remove an element from a circular list.

40.7.5.(2)+ Suppose you have implemented a circular list without maintaining a count field in
the list anchor. How can you tell when the list is empty?

40.7.6.(2)+ Suppose you have implemented a circular list without maintaining a count field in
the list anchor. How can you tell when you have processed all the elements in the list?

40.7.7.(2) Rewrite the instructions in Figure 704 on page 931 to delete the head element of the
working list and return it to the FSL.

40.7.8.(3) Write an instruction sequence to take a new element from the FSL and add it to the
tail of the working list.

40.7.9.(3) Write an instruction sequence to take an element from the tail of the working list and
return it to the FSL.

40.7.10.(2) In Figure 705 on page 932, suppose the link field of each row is a word integer, and
the length of the data field is DataLen bytes, which has been defined symbolically and is a mul-
tiple of 4. Write statements to allocate an array of NLItms rows (also defined symbolically),
starting at ArrStack.

40.7.11.(3) Using the definitions in your solution to Exercise 40.7.10, write a sequence of
instructions that will initialize the list at ArrStack as shown in Figure 706 on page 932, and
initialize the values of HeadNdx and FreeNdx.

40.7.12.(3) Assume a list has been initialized as shown in Figure 706 on page 932, and that the
values of HeadNdx and FreeNdx have been initialized also.

First, show the steps needed to take an element from the “free list” referenced by FreeNdx and
assign the index of this new element to NewNdx, and update FreeNdx appropriately.

Then, write a sequence of instructions to do these steps. If no free elements are left, branch to
NoneLeft.

40.7.13.(3) Suppose two data elements have been added to the list shown in Figure 706 on
page 932, where the second element was added to the end of the list. Now, you need to add a
new element with index NewNdx to the list, after the existing element in the list with index
PrevNdx.

First, show the steps needed to put the new element into the list at the specified position.
Then, write a sequence of instructions to do these steps.

40.7.14.(3) Suppose several elements have been added to the list shown in Figure 706 on
page 932, and you need to remove the element with index CurrNdx and return it to the free
storage list.

First, show the steps needed to remove the specified element from the list and return it to the
free list, and updating the working list to account for the removed element.

Then, write a sequence of instructions to do these steps.

40.7.15.(2)+ Suppose the free storage list in Figure 699 on page 930 had been defined by
writing

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 933

FSLAnchr DC A(FSLHead)
DC (Elem_Len/4)A(0),(NLstItms-1)A(*-4,0,0,0,0,0)

FSLHead Equ *-Elem_Len

How would instructions using this new list differ from those using the list in Figure 699 on
page 930?

40.7.16.(2)+ Write a code sequence that obtains a list element from a free storage list anchored
at FSL and inserts it at the head of a list anchored at ListHead. If the free storage list is empty,
branch to AllOut.

40.7.17.(3)+ Do as in Exercise 40.7.16, with this added requirement: the fullword integer at
DataInt is stored in the data field of the new element, and the new element is then inserted into
the list at a position where its data value exceeds none of its predecessors. That is, the list must
be arranged in descending order of data items.

40.8. Queues

Linked lists occur in many forms; an important form uses double chaining. We saw in the pre-
vious examples that simple lists can be scanned only in the “forward” direction, starting at the
head and chaining toward the tail.

It is often useful to be able to move in both directions, so the list elements must contain both a
forward link and a backward link. We call this doubly-chained structure a queue; elements can be
added and removed at both ends of such a list.

Figure 707 illustrates the structure of a queue element:

┌──────────────────┐
 �───┤ predecessor link │

├──────────────────┤
│ successor link ├───
├──────────────────┤
│ data field │
└──────────────────┘

Figure 707. Structure of a queue element

A queue element contains links to its predecessor and successor elements (sometimes called
“forward” and “backward” links), as sketched in Figure 708.

 ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐
�───┤ predecessor link │�───┤ predecessor link │�───┤ predecessor link │
 ├──────────────────┤ ├──────────────────┤ ├──────────────────┤

│ successor link ├───│ successor link ├───│ successor link ├───
 ├──────────────────┤ ├──────────────────┤ ├──────────────────┤

│ data field │ │ data field │ │ data field │
 └──────────────────┘ └──────────────────┘ └──────────────────┘

Figure 708. A queue with several elements

Adding and deleting list elements other than the head or tail is more complicated than for singly-
linked lists, because four links involving three elements must be manipulated. For example,
suppose we have defined a DSECT describing the queue elements with these statements:

Q_El DSECT , Mapping of a queue element
LLink DS A Link to (left) predecessor element
RLink DS A Link to (right) successor element
ElemData DS XL(DataLen) Space for the element's data
Figure 709. DSECT structure of a typical queue element

934 Assembler Language Programming for IBM System z™ Servers Version 2.00

Now, suppose also that we have located two elements of the queue pointed to by GR2 and GR3,
and we want to insert the new element pointed to by GR5 between them, as in Figure 710 on
page 935.

GR2 GR3 GR5
� � �
┌──────────┐ ┌──────────┐ ┌──────────┐

�────┤ LLink │�────┤ LLink │ │ │
├──────────┤ ├──────────┤ ├──────────┤
│ RLink ├────│ RLink ├──── │ │
├──────────┤ ├──────────┤ ├──────────┤
│ ElemData │ │ ElemData │ │ ElemData │
└──────────┘ └──────────┘ └──────────┘
Left element Right element New element

Figure 710. An element to be inserted into a queue

After the new element has been inserted, we want the result to look like this, where the links that
must be changed during the insertion process are indicated in Figure 711 by the numbered keys
�1� and �2� (the “left” links), and by �3� and �4� (the “right” links).

┌──────────┐ �1� ┌──────────┐ �2� ┌──────────┐
�────┤ LLink │�─────┤ LLink │�─────┤ LLink │

├──────────┤ ├──────────┤ ├──────────┤
│ RLink ├─────│ RLink ├─────│ RLink ├────
├──────────┤ �3� ├──────────┤ �4� ├──────────┤
│ ElemData │ │ ElemData │ │ ElemData │
└──────────┘ └──────────┘ └──────────┘
Left element New element Right element

Figure 711. A queue after insertion of a new element

Four steps are needed to do the insertion:

1. Copy the LLink (predecessor link) field from the Right element into the LLink field of the
New element (�1�). The predecessor of New is now Left.

2. Store a LLink to the New element into the LLink field of the Right element (�2�). The
predecessor of Right is now New.

3. Copy the RLink (successor link) field from the Left element into the RLink field of the New
element (�4�). The successor of New is now Right.

4. Store a RLink to the New element into the RLink field of the Left element (�3�). The suc-
cessor of Left is now New.

If we use actual addresses as the links, we could do this (where the numbered steps above are
shown in the comments fields):

L 0,LLink-Q_El(,3) Get left link from Right element
ST 0,LLink-Q_El(,5) �1� Store as left link of New element
ST 5,LLink-Q_El(,3) �2� Store left link from Right to New
L 0,RLink-Q_El(,2) Get right link from Left element
ST 0,RLink-Q_El(,5) �4� Store as right link of New element
ST 5,RLink-Q_El(,2) �3� Store right link from Left to New

Figure 712. Instructions to insert a new queue element

This style of coding is awkward and error-prone because explicit addressing is used for every
instruction. If any of the registers must be reassigned, every instruction using that register must
be found and updated.

We could use ordinary USING statements to refer to the fields in each element with proper sym-
bolic addressing:

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 935

Using Q_El,3 Map RIGHT element
L 0,LLink Save old Right.LLink
ST 5,LLink Store new Right.LLink �2�
Drop 3 Unmap RIGHT element
Using Q_El,2 Map LEFT element
L 1,RLink Save old Left.RLink
ST 5,RLink Store new Left.RLink �3�
Drop 2 Unmap LEFT element
USING Q_El,5 Map NEW element
ST 0,LLink Store new New.LLink �1�
ST 1,RLink Store new New.RLink �4�
Drop 5 Unmap NEW element

Figure 713. Insert a new list element with ordinary USINGs

The primary shortcomings of this method are

• intermediate temporaries (in this case, registers 0 and 1) are used to hold some of the pointers;
• it requires a precise sequence of USING and DROP statements to obtain correct address

resolutions;
• two additional instructions are required (Load and Store via registers).

To eliminate the need for intermediate temporaries, we can use MVC instructions to move the
fields (with a presumed gain in efficiency):

- - - R5 points to New element
USING Q_El,5 Map NEW element
MVC LLink,LLink-Q_El(,3) Move old Right.LLink �1�
ST 5,LLink-Q_El(,3) Store new Right.LLink �2�
MVC RLink,RLink-Q_El(,2) Move old Left.RLink �3�
ST 5,RLink-Q_El(,2) Store new Left.RLink �4�

Figure 714. Ordinary-USING Code to Insert a New List Element

This sequence contains the “efficient” instructions, but its defects are:

• greater difficulty of understanding;
• increased likelihood of maintenance problems due to fixed register assignments in the

instructions.

The simplest and clearest solution is to use Labeled USINGs, with appropriate descriptive qual-
ifiers Left, Right, and New. Thus, three instances of the DSECT named Q_El are concurrently
active.

- - - R5 points to New element
Left Using Q_El,2 Labeled USING for Left element
Right Using Q_El,3 Labeled USING for Right element
New Using Q_El,5 Labeled USING for New element

- - -
MVC New.LLink,Right.LLink �1� Link from New to Left
ST 5,Right.LLink �2� Link from Right to New
MVC New.RLink,Left.RLink �3� Link from Left to New
ST 5,Left.RLink �4� Link from New to Right

Figure 715. Labeled USING example: inserting a new queue element

The advantages in clarity, readability, simplicity, and improved ease of maintenance are clear. The
only references to specific registers are in the USING statements. Without Labeled USINGs, the
code for these operations is more convoluted, and difficult to read, understand, and maintain.

A free storage list for queue elements can be the same as for a singly-linked list, because the free-
list elements only need to be chained in one direction.

Queues are sometimes “circular”, where the last element is linked to the first and the first to the
last. This allows searching in either direction, starting at the queue head.

936 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

40.8.1.(2)+ Describe the steps necessary to delete element Q2 between elements Q1 and Q3 in a
queue. Use the queue-element definition in Figure 709 on page 934.

40.8.2.(3)+ Suppose you have defined a queue of elements with a 4-byte data field containing a
word integer. The elements are ordered along the forward links in descending value: that is, the
data in the element pointed to by the forward link (if it exists) is less than the value in the
element containing the link. The list anchor points to an arbitrary element of the queue. Write
instructions that search the queue for an element whose data item matches the word integer at
Value. If no match exists, branch to InsertIt.

40.8.3.(4) When inserting elements into an ordered queue, the list may become unbalanced if
most of the entries are added on one side of the “center” element pointed to by the anchor. To
remedy this, maintain a flag indicating which side of the “center” received the most recent
insertion. If two successive insertions occur on the same side, the anchor is changed so that the
“center” element is moved one element in that direction.295

Write an instruction sequence that constructs such a balanced queue from the array of 100
fullword integers starting at DataVals.

40.9. Trees

Trees are structures whose elements may contain pointers to more than one “successor” element.
In a binary tree, for example, each element (or node) contains a data field and links to at most
two successors. Because the term “successor” is not well defined when more than one is possible,
we sometimes use a more “personified” terminology and call the successors of the “parent” node
its “left” and “right” children. One parent node is distinguished by having no parent of its own; it
is called the root of the tree.

The literature on trees is vast, so we will simply give a few examples to illustrate possible imple-
mentations. The format of a typical tree element is illustrated in Figure 716.

┌──────────────────────┐
�────┤ left subtree link │

├──────────────────────┤
│ right subtree link ├────
├──────────────────────┤
│ data field │
└──────────────────────┘

Figure 716. Node of a binary tree

We can map the structure in Figure 716 with a DSECT like that in Figure 709 on page 934:

Tree_El DSECT , Mapping of a tree element
LLink DS A Link to left subtree
RLink DS A Link to right subtree
ElemData DS XL(DataLen) Space for the element's data
Figure 717. DSECT structure of a typical tree element

The topmost node of a binary tree is its “root” node. All accesses to nodes in the tree start at the
root. An example of a binary tree with 3 nodes is shown in Figure 718 on page 938.

295 This technique was used in the old IBM Fortran H compiler to construct its symbol tables.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 937

Root node
┌────────────┐

┌�─────────────┤ left link │
│ ├────────────┤
│ │ right link ├────────────┐
� ├────────────┤ �

┌────────────┐ │ data field │ ┌────────────┐
 ┌�───┤ 0 │ └────────────┘ ┌�───┤ 0 │
 │ ├────────────┤ │ ├────────────┤
 │ │ 0 ├───┐ │ │ 0 ├───┐
│ ├────────────┤ │ │ ├────────────┤ │
 │ │ data field │ │ │ │ data field │ │
│ └────────────┘ │ │ └────────────┘ │
� left subtree � � right subtree �

Figure 718. Three nodes of a binary tree

This might look like a three-node queue with “empty” links, but a tree with more nodes might
look like Figure 719; we see that a tree structure can't be represented by a queue.

Root Node
┌────────────┐

┌�────────────────┤ left link │
│ ├────────────┤
│ │ right link ├────────────┐
� ├────────────┤ �

┌────────────┐ │ data field │ ┌────────────┐
┌�──┤ left link │ └────────────┘ ┌�─┤ left link │
│ ├────────────┤ │ ├────────────┤
│ │ right link ├─┐ │ │ right link ├─┐
│ ├────────────┤ │ │ ├────────────┤ │
│ │ data field │ │ │ │ data field │ │
│ └────────────┘ │ │ └────────────┘ │
� � � �

┌────────────┐ ┌────────────┐ ┌────────────┐ ┌────────────┐
│ left link │ │ left link │ │ left link │ │ left link │
├────────────┤ ├────────────┤ ├────────────┤ ├────────────┤
│ right link │ │ right link │ │ right link │ │ right link │
├────────────┤ ├────────────┤ ├────────────┤ ├────────────┤
│ data field │ │ data field │ │ data field │ │ data field │
└────────────┘ └────────────┘ └────────────┘ └────────────┘

Figure 719. A growing binary tree with seven nodes

Suppose we want to construct a symbol table using a binary tree, so that the symbols are main-
tained in alphabetic order. If we look at the symbol in a given node, all the symbols in the “left
subtree” (that is, the left subtree and its subtrees) precede the given symbol in alphabetic order,
and all the symbols in the “right subtree” and its subtrees follow the given symbol. Assume that
the tree elements are composed of three successive words, as illustrated in Figure 716 on
page 937. Let GR0 contain a 4-character symbol to be entered into the tree, and suppose GR1
contains the address of an empty node obtained from a free storage list. As additional simplifi-
cations, we suppose the tree already contains some entries, and if one of them matches the new
symbol, we will branch to FoundIt.

938 Assembler Language Programming for IBM System z™ Servers Version 2.00

New Using Tree_El,1 Map the new node based on GR1
RW Equ 3 Use GR3 as a work register

L RW,RootPtr Pick up pointer to root node
Compare LR 2,RW Point to node to be compared

Using Tree_El,2 Anchor the tree element mapping
CL 0,ElemData Compare symbol to current node
JL GoLeft Symbol smaller, search left subtree
JE FoundIt Symbol already in tree, exit.

GoRight L RW,RLink Get link to right subtree
LTR RW,RW Check for right subtree
JNZ Compare Right exists, scan right subtree
ST 1,RLink New node becomes right subtree
J Store And go store symbol

GoLeft L RW,LLink Get link to left subtree
LTR RW,RW Check whether it's there
JNZ Compare Branch if yes to search
ST 1,LLink New node becomes left subtree

Store ST 0,New.ElemData Store symbol into new node
XR 0,0 Clear GR0 for storing new links
ST 0,New.LLink Clear left and right links of...
ST 0,New.RLink ...new node: it has no subtrees
- - -

FoundIt - - - Data already entered in the tree
Figure 720. Entering a new node in a binary tree

This method can be inefficient: if the symbols being entered in the tree are received in ascending
alphabetic order, we will generate a tree that is actually a linear list, chained along the right-tree
links. Techniques for balancing binary trees are beyond the scope of this section, but are described
in many programming references and textbooks if you're interested.

Having constructed a tree, we will need to search it to retrieve the symbols in alphabetic order.
Because all left subtrees precede their parents, and the right subtrees follow their parents, we must
scan the left subtrees of a node before “processing” the data in that node, followed by a scan of
the right subtrees. There are two problems to be solved: how to “travel” through a tree structure,
and how to keep track of which cildren of a node have been visited, and which ones are still to be
processed.

As we work our way from the root toward the lower levels of the tree, we must retain some
information on how to return to the parents of the nodes already passed. This problem is easily
solved if each node contains a link to its parent, but this requires an extra link field in each node.
Similarly, if some space outside the data structure is available, we can also maintain a stack of
return links; each time we move from a parent node to one of its children, the address of the
parent node is pushed onto the stack, to be popped off when we return to the parent. A third
technique is to reverse the links as we pass over them: when moving from parent to child, one of
the links in the child node is saved in a register, and the link field is replaced by a pointer to the
parent node. Then, when returning from child to parent, the links are restored to their original
and correct orientation. (This method cannot be used if the tree may be traversed by more than
one process at a time, as might occur in large application programs such as reservation systems
and similar data bases.)

The second problem, keeping track of which subtrees of a node are still to be processed, requires
maintaining some kind of counter at each level. If we are using a stack to hold return links, we
can push the number or address of the next subtree to be processed onto the stack at the same
time. Otherwise, a field in the node must be available to hold the count. In a binary tree the
counter can be a single bit.

We will traverse the binary tree constructed in Figure 720, extract the symbols in alphabetic
order, and store them in a table of fullwords starting at Ordered. Assume there is a sufficiently
large array of fullwords at LStack that can be used to hold the return links. Since the tree is
binary, we need not maintain a count; to indicate that a node has been “processed”, the return
link on the stack will be stored as a negative value.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 939

RW Equ 3 Use GR3 as a work register
RTbl Equ 1 Pointer to output table
RStk Equ 4 Points to word past top of stack

L RW,RootPtr Initialize work pointer to root
LA RStk,LStack Initialize link stack pointer
LA RTbl,Ordered Initialize output pointer
SR 2,2 Node pointer = 0 indicates root

StackLnk ST 2,0(,RStk) Put current node pointer on stack
LA RStk,4(,RStk) Bump stack pointer by 4
LR 2,RW Move to left subtree node
Using Tree_El,2 Map the tree node's structure

LookLft L RW,LLink Get its left subtree link address
LTR RW,RW Does its left subtree exist...
JNZ StackLnk If yes, stack link and continue

Output L 0,Data(,2) 'Process' the data from the node...
ST 0,0(,RTbl) ...by storing it into the table
LA RTbl,4(,RTbl) Increment table storage address

LookRgt L RW,RLink Get the right subtree link address
LTR RW,RW Does the right subtree exist...
JZ Return Branch if not to return to parent
LCR 2,2 Form negative value for stack
J StackLnk Go stack link, look leftward

Return AHI RStk,-4 Pop stack pointer once
L 2,0(,RStk) Retrieve popped return link
LTR 2,2 Check for already processed
JM Return Branch if yes, pop again
JP Output Go process the node if available
- - - Otherwise if zero, we're all done

LStack DS 20F Stack for node links
Ordered DS 100CL4 Ordered output values
Figure 721. Retrieving data from a binary tree

The examples in Figures 720 on page 939 and 721 have used one of three common ways to trav-
erse a binary tree. We assumed that each left subtree contains elements less than that of the parent
node, and each right subtree contains elements greater than the parent node's. This is called
“inorder” traversal. The other two forms are called “preorder” and “postorder”. The order of
traversal for each of the three forms is

• preorder: parent, left subtree, right subtree
• inorder: left subtree, parent, right subtree
• postorder: left subtree, right subtree, parent

Consider the small tree with 7 elements shown in Figure 722, in which three elements have
“children” and four do not (these are sometimes called “leaf nodes”).

Root
│

┌───────A───────┐
┌───B───┐ ┌───C───┐
D E F G

Figure 722. Example of a binary tree of 7 elements

The order in which the elements are visited is

• preorder traversal: A B D E C F G
• inorder traversal: D B E A F C G
• postorder traversal: D E B F G C A

Other types of trees with more than one data element and more than two links per node are
widely used; they are sometimes called “B-trees” or “N-trees”. For example, a B-tree node with
two data elements and three links might look like this:

940 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───────────────────────────┐
│ number of data items here │
├─────────────┬─────────────┤
│ data item 1 │ data item 2 │
├────────┬────┴────┬────────┤
│ link 1 │ link 2 │ link 3 │
└───┬────┴────┬────┴────┬───┘

┌────────────┘ │ └─────────────┐
� � �

link to node link to node link to node
with elements with elements with elements
< data item 1 between data > data item 2

items 1 and 2

You will need to know the number of data items and links in a node so you can know how many
comparisons are needed, either to locate an item in this node or to follow a link to a lower node.

B-trees can mean that fewer nodes need to be searched to locate a particular data item.

Exercises

40.9.1.(2) The description of tree traversal methods always visits a “left” subtree before a
“right” subtree. What would happen if the order of left and right were interchanged?

40.9.2.(2) Figure 718 on page 938 shows a binary tree with 3 nodes. How many other 3-node
binary trees are possible?

40.9.3.(2) Now that you have solved Exercise 40.9.2, suppose your 3-node binary trees contain
the symbols A, B, and C in alphabetic order. If the trees are traversed using “inorder” traversal,
sketch what your trees will look like.

40.9.4.(3) Suppose an element of a tree can have up to four subtrees, of which the values in the
first two precede it and the values in the last two follow it, in whatever ordering is applied to
the contents of the data field. In addition, the subtrees are ordered (by the same relation) from
“left” to “right”. What additional fields are required in the node? What are the advantages of
such a representation over a binary tree?

40.10. Hash Tables

As with the other structures, the literature on hash tables is large. We will give only enough
background here to illustrate some implementation techniques for System z.

All of the previously described data structures suffer from one important defect: to locate an
element, the structure must be searched in an orderly and sometimes sequential fashion. We have
seen how to search arrays and lists linearly, and how to use binary trees, or binary search in an
array, to search more efficiently. When the number of data elements is large, however, even these
techniques become less efficient.

If the data need not be stored and retrieved in an ordered way, and if few deletions are performed,
hash addressing or hashing is an attractive alternative. This “associative” form of addressing
locates the element directly by its contents rather than by its position in an array, list, or tree.

There are many “hash functions”. The one you use is unimportant, so long as it creates a reason-
ably uniform distribution of hash values: you don't want too many data items to have the same
hash value, because your hash table will have too many items in some areas and too few in
others.

The item to be inserted or found in the table (called the key) is used to form a “numeric hash”, a
pseudo-random number generated from the datum itself. For example, the bits of the key may be
hashed by multiplying or dividing, or by adding or XORing pieces of the key together. This hash

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 941

value is then used as an index to look into (or probe) a table. If the probed position is vacant,
the datum is entered there; if it is not vacant and the datum occupying that position does not
match the key, a collision has occurred. We can make further probes to find either a match or an
empty place in the table, or create another data structure anchored at the hash position.

Figure 723 gives an example of a hash function; another is shown in Figure 724 on page 943.
Suppose the word at DataItem should be placed into a hash table with 73 entries. Our hash func-
tion will XOR the two halves of the data item, and divide the result by the number of table
entries to create the hash-table index.

HashEnts Equ 73 Number of hash table entries
XR 0,0 Set GR0 to 0
LR 1,0 And also GR1
ICM 0,3,DataItem First 2 bytes of data item in GR0
ICM 1,3,DataItem+2 Last 2 bytes of data item in GR1
XR 1,0 XOR the halves into GR1
XR 0,0 Clear GR0 for a division
D 0,=A(HashEnts) Divide by hash table size

* Hash index is now in GR0
Figure 723. Example of searching a hash table

Suppose we have two fullword arrays starting at Symbols and Count, containing NE entries each.
Each element in the Symbols array may contain a 4-character alphanumeric symbol, and each
element of the Count array is an integer count of the number of occurrences of that symbol. We
wish to test if the symbol stored at InData appears in the table: if not, it will be entered and its
count will be set to 1; if there already, its count will be incremented by 1. A few further points
remain:

1. The number NE of table entries is usually chosen to be prime, giving a more uniform distrib-
ution of entries. We will use as a hash value the remainder from dividing the EBCDIC repre-
sentation of the key by NE.

2. If we encounter a non-matching table entry (a collision), we will probe further simply by
moving to the next higher position in the table. If we run off the top, we begin again at the
bottom.

3. If no vacant position remains, and no match occurs after searching the entire table, branch to
FullUp.

In Figure 724 on page 943, GR6 contains the hashed value of the key symbol; GR2 contains the
symbol being sought; GR0 contains zero (to test for vacant positions); and GR1 is used as an
index for the currently probed position of the table.

942 Assembler Language Programming for IBM System z™ Servers Version 2.00

NE Equ 101 (Prime) Number of possible entries
SR 0,0 Initialize to zero
L 2,InData Load search key
LR 6,2 Prepare to calculate hash value
SRDL 6,32 Shift logically, GR6 zeroed
D 6,=A(NE) Divide by table size
SLL 6,2 Form fullword index
LR 1,6 Initialize search index

Probe CL 0,Syms(1) See if empty slot
JE NewSym Branch if yes, store symbol
CL 2,Syms(1) Is symbol already there?
JE Match Branch if in table
LA 1,L'Syms(,1) Move index to next position
CL 1,=A(NE*L'Syms) Compare to top of table
JL NotOver Branch if not over
SR 1,1 Reset index to bottom if over

NotOver CLR 1,6 Check for no empty slots at all
JNE Probe Loop if not finished
J FullUp No space left

NewSym ST 2,Syms(1) Store new symbol in table
Match L 2,Count(1) Get count field

AHI 2,1 Increment by 1
ST 2,Count(1) And restore the counter
- - -

Syms DS (NE)F Define table for symbols
Count DS (NE)F And for counts
Figure 724. Example of searching a hash table

This example isn't very useful, because the hash table cannot hold more data items than the
number of elements.

Hashing can be advantageously combined with other structures. For example, if each element of
the Syms array is the anchor for a linked list or a binary tree, the table can hold many more items
without much increase in search time. In such cases, we needn't worry about secondary probes in
the event of a collision; the list or tree anchored at that position is searched for a match, and if
none exists a new element is added to the structure.296 Searching such structures can be very effi-
cient.

As with the other structures, the literature on hash tables is large.

Exercises

40.10.1.(2) Reduce the number of instructions in Figure 723 on page 942 by using shifts.

40.10.2.(2)+ In Figure 723 on page 942, what will happen if the two ICM instructions are
replaced by LH instructions? Will a valid hash index be generated?

296 This method, with a linked list anchored at each hash table entry, was used to construct the symbol table in the
original System/360 IBM “F-level Assembler”.

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 943

40.11. Summary

The variety of data structures is huge; this section has tried to show how to handle some of the
more common types.

Terms and Definitions
address table

A table of addresses of individual rows or columns of an array, allowing faster access to the
elements of that row or column.

array
A collection of data items usually of the same data type and length, arranged in contiguous
storage locations. Usually accessed using one or more index variables or “subscripts”.

B-tree
A tree whose nodes contain more than one data element, and more than two links to suc-
cessor nodes.

binary search
A technique for searching ordered arrays by probing the midpoint of successively smaller
portions of the array.

binary tree
A data structure in which each element contains links to two other elements, a “left subtree”
or “left child”, and a “right subtree” or “right child”.

column order
A way to store arrays so that the elements of each column follow one another in memory.
The normal ordering for one-dimensional arrays. For arrays of two or more dimensions,
subscripts cycle most rapidly from left to right.

column-major order
Same as column order.

double-ended queue
Same as queue. Sometimes called a “dequeue”.

doubly-linked list
Same as queue. Sometimes called a “double-threaded” list.

free storage list
A list containing unused and available elements. Abbreviated FSL .

hash function
A function that creates a randomized linear subscript from a data element. Used to avoid
lengthy table searches for large or complex data items.

hash table
A table of data items (possibly including lists and pointers to other data items or structures)
whose entries are accessed using the results of a hash function.

infix notation
The traditional form of writing arithmetic expressions, where operators are placed between
operands, as in 2*(3+4).

inorder tree traversal
A technique for traversing a binary tree, visiting first the left subtree, then the parent node,
and then the right subtree.

linear subscript
For arrays of two or more dimensions, the evaluation of a subscript that treats the array as
having been mapped into a one-dimensional array corresponding to the CPU's linear
arrangement of bytes in memory.

linked list
Same as list. Sometimes called a “single-threaded” list.

944 Assembler Language Programming for IBM System z™ Servers Version 2.00

list
A sequence of data elements each containing a link to its successor. If the first and last ele-
ments are identified and the next element to be accessed is the last, sometimes called a “First
In, First Out” (FIFO) list.

postfix notation
A representation of expressions convenient for evaluation. The infix form 2*(3+4) is repres-
ented as 2 3 4 + *.

postorder tree traversal
A technique for traversing a binary tree, visiting first the left subtree, then the right subtree,
and then the parent node.

preorder tree traversal
A technique for traversing a binary tree, visiting first the parent node, then the left subtree,
and then the right subtree.

queue
A sequence of data elements each containing links to its successor and to its predecessor.
Sometimes called a “doubly-linked list.”

row order
A way to store arrays so that the elements of each row follow one another in memory. For
arrays of two or more dimensions, subscripts cycle most rapidly from right to left.

row-major order
Same as row order.

stack
A data structure with a single visible element, the “stack top”. Sometimes called a “Last In,
First Out” (LIFO) list or queue.

table
A term often used to describe a one-dimensional array whose columns may contain a
mixture of different data types and lengths.

virtual origin
The address of a (possibly nonexistent) array element all of whose subscripts are zero.

Programming Problems

Problem 40.1.(3) This problem requires that you plot a graph to occupy a full page of printed
output that we'll assume is a two-dimensional array 60 lines high and 120 characters wide (that
is, 60 rows and 120 columns). Suppose we divide the page into 119 horizontal divisions
(columns) corresponding to X values in the range −59 ≤ X ≤ +59, and 59 vertical divisions
(rows) corresponding to Y values in the range −29 ≤ Y ≤ +29.

Set the first character in each line to a blank character, except on the first line, set it to C'1'.

On this “page” you should plot

1. an X-axis (use minus signs)
2. a Y-axis (use capital letter I's or vertical bars)
3. the Y-values corresponding to the functions

(a) Y = (X/2) + 6 (use X's for the points), and
(b) Y = 25 - (X*X)/50 (use asterisks for the points).

If a Y-value lies off the page, plot nothing. Your graph will look roughly like an inverted
parabola with a diagonal line through it, as in the following sketch (so you can tell whether
your graph is upside down or otherwise lopsided):

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 945

┌─────────────────────────────────┐
│ ***** XX │
│ *** │ *** XX │
│ ** │ XX │
│ ** │ XX ** │
│ * │ XX * │
│ * XX * │
│ * XX│ * │
│─────*──────XX──┼──────────*─────│
│ * XX │ * │
│ * XX │ * │
│ * XX │ * │
│ *XX │ * │
│ XX │ * │
│XX* │ * │
└─────────────────────────────────┘

Use the PRINTLIN macro instruction to print the 59 lines.

Problem 40.2.(3) Write a program to evaluate logical expressions of the form used in symbolic
logic. For example, if “&” represents AND and “ |” represents OR, and A, B, and C are logical
variables, we might ask if the expression

A&B&(C|A) Infix notation

is true for all possible true-false values of the three variables.

Let the possible values of variables be 0 (meaning FALSE) and 1 (meaning TRUE). We can
evaluate logical expressions in operator postfix notation using a stack; the above expression
would then be written

AB&CA|& Postfix notation

Use the values B'11110000', B'11001100', and B'10101010' to represent A, B, and C respec-
tively, and let B'11111111' and B'00000000' represent the constants 1 (TRUE) and 0 (FALSE)
respectively.

Your program should read data records containing logical expressions in postfix notation, and
evaluate them using a byte stack (not a word stack). If the final value is B'11111111' the
expression is always true, and if the value is B'00000000' the value is always false; otherwise it is
indeterminate. Print the original postfix expression and a message describing the result of the
evaluation. Try your program with the expressions ABC01|||| and ABC01&&&& and as many
others as you can devise.

Some possible extensions:

1. Support the unary operator N (NOT) that forms the one's complement of the element on
top of the stack, and the binary operator X (XOR).

2. Create a stack of word entries, and define additional variables D and E appropriately.

Problem 40.3.(3) Write a program that will read 4-character symbols from the first 72 columns
of a record (there may be at most 18 symbols to a record). A “symbol” of all blank characters
indicates the end of the record. Insert the symbols in alphabetical order into a linked list whose
elements have two data fields (4 bytes for the symbol, and a word binary integer count) and a
fullword link field.

As the symbols are read from the record, scan the list. If the symbol is in the list, increment its
count by 1. If the symbol is not in the list, obtain a free element from a FSL, place the symbol
in it, initialize its count to 1, and insert it in the list in the correct position. If a symbol on the
record starts with an asterisk, print the contents of the list, giving each symbol and its count.

After the data in an element has been printed, return the element to the free storage list. Thus,
when the printing is done, all the data elements will be back on the FSL, and the data list will
be empty. Then read some more data records and build a new symbol table, until no more data
records are available.

946 Assembler Language Programming for IBM System z™ Servers Version 2.00

Problem 40.4.(3) Write a program like that of Problem 40.3, but use a hash table to store the
symbols. You will have to devise a method to sort the symbols into alphabetic order before
printing them.

Problem 40.5.(4) Write a program like that of Problem 40.3, but use a binary tree to store the
symbols.

Problem 40.6.(3) A matrix is a two-dimensional array, as described in “40.2. Two-Dimensional
Arrays” on page 910. Matrix multiplication is a common problem in data analysis; to calculate
the product matrix C of two N-by-N matrices A and B, we use the following formula:

 C(i,j) = Σ (k=1,N) A(i,k) * B(k,j)
Write a program to evaluate a product matrix containing fullword integer values. For example,
let N be 5, and initialize the A matrix with rows containing 1, 2, 3, 4, and 5, and initialize the B
matrix with rows containing 5, 4, 3, 2, and 1. Then test your program with A and B with all
elements initialized to 2. Assume that all sums and products don't exceed 30 significant bits.

Problem 40.7.(4) Do the same as in Problem 40.6, but this time move as much of the sub-
scripting arithmetic as possible outside the loops. Then, use Branch on Index instructions to
increment and test the loop indices. Compare this solution to your solution to Problem 40.6.

Problem 40.8.(3) Write a program to print a square centered on a 120-character print line (with
one additional initial character for carriage control spacing), centered on a 60-line page. The
square is 12 by 12; and its outer border is 12 '1' characters, and its inner border is 10 '0'
characters. The rest of the page is blank. (Ignore the fact that character spacing on the printed
page may be different in horizontal and vertical directions.) For example, the upper left corner
of the square would look like this:

11111
10000
10
10
10

For extra credit: determine the actual character and line spacings used on your printer, and
adjust your printed output to more accurately resemble a square rather than a rectangle.

Problem 40.9.(3) Do as in Problem 40.8, but rotate the “square” by 45 degrees to create a
diamond-shaped rhombus. Make the outer border 18 by 18 characters. The top of the diamond
would look like this:

1
101
10 01

 10 01

For extra credit: determine the actual character and line spacings used on your printer, and
adjust your printed output to more accurately resemble a rotated square rather than a rhombus.

Problem 40.10.(3) Write a program to print a circular ring centered on a 120-character print line
(with one additional initial character for carriage control spacing), and centered on a 60-line
page. The outer diameter of the ring is 60 characters (so it will fill a 60-line page). The width
of the ring should be 10 characters, so there will be an empty inner circle with diameter 40
characters. Use '*' characters to fill the ring, and leave the rest of the page blank.

For extra credit: determine the actual character and line spacings used on your printer, and
adjust your printed output to more accurately resemble a true circle rather than an ellipse.

Problem 40.11.(3)+ This problem uses the representations introduced in Exercise 40.6.4. Write
a program that reads expressions in postfix form from data records, evaluates the expression,
and prints the result. The data records are prepared according to these rules: (1) all operands
are positive integers of 5 or fewer digits; (2) all operators and operands are separated by a single
blank; (3) the operators + - * / are represented by themselves; (4) the data record ends in

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures 947

column 72. Your program should check for underflow and overflow; include some data to
verify that errors are correctly detected.

Problem 40.12.(2) Build a table of the first 25 members of an integer sequence defined by
S(N)=S(N-1)+S(N-2)+S(N-3), where S(1)=0, S(2)=1, and S(3)=2. Then, format and print all 25
members of the sequence; the largest is 1166220.

Then, “dump” the table and check that you can verify the values in hexadecimal.

Problem 40.13.(3)+ Revise your solution to Problem 40.12, but this time put the address of the
table in a register and don't change it: all references to the table must be made using only its
address (as though the table is somewhere unknown). After building the table, format and print
the members of the sequence. Eliminate leading zeros from the results.

Problem 40.14.(3) Do as in Problem 40.13, but now build a second table containing the for-
matted values as character strings. Then, print the character values by stepping through the
array of character values.

948 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter XII: System Services, Reenterability, and Recursion

XX XX IIIIIIIIII IIIIIIIIII
XX XX IIIIIIIIII IIIIIIIIII
XX XX II II
XX XX II II
XX XX II II
XXXX II II
XXXX II II
XX XX II II
XX XX II II
XX XX II II
XX XX IIIIIIIIII IIIIIIIIII
XX XX IIIIIIIIII IIIIIIIIII

The two sections of this chapter discuss some advanced topics:

• Section 41 sketches several types of operating system functions and how your programs can
utilize them.

− General characteristics of macro instructions used to request Operating System services.

− Purposely causing abnormal program termination.

− Simple forms of storage management: how to acquire and release blocks of memory.

− An overview of key elements of input and output.

− Techniques for managing program interruptions, and a description of handling abnormal
terminations of any kind.

• Section 42 describes:

− Program reenterability: what it means and why it can be important.

− Program recursion, and how to write programs to handle it.

Chapter XII: System Services, Reenterability, and Recursion 949

41. Using System Services

444 11
4444 111
44 44 1111
44 44 11

 44 44 11
44444444444 11
444444444444 11

44 11
44 11
44 11
44 1111111111
44 1111111111

This section provides a brief overview of these topics:

• Macro instructions used to access system services, and their typical formats
• The SVC and PC instructions
• Voluntary and involuntary abnormal termination of your program
• Some basics of storage management
• A short introduction to one common form of sequential Input/Output
• Ways to handle some exceptions

This is only a sample of the many, many system services available to you. For all system services,
you should have the relevant manuals available.

41.1. Invoking System Services

These two instructions are most often used to invoke operating system services:

Table 431. Supervisor and Program Call instructions

Op Mnem Type Instruction Op Mnem Type Instruction

0A SVC I Supervisor Call B218 PC S Program Call

The SVC instruction has the form shown in Table 432. It invokes the operating system Super-
visor by causing a Supervisor-Call interruption.

Table 432. SVC instruction

It is written with only a single operand, in the form

SVC I

where the second byte I of the SVC instruction contains an 8-bit number that is placed in the
Interruption Code portion of the “old PSW” in the fixed area at the low-address end of main
memory. (You may recall from Section 4.5 that Supervisor Call is one of the six classes of inter-
ruption: that is, execution of an SVC instruction invariably causes that type of interruption.) The
new PSW gives control first to an “Interrupt Handler” that saves the registers and the old PSW in

0A I

950 Assembler Language Programming for IBM System z™ Servers Version 2.00

a safe place, and then passes control to a routine that examines the 8-bit Interruption Code and
decides what function is desired.

The Program Call instruction doesn't cause a program interruption, so it can sometimes operate
more efficiently than SVC. It normally causes a change from problem to supervisor state. Its
format is shown in Table 433:

Table 433. Program Call instruction

Its single operand is

PC D2(B2)

so it can handle at least 224 possible operand values. Conversely, the 8-bit I field of SVC can
support at most 256 possible values, some of which are reserved for customer use.297

Usually, further information such as flags and values, or addresses of other data, is placed in the
general registers just prior to executing the SVC or PC; registers 0 and 1, and sometimes 14 and
15, are almost always used. In some cases the Supervisor will place values into one or more regis-
ters before returning control to the program that executed the SVC or PC.

B218 B2 D2

41.2. Invoking System Services with Macro Instructions

Most operating system services are invoked using macro instructions, or “macros”.

A macro instruction is an invocation of an assembly-time subroutine that is written in the condi-
tional assembly language of the Assembler. You invoke (or “call”) it by writing its name in the
operation field of a statement, possibly with a name-field entry, and the arguments to the macro
in the operand field. The conditional assembly statements in the macro definition examine the
arguments and generate statements in the “ordinary” assembler language that then form part of
your program.

There are generally two types of macro argument: positional, like the operands of a machine
instruction, and keyword, of the form name=value. Macro arguments are usually self-defining
terms or symbols naming objects or values in your program, or fixed character tokens known to
the macro.

The arguments for a macro may also be parenthesized lists, as in Figure 725. For example, you
might invoke the OPEN macro this way, using what is called the “Standard” form of the macro:

OpenOutS OPEN (OutFile,OUTPUT)
Figure 725. Sample macro invocation, Standard form

In Figure 725, the name field entry is the symbol OpenOutS, the macro name in the operation
field is OPEN, and the (single) argument in the operand field is (OutFile,OUTPUT), where OUTPUT is
one of several valid fixed tokens.

Because this OPEN macro generates statements that refer to the symbol OutFile, we must also
define it (this is actually the name of a “Data Control Block”, or DCB, that we'll describe
shortly).

In this case, the statements generated by this macro call are:

297 The limit of 256 possibly SVC codes has been increased by the “Extended SVC Routing Facililty”.

Chapter XII: System Services, Reenterability, and Recursion 951

2 OpenOutS OPEN (OutFile,OUTPUT)
000000 3+ CNOP 0,4 ALIGN LIST TO FULLWORD
000000 4110 C008 00008 4+OpenOutS LA 1,*+8 LOAD R1 W/LIST ADR
000004 47F0 C00C 0000C 5+ B *+8 BRANCH AROUND LIST
000008 8F 6+ DC AL1(143) OPTION BYTE
000009 000030 7+ DC AL3(OutFile) DCB ADDRESS
00000C 0A13 8+ SVC 19 ISSUE OPEN SVC

Figure 726. Generated statements from an OPEN macro

In Figure 726, statement 2 is the macro invocation. Statements 3 through 8 have a + sign fol-
lowing the statement number; this is the Assembler's indication that the statement is generated by
conditional assembly, and not part of the original source program. The name field symbol
OpenOutS was assigned to the first generated statement, and the final generated statement is a
“Supervisor Call” instruction with operand “19”.

 Note!

Most System Interface macros and services save and restore general regis-
ters 2-13, but use (and don't restore) general registers 0, 1, 14, and 15.
Some macros return new values in one or more of those four registers.

Almost all macros that expect the name of a memory location or a length argument will accept an
argument with a register number enclosed in parentheses. In this example, the length value (LV=)
is currently in GR4, and the address argument (A=) is in GR7.

292 FREEMAIN R,LV=(4),A=(7)
000246 1804 293+ LR 0,4 LOAD LENGTH
000248 4110 7000 00000 294+ LA 1,0(0,7) LOAD AREA ADDRESS
00024C 0A0A 295+ SVC 10 ISSUE FREEMAIN SVC

The examples in subsequent sections illustrate only a small subset of the options provided by
these macros; see the manuals listing in the Bibliography on page 1057 for further information.

Exercises

41.2.1.(1)+ Write short programs that expand into instruction sequences, using the many vari-
ations on the SAVE and RETURN macros described in “ 37.5. Additional Conventions (*)” on
page 777 and study the differences among the generated statements.

41.2.2.(1)+ Identify the types of macro arguments in the FREEMAIN macro above.

41.3. Macro Formats: Standard, List, and Execute

The example in Figure 725 on page 951 uses Standard form, in which all generated statements,
including parameters to be passed to the Supervisor, are generated directly into the instruction
stream, as we saw in Figures 725 and 726. There are two other forms, the List and Execute forms
that don't mix instructions and data like the Standard form. Almost all system service macros
support all three forms.

The list form of a macro expansion simply generates the data structures to be passed to the
Supervisor, but doesn't generate executable instructions like the LA, branch, and SVC
instructions in Figure 726. For example:

OpenOutL OPEN (OutFile,OUTPUT),MF=L
Figure 727. Sample macro invocation using List form

The only difference from Figure 725 on page 951 is the additional “keyword” argument, MF=L
(where L means “List form”), that tells the OPEN macro to generate only the parameter list.

952 Assembler Language Programming for IBM System z™ Servers Version 2.00

10 OpenOutL OPEN (OutFile,OUTPUT),MF=L
000030 11+OpenOutL DC 0F'0' ALIGN LIST TO FULLWORD
000030 8F 12+ DC AL1(143) OPTION BYTE
000031 000058 13+ DC AL3(OutFile) DCB ADDRESS

Figure 728. Generated statements from a List form OPEN macro

In Figure 728, only the parameters for the OPEN macro are generated, corresponding to state-
ments 6 and 7 in Figure 726 on page 952. These parameters are then used by an OPEN macro in
Execute form.

To write this sample macro in Execute form, we use the added argument MF=(E,listname), where
E means “Execute form” and the listname is the name of the parameter list generated by the List
form of the macro.

OpenOutE OPEN MF=(E,OpenList)
Figure 729. Sample macro invocation using Execute form

The expansion of this macro completes the set of instructions in statements 4 and 6 generated by
the Standard form in Figure 726 on page 952: GR1 points to the parameters, and issues the SVC
instruction:

15 OpenOutE OPEN MF=(E,OpenOutL)
000058 4110 C030 00030 17+OpenOutE LA 1,OpenOutL LOAD PARAMETER REG 1
00005C 0A13 18+ SVC 19 ISSUE OPEN SVC

Figure 730. Generated statements from an Execute form OPEN macro

In this case, we omitted the operand describing OutFile and that we wanted to open it for OUTPUT;
the Execute form of the OPEN macro assumes that we have generated the necessary data in the
area named OpenOutL using the List form as in Figure 728, and simply puts its address in GR1
and issues the SVC.

41.3.1. List form with Empty Argument List

Sometimes we want to use the List form for other OPENs, so we first create an empty List form:

OpenLstX OPEN (,),MF=L
Figure 731. Sample macro invocation using empty List form

The generated instructions are simple:

20 OpenLstX OPEN (,),MF=L
000080 21+OpenLstX DC 0F'0' ALIGN LIST TO FULLWORD
000080 80 22+ DC AL1(128) OPTION BYTE
000081 000000 23+ DC AL3(0) DCB ADDRESS

Figure 732. Generated instructions from empty List form

Then, to use this empty list to insert the name of the file and its input/output status, we write

OpenOutE OPEN (OutFile,OUTPUT),MF=(E,OpenList)
Figure 733. Sample macro invocation using Execute form

The macro expansion then inserts the parameter values into the argument list; note that GR14 is
used as a work register by the macro in statements 20 and 23.

15 OpenOutE OPEN (OutFile,OUTPUT),MF=(E,OpenLstX)
000058 4110 C030 00030 17+OpenOutE LA 1,OpenLstX LOAD PARAMETER REG 1
00005C 94F0 1000 00000 18+ NI 0(1),X'F0' CLEAR OPTION 1 BITS
000060 960F 1000 00000 19+ OI 0(1),15 INSERT OPTION BITS
000064 43E1 0000 00000 20+ IC 14,0(1,0) SAVE OPTION BYTE
000068 4100 C098 00098 21+ LA 0,OutFile PICK UP DCB ADDRESS
00006C 5001 0000 00000 22+ ST 0,0(1,0) STORE INTO LIST
000070 42E1 0000 00000 23+ STC 14,0(1,0) RESTORE OPTION BYTE
000074 0A13 24+ SVC 19 ISSUE OPEN SVC

Figure 734. Generated statements from an Execute form OPEN macro

Chapter XII: System Services, Reenterability, and Recursion 953

Because we have specified the original (OutFile,OUTPUT) argument, the macro expansion carefully
inserts the new information into the empty parameter list at OpenLstX, competes the list, and then
issues the SVC.

This technique lets you use the same List form to open other data sets, as in

OpenOutE OPEN (InFile,INPUT),MF=(E,OpenList)
Figure 735. Another macro invocation using Execute form and same List form

41.3.2. Register Forms and Arguments

The examples of the OPEN macro above require that GR1 contain the address of a parameter list
in storage. Some macros, however, pass their arguments entirely in registers, such as some forms
of ABEND, GETMAIN, and FREEMAIN. We'll see more examples of these “R-Type” macros
in later sections.

For example, we can write an ABEND macro like this:

ABEND 42
Figure 736. An R-Type macro invocation generating an argument in a register

Its expansion is:

3 ABEND 42
000000 4+ DS 0H
000000 4110 002A 0002A 6+ LA 1,42 LOAD PARAMETER REG 1
000004 0A0D 7+ SVC 13 LINK TO ABEND ROUTINE

Figure 737. Generated statements from R-Type macro

and the only argument is passed directly in GR1, not in memory.

If the address of a macro argument is already in a register, you can provide it directly by parenthe-
sizing the register number, rather than by the name of the argument. For example:

LA 4,INDATA
LA 9,OUTDATA
OPEN ((4),(INPUT),(9),(OUTPUT)) Open two DCBs

Figure 738. A macro invocation with arguments in registers

The macro expansion in Figure 739 shows how the addresses in the registers are stored into the
generated argument list:

000032 4140 F0D0 000D0 35 LA 4,INDATA
000036 4190 F130 00130 36 LA 9,OUTDATA

37 OPEN ((4),(INPUT),(9),(OUTPUT)) Open two DCBs
00003A 0700 38+ CNOP 0,4 ALIGN LIST TO FULLWORD
00003C 4110 F044 00044 39+ LA 1,*+8 LOAD R1 W/LIST ADR
000040 47F0 F04C 0004C 40+ B *+12 BRANCH AROUND LIST
000044 00000000 41+ DC A(0) OPT BYTE AND DCB ADDR.
000048 00000000 42+ DC A(0) OPT BYTE AND DCB ADDR.
00004C 5041 0000 00000 43+ ST 4,0(1,0) STORE INTO LIST
000050 5091 0004 00004 44+ ST 9,4(1,0) STORE INTO LIST
000054 928F 1004 00004 45+ MVI 4(1),143 MOVE IN OPTION BYTE
000058 0A13 46+ SVC 19 ISSUE OPEN SVC

Figure 739. Generated statements from a Standard-form macro with arguments in registers

41.3.3. MODE=24, MODE=31

In the expansions of the executable form of the OPEN macro, the parameter list contains a
3-byte address of the Data Control Block (DCB). Sometimes it may be important for some parts
of a macro expansion to use 4-byte addresses to refer to items “above the 16MB line”. Using the
OPEN macro as an example, we specify an additional argument, MODE=31:

954 Assembler Language Programming for IBM System z™ Servers Version 2.00

OPEN (OutFile,(OUTPUT)),MODE=31
Figure 740. A Standard macro invocation specifying M O D E = 3 1

In the macro expansion in Figure 741, you can see in statement 41 that the address of the
OutFile DCB is 4 bytes long.

35 OPEN (OutFile,(OUTPUT)),MODE=31
000032 0700 36+ CNOP 0,4 ALIGN LIST TO HALFWORD
000034 4110 F03C 0003C 37+ LA 1,*+8 LOAD R1 W/LIST ADR
000038 47F0 F044 00044 38+ B *+12 BRANCH AROUND LIST
00003C 8F 39+ DC AL1(143) OPTION BYTE
00003D 000000 40+ DC AL3(0) RESERVED
000040 000001A8 41+ DC A(OutFile) DCB ADDRESS
000044 1801 42+ LR 0,1 POINT REG0 TO PLIST
000046 1B11 43+ SR 1,1 CLEAR REGISTER 1
000048 0A13 44+ SVC 19 ISSUE OPEN SVC

Figure 741. Generated statements from a Standard-for macro with M O D E = 3 1

41.3.4. Mixed Case Macro Arguments

Be careful when using mixed-case characters in macro arguments. Some macros are fussy about
the case of their arguments, as the following examples show.

In general, symbols and keyword parameter names can be any mixture of upper and lower case;
positional and keyword arguments must often be in upper case only.

Compare Figure 742 to Figure 726 on page 952, where the positional argument OUTPUT was
written in upper case.

5 OpenOutS OPEN (OutFile,Output)
000000 6+ CNOP 0,4 ALIGN LIST TO FULLWORD
000000 4110 C008 00008 7+OpenOutS LA 1,+8 LOAD R1 W/LIST ADR
000004 47F0 C00C 0000C 8+ B *+8 BRANCH AROUND LIST
** ASMA254I *** MNOTE *** 10+ 12,*** IHB002 INVALID OPTION OPERAND SPECIFIED − Output

Figure 742. Example of a mixed-case positional macro argument

In Figure 743, the two keyword arguments LV and A are accepted in lower case; the positional
argument R must however be in upper case.

13 FREEMAIN R,lv=(4),a=(7)
000008 1804 14+ LR 0,4 LOAD LENGTH
00000A 4110 7000 00000 15+ LA 1,0(0,7) LOAD AREA ADDRESS
00000E 0A0A 16+ SVC 10 ISSUE FREEMAIN SVC

Figure 743. Example of mixed-case keyword macro arguments

In the two macro calls in Figure 744, the two macro-format (MF=) keyword arguments l and e are
in lower case, which the macro doesn't recognize:

19 OpenOutL OPEN (OutFile,OUTPUT),mf=l
** ASMA254I *** MNOTE *** 21+ 12,*** IHB002 INVALID MF OPERAND SPECIFIED-l

24 OpenOutE OPEN mf=(e,openoutl)
** ASMA254I *** MNOTE *** 26+ 12,*** IHB002 INVALID MF OPERAND SPECIFIED-(e,openoutl)

Figure 744. Example of mixed-case keyword macro arguments

41.3.5. The SYSSTATE Macro

On z/OS systems, the SYSSTATE macro can help many system service interface macros to gen-
erate correct statement sequences depending on the level of the z/OS operating system. Check the
documentation of the SYSSTATE macro to see which arguments and options will generate state-
ments most applicable to your execution environment.

Chapter XII: System Services, Reenterability, and Recursion 955

Exercises

41.3.1.(2)+ Assemble the statements in Figure 735 on page 954 (being careful to generate the
OpenList also), and study the generated statements. Does it matter which of the List and
Execute forms of the OPEN macro is generated first?

41.3.2.(1) In Exercise 41.3.1, why is it important to generate OpenList also?

41.4. Causing Abnormal Termination

Sometimes a program will find itself in a situation that should never occur, or when continuing
could cause more damage than stopping immediately. There are several ways to force termination,
including creating program interruptions such as executing an invalid operation code or branching
to an invalid address:

- - - Discovered an unrecoverable error!
DC H'0' Force program interruption

or

DC X'00nn' Where 'nn' describes your situation

or

LA 1,X'BAD' Set odd address in GR1
BR 1 Force program interruption

or

X'C0F4wxyz0002' Simulate JL *+4; wxyz is your code

These will terminate the program unless some error recovery has been set up (see Sections 41.7
and 41.8 starting on page 972) that traps the program interruption. A more common, and more
flexible, way to terminate a program is to cause an “abnormal end”, or “ABEND”298 with the
ABEND macro.

The ABEND macro supports several useful arguments, including:

• a user code that you provide to indicate the specific termination condition;
• keyword arguments that let you specify whether a memory dump should be provided (you

must provide a file where the dump can be written);
• keyword arguments that let you specify whether the entire job step should be ended;
• a reason code that you use to indicate greater detail about the condition causing the termi-

nation.

To terminate your program with user code 42, as in Figures 736 and 737 on page 954, you can
write

ABEND 42 End the program immediately

As a more complex example, suppose you want to terminate your program with user code 42 and
reason code X'BADCODE', and request a memory dump:

StopHere ABEND 42,DUMP,REASON=X'BADC0DE' Error in my code!
Figure 745. Sample ABEND macro

The macro expansion is shown in Figure 746 on page 957:

298 Uusually pronounced “Ab-End”, rather than “A-Bend”.

956 Assembler Language Programming for IBM System z™ Servers Version 2.00

3 StopHere ABEND 42,DUMP,REASON=X'BADC0DE' Error in my code!
 000000 4+StopHere DS 0H
 000000 4110 004F 0004F 6+ LA 1,42 LOAD PARAMETER REG 1
 000004 7+ CNOP 0,4 ALIGN ON WORD BOUNDARY
 000004 47F0 F00C 0000C 8+ B *+8 BRANCH AROUND CONSTANTS
 000008 0BADC0DE 9+ DC AL4(X'BADC0DE') REASON CODE
 00000C 58F0 F008 00008 10+ L 15,*-4 LOAD REG15 WITH REASON CODE
 000010 4100 0084 00084 11+ LA 0,132(0,0) DUMP/STEP/DUMPOPTS/REASON
 000014 8900 0018 00018 12+ SLL 0,24(0) SHIFT TO HIGH ORDER
 000018 1610 13+ OR 1,0 OR IN WITH COMPCODE
 00001A 0A0D 14+ SVC 13 LINK TO ABEND ROUTINE

Figure 746. Generated statements from an ABEND macro

The user code is in the rightmost 12 bits of GR1, the reason code is in GR15, and the high-order
byte of GR1 contains bit flags that detail which options are specified and what should be done at
termination.

You can also use the DUMPOUT macro for simple memory dumps, without causing program
termination. It is described in “Appendix B: Simple I/O Macros” on page 1015.

Exercises

41.4.1.(1)+ What kind of program interruption will be caused by branching to address X'BAD'?
Why should you not try to branch to address X'D1E'?

41.4.2(1)+ What kind of program interruption will be caused if you first load GR1 using this
instruction?

LGFI 1,C'BAD'
BR 1 Force program interruption

What if the operand is C'D1E' instead?

41.4.3.(1)+ There's an intentional mistake in Figure 746. What is it?

41.4.4.(2)+ Why does the fourth example at the start of Section 41.4 on page 956 cause a
program interruption?

41.5. Storage Management

Many programs need to acquire additional working memory; and the two most commonly used
macros are GETMAIN and STORAGE. To release the acquired storage you can use the
FREEMAIN and STORAGE macros (with different operands for STORAGE) or simply termi-
nate the program and let the operating system clean up for you.299

GETMAIN and FREEMAIN were the original OS/360 storage-management macros, and like
STORAGE, are limited to memory below the 2GB “bar”. (Storage above the “bar” is managed
with the IARV64 macro.)

Take Care!

All three of GETMAIN, FREEMAIN, and STORAGE may use general
registers 0, 1, 14, and/or 15 as work registers for various combinations of
macro arguments.

299 But it's much better that your program keep track of the storage it has acquired, and release it when it's no longer
needed. There may be a time when your program is part of a larger suite of programs that could possibly exhaust the
available storage if all programs don't release what they acquire.

Chapter XII: System Services, Reenterability, and Recursion 957

41.5.1. The GETMAIN Macro

GETMAIN provides several ways to request storage:

Conditional (C)
If the requested storage is available, GETMAIN will put zero in GR15; otherwise a nonzero
value is returned in GR15.

Unconditional (U)
If the requested storage is not available, GETMAIN will terminate the program with an
ABEND.

Register (R)
A request for a single block of storage. Parameters are passed only in registers; some of them
may have been constructed in storage and then loaded into registers. (This form is often
used during program initialization to allocate working storage.)

Element (E)
A request for a single block of storage.

Variable (V)
A request for a single block of storage between a minimum and a maximum size.

List (L)
A request for several blocks of storage.

Some of these can be combined; for example, VRC means that you want to acquire storage
between two limits (V), the arguments will be passed in registers (R), and the system puts a return
code in GR15 to indicate the success or failure of the request (C).

The supported combinations that can be requested by the first (positional) operand of
GETMAIN are summarized in Table 434:

Table 434. GETMAIN request options

As shown in the last column of Table 434, storage acquired using any of the Register forms
except R can be requested either below or above the 16MB “line”, and all addresses and lengths
have 31-bit lengths. For the R form, storage must be below the 16MB “line”, and addresses and
lengths are at most 24 bits long. For the other Register forms, the storage is allocated in the same
area of memory as the calling program (that is, below or above the 16MB “line”). For all other
forms, the storage is allocated below 16MB.

The address of the acquired storage is returned in GG1, with bits 0-32 set to zero.

Acquired storage is always aligned on a doubleword boundary, with length that is a multiple of 8
bytes. Sometimes, you can request page alignment on a 4K boundary.

Several forms require that you provide one or more words in memory into which lengths and/or
addresses will be stored; be careful not to modify them during program execution, because they
can be used to release the acquired storage using the FREEMAIN macro.

Figure 747 shows an example of a typical GETMAIN request:

Single Variable

Type Conditional Unconditional Conditional Unconditional Where

Register, Single
Element

R < 1 6 M B

Register, Single
Element

RC RU VRC VRU < 2 G B

Single Element EC EU VC VU < 1 6 M B

List of Elements LC LU < 1 6 M B

GETMAIN R,LV=72 Get storage for local save area
Figure 747. Sample R=type GETMAIN request

958 Assembler Language Programming for IBM System z™ Servers Version 2.00

The expansion of this macro call is shown in Figure 748 on page 959; note that the only value
passed to SVC 10 is in GR0. (The BAL instruction sets the high-order bit of GR1 to 1; we'll see
why this is interesting when we discuss the FREEMAIN macro.)

5 GETMAIN R,LV=72 Get storage for local save area
000000 4100 07D0 007D0 6+ LA 0,72(0,0) LOAD LENGTH
000004 4510 C008 00008 7+ BAL 1,*+4 INDICATE GETMAIN
000008 0A0A 8+ SVC 10 ISSUE GETMAIN SVC

Figure 748. Expansion of a sample R-type GETMAIN request

For the R-type Register form, storage will be allocated below the 16MB “line”. For the other
forms, storage will be allocated by default in the area where the requesting program is executing,
either below or above the 16MB “line”.

Figure 749 shows an example of a VRU request:

34 GETMAIN VRU,LV=(144,72)
00003C 35+ CNOP 0,4 ALIGN DATA ON FULLWORD BDY
00003C 47F0 C04C 0004C 36+ B *+16-4*0-4*0-2*0 BRANCH PAST DATA
000040 00000090 37+ DC A(144) MAXIMUM LENGTH
000044 00000048 38+ DC A(72) MINIMUM LENGTH
000048 00 39+IHB0004F DC AL1(0) RESERVED
000049 00 40+ DC AL1(0) RESERVED
00004A 00 41+ DC AL1(0) SUBPOOL
00004B 0A 42+ DC BL1'00001010' MODE BYTE
00004C 9801 C040 00040 43+ LM 0,1,*-12+2*0 LOAD MAX AND MIN LENGTHS
000050 58F0 C048 00048 44+ L 15,IHB0004F LOAD GETMAIN PARMS
000054 0A78 45+ SVC 120 ISSUE GETMAIN SVC

Figure 749. Expansion of a sample VRU-type GETMAIN request

In this case, GR0, GR1, and GR15 all contain values used by SVC 120.

For all the Register forms, the address of the allocated storage is returned in GG1, and the high-
order bits 0-31 are zero.

If you GETMAIN 8192 or more bytes, or a multiple of 4096 bytes on a page boundary, the
system will automatically clear the area to zeros.300

41.5.2. The FREEMAIN Macro

The FREEMAIN macro is used to release storage acquired by GETMAIN. For single elements,
the values passed to the SVC routine are the length and address of the area to be freed.
FREEMAIN supports forms like those of GETMAIN:

Conditional (C)
If the requested storage can be freed, FREEMAIN will put zero in GR15; otherwise a
nonzero value is in GR15.

Unconditional (U)
If the requested storage can't be freed, FREEMAIN will terminate the program with an
ABEND.

Register (R)
A request to return a single block of storage. Parameters are passed in registers; some of
them may be constructed in storage and then loaded into registers.

Element (E) and Variable (V)
A request to free a single block of storage. Because both E and V GETMAIN requests allo-
cate a single area of storage, the equivalent FREEMAIN forms release a single fixed-length
area. (The GETMAIN and FREEMAIN argument lists are different.)

List (L)
A request to free one or more blocks of storage.

300 With some rather specialized restrictions; see the reference manuals in the Bibliography.

Chapter XII: System Services, Reenterability, and Recursion 959

The supported combinations that can be requested by the first (positional) operand of
FREEMAIN are summarized in Table 435 on page 960:

Table 435. FREEMAIN request options

As the last column of Table 435 indicates, the R form can free storage only below the 16MB
“line”. The RC and RU Register forms can free storage allocated either above or below the 16MB
“line”. All the other forms can free storage only below 16MB.

Figure 750 shows a simple example of a typical FREEMAIN request:

Type Conditional Unconditional Where

Register, Single
Element

R < 1 6 M B

Register, Single
Element

RC RU < 2 G B

Single Element EC, VC E, EU; V, VU < 1 6 M B

List of Elements LC L, LU < 1 6 M B

60 FREEMAIN R,LV=72,A=ZAddr
000072 4100 0048 00048 61+ LA 0,72(0,0) LOAD LENGTH
000076 5810 C084 00084 62+ L 1,ZAddr LOAD AREA ADDRESS
00007A 0A0A 63+ SVC 10 ISSUE FREEMAIN SVC

Figure 750. Example of an R-type FREEMAIN macro

In this case, the length is loaded into GR0 and the address is put in GR1. Note that the same
SVC 10 is used as for GETMAIN; the key difference here is that the high-order bit of GR1 is
zero (because the address of the acquired storage is below 16MB), while it was 1 for
GETMAIN.301

41.5.3. The STORAGE Macro

The STORAGE macro combines the functions of acquiring and releasing storage in one macro,
using the positional arguments OBTAIN and RELEASE to select the operation. To specify con-
ditional and unconditional operations, you must specify COND=YES or COND=NO, respectively; NO is
the default.

Figure 751 shows a simple request for 72 bytes using the STORAGE macro.

STORAGE OBTAIN,LENGTH=72 Request 72 bytes
Figure 751. Sample STORAGE OBTAIN request

The instructions generated from this request are shown in Figure 752 on page 961. (Note that
registers 0, 14, and 15 are used; compare this expansion to the equivalent request using
GETMAIN in Figure 748 on page 959.)

301 The BAL instruction in Figure 748 on page 959 is doing something important!

960 Assembler Language Programming for IBM System z™ Servers Version 2.00

4 STORAGE OBTAIN,LENGTH=72 Request 72 bytes
000000 5+ CNOP 0,4
000000 47F0 F00C 0000C 6+ B IHB0001B .BRANCH AROUND DATA
000004 00000048 7+IHB0001L DC A(72) .STORAGE LENGTH
000008 00 8+IHB0001F DC BL1'00000000'
000009 00 9+ DC AL1(0*16) .KEY
00000A 00 10+ DC AL1(0) .SUBPOOL
00000B 02 11+ DC BL1'00000010' .FLAGS
00000C 12+IHB0001B DS 0F
00000C 5800 F004 00004 13+ L 0,IHB0001L .STORAGE LENGTH
000010 58F0 F008 00008 14+ L 15,IHB0001F .CONTROL INFORMATION
000014 58E0 0010 00010 15+ L 14,16(0,0) .CVT ADDRESS
000018 58EE 0304 00304 16+ L 14,772(14,0) .ADDR SYST LINKAGE TABLE
00001C 58EE 00A0 000A0 17+ L 14,160(14,0) .OBTAIN LX/EX FOR OBTAIN
000020 B218 E000 00000 18+ PC 0(14) .PC TO STORAGE RTN

Figure 752. Example of a STORAGE OBTAIN macro expansion

If the request was successful, the address of the obtained storage is returned in GG1.

To return the 72 bytes requested previously, we assume that their address is now in GR1, as indi-
cated by the ADDR=(1) operand in Figure 753.

STORAGE RELEASE,LENGTH=72,ADDR=(1) Return 72 bytes
Figure 753. Sample STORAGE RELEASE request

The instructions generated by this macro are shown in Figure 754 (again, compare this to the
equivalent FREEMAIN in Figure 750 on page 960).

20 STORAGE RELEASE,LENGTH=72,ADDR=(1) Return 72 bytes
000024 21+ CNOP 0,4
000024 47F0 F030 00030 22+ B IHB0003B .BRANCH AROUND DATA
000028 00000048 23+IHB0003L DC A(72) .STORAGE LENGTH
00002C 00 24+IHB0003F DC BL1'00000000'
00002D 00 25+ DC AL1(0*16) .KEY
00002E 00 26+ DC AL1(0) .SUBPOOL
00002F 03 27+ DC BL1'00000011' .FLAGS
000030 28+IHB0003B DS 0F
000030 5800 F028 00028 29+ L 0,IHB0003L .STORAGE LENGTH
000034 58F0 F02C 0002C 30+ L 15,IHB0003F .CONTROL INFORMATION
000038 58E0 0010 00010 31+ L 14,16(0,0) .CVT ADDRESS
00003C 58EE 0304 00304 32+ L 14,772(14,0) .ADDR SYST LINKAGE TABLE
000040 58EE 00CC 000CC 33+ L 14,204(14,0) .OBTAIN LX/EX FOR RELEASE
000044 B218 E000 00000 34+ PC 0(14) .PC TO STORAGE RTN

Figure 754. Example of a STORAGE RELEASE macro expansion

The STORAGE macro supports a greater variety of options compared to GETMAIN and
FREEMAIN. Note also that it generates a PC instruction rather than the SVCs used by
GETMAIN and FREEMAIN.

41.5.4. Subpools (*)

The three macros described above support subpools. A subpool is a way to group related
requests. For example, if your program is creating variable-sized binary trees, linked lists, and
tables, you may need to allocate additional storage for each as the need arises. By allocating each
type in a separate subpool, you can then release all the storage allocated for one of those func-
tions at once, without having to keep track of each separately allocated segment.

Subpools (and their many types) are described in the references listed in the Bibliography on page
1057.

41.5.5. Optional Operands (*)

The GETMAIN and STORAGE macros have many additional optional operands such as LOC=
(which lets you specify where relative to the 16MB “line” the allocated storage should be). See
the relevant manuals in the Bibliography.

Chapter XII: System Services, Reenterability, and Recursion 961

Exercises

41.5.1.(1)+ Why does the BAL instruction in Figure 748 on page 959 always generate a high-
order 1 bit in GR1, whether executed in 24-bit or 31-bit addressing mode?

41.5.2.(3) It was stated (following Figure 748 on page 959) that for the conditional and uncon-
ditional forms of GETMAIN, the storage is allocated by default by the GETMAIN macro in
the area where the requesting program is executing, whether above or below the 16MB “line”.
By reading the documentation for GETMAIN and STORAGE, determine how a program exe-
cuting below the 16MB “line” can request storage above the 16MB “line”.

41.6. Basic Input and Output

Input and Output (“I/O” for short) is a vast and complex subject, many aspects of which are well
beyond the scope of this text. We will introduce key features used by many application programs.

41.6.1. A Simple Scenario

We'll start with a simple scenario in six basic steps, showing the key actions involved in your
program's reading records from a Data Set. The figures are expanded in detail at each step.

Simple Scenario, Step 1: The Data Set

The Data Set is on some external storage medium such as tape or disk. Almost all Data Sets
have some type of label describing the properties of the records in the Data Set. A part of the
label is the Data Set Name (DSName) that you can use to refer to the Data Set.

┌───────┐ ┌──────┐
│ Label ├───┤ Data │
└───────┘ │ Set │

└──────┘

Figure 755. A Data Set with records you want to read

You have written a program to read the records, and submit a job to the operating system to load
and execute the program.

Simple Scenario, Step 2: Submitting a job to execute the program

When you submit the job to read from the Data Set, you specify in the Job Control Language
(JCL) a Data Definition Name (DDName) that your program will need to access the data. The
operating system Supervisor creates a Job File Control Block (JFCB) from information in the JCL
statements you provided.

962 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌────────┐ ┌─────┐
│ DDName ├────┤ JCL │
└───┬────┘ └─────┘

�
┌──────┐
│ JFCB │
└──────┘

┌───────┐ ┌──────┐
│ Label ├───┤ Data │
└───────┘ │ Set │

└──────┘

Figure 756. You submitted a job with a program to read the records

After the Supervisor processes the JCL statements, your program is ready to be loaded.

Simple Scenario, Step 3: Your program after loading and before execution

Your program has been loaded into memory. It contains the Data Control Block (DCB) you
wrote; it has information about how your program will access the records, as well as your OPEN,
GET, and CLOSE macros, and a Record Buffer area where the records will be placed as they're
read.

• The OPEN macro, when executed, gives you access to your data.

• The GET macro requests a data record be read.

• The CLOSE macro terminates access to the Data Set.

The DCB contains the DDName that provides access to the Data Set whose DDName (now
saved in the JFCB) was specified in JCL statements.

┌──────────────────────┐ ┌────────┐ ┌─────┐
│ │ │ DDName ├────┤ JCL │
│ │ └───┬────┘ └─────┘
│ OPEN │ �
│ │ ┌──────┐
│ │ │ JFCB │
│ │ └──────┘
│ ┌─────────┤
│ GET │ │
│ │ DCB │ ┌───────┐ ┌──────┐
│ │ │ │ Label ├───┤ Data │
│ │ │ └───────┘ │ Set │
│ │ │ └──────┘
│ CLOSE │ │
│ └─────────┤
├──────────────────────┤
│ Record Buffer │
└──────────────────────┘

Figure 757. Your program, loaded into memory before execution

Your program is ready to start execution.

Simple Scenario, Step 4: OPENing the data set

After establishing addressability and initializing, your program executes the OPEN macro; many
things happen.

Chapter XII: System Services, Reenterability, and Recursion 963

1. Information from the JFCB, the Data Set Label, and from the DCB is merged into the
DCB, as described in Section 41.6.5 on page 969.

2. Access Method routines appropriate to the type of device holding the Data Set, the type of
records, the type of buffering, etc., are loaded automatically. These routines provide device
independence to your program.

┌──────────────────────┐ ┌────────┐ ┌─────┐
│ │ │ DDName ├────┤ JCL │
│ │ └───┬────┘ └─────┘
│ │ �
│ OPEN ───────┐ │ ┌──────┐
│ │ │ │ JFCB │
│ � │ └──┬───┘
│ ┌─────────┤ │
│ │ │�─────────┘
│ GET │ DCB │ ┌───────┐ ┌──────┐
│ │ │�──────┤ Label ├───┤ Data │
│ │ │ └───────┘ │ Set │
│ │ │ └──────┘
│ │ │ ┌─────────┐
│ CLOSE │ ├───�│ Access │
│ └─────────┤ │ Methods │
├──────────────────────┤ └─────────┘
│ Record Buffer │
└──────────────────────┘

Figure 758. Your program after executing the OPEN macro

Many things can go wrong at this stage, typically causing an ABEND with system completion
code x13, where “x” is a hexadecimal digit, and “13” is the hexadecimal SVC number (noted as I
in Table 432 on page 950). Most system ABEND codes use this convention.

Simple Scenario, Step 5: GETting a record

The GET macro points to the DCB and to the Record Buffer, and calls the Access Method rou-
tines to read a record from the Data Set and place it in the Record Buffer. For example, you
might write

GET MyDCB,RecBuf Read a record from MyDCB into RecBuf

If you specified an end-of-data address (EODAD, described below) in the DCB, control goes
there when there are no more records in the Data Set.

964 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌──────────────────────┐ ┌────────┐ ┌─────┐
│ │ │ DDName ├────┤ JCL │
│ │ └───┬────┘ └─────┘
│ OPEN │ �
│ │ ┌──────┐
│ │ │ JFCB │
│ │ └──┬───┘
│ ┌─────────┤ │
│ │ │�─────────┘
│ ┌─ GET ──�│ DCB │ ┌───────┐ ┌──────┐
│ │ │ │�──────┤ Label ├───┤ Data │
│ │ │ │ └───────┘ │ Set │
│ │ │ │ └────┬─┘
│ │ │ │ ┌─────────┐ � │
│ │ CLOSE │ ├───�│ Access │──────┘ │
│ � └─────────┤ │ Methods │ │
├──────────────────────┤ └─────────┘ │
│ A Data Set Record │�───────────────────────┘
└──────────────────────┘

Figure 759. Your program after executing the GET macro

Simple Scenario, Step 6: CLOSEing the DCB

When you're finished, you execute a CLOSE macro: it specifies the name of the DCB you want
to close. Your DCB is restored to its initial status; the Data Set Label is updated if necessary (if
you wrote to the Data Set), and the updated JFCB is retained in case you want to re-OPEN the
Data Set.

┌──────────────────────┐ ┌────────┐ ┌─────┐
│ │ │ DDName ├────┤ JCL │
│ │ └───┬────┘ └─────┘
│ │ �
│ OPEN │ ┌─────────┐
│ │ │ Updated │
│ │ │ JFCB │
│ ┌─────────┤ └─────────┘
│ │ │ ┌───────┐ ┌──────┐
│ GET │ DCB │ │ Label ├───┤ Data │
│ │ │ └───────┘ │ Set │
│ │ │ └──────┘
│ │ │
│ │ │
│ CLOSE └─────────┤
│ │
├──────────────────────┤
│ Record Buffer │
└──────────────────────┘

Figure 760. Your program after executing the CLOSE macro

Your program has been restored (almost) to its initial state, except for changes you may have
made to data fields and work areas. The program then tidies up, and returns to the system.

This brief scenario should help you follow the details that follow.

Chapter XII: System Services, Reenterability, and Recursion 965

41.6.2. Access Techniques and Access Methods

There are many access techniques available for data. Data items can be written or read sequen-
tially (one after the other); directly (put the item in a specific position in a data set, or read it from
that position, ignoring other items); by index (a field in the data is used to identify it), and so on.
Each of these can be very complex; we will examine only sequential access, and only in its simple
forms.

There are two main ways to read or write data sequentially:

Basic You manage blocks of data, independent of any internal structure. Each block may
have multiple records; you must organize the data items in each block. Each I/O opera-
tion is initiated by a READ or WRITE macro, and you must synchronize the I/O
operations with read or write completion using the CHECK and WAIT macros.

Queued You manage individual data records. The Supervisor does almost everything for you: it
handles I/O operations, synchronization of I/O activity and data availability, blocking
and deblocking records, etc. You read and write records with macros like GET and
PUT.

We will describe only the simplest form, queued access.

There are several ways to manage records using queued access; the simplest forms are called
“BSAM” (Basic Sequential Access Method) and “QSAM” (Queued Sequential Access
Method).302 Depending on values in your DCB, the system will load appropriate “access method
routines” to support the various types of data movement.

With QSAM, you can choose one of the following modes (among others):

Move mode
Your GET macro points to your buffer where the system should place your input record; or,
your PUT macro points to your buffer from which the output record should be written by
the system.

Locate mode
Your GET macro returns a pointer to where your input record can be found; your PUT
macro returns a pointer to where your output record should be placed.

In practice, QSAM is far easier to use than BSAM; Table 436 illustrates some differences.

Table 436. Comparing QSAM and BSAM

41.6.3. The Data Control Block (DCB)

The DCB macro is a complex structure, with nearly 100 parameters (almost all of which you
won't care about), some of which can have as many as 30 valid values (almost all of which you
won't care about). It is a part of your program. Some values in the DCB can come from other
sources, such as JCL DD statements, a data set label, and from your program during execution.
All fields must be completed by the end of the OPEN process, before I/O operations can begin.

The DCB contains 3-byte address fields such as the address of the access method routines and the
EODAD and EXLST addresses described below, so it must reside below the 16MB “line”.

QSAM BSAM

• Supports all record formats
• Your interface is “logical records”
• Automatic blocking and deblocking
• Automatic buffer management
• Automatic I/O operation synchronization

• Supports all record formats
• Your interface is “physical blocks”
• Blocking and deblocking is your problem
• Buffer management is your problem
• Synchronizing I/O operations with use of

the data is your problem

302 Pronounced “Bee-Sam” and “Cue-Sam”.

966 Assembler Language Programming for IBM System z™ Servers Version 2.00

You must specify the DSORG (Data Set Organization) and MACRF (Macro Format) arguments
at assembly time. If you intend to provide a DCB OPEN exit to examine and/or modify the
DCB during the OPEN process, you must specify the EXLST argument. Values for other argu-
ments can be supplied during OPEN by the JCL DD statement, the data set label, and the
OPEN exit.

DSORG Must be coded in the DCB macro; the most usual values are:

PS Physical Sequential: strictly sequential access. Both of the following are defined
when you specify PS:

BS Basic Sequential: strictly sequential access.

QS Queued Sequential: strictly sequential access.

PO Partitioned Organization, for libraries, which are collections of sequential data sets
identified by a member name that's contained in a directory. All members have
the same characteristics, and are accessed sequentially. The access technique for
members of a library is called “BPAM”303 (Basic Partitioned Access Method);
members are located with the FIND macro, and read and written with READ
and WRITE macros.

If you code more than one DSORG value, you can re-OPEN the DCB for a different
type of I/O after closing for the previous use.

MACRF Must be coded in the DCB macro; don't omit it.304 These QSAM forms are the sim-
plest to use:

GM Get Move: Logical record processing, move mode input. The access method rou-
tines read blocks of records into internal buffers, unblocks your record for you,
and moves it to the work area you defined as the second operand of the GET
macro. Your work area must be at least as long as the record!

PM Put Move: Logical record processing, move mode output. You tell the PUT
macro where your record is; the system moves it to its internal buffers; a buffer is
output when it is full.

GL Get Locate: Logical record processing, locate mode input. The access method
tells you where in its internal buffers the record is found.

PL Put Locate: Logical record processing, locate mode output. The access method
tells you where to put your record in its internal buffers.

These are some other arguments that can be supplied during initialization or execution.

DDNAME Can be coded in the DCB macro, or supplied by the program before OPEN

RECFM Figures 762-764 starting on page 968 illustrate the following record formats.

F Fixed length unblocked records (BLKSIZE=LRECL)

FB Fixed length blocked records (BLKSIZE=n×LRECL)

V Variable length unblocked records

VB Variable length blocked records

U Undefined (“None of the above”)

xxA Records have ANSI carriage-control characters in the first byte

LRECL The length of each F record, or the maximum length for V records. Often omitted for
input data sets; it can be supplied from the data set label at OPEN time. The LRECL
field is updated after each read of a record if it changes value.

BLKSIZE The maximum length of a block; for FB, it must be a multiple of the LRECL value;
for VB, the maximum block length.

303 Pronounced “Bee-Pam”.
304 If you omit a MACRF value, the assembly will assign the default E (with severity 8), which means (if you proceed)

that you must write your own device-dependent channel programs and do everything yourself. It's quite difficult.

Chapter XII: System Services, Reenterability, and Recursion 967

EODAD For reads, the address to receive control on End of Data (EOD). The EOD routine
can either return to the address in GR14 on entry, or continue normal processing (this
is the most common way). If no EODAD address is provided at end of data, or if you
try to read after the end of data, the system will terminate your program with a System
337 ABEND.

The 3-byte address of the EODAD routine means that it will be entered in 24-bit
addressing mode, so it must reside below the 16MB “line”. It can of course change
addressing modes so long as it changes back to 24-bit mode before returning to the
system.

EXLST The exit list specifies special exit routines; the DCB OPEN exit is the most most usual,
for which you specify the name of a word-aligned list of the form
X'85',AL3(OPEN-exit_routine). The DCB OPEN exit routine can modify or complete
a DCB before the data set is completely open.

When it receives control, the low-order 3 bytes of GR1 point to the DCB (remember
that the DCB and the OPEN exit must be in 24-bit storage). GR14 must be preserved
and used to return to finish OPEN processing. You must not use the address in GR13
for a save area, and you need not preserve the contents of GRs 2-13 (the system does
that for you).

A typical DCB statement might look like this:

dcbname DCB DDNAME=xxxxxxxx, To match up with the JCL DDName X
 MACRF=xx, Macro Format: how to process records X
 DSORG=xx, Data Set Organization X

LRECL=nnn, Logical Record Length X
BLKSIZE=nnnnn, For blocked records X

 RECFM=xx, Record Format X
EODAD=xxxxxxx End-of-data address for input

* column 72 �
Figure 761. Example of typical DCB parameters

41.6.4. Important Record Formats

• Fixed: all records have the same length, and may be grouped into blocks containing (usually)
a fixed number of records. It's best to have no truncated (partially filled) blocks except for the
last block.

┌──────┐ ┌──────┐ ┌──────┐ ┌──────┐
Recfm F: │Record│ │Record│ │Record│ │Record│ Potentially very slow!

└──────┘ └──────┘ └──────┘ └──────┘

┌──────┬──────┬──────┐ ┌──────┬──────┬──────┐
Recfm FB: │Record│Record│Record│ │Record│Record│Record│

└──────┴──────┴──────┘ └──────┴──────┴──────┘
�────── Block ─────� �────── Block ─────�

Figure 762. Unblocked and blocked F-type record and block formats

• Variable: each record is preceded by a 4-byte Record Descriptor Word (RDW) giving the
record length in the first two bytes; that length includes the 4-byte length of the RDW.
V-format records may be blocked; a block of records is preceded by a 4-byte Block Descriptor
Word (BDW) giving the length of the block (including its own length) in the first two bytes.
For both the BDW and RDW, the remaining two bytes must be zero.

968 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───┬────┐ ┌───┬──────────┐ ┌───┬──────┐
Recfm V: │RDW│Recd│ │RDW│ Record │ │RDW│Record│ RDW=Record Descriptor Word

└───┴────┘ └───┴──────────┘ └───┴──────┘

┌───┬───┬────┬───┬──────────┬───┬──────┐
Recfm VB: │BDW│RDW│Recd│RDW│ Record │RDW│Record│ BDW=Block Descriptor Word

└───┴───┴────┴───┴──────────┴───┴──────┘
�─────────────── Block ──────────────�

Figure 763. Unblocked and blocked V-type record and block formats

• Undefined: A single physical record; do any blocking/unblocking (if needed) yourself. You
must understand the internal structure of U-format blocks that you read or write.

┌─────────────────────────┐ ┌───────┐ ┌────────────────┐
Recfm U: │ Block │ │ Block │ │ Block │

└─────────────────────────┘ └───────┘ └────────────────┘

Figure 764. U-type block formats

41.6.5. Opening the DCB

Figure 765 and the following explanations outline the steps taken during initialization of a DCB
by OPEN:

┌─────────────┐ ┌──────────────┐ ┌────────────┐
│ │ �1� │ │ �5� │ │
│Original DCB │────────�│ Working DCB │�───────│ DCB Exit │
│ │ │ │ │ │
└─────────────┘ └──────────────┘ └────────────┘

� │
�4�│ │�6�

│ �
┌─────────────┐ ┌──────────────┐
│ │ �2� │ │
│ JCL DD Stmt │────────�│ JFCB │
│ │ │ │
└─────────────┘ └──────────────┘

� │
│ │

�3�│ � �7�
┌───────────┐ ┌───────────┐
│ Old Data │ │ New Data │
│ Set Label │ │ Set Label │
└───────────┘ └───────────┘

Figure 765. Completion of a DCB during OPEN processing

�1� The settings of the original DCB are saved so they can be restored when the DCB is closed.

�2� Data from the JCL DD statement was used to create the Job File Control Block (JFCB).

�3� Fields in the JFCB not already completed are filled from the data set label.

�4� Fields in the DCB not already completed are filled from the JFCB.

�5� If a DCB OPEN exit exists, it is given control to make any desired modifications to the
DCB.

�6� The merged and updated fields from the DCB are copied back into the JFCB.

Chapter XII: System Services, Reenterability, and Recursion 969

�7� If the data set has been opened for output, fields from the JFCB are used to create the new
data set label.

OPEN then chooses and loads access method routines according to your choices of DSORG,
buffering technique, access technique, and device type. If OPEN fails, you normally get a system
013 ABEND.

41.6.6. Closing the DCB

To close a DCB and terminate I/O to that DDName, simply write

CLOSE dcbname

For the QSAM macros we've seen, you should follow that with

FREEPOOL dcbname

so the access method routines will free the storage they acquired for internal buffers.

41.6.7. The DCBD Macro and the IHADCB Dummy Section

The DCBD macro generates symbolic names for all DCB fields, in the IHADCB Dummy Control
Section. You specify at most two arguments:

DCBD DSORG=xx, Data Set Organization(s) X
DEVD=xx Device type(s)

Figure 766. DCBD operands

DSORG Types of access for which your DCBs were written.

DEVD Specifies the types of devices to be included.

However, if you write

DCBD DSORG=(PS,PO) Data Set Organization(s)
Figure 767. DCBD operands

then the presence of the PS argument means you can omit the DEVD argument entirely.

If you code multiple DSORG values, you can use IHADCB305 to refer to multiple DCBs; see
Figure 768.

Important fields defined in the IHADCB DSect are the DCBOFLGS byte, which contains the
DCBOFOPN bit you should test to verify that the DCB OPENed correctly, and the DCBLRECL field
that you must use when reading and writing V- and U-format records.

For example, you can use the IHADCB dummy section to map each DCB in your program, with
the help of Labeled Dependent USING statements:

USING Program,12 Using statement for entire program
- - -
OPEN (SYSINDCB,INPUT,SYSOUDCB,OUTPUT)

Sysin USING IHADCB,SYSINDCB Map SYSIN DCB with IHADCB
TM Sysin.DCBOFLGS,DCBOFOPN Test if OPEN was successful
JZ BadSysin Go take recovery action

Sysou USING IHADCB,SYSOUDCB Map SYSOUT DCB with IHADCB
TM Sysou.DCBOFLGS,DCBOFOPN Test if OPEN was successful
JZ BadSysou Go take recovery action

Figure 768. Using IHADCB to map two different DCBs simultaneously

305 Sometimes known as the “I Had A Control Block” macro.

970 Assembler Language Programming for IBM System z™ Servers Version 2.00

The two DCBs are within the range of the USING statement; the two Labeled Dependent
USING statements let you map each DCB with the same IHADCB DSECT.

41.6.8. The DCBE Macro and 31-bit Address Mode

All the I/O examples we've seen were required to execute in 24-bit addressing mode, and therefore
reside below the 16MB “line”. There are other macros (like DCBE, the DCB Extension) that let
you put things like buffers and exit routines above the line. This can be important if available
storage below the line is limited. To learn more, see the “Data Sets” references in the Bibli-
ography on page 1057.

41.6.9. I/O Summary

This has been a very simple overview of a vast and complex subject. z/OS supports the richest
variety of facilities among modern operating systems, while some other operating systems have
extremely simple I/O models. Most programs need only a small and useful subset of all the capa-
bilities z/OS offers.

Why use BSAM? If you have large volumes of data in which records can be processed independ-
ently, you can assign parallel tasks to process the records in each block as it is read. This can give
higher rates of “throughput” than QSAM could support, because QSAM handles one record at a
time.

Another popular access method is the “Virtual Storage Access Method” (VSAM), which supports
sequential, direct, and indexed access. It requires different macros and control, and its flexibility
and complexity are beyond the scope of this text.

Some general guidelines:

• Specify INPUT or OUTPUT (etc.) on the OPEN macro.

• Omit device-dependent parameters and macros when possible, to allow for varied devices,
record formats, etc. at execution time. Put device-dependent and data-set-specific information
on the DD statement.

Don't code more in the DCB than is required to ensure correct processing. Other parameters
can be completed during initialization or execution.306

• Avoid unblocked records: there is a potential performance penalty in time and CPU costs.307

• A DCB can be used for multiple data sets so long as it is closed before opening for a different
data set. You may need to modify some DCB fields if any there are differences in data set
characteristics. You will need to modify the DDNAME field!

41.6.10. A Sample Program

This sample program uses the macros described above to write a printable record.

306 Some systems will assign an “optimum” BLKSIZE for output data sets depending on its and the receiving device's
physical properties, and for input data sets based on its existing BLKSIZE.

307 I once saw a case where a program reading unblocked 80-byte records took nearly 10 minutes of elapsed clock time,
but completed in about 10 seconds when the input data set was adequately blocked. (It was an old, slow machine.)

Chapter XII: System Services, Reenterability, and Recursion 971

Sample CSect ,
Sample AMode 24
Sample RMode 24

STM 14,12,12(13) Save caller's registers
LR 12,15 Copy base register
Using Sample,12 Establish addressability
LR 2,13 Copy caller's save area address
LA 13,Save Point to local save area
ST 2,Save+4 Store back chain
ST 13,8(,2) Store forward chain
OPEN (PrintDCB,(OUTPUT)) Open the print DCB
PUT PrintDCB,Line Output the message
CLOSE PrintDCB Close the print DCB
FREEPOOL PrintDCB Release buffers
L 13,Save+4 Restore caller's save area address
RETURN (14,12) Restore registers
BR 14 Return

Line DC CL121'1Greetings from a sample program'
Print NoGen Suppress DCB details

PrintDCB DCB DSORG=PS,MACRF=PM,LRECL=121,BLKSIZE=121,RECFM=FA, X
DDNAME=PRINT

Save DC 9D'0' Local save area
End

Figure 769. A complete sample program

The output of this little program is:

1Greetings from a sample program

41.7. Handling Program Interruptions

Programs can handle their own exception conditions on two levels:

1. Program interruptions can be investigated using a “Program Interruption Exit”; in the
absence of an exit, the system will generate an ABEND using SVC 13, as illustrated in
Figure 746 on page 957.

2. Abnormal terminations (ABENDs) can be investigated using a “Task Abnormal Termination
Exit” that receives control on an ABEND. You can use an abnormal termination exit routine
to handle program interruptions, but the interface is more complex than for a program inter-
ruption exit (see Section 41.8 on page 976).

The basic mechanism used by the CPU for handling interruptions is illustrated in Figure 770 on
page 973 (also shown in Figure 16 on page 55).

972 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌───────┐ ┌────────┐ ┌─────────┐
┌────�│ FETCH ├─────�│ DECODE ├─────�│ EXECUTE ├────┐
│ └───────┘ └────────┘ └─────────┘ │
│ │
│ �
� no ┌──────────┴────┐
│�───────────────────────────────────────┤Any Interrupts?│
│ └──────────┬────┘
│ │yes

 │ ┌───�│
 no � � yes �
┌───┴────┴──┐ ┌────────────┐ ┌────────────────────┴────┐
│ Any other │�───┤Load New PSW│�───│Note interruption cause, │ �A�
│interrupts?│ │from Memory │ │save Old PSW, status info│
└───────────┘ └────────────┘ └─────────────────────────┘
Figure 770. Instruction cycle with interruptions

After determining at �A� that the interruption can be processed, the system analyzes the cause and
checks whether an exit routine has been established (by the interrupted program) for that type of
interruption.

41.7.1. Program Interruptions

If a program interruption exit has been established, the system saves relevant status information in
a work area called a “Program Interruption Element” or “PIE”, and the exit routine is given
control with a pointer to the work area.

Your program can receive control when any of the 15 program interruptions occurs if the exit
routine has requested control. The exit can take corrective action if it chooses.

You can also establish multiple exits: each supersedes the previous, and you can terminate them
as needed. Only one exit is active at a time.

41.7.2. Establishing a Program Interruption Exit

Use the ESPIE or SPIE308 macro to establish a Program Interruption Exit. SPIE is for applica-
tions using only 24-bit addressing, while ESPIE is for 24- or 31-bit mode applications; we'll use
ESPIE for our examples.

The expansion of either macro creates a small “Program Interruption Control Area”, or PICA*

that defines a data structure with the address of the exit routine, a pointer to an argument list to
be passed to your exit, and mask bits indicating which of the 15 program interruption types
should cause the system to pass control to your exit.

For example, to request that your exit routine named ProgInt be given control for any of the 15
possible program interruption types, you can write

ESPIE SET,ProgInt,((1,15))
Figure 771. Establishing a program interruption exit

where the first operand SET establishes the exit, the second operand is the name of your exit
routine, and the third operand specifies interruption types 1 through 15. The expansion of this
macro is shown in Figure 772 on page 974, where the PICA is in statment numbers 16-20.

308 The macro names can be understood to mean “(Extended) Set Program Interruption Exit”.
* This PICA is unrelated to typography or cravings for unnatural foods.

Chapter XII: System Services, Reenterability, and Recursion 973

11 ESPIE SET,ProgInt,((1,15))
12+* MACDATE = 08/15/81

00000C 13+ CNOP 0,4
00000C 4D10 C020 00020 14+ BAS 1,*+20

00010 15+IHB00002 EQU *
000010 00000038 16+ DC A(ProgInt) USER EXIT ROUTINE ADDRESS
000014 00000000 17+ DC A(0) USER PARAMETER LIST ADDRESS
000018 7FFF 18+ DC B'0111111111111111' INTERRUPTION MASK
00001A 0000 19+ DC B'0000000000000000'
00001C 00000000 20+ DC A(0) RESERVED
000020 4100 0004 00004 21+ LA 0,4 SET FUNCTION CODE
000024 41F0 001C 0001C 22+ LA 15,28 SVC ROUTER CODE
000028 0A6D 23+ SVC 109
00002A 5010 C09C 0009C 24 ST 1,MyToken Save token

Figure 772. Expansion of an ESPIE macro establishing a program interruption exit

The 2-byte bit string in statement 18 contains a 1-bit for each type of program interruption you
want to examine; in this case, all 15.

When the ESPIE SET macro is executed, the system first creates an “Extended Program Inter-
ruption Element” (EPIE) that will hold data about an interruption when it occurs, and then
returns a 4-byte “token” in GR1 for you to save.

Maskable Interruptions

If your program has set the Program Mask to disable any of the four
maskable interruptions — fixed-point overflow (8), decimal overflow (9),
HFP exponent underflow (13), or HFP lost significance (15) — specifying
any of those exceptions in a SPIE or ESPIE macro will re-enable that
exception.

For more information about the maskable exceptions, see the initial description at “ 4.6.
Exceptions and Program Interruptions (*)” on page 56 and the examples of the SPM instruction
at “ 16.9. Retrieving and Setting the Program Mask (*)” on page 234.

41.7.3. Terminating a Program Interruption Exit

The token returned to you when you established an exit identifies the PICA generated by the
previous ESPIE macro (if any); you use it when you want to cancel the current program inter-
ruption exit and restore control to any previous exit.

You can consider program interruption exits as a stack of programs: the most recent is on top of
the stack. Then, if another module in your program establishes its own program interruption exit,
when that second exit is canceled, the most previously established exit resumes effect.

Note that if the active exit does not process a given type of program interruption, control is not
passed “down the stack” to an earlier exit; the program will be ABENDed by the system.

To terminate the current program interruption exit, issue an ESPIE macro with the RESET
operand, and the token that you received when you established the exit:

ESPIE RESET,MyToken End current exit
Figure 773. Terminating a program interruption exit

The expansion of this macro is shown in Figure 774:

770 ESPIE RESET,MyToken
771+* MACDATE = 08/15/81

000052 5810 C0AC 000AC 772+ L 1,MyToken GET TOKEN
000056 4100 0008 00008 773+ LA 0,8 RESET FUNCTION CODE
00005A 41F0 001C 0001C 774+ LA 15,28 SVC ROUTER CODE
00005E 0A6D 775+ SVC 109

Figure 774. Expansion of an ESPIE macro terminating a program interruption exit

If you want to cancel all program interruption exits, specify a zero token:

974 Assembler Language Programming for IBM System z™ Servers Version 2.00

ESPIE RESET,0 Cancel all exits

41.7.4. Handling a Program Interruption

When a program interruption occurs and the currently active PICA requests control, the system
places information in the EPIE:

• the general registers in effect at the point of interruption

• the 8-byte ESA/390-mode old PSW (see Figure 775), containing

− the address and addressing mode of the instruction following the interrupted instruction (IA
and A in Figure 775)

− the condition code, program mask (see CC and PM in Figure 775) and the instruction length
code

− the interruption code and Data Exception Code; if the DXC field is zero, the exception was
due to invalid decimal data; otherwise, see Section 34.4.1. on page 649 for a description of
possible floating-point exceptions

16 2 2 4 8 1 31 �─bit widths
┌────//────┬───┬──┬────┬────────┬─┬────────────────────────────┐
│ │ILC│CC│ PM │ 0 │A│ Instruction Address │
└────//────┴───┴──┴────┴────────┴─┴────────────────────────────┘

Figure 775. ESA/390-mode old PSW in EPIE

The most useful contents of the EPIE are sketched in Table 437. (The full EPIE is described in
the MVS Data Areas manual referenced in the Bibliography on page 1057.)

Table 437. Partial contents of Extended Program Interruption Element (EPIE)

Using the information in the EPIE, your Program Interruption Exit can do many things, such as:

1. Examine the interruption condition and do nothing; simply return to the address in GR14 on
entry to the exit routine.

2. Print an error message and resume execution at the next instruction.

3. If the interruption was due to invalid data, analyze the instruction to determine where the
data is; then try correcting the data or the register pointing to it. Then use the ILC in the
EPIE to subtract the length of the interrupted instruction from the old PSW, and try again

Offset
(dec)

Offset
(hex)

Length Type Description

0 0 4 CL4 Control block identifier C'EPIE'
4 4 4 A Parameter list address

8 8 64 XL64 32-bit GPRs at time of interruption

72 48 8 XL8 8-byte ESA/390 old PSW at time of interruption

74 4A 1 BL1 Condition Code and Program Mask

76 4C 4 A AMODE bit and 31-bit address of next instruc-
tion to execute

81 51 1 BL1 Instruction Length code (bit positions X'06')

83 53 1 XL1 Interruption code

87 57 1 BL1 Data Exception code (if Interruption code is 7)

153 99 1 BL1 Set bit X'40' to resume execution by restoring the
64-bit GPRs rather than the 32-bit GPRs

160 A0 128 XL128 64-bit GPRs at time of interruption

288 120 8 XL8 Breaking Event Address

296 128 16 XL16 16-byte old PSW at time of interruption

Chapter XII: System Services, Reenterability, and Recursion 975

(being sure to remember that this is a second try, so you don't create an interruption
loop!).309

4. Modify the old PSW address in the EPIE so that control will resume at a different place in
your program after your exit returns via the system.

5. If your exit determines that continuing execution is a bad idea, set bit '10' at offset 153
(X'99') and return to the system; it will automatically issue an ABEND. (Don't modify any-
thing else in the EPIE.)

Many other possibilities will come to mind.

Be Careful!

1. The linkage from the system to your program interruption exit is not
standard: do not try to save any registers in the “caller's” save area.

2. If you do I/O from your exit routine, you must establish a local save
area pointed to by GR13. Because they are used by I/O routines,
you must first preserve GR14, GR15, GR0, and GR1.

3. Your exit routine must return to the interrupted program via the
return address in GR14 when the exit was entered.

Exercises

41.7.1.(2))+ Write short examples of instruction sequences that will cause each of the 15 types
of program interruption. (You will want to use this information when you solve Programming
Problem 41.6.)

41.8. Abnormal Terminations of Any Kind

 Note!

This topic is quite complicated; this section can at best give a brief
outline of its key components and actions. For a detailed overview, see
the topic “Providing Recovery” in the MVS Assembler Services Guide,
referenced in the Bibliography on page 1057.

As when you establish an exit to handle program interruptions with ESPIE, you can specify a
routine to be given control on any abnormal termination condition. That routine (called a
recovery routine) can capture information about the cause and location of the problem, maybe
take remedial action to repair or bypass the error and resume execution at a chosen point in your
program, or release any resources the program may have acquired and terminate a bit more
“gracefully”.

The overall flow of control can be visualized in simplified form in Figure 776 on page 977.

309 On a very early System/360 Model 67, one particular program interruption at an address at a specific offset from a
doubleword boundary would resume execution not at the next sequential instruction, but at the previous doubleword
boundary. If that was the address of the interrupted instruction, an interruption loop would occur, through no fault of
the programmer. It was quickly corrected.

976 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌─────────────┐�1� �2�┌────────┐
│ Application ├──│ Normal │
│ Program │ │ End │
└───────────┬─┘ └──────┬─┘

� │ �3� �4� │
│ │ ┌──────────────┐ ┌───────┐ ┌────────────┐ │
│ └─│ Interruption ├─│System ├─│ │ │

 │ └──────────────┘ └───────┘ │ Your ESTAE │ │
┌───┴───┐ ┌───────┐ │ Recovery │ │
│System │ │System ├───────────────│ Routine(s) │ │
└───┬───┘ └───┬───┘ │ │ │

� � └─┬────┬───┬─┘ │
│ │�6� � � � �5� �
│ ┌─┴─────────┐ │ │ │ ┌───┴─┐
│ │ Percolate │�───────────┘ │ └──│ RTM │
│ �7� └───────────┘ │ └─────┘
│ ┌───────────────┐ │
└──┤ Retry Routine │�───────────────────────┘

└───────────────┘
Figure 776. Sketch of interruption handling control flow

In this basic scenario, you are responsible for writing three routines: the Application Program �1�,
the ESTAE recovery routine(s) (ESTAE exit(s)) �4�, and the Retry Routine �7�. These can be
separate programs, or parts of the Application Program.

Under normal conditions, you expect the Application Program to complete with a Normal End
�2�, and control passes to the “Recovery/Termination Manager” (RTM) to do any necessary final
actions. If an Interruption �3� occurs, or if your Application Program �1� issues an ABEND
macro, the System will give control to the most recent of your Recovery Routines �4�, and
provide useful information in a “System Diagnostic Work Area” (SDWA). If no Recovery
Routine is available, control will pass directly to the Recovery/Termination Manager (RTM) �5�,
which will do its best to clean up any resources held by your program and generate whatever
diagnostic information it can.

Assuming a Recovery Routine is available, you can make several choices:

1. You can decide that the problem cannot readily be fixed, generate as much diagnostic infor-
mation as you can, and pass control to the RTM �5� to terminate execution (possibly with
additional diagnostic information such as a “memory dump”).

2. You can choose to do some repairs and pass control to the Recovery/Termination Manager
�5�, or you can decide that the problem may be identifiable by the next of the Recovery
Routines on the “exit stack”, and indicate to the System that recovery control should
“percolate” �6� to the next exit routine.

3. You can process the interruption condition so that it is partly or completely repaired, and
decide to pass control back to the application program by way of the Retry Routine �7�; it
can complete fixing the problem, or completely bypass it.

Both percolation and retry require the SETRP macro, which we'll review on page 979.

The most general form of exception handling is provided by the STAE, ESTAE, and ESTAEX
macros,310 all of which support Standard, List, and Execute forms.

STAE was the earliest form, and executes only in 24-bit addressing mode. ESTAE was introduced
next, and executes in both 24- and 31-bit modes. ESTAEX is the most general form, and can
execute in all three addresing modes. (See the details in the Assembler Services Reference manual
listed in the Bibliography.) The following discussion will use ESTAE; ESTAEX is very similar.

310 The names are generally understood to mean “(Extended) Specify Task Abnormal Exit”.

Chapter XII: System Services, Reenterability, and Recursion 977

41.8.1. The ESTAE Macro

Issuing ESTAE establishes an exit routine that will be given control on an abnormal termination
condition in your program. If you issue multiple ESTAEs, you can either replace the current exit
with a new one (like ESPIE), or (unlike ESPIE) you can form a “chain” or “stack” of exit rou-
tines, each of which can decide to take corrective action, or to pass the problem to the previously
defined exit routine. This passing of control is called “percolation”.

Because program interruptions can cause an abnormal termination, an ESTAE exit can also
process program interruption conditions, but the ESTAE interface is both more powerful and
much more complex than ESPIE's.

The ESTAE macro has this general form:

ESTAE two_positional_operands,multiple_keyword_operands

These are the most important operands for most programs; default values are underlined.

exitname This is the first positional operand, giving the entry point name of the recovery
routine to be placed at the top of the exit “stack”.

If you specify 0 for this operand, the name of the current exit routine (at the top of
the stack) is removed.

CT|OV This second positional argument is either CT or OV. Specifying OV means that the
current exit routine will be replaced (“overlaid”) by the new one provided in the
first operand. Specifying CT means that the new exit routine will be added
(“concatenated”) to the top of the stack of exit program names. It will be entered
first by the operating system when an interruption occurs, but it can “percolate”
control to the previously defined exit routine.

PARAM= This keyword operand specifies the address of a “parameter area” created by the
Application Program that can provide useful information for the Recovery
Routine, and where that routine can place data that may be useful for the applica-
tion.

PURGE= This keyword operand specifies the actions you want to take with currently active
I/O operations.

NONE Don't do anything; let the operations continue. (This means that any
interruptions caused by the active I/O could cause re-entry to your exit
routine.)

QUIESCE Save the status of pending I/O requests so they can be restarted if
desired. Currently active I/O operations will be purged.

HALT Don't save pending requests. Currently active I/O operations will be
purged.

ASYNCH= This keyword operand specifies whether certain types of interruption should be
allowed while your recovery routine is in control:

NO No other interruptions should be allowed.

YES Must be specified if your exit routine will request system services that
could generate interruptions, or if you specified PURGE=QUIESCE or
PURGE=NONE and interruptions are required to complete processing of
certain I/O activities.

SDWALOC31= You can specify whether the “System Diagnostic Work Area” (SDWA) created by
the System should be located in 24- or 31-bit addressable storage:

NO The SDWA will be in 24-bit storage.

YES YES is required if the application program is running in 31-bit addressing
mode, or if it is using 64-bit general registers.

The satisfactory-completion return codes (in GR15) from ESTAE are 0 and 4 (you specified OV
but there was no previous exit to overlay, so the System treated your request as though you had
specified CT). All other return codes indicate an error.

978 Assembler Language Programming for IBM System z™ Servers Version 2.00

A simple example of an ESTAE macro is shown in Figure 777.

4 ESTAE EXIT,PARAM=PLIST
000000 7+ CNOP 0,4 ESTAB. FULL WD. BOUND. ALIGN.
000000 A715 000E 0001C 8+ BRAS 1,*+28 LIST ADDR IN REG1 SKIP LIST
000004 16 9+ DC AL1(22) FLAGS FOR TCB, PURGE, X

+ ASYNCH AND CANCEL
000005 000000 10+ DC AL3(0) FIELD NO LONGER USED
000008 00000084 11+ DC A(PLIST) STAE EXIT PARM. LIST ADDR.
00000C 00000000 12+ DC A(0) SPACE FOR TCB ADDR
000010 00 13+ DC AL1(0) FLAGS FOR TERM,RECORD,SDWALOC31
000011 01 14+ DC AL1(1) THIRD FLAG BYTE
000012 0000 15+ DC AL2(0) RESERVED
000014 00000000 16+ DC A(0) SPACE FOR TOKEN
000018 00000080 17+ DC AL4(EXIT) FOUR BYTE EXIT ADDR
00001C 4100 0100 00100 18+ LA 0,256(0,0) CREATE & PARMLST EQ 0
000020 4110 1000 00000 19+ LA 1,0(0,1) MAKE REG1 POS. XCTL=NO
000024 0A3C 20+ SVC 60 ISSUE STAE SVC

Figure 777. A simple ESTAE macro.

You can see the references to the exit and parameter-area addresses; the other fields are for argu-
ments we haven't discussed.

41.8.2. Interruption Processing

Your ESTAE exit receives control from the System in the addressing mode that was in effect
when the ESTAE macro was issued, not in the current mode. You should do several things first:

1. Save the return address in GR14, so you can return control to the System. GR2 contains the
address of the “parameter area” that you specified on the PARAM= operand of the ESTAE
macro. (The parameter area address is also in the SDWA field SDWAPARM.)

2. Test GR0:

• If c(GR0)=12 (X'0C'), no SDWA has been provided by the System, and GR13 does not
point to a save area. Your options are quite limited, and it's best to terminate the
program.

• If c(GR0)≠ 12, GR1 holds the address of the SDWA, GR13 points to a standard save
area, and the address of the parameter area is also in the SDWAPARM field of the SDWA.
(The names of the SDWA fields are defined in the DSECT generated by the IHASDWA
macro, and described in the MVS Data Areas manual listed in the Bibliography.)

− The completion code (also known as the ABEND code) is in the SDWA's SDWACMPC
field, and if the SDWARCF bit is 1, the SDWACRC contains the reason code (that you could
have provided on an ABEND macro).

− Check the SDWAPERC bit: if it's 0, this is the first recovery routine, and there has been no
previous percolation.

The information provided by the System in the SDWA to the exit routine is very rich, including
the contents of the general registers, the 8-byte PSW in effect at the time of the original ABEND,
and other useful data. The SDWA is described in the MVS Data Areas manual; see the Bibli-
ography for details.

Your recovery routine may need to communicate with the application program. The best way to
do this is to use the parameter area you specified on the PARAM= operand of the ESTAE macro.
This area can contain addresses of parts of the application program and of acquired storage,
addresses that may be needed to locate data or that may be needed by your retry routine.

41.8.3. Percolation and Retry

If your exit wants to percolate to another exit, or retry execution at a point in the application, it
must issue the SETRP (Set Return Parameters) macro, described in the Assembler Services Refer-
ence manual. Depending on the arguments on the SETRP macro when you have used it to return
control to the System, the System will percolate to the next exit routine on the exit “stack”, or
give control to your retry routine.

Note that if the SWDACLUP bit in the SDWA is 1, retry is not allowed.

Chapter XII: System Services, Reenterability, and Recursion 979

The general form of the macro is:

SETRP keyword_arguments

You should use SETRP only if the System provided a SDWA to your exit routine. If there is no
SDWA, it's best not to retry.

These are the most important operands for most programmers; default values are underlined.

RC= 0|4. This argument specifies whether you want to percolate (0) or retry (4).

REGS= (reg1,reg2). The register or range of registers to be restored from the standard save
area addressed by GR13. Specify the register values as you would for a Load Mul-
tiple instruction: (reg1,reg2). The macro will generate a BR 14 instruction to
return control to the System. (If you omit this argument, you must create your own
branch instruction to return control to the System.)

The following arguments may be specified only if you specified RC=4 (retry).

RETADDR= The address of your retry routine. It can be a separate routine; your exit routine can
request that the System resume execution of your program at whatever point you
choose.

FRESDWA= NO|YES. This argument specifies whether (YES) or not (NO) you want the SDWA to
be freed before your retry routine receives control. If you specify NO, the retry
routine must free the SDWA, using length and subpool information in the SDWA.

There are many other macro operands not mentioned here; see the MVS Assembler Services Ref-
erence in the Bibliography for details.

Percolation: If you chose to percolate (RC=0) it's best to repair as much of the problem as pos-
sible, such as releasing unneeded resources, depending on the type of interruption.

Before you issue the SETRP macro to return control to the System (and then to the next recovery
routine on the “exit stack”), check whether a SDWA was provided: if not, set c(GR15) to zero. If
yes, you could update the SDWA with data that might be useful if and when the program con-
tinues, or is terminated.

When the SERTP macro passes control to the system, the system removes the current ESTAE
exit from the top of the exit stack; if the stack is now empty, the system will abnormally termi-
nate your program and control will pass directly to the RTM.

Retry: If you choose to retry (RC=4), you are passing control back to the Application Program's
retry routine (which can be an existing module or part of the application). The current ESTAE
exit on the top of the exit “stack” is not freed. If your retry routine creates another interruption,
control will pass to the same recovery routine that just gave control back to the application via
the retry routine. Be careful: you could cause an error-processing loop.

41.8.4. Summary

This topic is far more extensive than this overview can properly describe. The cited references
provide all the information you may need.

From your perspective (not the System's!) you can think of your program as being in one of
several states:

1. Executing; it is doing what it was intended to do.

2. In your ESTAE-exit recovery routine, your program having created an interruption condi-
tion.

3. “Abnormal end”: no recovery routines, or your recovery routine(s) failed.

4. Terminated.

From the System's perspective, your program can be in several states:

1. Executing; doing something.

2. Having executed an ESTAE macro, which creates an exit that can then be in one of four
states:

980 Assembler Language Programming for IBM System z™ Servers Version 2.00

a. Defined and activated: known to the System; you provided an exit name on ESTAE,
and available to receive control if an interruption occurs.

b. In control; the System has passed control to the exit.

c. No longer in control, because it has either percolated or retried.

d. Deactivated and undefined: the System will no longer pass control to it, and not known
to the System.

3. Terminating abnormally: you provided no exit routines, or your exit routines failed.

4. Terminating normally.

41.9. Summary

Instructions Discussed in this Section

The instruction mnemonics and opcodes are shown in the following table:

Mnemonic Opcode Mnemonic Opcode

PC B218 SVC 0A

The instruction opcodes and mnemonics are shown in the following table:

Opcode Mnemonic Opcode Mnemonic

0A SVC B218 PC

Terms and Definitions
ABEND

Abnormal termination (ABnormal END) of a program prior to its expected completion,
either requested by the executing program or imposed by the operating system.

abnormal termination
The termination of a program prior to its expected completion. It can be requested by the
executing program, or imposed by the operating system.

keyword argument
An argument to a macro definition where the keyword name supplied by the macro defi-
nition is followed by an equal sign and an optional value.

positional argument
An argument to a macro definition determined by counting from the first operand, ignoring
any keyword arguments. The contents of the name field of the macro invocation can be
treated as a positional argument by macro definitions.

program interuption
An interruption that is caused by the program that can be fixed by source statement modifi-
cations. Distinct from a system interruption generated by the operating system.

recovery routine
A program written in the hope that your program can correct whatever condition caused the
operating system to terminate the program.

Chapter XII: System Services, Reenterability, and Recursion 981

system interruption
An interruption caused by an improper interaction between the executing program and a
system service.

system service
A function of by the operating system, providing capabilities not allowed to most problem
state programs.

Programming Problems

Programming Problem 41.1.(1) Revise the little program in Figure 33 on page 81 to use system
macros rather than PRINTOUT.

Programming Problem 41.2.(3)+ Write a program to read 80-byte fixed length records, and
write them to a 121-byte print data set (with carriage-control characters), preceded by a
sequence number giving the number of the input record. Verify that each DCB opened cor-
rectly, and take appropriate actions to notify the user if not.

For sample input records, you can use the data from Programming Problems 24.13 or 24.14.
on page 400.

Programming Problem 41.3.(3)+ Write a program with a program interruption exit that gener-
ates each the 15 possible interruption types in turn. For each interruption, generate a message
describing the interruption type and the address of the interrupted instruction. Then, return to
the mainline program to generate the next interruption.

Programming Problem 41.4.(1)+ Write a program using ESPIE to establish a program inter-
ruption exit, and display the token returned in GR1. Then establish a second exit, and display
the token returned in GR1. Can you determine what it might refer to? Then, use the RESET
option of ESPIE to terminate both exits.

Programming Problem 41.5.(3)+ Write a short program that issues an ESPIE macro that desig-
nates an exit routine in your program. Then, generate a program interruption that causes entry
to your ESPIE exit routine. The exit should display (print) information about the interruption:

• the interruption code
• the address of the failed instruction
• the failed instruction
• any relevant register contents
• any relevant storage fields
• anything else that might be helpful

Then, return to the main program following the failed instruction, to complete execution
normally.

Programming Problem 41.6.(4)+ Using your solution to Programming Problem 41.5 as a
starting point, write a program to generate as many of the 15 program interruptions as you can,
displaying the same information as before, plus any additional information you believe may be
useful. (For example, for a decimal data interruption, show the invalid operands; this may
require calculating some Effective Addresses.) (Your solution to Exercise 41.7.1 will be useful.)

Programming Problem 41.7.(3)+ Write a program with an ESTAE exit. Then, generate a
program interruption as in Programming Problems 41.5 or 41.6. Your recovery routine should
provide at least the same information as in Problem 41.5.

Programming Problem 41.8.(4) Write a program with an ESTAE exit, and generate an inter-
ruption condition other than a program interruption, and provide at least the same information
as in Problem 41.5.

982 Assembler Language Programming for IBM System z™ Servers Version 2.00

42. Reenterability and Recursion

444 2222222222
4444 222222222222
44 44 22 22
44 44 22

 44 44 22
44444444444 22
444444444444 22

44 22
 44 22
 44 22
 44 222222222222
 44 222222222222

42.1. Reenterability

We'll start by outlining what “reenterability” means technically, then what it implies in practice.

42.1.1. What it Means in General

There are many ways to understand reenterability:

1. A program does not modify itself.

2. A program does not modify itself and is loaded into memory-protected storage.

3. A program that produces correct results when multiple units of work execute it concurrently.
It can modify itself if none of the units of work rely on or can detect the modification. For
example:

 L 0,X or IC 0,* or OI *,0 or NI *,X'FF'
 ST 0,X STC 0,*-4

Such a program modifies itself, but the modification is not detectable unless the program has
been loaded into protected storage.

4. Many programmers use the term “reentrant” to describe a reenterable program.311 Mathemat-
ically, “reentrant” describes a closed curve with at least one concave segment.

Sometimes people think reenterability also means recursion; they're quite distinct. We'll discuss
recursion in Section 42.2 on page 987.

311 It has been claimed that “reenterable” was the original term, starting around 1964. Some years later someone appar-
ently decided that word looked too complex, and substituted “reentrant”, without knowing its mathematical defi-
nition.

Chapter XII: System Services, Reenterability, and Recursion 983

42.1.2. What it Means in Practice

Before starting, you should evaluate where, how, and when the module will be used, to decide
whether or not it should be reenterable. But note that if you write all programs and subprograms
to be reenterable, you can use their components more easily in other applications, whether or not
the complete application is reenterable.

42.1.3. Assembly-Time Considerations

1. Specifying the RENT option asks the Assembler to check for obvious cases of self-
modification, but there are many ways for a program to modify itself that the Assembler
cannot detect. Specifying a RSECT control section does the same checking on a per-section
basis,312 but neither will detect d(b) references like this:

LA 1,*
STC 1,0(1) Not detected by RENT or RSECT!

STC 2,* Detected by RENT and RSECT!

2. Anything the routine may modify should be in acquired storage, or in a work area provided
by the caller.

3. These practices can make it easier to write a reenterable program (see Figure 778 on
page 985):

a. Define a DSECT for all local variables (but not constants). It should contain a local
save area for calls to other external routines or to system services.

b. On completion of entry linkage, allocate storage for the local variables, and assign a base
register for this storage area.

c. Initialize local variables as required.

d. Release the local storage as part of the exit linkage.

4. Use the List and Execute forms of most macros, unless you have verified that the Standard
form does not generate inline store instructions. See Figures 748, 750, 752, and 754 starting
on page 959 for examples of macros that can be used in reenterable programs without
needing to use the List and Execute forms.

42.1.4. At Linking Time

When you link a reenterable program using the z/OS Program Management Binder, you must
specify either the RENT or REFR option; these options describe your program's property (see
the Binder manuals shown in the Bibliography for details):

NONE The module cannot be reused. A new copy must be brought into memory for each use.

SERIAL The module is serially reusable. It can only be executed by one task at a time; when
one task has finished executing it another task can begin. A serially reusable module
can modify its own code, but when it is re-executed it must initialize itself or restore
any instructions or data that have been altered. (Sometimes known as REUS.)

RENT The module is reenterable. It can be executed by more than one task at a time. A task
can begin executing it before a previous task has completed execution. A reenterable
module cannot modify its own code. In some cases, the operating system may load a
reentrant program into an area of virtual storage that cannot be modified. Reenterable
modules are also serially reusable.

REFR The module is refreshable. It can be replaced by a new copy during execution without
changing the sequence or results of processing. A refreshable module cannot be modi-
fied during execution. Refreshable modules are also reenterable and serially reusable.
A module can be refreshable only if all the control sections within it are refreshable.

312 Except for enabling checks for simple cases of self-modification within its section, RSECT is the same as CSECT.

984 Assembler Language Programming for IBM System z™ Servers Version 2.00

The Binder (like the Assembler) trusts your claims about your program's reenterability, and does
not try to verify them.

42.1.5. Techniques

The following examples show how you can write a reenterable program that runs in 24- or 31-bit
mode and resides below the 16MB “line”.

At the start of a reenterable program, you normally acquire storage for save areas, working data,
macro lists, and so on. A partial sketch of the entry and exit linkages for a program executing in
24- or 31-bit addressing mode and residing below the 16MB “line” is shown in Figure 778; more
will be added for a functioning program.

RentProg RSect ,
SAVE (14,12),,* Save caller's registers
LR 12,15 Copy base register
Using RentProg,12 Establish addressability
GETMAIN R,LV=WorkLen Get working storage
ST 13,4(,1) Save back chain
ST 1,8(,13) Store caller's forward chain
LR 13,1 Point R13 to the work area
Using WorkArea,13 Addressability for work area
XC 8(4,13),8(13) Clear our forward chain
- - - Do whatever needs doing
L 13,Save+4 Reload address of caller's area
LR 1,13 Put work area address in GR1
FREEMAIN R,A=(1),LV=WorkLen Free the acquired storage
RETURN (14,12) Return to caller or system

WorkArea DSect ,
Save DS 9D Local save area
Buffer DS CL80
OpenList OPEN (,,,),MF=L List to OPEN two DCBs
CLoseLst CLOSE (,,,),MF=L List to CLOSE two DCBs

- - -
DS 0D Align to doubleword

WorkLen Equ *-WorkArea Length of the work area
Figure 778. Skeleton form of a reenterable program

Figure 778 shows how to allocate working storage, set up a save area, then to free it and return.
Now, we'll add some “working” statements.

Suppose this little program reads records from INDCB, processes them, and writes them to
OUTDCB. In Figure 778 we omitted the DCB macros, so we'll add those and the GET and
PUT macros in Figure 779 on page 986, assuming that the “housekeeping” instructions are
unchanged. First, because the DCBs are modified during execution, they must be copied to the
work area.

Chapter XII: System Services, Reenterability, and Recursion 985

- - -
MVC WDCB1(WDCB1L),INDCB Copy INDCB to the work area
MVC WDCB2(WDCB2L),OUTDCB Copy OUTDCB to the work area
LA 2,WDCB1 Point to working input DCB
LA 3,WDCB2 Point to working output DCB
OPEN ((2),INPUT,(3),OUTPUT),MF=(E,OpenList) Open both

GetRec GET (2),Buffer Read a record
- - - Process it
PUT (3),Buffer Write it out
J GetRec

EndFile CLOSE ((2),,(3),) Close the DCBs
- - -

INDCB DCB DDName=INFILE,LRECL=80,BLKSIZE=8000,MACRF=GM,DSORG=PS, X
EODAD=EndFile

INDCBL Equ *-INDCB Length of Input DCB
OUTDCB DCB DDName=OUTFILE,LRECL=80,BLKSIZE=8000,MACRF=PM,DSORG=PS
OUTDCBL Equ *-OUTDCB Length of Output DCB

- - -
WorkArea DSect ,

- - -
WDCB1 DCB DSORG=PS,MACRF=GM,DDNAME=X Working DCB1
WDCB1L Equ *-WDCB1 Length of Working DCB1
WDCB2 DCB DSORG=PS,MACRF=PM,DDNAME=X Working DCB2
WDCB2L Equ *-WDCB2 Length of Working DCB2
Figure 779. I/O macros in a reenterable program

The use of unusual (and identical) DDNames on the working DCBs doesn't matter because they
are overwritten after the DCB skeletons are moved to the work area. However, you should always
check your assembly listing to verify that the length of each DCB matches the length of the work
area to which it's moved. (Here, they should both have length X'60'. This is easily checked by
comparing their EQUated lengths.)

The complete assembled program is shown in Figure 780.

1 Print NoGen
000000 00000 00188 2 RentProg RSect ,
000000 47F0 F00E 0000E 3 SAVE (14,12),,* Save caller's registers
000012 18CF 8 LR 12,15 Copy base register

R:C 00000 9 Using RentProg,12 Establish addressability
000014 4510 C01C 0001C 10 GETMAIN R,LV=WorkLen Get working storage
000022 50D0 1004 00004 16 ST 13,4(,1) Save back chain
000026 5010 D008 00008 17 ST 1,8(,13) Store caller's forward chain
00002A 18D1 18 LR 13,1 Point R13 to the work area

R:D 00000 19 Using WorkArea,13 Addressability for work area
00002C D703 D008 D008 00008 00008 20 XC 8(4,13),8(13) Clear our forward chain
000032 D25F D0A8 C0C8 000A8 000C8 21 MVC WDCB1(WDCB1L),INDCB Copy INDCB to the work area
000038 D25F D108 C128 00108 00128 22 MVC WDCB2(WDCB2L),OUTDCB Copy OUTDCB to the work area
00003E 4120 D0A8 000A8 23 LA 2,WDCB1 Point to working input DCB
000042 4130 D108 00108 24 LA 3,WDCB2 Point to working output DCB

Figure 780 (Part 1 of 2). Assembly listing for a simple reenterable program

986 Assembler Language Programming for IBM System z™ Servers Version 2.00

000046 4110 D098 00098 25 OPEN ((2),INPUT,(3),OUTPUT),MF=(E,OpenList) Open both
000070 1812 38 GetRec GET (2),Buffer Read a record

44 * - - - Process it
00007C 1813 45 PUT (3),Buffer Write it out
000088 A7F4 FFF4 00070 51 J GetRec
00008C 4110 D0A0 000A0 52 EndFile CLOSE ((2),,(3),),MF=(E,CloseLst) Close both DCBs
0000AE 58D0 D004 00004 63 L 13,Save+4 Reload address of caller's area
0000B2 181D 64 LR 1,13 Put work area address in GR1
0000B4 47F0 C0BC 000BC 65 FREEMAIN R,A=(1),LV=WorkLen Free the acquired storage
0000C2 98EC D00C 0000C 71 RETURN (14,12) Return to caller or system

74 INDCB DCB DDName=INFILE,LRECL=80,BLKSIZE=8000,MACRF=GM,DSORG=PS, X
0000C8 0000000000000000 EODAD=EndFile

00060 128 INDCBL Equ *-INDCB Length of Input DCB
000128 0000000000000000 129 OUTDCB DCB DDName=OUTFILE,LRECL=80,BLKSIZE=8000,MACRF=PM,DSORG=PS

00060 128 OUTDCBL Equ *-OUTDCB Length of Output DCB
000000 00000 00168 184 WorkArea DSect ,
000000 185 Save DS 9D Local save area
000048 186 Buffer DS CL80
000098 00 187 OpenList OPEN (,,,),MF=L List to OPEN two DCBs
0000A0 00 193 CLoseLst CLOSE (,,,),MF=L List to CLOSE two DCBs
0000A8 0000000000000000 199 WDCB1 DCB DSORG=PS,MACRF=GM,DDNAME=X

00060 254 WDCB1L Equ *-WDCB1 Length of Working DCB1
000108 0000000000000000 255 WDCB2 DCB DSORG=PS,MACRF=GM,DDNAME=X

00060 310 WDCB2L Equ *-WDCB2 Length of Working DCB2
000168 311 DS 0D Align to doubleword

00168 312 WorkLen Equ *-WorkArea Length of the work area
313 End

Figure 780 (Part 2 of 2). Assembly listing for a simple reenterable program

Exercises

42.1.1.(3) Note: This exercise is intended as a mental exercise in violating reenterability, not to
illustrate a useful or proper programming technique!

Write a program with a loop, in which a single instruction modifies itself on each iteration
through the loop, in such a way that the instruction is different each time. That is, an instruc-
tion like MVI *+1,0 does not change on each iteration. Display enough of the program's
behavior to convince yourself that your solution works.

42.2. Recursion

Recursion appears in varied forms in many programming languages. For example, the common
practice of grouping nested mathematical expressions in parentheses often implies the need for a
recursive routine to parse the complete expression. In Section 8.6 on page 103, the Assembler
Language defines an operand as formed from one to three expressions. Each expression is defined
as a “factor” or as “± factor” or as “factor± factor”; a factor is defined in turn as a “primary”
or as a “primary*primary” or as a “primary/primary”. Finally, a primary is defined as a “term” or
as a parenthesized expression, “(expression)”. It is this last item that makes the definition of an
expression recursive; you could be scanning an expression and encounter an opening parenthesis
and find that you must (recursively) scan a new expression that is part of the expression you were
previously scanning.

As another example, suppose the Assembler Language supported some types of nested literals, as
in “=A(=F'7')”.313 After recognizing the “=A(” portion of the outer literal, the Assembler would
normally parse an address-constant operand, but in this case the “=F'7'” operand would require a
recursive re-entry to the literal-operand scanner.

Mathematically, a recursive function is one that is defined in terms of itself. In programs, a recur-
sive routine calls itself, either directly or indirectly. An example of a routine that can be imple-

313 At the time of this writing, HLASM doesn't support nested literals; but you can always ask.

Chapter XII: System Services, Reenterability, and Recursion 987

mented both with or without recursion is the familiar Factorial function; we saw iterative
solutions in Programming Problems 18.5, 33.2, and 36.4. Its recursive definition is

1. Factorial: for integers N ≥ 0.

Fact(N) = 1 if N = 0 or 1
Fact(N) = N × Fact(N-1) otherwise

Some other functions having recursive definitions are:

2. Product: for integers M, N ≥ 1.314

Prod(N,M) = M if N = 1
Prod(N,M) = N if M = 1
Prod(N,M) = N + Prod(N,M-1) otherwise

3. Greatest Common Divisor: for integers M, N ≥ 1.315

GCD(N,M) = N if M = 0
GCD(N,M) = GCD(M,mod(N,M)) otherwise

Note that GCD(M,N) = GCD(N,M). Also, the Least Common Multiple function
LCM(N,M) = N×M/GCD(N,M).

Another interesting GCD result is that GCD(nA −1,nB −1)= (n GCD(A,B)) −1.

4. Fibonacci numbers: for N ≥ 1.

FIBO(N) = 1 if N ≤ 2
FIBO(N) = FIBO(N-1) + FIBO(N-2) otherwise

We've seen many iterative solutions to generating the Fibonacci series; for example, see Pro-
gramming Problems 16.7-10 and 30.7-8.

5. Remainder: given three positive integers A, b, C, calculate the remainder of Ab/C.

REMDR(Ab,C) = REMDR((A2)b/2,C) if A ≤ C and b ≥ 2 is even
REMDR(Ab,C) = mod(A×REMDR((A2)(b-1)/2,C),C) if A < C and b ≥ 3 is odd
REMDR(Ab,C) = A if A < C and b = 1
REMDR(Ab,C) = REMDR((mod(A,C))b,C) if A ≥ C

6. Partitions: PART1(N) = number of ways to write N as a sum of positive integers.

PART1(N) = 1 if N = 0
PART1(N) = 0 if N < 0
PART1(N) = R(1) - R(2) + R(3) - R(4) + R(5) - ...
where R(k) = PART1(N-(3×k2-k)/2) + PART(N-(3×k2+k)/2)

7. Partitions: PART2(N,M) = number of ways to write M as the sum of not more than N
positive integers. (Note that PART1(N) = PART2(N,N).)

PART2(N,M) = 1 if (a) N = 1 and M ≥ 1, or (b) M = 0, or (c) M = 1
PART2(N,M) = 0 if M < 0
PART2(N,M) = PART2(N-1,M) + PART2(N,M-N)

8. Binomial Coefficients: BINCN,M = number of ways to select M objects from a set of N.

BINCN,M = 1 if M = 0 or M = N
BINCN,M = BINCN −1,M −1 + BINCN −1,M

The Binomial coefficients can be displayed in “Pascal's Triangle”: each number is the sum of
the two numbers immediately above it to its left and right (using 0 if for the second number
for the leftmost and rightmost 1 digits).

314 Some very early computers evaluated products this way.
315 Also known as the Greatest Common Factor (GCF) or Highest Common Factor (HCF) function.

988 Assembler Language Programming for IBM System z™ Servers Version 2.00

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

9. Ackermann's Function: for X, Y ≥ 0.

ACK(X,Y) = Y + 1 if X = 0
ACK(X,Y) = ACK(X-1,1) if X > 0 and Y = 0
ACK(X,Y) = ACK(X-1,ACK(X,Y-1)) otherwise

Be careful with the Ackermann function! It grows extremely fast, faster than any exponential
function. For example, ACK(3,n) = 2(n+3) −3, while ACK(4,2) = 265536 −3 ≈ 1019728.

Note that 265536 = 2**(2**(2**(2**2))), an “exponentiation stack” or “power tower” of five
2's. ACK(4,N) is a “power tower” of (N +3 2's) −3.

10. The “Tower of Hanoi” is a famous problem often involving a recursive solution. suppose
you have three pins P1, P2, and P3, and on P1 is a set of disks D1, D2, ... DN in increasing
size from top to bottom. For example, with four disks:

P1 P2 P3
│ │ │

D1 ┌──┴──┐ │ │
D2 ┌─┴─────┴─┐ │ │

D3 ┌─┴─────────┴─┐ │ │
D4 ┌─┴─────────────┴─┐ │ │

┌────┴─────────────────┴──────────────────┴───────────────────────────┴───────────────┐
│===│
└───┘

The problem is to move the disks from P1 to P2, subject to these rules:

a. Only one disk may be moved at a time.
b. A larger disk is never put on a smaller disk.
c. At each stage, all disks must be on P1, P2, or P3 (no disks may be held temporarily

“elsewhere”).

A recursive algorithm to accomplish the moves uses the function THMOVE(i,j,M), which
moves the topmost M disks from pin Pi to pin Pj, using pin Pk if the topmost disks of pins
Pk and Pj are larger than the M-th disk from the top of pin Pi. The steps of the algorithm
are:

Step 1: If M=1, move the topmost disk from Pi to Pj, and return.

Step 2: Do THMOVE(i,k,M −1) where i≠ j≠ k.

Step 3: Move the topmost disk from Pi to Pj.

Step 4: Do THMOVE(k,j,M −1) where i≠ j≠ k.

Step 5: Return.

In the figure above, you would start with THMOVE(1,2,4).

We'll see some of these recursive activities again as Programming Problems.

It is widely believed that a recursive routine must also be reenterable, but this is not so. The
recursive routine can maintain its own internal stack; see Programming Problem 42.1 (which is
highly recommended).

A common feature of recursive routines is that they must allocate and initialize instances of local
variables on each entry, and free them on exit. Many implementations of recursive routines use a
stack for local variables, save areas, and so on.

Making a recursive routine also be reenterable can simplify managing local variables if the routine
can be loaded into protected storage; any attempt to store into the body of the routine will gen-
erate a memory protection error.

Chapter XII: System Services, Reenterability, and Recursion 989

Here is an example of a reenterable, recursive routine to evaluate factorials and return the calcu-
lated value in GR0. (Remember that the largest argument that can be held in a fullword is 12;
trying to evaluate larger values can lead to a variety of unexpected errors.)

* Reenterable, Recursive Factorial Routine
RFact RSect ,

STM 14,3,12(13) Save registers
LR 3,15 Copy base register
Using RFAct,3 Provide addressability
LR 2,1 Preserve arglist pointer
LHI 0,LWA Get length of work area
GETMAIN R,LV=(0) Get working storage
ST 13,4(,1) Store back chain
ST 1,8(,13) Store forward chain
LR 13,1 Now have local save area
Using WA,13 Map the work area
L 2,0(,2) Get argument address
L 1,0(,2) Get argument N
CHI 1,2 Is the argument 2?
JE Ret Fact(2) = 2, no recursion
JNH Test Go test for 0, 1, or < 0
ST 1,Arg Save N we're called with
BCTR 1,0 Create N-1
ST 1,NewArg Store argument for call
LA 1,NewArg Create argument address
ST 1,ArgAddr Store the address
LA 1,ArgAddr Point to argument address
LARL 15,RFact Get entry point address
BASR 14,15 Call ourselves recursively

* Value returned in GR0
Calc L 1,Arg Get the N we were called with

MR 0,0 Form N*Factorial(N-1)
Ret L 2,Save+4 Get caller's save area address

Drop 13 No more reference to work area
ST 1,20(,2) Store product in R0 slot
LHI 0,LWA Set work area length in GR0
FREEMAIN R,LV=(0),A=(13) Release our storage
Drop 3 No more based references here
LR 13,2 Restore caller's R13
LM 14,3,12(2) Restore registers
BR 14 Return to whoever called

Test LTR 1,1 Is argument 0 or 1 or < 0
JM SetZ If < 0, return 0
LHI 1,1 If 0 or 1, return 1
J Ret And complete return sequence

SetZ XR 1,1 Return 0 for N < 0
J Ret And return

Figure 781 (Part 1 of 2). Example of a reenterable, recursive routine

990 Assembler Language Programming for IBM System z™ Servers Version 2.00

WA DSect , Work area mapping
Save DS 5D Local save area, GR14-GR3
Arg DS F Value we were called with
NewArg DS F Argument for recursive call
ArgAddr DS A Address of the argument

DS 0D Round to doubleword
LWA Equ *-WA Length of work area

End
Figure 781 (Part 2 of 2). Example of a reenterable, recursive routine

The assembly listing is shown in Figure 782:

 Loc Object Code Addr1 Addr2 Stmt Source Statement
1 * Reenterable, Recursive Factorial Routine

000000 00000 00082 2 RFact RSect ,
000000 90E3 D00C 0000C 3 STM 14,3,12(13) Save registers
000004 183F 4 LR 3,15 Copy base register

R:3 00000 5 Using RFAct,3 Provide addressability
000006 1821 6 LR 2,1 Preserve arglist pointer
000008 A708 0038 00038 7 LHI 0,LWA Get length of work area

8 GETMAIN R,LV=(0) Get working storage
00000C 4510 3010 00010 9+ BAL 1,*+4 INDICATE GETMAIN
000010 0A0A 10+ SVC 10 ISSUE GETMAIN SVC
000012 50D0 1004 00004 11 ST 13,4(,1) Store back chain
000016 5010 D008 00008 12 ST 1,8(,13) Store forward chain
00001A 18D1 13 LR 13,1 Now have local save area

R:D 00000 14 Using WA,13 Map the work area
00001C 5820 2000 00000 15 L 2,0(,2) Get argument address
000020 5810 2000 00000 16 L 1,0(,2) Get argument N
000024 A71E 0002 00002 17 CHI 1,2 Is the argument 2?
000028 A784 0016 00054 18 JE Ret Fact(2) = 2, no recursion
00002C A7D4 0021 0006E 19 JNH Test Go test for 0, 1, or < 0
000030 5010 D028 00028 20 ST 1,Arg Save N we're called with
000034 0610 21 BCTR 1,0 Create N-1
000036 5010 D02C 0002C 22 ST 1,NewArg Store argument for call
00003A 4110 D02C 0002C 23 LA 1,NewArg Create argument address
00003E 5010 D030 00030 24 ST 1,ArgAddr Store the address
000042 4110 D030 00030 25 LA 1,ArgAddr Point to argument address
000046 C0F0 FFFF FFDD 00000 26 LARL 15,RFact Get entry point address
00004C 0DEF 27 BASR 14,15 Call ourselves recursively

28 * Value returned in GR0
00004E 5810 D028 00028 29 Calc L 1,Arg Get the N we were called with
000052 1C00 30 MR 0,0 Form N*Factorial(N-1)
000054 5820 D004 00004 31 Ret L 2,Save+4 Get caller's save area address

32 Drop 13 No more reference to work area
000058 5010 2014 00014 33 ST 1,20(,2) Store product in R0 slot
00005C A708 0038 00038 34 LHI 0,LWA Set work area length in GR0

35 FREEMAIN R,LV=(0),A=(13) Release our storage
000060 4110 D000 00000 36+ LA 1,0(0,13) LOAD AREA ADDRESS
000064 0A0A 37+ SVC 10 ISSUE FREEMAIN SVC

38 Drop 3 No more based references here
000066 18D2 39 LR 13,2 Restore caller's R13
000068 98E3 200C 0000C 40 LM 14,3,12(2) Restore registers
00006C 07FE 41 BR 14 Return to whoever called
00006E 1211 42 Test LTR 1,1 Is argument 0 or 1 or < 0
000070 A744 0006 0007C 43 JM SetZ If < 0, return 0
000074 A718 0001 00001 44 LHI 1,1 If 0 or 1, return 1
000078 A7F4 FFEE 00054 45 J Ret And complete return sequence
00007C 1711 46 SetZ XR 1,1 Return 0 for N < 0
00007E A7F4 FFEB 00054 47 J Ret And return

Figure 782 (Part 1 of 2). Assembly listing of the reenterable recursive routine

Chapter XII: System Services, Reenterability, and Recursion 991

000000 00000 00038 49 WA DSect , Work area mapping
000000 50 Save DS 5D Local save area, GR14-GR3
000028 51 Arg DS F Value we were called with
00002C 52 NewArg DS F Argument for recursive call
000030 53 ArgAddr DS A Address of the argument
000038 54 DS 0D Round to doubleword

00038 55 LWA Equ *-WA Length of work area
56 End

Figure 782 (Part 2 of 2). Assembly listing of the reenterable recursive routine

Several items are worth noting:

1. The routine tries to use a minimum number of general registers, while maintaining standard
linkage and save area conventions. (This contributes nothing to efficient performance for this
particular problem; an iterative solution would be much more efficient.)

2. The local base register in GR3 is needed only because the expansion of the GETMAIN
macro must generate a BAL instruction, as we saw in Figure 748 on page 959. In some situ-
ations, the FREEMAIN macro may also generate instructions needing base-displacement
resolution.

3. Returning the function value in GR0 can be done by reloading the other registers; storing the
result into the caller's GR0 slot in his save area is another method.

Exercises

42.2.1.(2)+ In Figure 781 on page 990, give two reasons why we can't use BAS 14,RFACT to
cause recursion, rather than the LR and BASR instructions in the figure? Both will go to the
same place.

42.2.2.(2) If you call RFact in Figure 781 on page 990 with argument 5, show (a) the ordered
recursive calls with their arguments, and (b) the steps followed on recursion returns to evaluate
the final result.

42.2.3.(3)+ By studying Figure 782 on page 991, what is the “earliest” position to which you
can safely move the DROP 3 statement?

42.2.4.(2)+ Write a “main” program to call and test RFact example in Figure 778 on page 985.

42.3. Summary

The general principles for writing reenterable programs are fairly simple:

• All local work areas must either be in acquired storage, or in storage provided by the caller. If
acquired, the storage must be released on exit from your routine.

• The program must not modify itself.

• Note that some IBM macros make it difficult to write reenterable programs, because their
expansions generate in-line data areas into which the macro stores argument values. In such
cases, use the List and Execute forms of the macros.

Terms and Definitions
recursion

(1) A mathematical function defined in terms of itself. (2) A program that calls itself either
directly or indirectly. Such a program may or may not be reenterable.

reenterability
The ability of a program to be interrupted, and then executed by pne or more different pro-
grams, with no disruption to any program when it resumes execution.

992 Assembler Language Programming for IBM System z™ Servers Version 2.00

reentrant
A mathematical property of certain curves. Sometimes used when reenterability is meant.

Programming Problems

Problem 42.1.(4)+ Write a non-reenterable recursive subroutine with a single fullword argument
N that evaluates N factorial and returns its value in GR0. Then write a program to call it with
values from 12 to 1, and display the results to verify its execution.

Problem 42.2.(2)+ You may have noticed that the program in Figure 780 on page 986 omitted
any FREEPOOL macros. Rewrite, test, and run the program with the proper FREEPOOL
macros.

Problem 42.3.(1)+ Create your own version of the factorial routine in Figure 781 on page 990,
and then create a calling program to request values of N! for values of N from 1 to 12. What
happens on your system if you try calculating Factorial(13)?

Problem 42.4.(2)+ Write a program to calculate the seventh Fibonacci number recursively.
Include enough tracing output so you can see the great labors performed to achieve a simple
result. (That is, FIBO(7) requires calculating FIBO(6) and FIBO(5); but FIBO(6) requires
FIBO(5) (again) and FIBO(4), and FIBO(5) requires FIBO(4) (again) and FIBO(3), etc. Many
values are calculated repeatedly.)

Problem 42.5.(2)+ The binomial coefficients can be defined both iteratively and recursively; the
recursive definition is for 1 ≤ N ≤ M:

BINCO(N,M) = 1 if M = 0 or M = N
BINCO(N,M) = BINCO(N-1,M-1) + BINCO(N-1,M) otherwise

Write a program to evaluate the binomial coefficients up to M=10.

Problem 42.6.(3)+ The definition above of the remainder function REMDR may seem unnec-
essarily complex. To show why it can be a great simplification, write a recursive program to
evaluate the remainder when
(1) A=24, b=48, C=11 (that is, the remainder of 2448/11), and
(2) A=73, b=51, C=16 (that is, REMDR(7351/16)).

Problem 42.7.(4)+ The partition function PART1(N) requires evaluating the R expressions for
each N until successive values are zero. Write a recursive program to evaluate PART1(N) for N
from 5 to 9.

Problem 42.8.(3)+ The partition function PART2(N,M) defined on page 988 is easier to eval-
uate than the PART1(N) in Problem 42.7. Write a recursive Evaluate PART2(N,M) for M
from 5 to 9 and for N from 1 to M. Compare your values of PART2(N,N) to the values of
PART1(N) you calculated in Problem 42.7.

Problem 42.9.(3)+ The PART2(N,M) values of the partition function can be calculated iter-
atively using this algorithm:

array PART2(1:M,1:N)
for k=1 step 1 until M do

begin for j=1 step 1 until N do
PART2(k,j) = if k=1 or j=1 then 1 else

if k≤j then 1+PART2(k,j-1) else
PART2(k,j-1) + PART2(k-j,j)

Write a program to evaluate the Q array up to PART2(9,9), and compare your results to the
values you calculated in Problem 42.8. (Note that no element of the PART2 array is calculated
more than once.)

Problem 42.10.(3)+ Write a recursive program using the formulae for evaluating
REMDR(A b/C) to read values for A, b, and C including at least these sets of three values:

Chapter XII: System Services, Reenterability, and Recursion 993

• A = 73, b = 23, C = 109
• A = 73, b = 79, C = 127
• A = 143, b = 204, C = 999

Problem 42.11.(3)+ Write a recursive program to evaluate Ackermann's function ACK(3,3).
Your answer should be 61. (Be careful about exploring larger arguments: the function grows
extremely rapidly!)

Problem 42.12.(3)+ Write a program to solve recursively the “Tower of Hanoi” problem
described above. If you can display or animate the steps of the algorithm, so much the better.

Problem 42.13.(3)+ Write a program to solve the “Tower of Hanoi” problem described above
on page 989, using this iterative method.316

• Number the disks from 1 to N, smallest to largest.
• Order the posts so that moving clockwise and counterclockwise are meaningful.

Then:

• Move odd-numbered disks only clockwise and even-numbered disks only counterclockwise.
• Don't move the same disk twice in succession.
• Don't put a larger disk on a smaller.

316 Due to Wm. Randolph Franklin, published in SIGPLAN Notices Aug. 1984, page 87.

994 Assembler Language Programming for IBM System z™ Servers Version 2.00

Appendix A: Conversion and Reference Tables

CCCCCCCCCC RRRRRRRRRRR TTTTTTTTTTTT
CCCCCCCCCCCC RRRRRRRRRRRR TTTTTTTTTTTT
CC CC RR RR TT
CC RR RR TT
CC RR RR TT
CC RRRRRRRRRRRR TT
CC RRRRRRRRRRR TT
CC RR RR TT
CC RR RR TT
CC CC RR RR TT
CCCCCCCCCCCC RR RR TT
CCCCCCCCCC RR RR TT

This appendix contains the following tables:

1. Table 438 gives the correspondences between hexadecimal digits and their decimal and binary repres-
entations.

2. Tables 439 and 440 are hexadecimal addition and multiplication tables.

3. Tables 441 and 442 give powers of 2 from 1 to 64 and from 65 to 128, respectively.

4. Tables 443 and 444 provide multiples of powers of 16, up to 15 × 167

5. Table 445 shows the powers of 10 expressed in hexadecimal.

6. The tables in “Hexadecimal and Decimal Integers” on page 1003 provide rapid conversions between
decimal and hexadecimal for integers between 0 and 4095.

7. The tables in “Conversion Tables for Hexadecimal Fractions” on page 1011 provide conversions
between decimal and hexadecimal fractions.

8. “EBCDIC Character Representation in Assembler Language Programs” on page 1012 shows the
encodings used by the Assembler for EBCDIC characters.

9. “ASCII Character Representation in Assembler Language Programs” on page 1013 shows the
encodings used by the Assembler for ASCII characters.

10. “DC Statement Types” on page 1014 shows the types of constants supported by the DC and DS state-
ments.

Hexadecimal Digits in Decimal and Binary

Table 438. Hexadecimal, decimal, and binary

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Appendix A: Conversion and Reference Tables 995

Hexadecimal Addition and Multiplication Tables

Table 439. Hexadecimal Addition Table

Table 440. Hexadecimal Multiplication Table

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
1 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
2 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
3 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
4 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13
5 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14
6 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
7 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16
8 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
9 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18
A 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19
B 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A
C 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
D 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

× 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
2 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
3 00 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D
4 00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C
5 00 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B
6 00 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 00 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
8 00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 00 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 00 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 00 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 00 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D 00 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
E 00 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F 00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

996 Assembler Language Programming for IBM System z™ Servers Version 2.00

Powers of 2

Table 441. Integer powers of 2 Table 441. Integer powers of 2
2N N 2N N

2 1 8,589,934,592 33

4 2 17,179,869,184 34

8 3 34,359,738,368 35

16 4 68,719,476,736 36

32 5 137,438,953,472 37

64 6 274,877,906,944 38

128 7 549,755,813,888 39

256 8 T (tera) 1,099,511,627,776 40

512 9 2,199,023,255,552 41

K (kilo) 1,024 10 4,398,046,511,104 42

2,048 11 8,796,093,022,208 43

4,096 12 17,592,186,044,416 44

8,192 13 35,184,372,088,832 45

16,384 14 70,368,744,177,664 46

32,768 15 140,737,488,355,328 47

65,536 16 281,474,976,710,656 48

131,072 17 562,949,953,421,312 49

262,144 18 P (peta) 1,125,899,906,842,624 50

524,288 19 2,251,799,813,685,248 51

M (mega) 1,048,576 20 4,503,599,627,370,496 52

2,097,152 21 9,007,199,254,740,992 53

4,194,304 22 18,014,398,509,481,984 54

8,388,608 23 36,028,797,018,963,968 55

16,777,216 24 72,057,594,037,927,936 56

33,554,432 25 144,115,188,075,855,872 57

67,108,864 26 288,230,376,151,711,744 58

134,217,728 27 576,460,752,303,423,488 59

268,435,456 28 E (exa) 1,152,921,504,606,846,976 60

536,870,912 29 2,305,843,009,213,693,952 61

G (giga) 1,073,741,824 30 4,611,686,018,427,387,904 62

2,147,483,648 31 9,223,372,036,854,775,808 63

4,294,967,296 32 18,446,744,073,709,551,616 64

Appendix A: Conversion and Reference Tables 997

Table 442 (Page 1 of 2). Integer powers of 2
2N N

36,893,488,147,419,103,232 65

73,786,976,294,838,206,464 66

147,573,952,589,676,412,928 67

295,147,905,179,352,825,856 68

590,295,810,358,705,651,712 69

Z (zetta) 1,180,591,620,717,411,303,424 70

2,361,183,241,434,822,606,848 71

4,722,366,482,869,645,213,696 72

9,444,732,965,739,290,427,392 73

18,889,465,931,478,580,854,784 74

37,778,931,862,957,161,709,568 75

75,557,863,725,914,323,419,136 76

151,115,727,451,828,646,838,272 77

302,231,454,903,657,293,676,544 78

604,462,909,807,314,587,353,088 79

Y (yotta) 1,208,925,819,614,629,174,706,176 80

2,417,851,639,229,258,349,412,352 81

4,835,703,278,458,516,698,824,704 82

9,671,406,556,917,033,397,649,408 83

19,342,813,113,834,066,795,298,816 84

38,685,626,227,668,133,590,597,632 85

77,371,252,455,336,267,181,195,264 86

154,742,504,910,672,534,362,390,528 87

309,485,009,821,345,068,724,781,056 88

618,970,019,642,690,137,449,562,112 89

1,237,940,039,285,380,274,899,124,224 90

2,475,880,078,570,760,549,798,248,448 91

4,951,760,157,141,521,099,596,496,896 92

9,903,520,314,283,042,199,192,993,792 93

19,807,040,628,566,084,398,385,987,584 94

39,614,081,257,132,168,796,771,975,168 95

79,228,162,514,264,337,593,543,950,336 96

998 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 442 (Page 2 of 2). Integer powers of 2
2N N

158,456,325,028,528,675,187,087,900,672 97

316,912,650,057,057,350,374,175,801,344 98

633,825,300,114,114,700,748,351,602,688 99

1,267,650,600,228,229,401,496,703,205,376 100

2,535,301,200,456,458,802,993,406,410,752 101

5,070,602,400,912,917,605,986,812,821,504 102

10,141,204,801,825,835,211,973,625,643,008 103

20,282,409,603,651,670,423,947,251,286,016 104

40,564,819,207,303,340,847,894,502,572,032 105

81,129,638,414,606,681,695,789,005,144,064 106

162,259,276,829,213,363,391,578,010,288,128 107

324,518,553,658,426,726,783,156,020,576,256 108

649,037,107,316,853,453,566,312,041,152,512 109

1,298,074,214,633,706,907,132,624,082,305,024 110

2,596,148,429,267,413,814,265,248,164,610,048 111

5,192,296,858,534,827,628,530,496,329,220,096 112

10,384,593,717,069,655,257,060,992,658,440,192 113

20,769,187,434,139,310,514,121,985,316,880,384 114

41,538,374,868,278,621,028,243,970,633,760,768 115

83,076,749,736,557,242,056,487,941,267,521,536 116

166,153,499,473,114,484,112,975,882,535,043,072 117

332,306,998,946,228,968,225,951,765,070,086,144 118

664,613,997,892,457,936,451,903,530,140,172,288 119

1,329,227,995,784,915,872,903,807,060,280,344,576 120

2,658,455,991,569,831,745,807,614,120,560,689,152 121

5,316,911,983,139,663,491,615,228,241,121,378,304 122

10,633,823,966,279,326,983,230,456,482,242,756,608 123

21,267,647,932,558,653,966,460,912,964,485,513,216 124

42,535,295,865,117,307,932,921,825,928,971,026,432 125

85,070,591,730,234,615,865,843,651,857,942,052,864 126

170,141,183,460,469,231,731,687,303,715,884,105,728 127

340,282,366,920,938,463,463,374,607,431,768,211,456 128

Appendix A: Conversion and Reference Tables 999

Multiples of Powers of Sixteen

Table 443. Multiples of powers of sixteen (part 1 of 2)

Hex Digit × 160 × 161 × 162 × 163 × 164

1 1 16 256 4,096 65,536
2 2 32 512 8,192 131,072
3 3 48 768 12,288 196,608
4 4 64 1,024 16,384 262,144
5 5 80 1,280 20,480 327,680
6 6 96 1,536 24,576 393,216
7 7 112 1,792 28,672 458,752
8 8 128 2,048 32,768 524,288
9 9 144 2,304 36,864 589,824
A 10 160 2,560 40,960 655,360
B 11 176 2,816 45,056 720,896
C 12 192 3,072 49,152 786,432
D 13 208 3,328 53,248 851,968
E 14 224 3,584 57,344 917,504
F 15 240 3,840 61,440 983,040

Table 444. Multiples of powers of sixteen (part 2 of 2)

Hex Digit × 165 × 166 × 167

1 1,048,576 16,777,216 268,435,456
2 2,097,152 33,554,432 536,870,912
3 3,145,728 50,331,648 805,306,368
4 4,194,304 67,108,864 1,073,741,824
5 5,242,880 83,886,080 1,342,177,280
6 6,291,456 100,663,296 1,610,612,736
7 7,340,032 117,440,512 1,879,048,192
8 8,388,608 134,217,728 2,147,483,648
9 9,437,184 150,994,944 2,415,919,104
A 10,485,760 167,772,160 2,684,354,560
B 11,534,336 184,549,376 2,952,790,016
C 12,582,912 201,326,592 3,221,225,472
D 13,631,488 218,103,808 3,489,660,928
E 14,680,064 234,881,024 3,758,096,384
F 15,728,640 251,658,240 4,026,531,840

1000 Assembler Language Programming for IBM System z™ Servers Version 2.00

Powers of 10 in Hexadecimal

10N in hexadecimal N

1 0
A 1
64 2
3E8 3
2710 4
186A0 5
F4240 6
989680 7
5F5E100 8
3B9ACA00 9
2540BE400 10
174876E800 11
E8D4A51000 12
9184E72A000 13
5AF3107A4000 14
38D7EA4C68000 15
2386F26FC10000 16
16345785D8A0000 17
DE0B6B3A7640000 18
8AC7230489E80000 19
56BC75E2D63100000 20
3635C9ADC5DEA00000 21
21E19E0C9BAB2400000 22
152D02C7E14AF6800000 23
D3C21BCECCEDA1000000 24
84595161401484A000000 25
52B7D2DCC80CD2E4000000 26
33B2E3C9FD0803CE8000000 27
204FCE5E3E25026110000000 28
1431E0FAE6D7217CAA0000000 29
C9F2C9CD04674EDEA40000000 30
7E37BE2022C0914B2680000000 31
4EE2D6D415B85ACEF8100000000 32
314DC6448D9338C15B0A00000000 33
1ED09BEAD87C0378D8E6400000000 34
13426172C74D822B878FE800000000 35
C097CE7BC90715B34B9F1000000000 36
785EE10D5DA46D900F436A000000000 37
4B3B4CA85A86C47A098A224000000000 38
2F050FE938943ACC45F65568000000000 39
1D6329F1C35CA4BFABB9F5610000000000 40
125DFA371A19E6F7CB54395CA0000000000 41
B7ABC627050305ADF14A3D9E40000000000 42
72CB5BD86321E38CB6CE6682E80000000000 43
47BF19673DF52E37F2410011D100000000000 44
2CD76FE086B93CE2F768A00B22A00000000000 45
1C06A5EC5433C60DDAA16406F5A400000000000 46
118427B3B4A05BC8A8A4DE845986800000000000 47
AF298D050E4395D69670B12B7F41000000000000 48
6D79F82328EA3DA61E066EBB2F88A000000000000 49
446C3B15F9926687D2C40534FDB564000000000000 50

Appendix A: Conversion and Reference Tables 1001

Table 445. Powers of 10 expressed in hexadecimal

10N in hexadecimal N
2AC3A4EDBBFB8014E3BA83411E915E8000000000000 51
1ABA4714957D300D0E549208B31ADB10000000000000 52
10B46C6CDD6E3E0828F4DB456FF0C8EA0000000000000 53
A70C3C40A64E6C51999090B65F67D9240000000000000 54
6867A5A867F103B2FFFA5A71FBA0E7B680000000000000 55
4140C78940F6A24FDFFC78873D4490D2100000000000000 56
28C87CB5C89A2571EBFDCB54864ADA834A00000000000000 57
197D4DF19D605767337E9F14D3EEC8920E400000000000000 58
FEE50B7025C36A0802F236D04753D5B48E800000000000000 59
9F4F2726179A224501D762422C946590D91000000000000000 60
63917877CEC0556B21269D695BDCBF7A87AA000000000000000 61
3E3AEB4AE1383562F4B82261D969F7AC94CA4000000000000000 62
26E4D30ECCC3215DD8F3157D27E23ACBDCFE68000000000000000 63
184F03E93FF9F4DAA797ED6E38ED64BF6A1F010000000000000000 64
F316271C7FC3908A8BEF464E3945EF7A25360A0000000000000000 65
97EDD871CFDA3A5697758BF0E3CBB5AC5741C640000000000000000 66
5EF4A74721E864761EA977768E5F518BB6891BE80000000000000000 67
3B58E88C75313EC9D329EAAA18FB92F75215B17100000000000000000 68
25179157C93EC73E23FA32AA4F9D3BDA934D8EE6A00000000000000000 69
172EBAD6DDC73C86D67C5FAA71C245689C1079502400000000000000000 70
E7D34C64A9C85D4460DBBCA87196B61618A4BD216800000000000000000 71
90E40FBEEA1D3A4ABC8955E946FE31CDCF66F634E1000000000000000000 72
5A8E89D75252446EB5D5D5B1CC5EDF20A1A059E10CA000000000000000000 73
3899162693736AC531A5A58F1FBB4B746504382CA7E4000000000000000000 74
235FADD81C2822BB3F07877973D50F28BF22A31BE8EE8000000000000000000 75
161BCCA7119915B50764B4ABE86529797775A5F1719510000000000000000000 76
DD15FE86AFFAD91249EF0EB713F39EBEAA987B6E6FD2A0000000000000000000 77
8A2DBF142DFCC7AB6E3569326C7843372A9F4D2505E3A40000000000000000000 78
565C976C9CBDFCCB24E161BF83CB2A027AA3903723AE4680000000000000000000 79
35F9DEA3E1F6BDFEF70CDD17B25EFA418CA63A22764CEC100000000000000000000 80
21BC2B266D3A36BF5A680A2ECF7B5C68F7E7E45589F0138A00000000000000000000 81
15159AF8044462379881065D41AD19C19AF0EEB576360C36400000000000000000000 82
D2D80DB02AABD62BF50A3FA490C301900D6953169E1C7A1E800000000000000000000 83
83C7088E1AAB65DB792667C6DA79E0FA0861D3EE22D1CC531000000000000000000000 84
525C6558D0AB1FA92BB800DC488C2C9C453D2474D5C31FB3EA000000000000000000000 85
3379BF57826AF3C9BB530089AD579BE1AB4636C90599F3D0724000000000000000000000 86
202C1796B182D85E1513E0560C56C16D0B0BE23DA38038624768000000000000000000000 87
141B8EBE2EF1C73ACD2C6C35C7B638E426E76D668630233D6CA10000000000000000000000 88
C913936DD571C84C03BC3A19CD1E38E9850A46013DE160663E4A0000000000000000000000 89
7DAC3C24A5671D2F8255A4502032E391F3266BC0C6ACDC3FE6EE40000000000000000000000 90
4E8BA596E760723DB17586B2141FCE3B37F803587C2C09A7F054E80000000000000000000000 91
3117477E509C47668EE9742F4C93E0E502FB02174D9B8608F6351100000000000000000000000 92
1EAE8CAEF261ACA01951E89D8FDC6C8F21DCE14E908133C599E12AA00000000000000000000000 93
132D17ED577D0BE40FD3316279E9C3D9752A0CD11A50C05B802CBAA400000000000000000000000 94
BFC2EF456AE276E89E3FEDD8C321A67E93A4802B0727839301BF4A6800000000000000000000000 95
77D9D58B62CD8A5162E7F4A779F5080F1C46D01AE478B23BE1178E81000000000000000000000000 96
4AE825771DC07672DDD0F8E8AC39250971AC4210CECB6F656CAEB910A000000000000000000000000 97
2ED1176A72984A07CAA29B916BA3B725E70BA94A813F259F63ED33AA64000000000000000000000000 98
1D42AEA2879F2E44DEA5A13AE3465277B06749CE90C777839E74404A7E8000000000000000000000000 99
1249AD2594C37CEB0B2784C4CE0BF38ACE408E211A7CAAB24308A82E8F10000000000000000000000000 100

1002 Assembler Language Programming for IBM System z™ Servers Version 2.00

Hexadecimal and Decimal Integers
These tables convert integers between 0 and 4095 (X'000' and X'F F F'). For example, to convert X'123'
to decimal, find the first two digits (12) in the column headed 12*, and then find the row numbered 3. At
the intersection you will find the decimal value 291.

00* 01* 02* 03* 04* 05* 06* 07*

 0 0 16 32 48 64 80 96 112
 1 1 17 33 49 65 81 97 113
 2 2 18 34 50 66 82 98 114
 3 3 19 35 51 67 83 99 115

 4 4 20 36 52 68 84 100 116
 5 5 21 37 53 69 85 101 117
 6 6 22 38 54 70 86 102 118
 7 7 23 39 55 71 87 103 119

 8 8 24 40 56 72 88 104 120
 9 9 25 41 57 73 89 105 121
 A 10 26 42 58 74 90 106 122
 B 11 27 43 59 75 91 107 123

 C 12 28 44 60 76 92 108 124
 D 13 29 45 61 77 93 109 125
 E 14 30 46 62 78 94 110 126
 F 15 31 47 63 79 95 111 127

08* 09* 0A* 0B* 0C* 0D* 0E* 0F*

0 128 144 160 176 192 208 224 240
1 129 145 161 177 193 209 225 241
2 130 146 162 178 194 210 226 242
3 131 147 163 179 195 211 227 243

4 132 148 164 180 196 212 228 244
5 133 149 165 181 197 213 229 245
6 134 150 166 182 198 214 230 246
7 135 151 167 183 199 215 231 247

8 136 152 168 184 200 216 232 248
9 137 153 169 185 201 217 233 249
A 138 154 170 186 202 218 234 250
B 139 155 171 187 203 219 235 251

C 140 156 172 188 204 220 236 252
D 141 157 173 189 205 221 237 253
E 142 158 174 190 206 222 238 254
F 143 159 175 191 207 223 239 255

10* 11* 12* 13* 14* 15* 16* 17*

0 256 272 288 304 320 336 352 368
1 257 273 289 305 321 337 353 369
2 258 274 290 306 322 338 354 370
3 259 275 291 307 323 339 355 371

4 260 276 292 308 324 340 356 372
5 261 277 293 309 325 341 357 373
6 262 278 294 310 326 342 358 374
7 263 279 295 311 327 343 359 375

8 264 280 296 312 328 344 360 376
9 265 281 297 313 329 345 361 377
A 266 282 298 314 330 346 362 378
B 267 283 299 315 331 347 363 379

C 268 284 300 316 332 348 364 380
D 269 285 301 317 333 349 365 381
E 270 286 302 318 334 350 366 382
F 271 287 303 319 335 351 367 383

18* 19* 1A* 1B* 1C* 1D* 1E* 1F*

0 384 400 416 432 448 464 480 496
1 385 401 417 433 449 465 481 497
2 386 402 418 434 450 466 482 498
3 387 403 419 435 451 467 483 499

4 388 404 420 436 452 468 484 500
5 389 405 421 437 453 469 485 501
6 390 406 422 438 454 470 486 502
7 391 407 423 439 455 471 487 503

8 392 408 424 440 456 472 488 504
9 393 409 425 441 457 473 489 505
A 394 410 426 442 458 474 490 506
B 395 411 427 443 459 475 491 507

C 396 412 428 444 460 476 492 508
D 397 413 429 445 461 477 493 509
E 398 414 430 446 462 478 494 510
F 399 415 431 447 463 479 495 511

Appendix A: Conversion and Reference Tables 1003

20* 21* 22* 23* 24* 25* 26* 27*

0 512 528 544 560 576 592 608 624
1 513 529 545 561 577 593 609 625
2 514 530 546 562 578 594 610 626
3 515 531 547 563 579 595 611 627

4 516 532 548 564 580 596 612 628
5 517 533 549 565 581 597 613 629
6 518 534 550 566 582 598 614 630
7 519 535 551 567 583 599 615 631

8 520 536 552 568 584 600 616 632
9 521 537 553 569 585 601 617 633
A 522 538 554 570 586 602 618 634
B 523 539 555 571 587 603 619 635

C 524 540 556 572 588 604 620 636
D 525 541 557 573 589 605 621 637
E 526 542 558 574 590 606 622 638
F 527 543 559 575 591 607 623 639

28* 29* 2A* 2B* 2C* 2D* 2E* 2F*

0 640 656 672 688 704 720 736 752
1 641 657 673 689 705 721 737 753
2 642 658 674 690 706 722 738 754
3 643 659 675 691 707 723 739 755

4 644 660 676 692 708 724 740 756
5 645 661 677 693 709 725 741 757
6 646 662 678 694 710 726 742 758
7 647 663 679 695 711 727 743 759

8 648 664 680 696 712 728 744 760
9 649 665 681 697 713 729 745 761
A 650 666 682 698 714 730 746 762
B 651 667 683 699 715 731 747 763

C 652 668 684 700 716 732 748 764
D 653 669 685 701 717 733 749 765
E 654 670 686 702 718 734 750 766
F 655 671 687 703 719 735 751 767

30* 31* 32* 33* 34* 35* 36* 37*

0 768 784 800 816 832 848 864 880
1 769 785 801 817 833 849 865 881
2 770 786 802 818 834 850 866 882
3 771 787 803 819 835 851 867 883

4 772 788 804 820 836 852 868 884
5 773 789 805 821 837 853 869 885
6 774 790 806 822 838 854 870 886
7 775 791 807 823 839 855 871 887

8 776 792 808 824 840 856 872 888
9 777 793 809 825 841 857 873 889
A 778 794 810 826 842 858 874 890
B 779 795 811 827 843 859 875 891

C 780 796 812 828 844 860 876 892
D 781 797 813 829 845 861 877 893
E 782 798 814 830 846 862 878 894
F 783 799 815 831 847 863 879 895

38* 39* 3A* 3B* 3C* 3D* 3E* 3F*

0 896 912 928 944 960 976 992 1008
1 897 913 929 945 961 977 993 1009
2 898 914 930 946 962 978 994 1010
3 899 915 931 947 963 979 995 1011

4 900 916 932 948 964 980 996 1012
5 901 917 933 949 965 981 997 1013
6 902 918 934 950 966 982 998 1014
7 903 919 935 951 967 983 999 1015

8 904 920 936 952 968 984 1000 1016
9 905 921 937 953 969 985 1001 1017
A 906 922 938 954 970 986 1002 1018
B 907 923 939 955 971 987 1003 1019

C 908 924 940 956 972 988 1004 1020
D 909 925 941 957 973 989 1005 1021
E 910 926 942 958 974 990 1006 1022
F 911 927 943 959 975 991 1007 1023

1004 Assembler Language Programming for IBM System z™ Servers Version 2.00

40* 41* 42* 43* 44* 45* 46* 47*

0 1024 1040 1056 1072 1088 1104 1120 1136
1 1025 1041 1057 1073 1089 1105 1121 1137
2 1026 1042 1058 1074 1090 1106 1122 1138
3 1027 1043 1059 1075 1091 1107 1123 1139

4 1028 1044 1060 1076 1092 1108 1124 1140
5 1029 1045 1061 1077 1093 1109 1125 1141
6 1030 1046 1062 1078 1094 1110 1126 1142
7 1031 1047 1063 1079 1095 1111 1127 1143

8 1032 1048 1064 1080 1096 1112 1128 1144
9 1033 1049 1065 1081 1097 1113 1129 1145
A 1034 1050 1066 1082 1098 1114 1130 1146
B 1035 1051 1067 1083 1099 1115 1131 1147

C 1036 1052 1068 1084 1100 1116 1132 1148
D 1037 1053 1069 1085 1101 1117 1133 1149
E 1038 1054 1070 1086 1102 1118 1134 1150
F 1039 1055 1071 1087 1103 1119 1135 1151

48* 49* 4A* 4B* 4C* 4D* 4E* 4F*

0 1152 1168 1184 1200 1216 1232 1248 1264
1 1153 1169 1185 1201 1217 1233 1249 1265
2 1154 1170 1186 1202 1218 1234 1250 1266
3 1155 1171 1187 1203 1219 1235 1251 1267

4 1156 1172 1188 1204 1220 1236 1252 1268
5 1157 1173 1189 1205 1221 1237 1253 1269
6 1158 1174 1190 1206 1222 1238 1254 1270
7 1159 1175 1191 1207 1223 1239 1255 1271

8 1160 1176 1192 1208 1224 1240 1256 1272
9 1161 1177 1193 1209 1225 1241 1257 1273
A 1162 1178 1194 1210 1226 1242 1258 1274
B 1163 1179 1195 1211 1227 1243 1259 1275

C 1164 1180 1196 1212 1228 1244 1260 1276
D 1165 1181 1197 1213 1229 1245 1261 1277
E 1166 1182 1198 1214 1230 1246 1262 1278
F 1167 1183 1199 1215 1231 1247 1263 1279

50* 51* 52* 53* 54* 55* 56* 57*

0 1280 1296 1312 1328 1344 1360 1376 1392
1 1281 1297 1313 1329 1345 1361 1377 1393
2 1282 1298 1314 1330 1346 1362 1378 1394
3 1283 1299 1315 1331 1347 1363 1379 1395

4 1284 1300 1316 1332 1348 1364 1380 1396
5 1285 1301 1317 1333 1349 1365 1381 1397
6 1286 1302 1318 1334 1350 1366 1382 1398
7 1287 1303 1319 1335 1351 1367 1383 1399

8 1288 1304 1320 1336 1352 1368 1384 1400
9 1289 1305 1321 1337 1353 1369 1385 1401
A 1290 1306 1322 1338 1354 1370 1386 1402
B 1291 1307 1323 1339 1355 1371 1387 1403

C 1292 1308 1324 1340 1356 1372 1388 1404
D 1293 1309 1325 1341 1357 1373 1389 1405
E 1294 1310 1326 1342 1358 1374 1390 1406
F 1295 1311 1327 1343 1359 1375 1391 1407

58* 59* 5A* 5B* 5C* 5D* 5E* 5F*

0 1408 1424 1440 1456 1472 1488 1504 1520
1 1409 1425 1441 1457 1473 1489 1505 1521
2 1410 1426 1442 1458 1474 1490 1506 1522
3 1411 1427 1443 1459 1475 1491 1507 1523

4 1412 1428 1444 1460 1476 1492 1508 1524
5 1413 1429 1445 1461 1477 1493 1509 1525
6 1414 1430 1446 1462 1478 1494 1510 1526
7 1415 1431 1447 1463 1479 1495 1511 1527

8 1416 1432 1448 1464 1480 1496 1512 1528
9 1417 1433 1449 1465 1481 1497 1513 1529
A 1418 1434 1450 1466 1482 1498 1514 1530
B 1419 1435 1451 1467 1483 1499 1515 1531

C 1420 1436 1452 1468 1484 1500 1516 1532
D 1421 1437 1453 1469 1485 1501 1517 1533
E 1422 1438 1454 1470 1486 1502 1518 1534
F 1423 1439 1455 1471 1487 1503 1519 1535

Appendix A: Conversion and Reference Tables 1005

60* 61* 62* 63* 64* 65* 66* 67*

0 1536 1552 1568 1584 1600 1616 1632 1648
1 1537 1553 1569 1585 1601 1617 1633 1649
2 1538 1554 1570 1586 1602 1618 1634 1650
3 1539 1555 1571 1587 1603 1619 1635 1651

4 1540 1556 1572 1588 1604 1620 1636 1652
5 1541 1557 1573 1589 1605 1621 1637 1653
6 1542 1558 1574 1590 1606 1622 1638 1654
7 1543 1559 1575 1591 1607 1623 1639 1655

8 1544 1560 1576 1592 1608 1624 1640 1656
9 1545 1561 1577 1593 1609 1625 1641 1657
A 1546 1562 1578 1594 1610 1626 1642 1658
B 1547 1563 1579 1595 1611 1627 1643 1659

C 1548 1564 1580 1596 1612 1628 1644 1660
D 1549 1565 1581 1597 1613 1629 1645 1661
E 1550 1566 1582 1598 1614 1630 1646 1662
F 1551 1567 1583 1599 1615 1631 1647 1663

68* 69* 6A* 6B* 6C* 6D* 6E* 6F*

0 1664 1680 1696 1712 1728 1744 1760 1776
1 1665 1681 1697 1713 1729 1745 1761 1777
2 1666 1682 1698 1714 1730 1746 1762 1778
3 1667 1683 1699 1715 1731 1747 1763 1779

4 1668 1684 1700 1716 1732 1748 1764 1780
5 1669 1685 1701 1717 1733 1749 1765 1781
6 1670 1686 1702 1718 1734 1750 1766 1782
7 1671 1687 1703 1719 1735 1751 1767 1783

8 1672 1688 1704 1720 1736 1752 1768 1784
9 1673 1689 1705 1721 1737 1753 1769 1785
A 1674 1690 1706 1722 1738 1754 1770 1786
B 1675 1691 1707 1723 1739 1755 1771 1787

C 1676 1692 1708 1724 1740 1756 1772 1788
D 1677 1693 1709 1725 1741 1757 1773 1789
E 1678 1694 1710 1726 1742 1758 1774 1790
F 1679 1695 1711 1727 1743 1759 1775 1791

70* 71* 72* 73* 74* 75* 76* 77*

0 1792 1808 1824 1840 1856 1872 1888 1904
1 1793 1809 1825 1841 1857 1873 1889 1905
2 1794 1810 1826 1842 1858 1874 1890 1906
3 1795 1811 1827 1843 1859 1875 1891 1907

4 1796 1812 1828 1844 1860 1876 1892 1908
5 1797 1813 1829 1845 1861 1877 1893 1909
6 1798 1814 1830 1846 1862 1878 1894 1910
7 1799 1815 1831 1847 1863 1879 1895 1911

8 1800 1816 1832 1848 1864 1880 1896 1912
9 1801 1817 1833 1849 1865 1881 1897 1913
A 1802 1818 1834 1850 1866 1882 1898 1914
B 1803 1819 1835 1851 1867 1883 1899 1915

C 1804 1820 1836 1852 1868 1884 1900 1916
D 1805 1821 1837 1853 1869 1885 1901 1917
E 1806 1822 1838 1854 1870 1886 1902 1918
F 1807 1823 1839 1855 1871 1887 1903 1919

78* 79* 7A* 7B* 7C* 7D* 7E* 7F*

0 1920 1936 1952 1968 1984 2000 2016 2032
1 1921 1937 1953 1969 1985 2001 2017 2033
2 1922 1938 1954 1970 1986 2002 2018 2034
3 1923 1939 1955 1971 1987 2003 2019 2035

4 1924 1940 1956 1972 1988 2004 2020 2036
5 1925 1941 1957 1973 1989 2005 2021 2037
6 1926 1942 1958 1974 1990 2006 2022 2038
7 1927 1943 1959 1975 1991 2007 2023 2039

8 1928 1944 1960 1976 1992 2008 2024 2040
9 1929 1945 1961 1977 1993 2009 2025 2041
A 1930 1946 1962 1978 1994 2010 2026 2042
B 1931 1947 1963 1979 1995 2011 2027 2043

C 1932 1948 1964 1980 1996 2012 2028 2044
D 1933 1949 1965 1981 1997 2013 2029 2045
E 1934 1950 1966 1982 1998 2014 2030 2046
F 1935 1951 1967 1983 1999 2015 2031 2047

1006 Assembler Language Programming for IBM System z™ Servers Version 2.00

80* 81* 82* 83* 84* 85* 86* 87*

0 2048 2064 2080 2096 2112 2128 2144 2160
1 2049 2065 2081 2097 2113 2129 2145 2161
2 2050 2066 2082 2098 2114 2130 2146 2162
3 2051 2067 2083 2099 2115 2131 2147 2163

4 2052 2068 2084 2100 2116 2132 2148 2164
5 2053 2069 2085 2101 2117 2133 2149 2165
6 2054 2070 2086 2102 2118 2134 2150 2166
7 2055 2071 2087 2103 2119 2135 2151 2167

8 2056 2072 2088 2104 2120 2136 2152 2168
9 2057 2073 2089 2105 2121 2137 2153 2169
A 2058 2074 2090 2106 2122 2138 2154 2170
B 2059 2075 2091 2107 2123 2139 2155 2171

C 2060 2076 2092 2108 2124 2140 2156 2172
D 2061 2077 2093 2109 2125 2141 2157 2173
E 2062 2078 2094 2110 2126 2142 2158 2174
F 2063 2079 2095 2111 2127 2143 2159 2175

88* 89* 8A* 8B* 8C* 8D* 8E* 8F*

0 2176 2192 2208 2224 2240 2256 2272 2288
1 2177 2193 2209 2225 2241 2257 2273 2289
2 2178 2194 2210 2226 2242 2258 2274 2290
3 2179 2195 2211 2227 2243 2259 2275 2291

4 2180 2196 2212 2228 2244 2260 2276 2292
5 2181 2197 2213 2229 2245 2261 2277 2293
6 2182 2198 2214 2230 2246 2262 2278 2294
7 2183 2199 2215 2231 2247 2263 2279 2295

8 2184 2200 2216 2232 2248 2264 2280 2296
9 2185 2201 2217 2233 2249 2265 2281 2297
A 2186 2202 2218 2234 2250 2266 2282 2298
B 2187 2203 2219 2235 2251 2267 2283 2299

C 2188 2204 2220 2236 2252 2268 2284 2300
D 2189 2205 2221 2237 2253 2269 2285 2301
E 2190 2206 2222 2238 2254 2270 2286 2302
F 2191 2207 2223 2239 2255 2271 2287 2303

90* 91* 92* 93* 94* 95* 96* 97*

0 2304 2320 2336 2352 2368 2384 2400 2416
1 2305 2321 2337 2353 2369 2385 2401 2417
2 2306 2322 2338 2354 2370 2386 2402 2418
3 2307 2323 2339 2355 2371 2387 2403 2419

4 2308 2324 2340 2356 2372 2388 2404 2420
5 2309 2325 2341 2357 2373 2389 2405 2421
6 2310 2326 2342 2358 2374 2390 2406 2422
7 2311 2327 2343 2359 2375 2391 2407 2423

8 2312 2328 2344 2360 2376 2392 2408 2424
9 2313 2329 2345 2361 2377 2393 2409 2425
A 2314 2330 2346 2362 2378 2394 2410 2426
B 2315 2331 2347 2363 2379 2395 2411 2427

C 2316 2332 2348 2364 2380 2396 2412 2428
D 2317 2333 2349 2365 2381 2397 2413 2429
E 2318 2334 2350 2366 2382 2398 2414 2430
F 2319 2335 2351 2367 2383 2399 2415 2431

98* 99* 9A* 9B* 9C* 9D* 9E* 9F*

0 2432 2448 2464 2480 2496 2512 2528 2544
1 2433 2449 2465 2481 2497 2513 2529 2545
2 2434 2450 2466 2482 2498 2514 2530 2546
3 2435 2451 2467 2483 2499 2515 2531 2547

4 2436 2452 2468 2484 2500 2516 2532 2548
5 2437 2453 2469 2485 2501 2517 2533 2549
6 2438 2454 2470 2486 2502 2518 2534 2550
7 2439 2455 2471 2487 2503 2519 2535 2551

8 2440 2456 2472 2488 2504 2520 2536 2552
9 2441 2457 2473 2489 2505 2521 2537 2553
A 2442 2458 2474 2490 2506 2522 2538 2554
B 2443 2459 2475 2491 2507 2523 2539 2555

C 2444 2460 2476 2492 2508 2524 2540 2556
D 2445 2461 2477 2493 2509 2525 2541 2557
E 2446 2462 2478 2494 2510 2526 2542 2558
F 2447 2463 2479 2495 2511 2527 2543 2559

Appendix A: Conversion and Reference Tables 1007

A0* A1* A2* A3* A4* A5* A6* A7*

0 2560 2576 2592 2608 2624 2640 2656 2672
1 2561 2577 2593 2609 2625 2641 2657 2673
2 2562 2578 2594 2610 2626 2642 2658 2674
3 2563 2579 2595 2611 2627 2643 2659 2675

4 2564 2580 2596 2612 2628 2644 2660 2676
5 2565 2581 2597 2613 2629 2645 2661 2677
6 2566 2582 2598 2614 2630 2646 2662 2678
7 2567 2583 2599 2615 2631 2647 2663 2679

8 2568 2584 2600 2616 2632 2648 2664 2680
9 2569 2585 2601 2617 2633 2649 2665 2681
A 2570 2586 2602 2618 2634 2650 2666 2682
B 2571 2587 2603 2619 2635 2651 2667 2683

C 2572 2588 2604 2620 2636 2652 2668 2684
D 2573 2589 2605 2621 2637 2653 2669 2685
E 2574 2590 2606 2622 2638 2654 2670 2686
F 2575 2591 2607 2623 2639 2655 2671 2687

A8* A9* AA* AB* AC* AD* AE* AF*

0 2688 2704 2720 2736 2752 2768 2784 2800
1 2689 2705 2721 2737 2753 2769 2785 2801
2 2690 2706 2722 2738 2754 2770 2786 2802
3 2691 2707 2723 2739 2755 2771 2787 2803

4 2692 2708 2724 2740 2756 2772 2788 2804
5 2693 2709 2725 2741 2757 2773 2789 2805
6 2694 2710 2726 2742 2758 2774 2790 2806
7 2695 2711 2727 2743 2759 2775 2791 2807

8 2696 2712 2728 2744 2760 2776 2792 2808
9 2697 2713 2729 2745 2761 2777 2793 2809
A 2698 2714 2730 2746 2762 2778 2794 2810
B 2699 2715 2731 2747 2763 2779 2795 2811

C 2700 2716 2732 2748 2764 2780 2796 2812
D 2701 2717 2733 2749 2765 2781 2797 2813
E 2702 2718 2734 2750 2766 2782 2798 2814
F 2703 2719 2735 2751 2767 2783 2799 2815

B0* B1* B2* B3* B4* B5* B6* B7*

0 2816 2832 2848 2864 2880 2896 2912 2928
1 2817 2833 2849 2865 2881 2897 2913 2929
2 2818 2834 2850 2866 2882 2898 2914 2930
3 2819 2835 2851 2867 2883 2899 2915 2931

4 2820 2836 2852 2868 2884 2900 2916 2932
5 2821 2837 2853 2869 2885 2901 2917 2933
6 2822 2838 2854 2870 2886 2902 2918 2934
7 2823 2839 2855 2871 2887 2903 2919 2935

8 2824 2840 2856 2872 2888 2904 2920 2936
9 2825 2841 2857 2873 2889 2905 2921 2937
A 2826 2842 2858 2874 2890 2906 2922 2938
B 2827 2843 2859 2875 2891 2907 2923 2939

C 2828 2844 2860 2876 2892 2908 2924 2940
D 2829 2845 2861 2877 2893 2909 2925 2941
E 2830 2846 2862 2878 2894 2910 2926 2942
F 2831 2847 2863 2879 2895 2911 2927 2943

B8* B9* BA* BB* BC* BD* BE* BF*

0 2944 2960 2976 2992 3008 3024 3040 3056
1 2945 2961 2977 2993 3009 3025 3041 3057
2 2946 2962 2978 2994 3010 3026 3042 3058
3 2947 2963 2979 2995 3011 3027 3043 3059

4 2948 2964 2980 2996 3012 3028 3044 3060
5 2949 2965 2981 2997 3013 3029 3045 3061
6 2950 2966 2982 2998 3014 3030 3046 3062
7 2951 2967 2983 2999 3015 3031 3047 3063

8 2952 2968 2984 3000 3016 3032 3048 3064
9 2953 2969 2985 3001 3017 3033 3049 3065
A 2954 2970 2986 3002 3018 3034 3050 3066
B 2955 2971 2987 3003 3019 3035 3051 3067

C 2956 2972 2988 3004 3020 3036 3052 3068
D 2957 2973 2989 3005 3021 3037 3053 3069
E 2958 2974 2990 3006 3022 3038 3054 3070
F 2959 2975 2991 3007 3023 3039 3055 3071

1008 Assembler Language Programming for IBM System z™ Servers Version 2.00

C0* C1* C2* C3* C4* C5* C6* C7*

0 3072 3088 3104 3120 3136 3152 3168 3184
1 3073 3089 3105 3121 3137 3153 3169 3185
2 3074 3090 3106 3122 3138 3154 3170 3186
3 3075 3091 3107 3123 3139 3155 3171 3187

4 3076 3092 3108 3124 3140 3156 3172 3188
5 3077 3093 3109 3125 3141 3157 3173 3189
6 3078 3094 3110 3126 3142 3158 3174 3190
7 3079 3095 3111 3127 3143 3159 3175 3191

8 3080 3096 3112 3128 3144 3160 3176 3192
9 3081 3097 3113 3129 3145 3161 3177 3193
A 3082 3098 3114 3130 3146 3162 3178 3194
B 3083 3099 3115 3131 3147 3163 3179 3195

C 3084 3100 3116 3132 3148 3164 3180 3196
D 3085 3101 3117 3133 3149 3165 3181 3197
E 3086 3102 3118 3134 3150 3166 3182 3198
F 3087 3103 3119 3135 3151 3167 3183 3199

C8* C9* CA* CB* CC* CD* CE* CF*

0 3200 3216 3232 3248 3264 3280 3296 3312
1 3201 3217 3233 3249 3265 3281 3297 3313
2 3202 3218 3234 3250 3266 3282 3298 3314
3 3203 3219 3235 3251 3267 3283 3299 3315

4 3204 3220 3236 3252 3268 3284 3300 3316
5 3205 3221 3237 3253 3269 3285 3301 3317
6 3206 3222 3238 3254 3270 3286 3302 3318
7 3207 3223 3239 3255 3271 3287 3303 3319

8 3208 3224 3240 3256 3272 3288 3304 3320
9 3209 3225 3241 3257 3273 3289 3305 3321
A 3210 3226 3242 3258 3274 3290 3306 3322
B 3211 3227 3243 3259 3275 3291 3307 3323

C 3212 3228 3244 3260 3276 3292 3308 3324
D 3213 3229 3245 3261 3277 3293 3309 3325
E 3214 3230 3246 3262 3278 3294 3310 3326
F 3215 3231 3247 3263 3279 3295 3311 3327

D0* D1* D2* D3* D4* D5* D6* D7*

0 3328 3344 3360 3376 3392 3408 3424 3440
1 3329 3345 3361 3377 3393 3409 3425 3441
2 3330 3346 3362 3378 3394 3410 3426 3442
3 3331 3347 3363 3379 3395 3411 3427 3443

4 3332 3348 3364 3380 3396 3412 3428 3444
5 3333 3349 3365 3381 3397 3413 3429 3445
6 3334 3350 3366 3382 3398 3414 3430 3446
7 3335 3351 3367 3383 3399 3415 3431 3447

8 3336 3352 3368 3384 3400 3416 3432 3448
9 3337 3353 3369 3385 3401 3417 3433 3449
A 3338 3354 3370 3386 3402 3418 3434 3450
B 3339 3355 3371 3387 3403 3419 3435 3451

C 3340 3356 3372 3388 3404 3420 3436 3452
D 3341 3357 3373 3389 3405 3421 3437 3453
E 3342 3358 3374 3390 3406 3422 3438 3454
F 3343 3359 3375 3391 3407 3423 3439 3455

D8* D9* DA* DB* DC* DD* DE* DF*

0 3456 3472 3488 3504 3520 3536 3552 3568
1 3457 3473 3489 3505 3521 3537 3553 3569
2 3458 3474 3490 3506 3522 3538 3554 3570
3 3459 3475 3491 3507 3523 3539 3555 3571

4 3460 3476 3492 3508 3524 3540 3556 3572
5 3461 3477 3493 3509 3525 3541 3557 3573
6 3462 3478 3494 3510 3526 3542 3558 3574
7 3463 3479 3495 3511 3527 3543 3559 3575

8 3464 3480 3496 3512 3528 3544 3560 3576
9 3465 3481 3497 3513 3529 3545 3561 3577
A 3466 3482 3498 3514 3530 3546 3562 3578
B 3467 3483 3499 3515 3531 3547 3563 3579

C 3468 3484 3500 3516 3532 3548 3564 3580
D 3469 3485 3501 3517 3533 3549 3565 3581
E 3470 3486 3502 3518 3534 3550 3566 3582
F 3471 3487 3503 3519 3535 3551 3567 3583

Appendix A: Conversion and Reference Tables 1009

E0* E1* E2* E3* E4* E5* E6* E7*

0 3584 3600 3616 3632 3648 3664 3680 3696
1 3585 3601 3617 3633 3649 3665 3681 3697
2 3586 3602 3618 3634 3650 3666 3682 3698
3 3587 3603 3619 3635 3651 3667 3683 3699

4 3588 3604 3620 3636 3652 3668 3684 3700
5 3589 3605 3621 3637 3653 3669 3685 3701
6 3590 3606 3622 3638 3654 3670 3686 3702
7 3591 3607 3623 3639 3655 3671 3687 3703

8 3592 3608 3624 3640 3656 3672 3688 3704
9 3593 3609 3625 3641 3657 3673 3689 3705
A 3594 3610 3626 3642 3658 3674 3690 3706
B 3595 3611 3627 3643 3659 3675 3691 3707

C 3596 3612 3628 3644 3660 3676 3692 3708
D 3597 3613 3629 3645 3661 3677 3693 3709
E 3598 3614 3630 3646 3662 3678 3694 3710
F 3599 3615 3631 3647 3663 3679 3695 3711

E8* E9* EA* EB* EC* ED* EE* EF*

0 3712 3728 3744 3760 3776 3792 3808 3824
1 3713 3729 3745 3761 3777 3793 3809 3825
2 3714 3730 3746 3762 3778 3794 3810 3826
3 3715 3731 3747 3763 3779 3795 3811 3827

4 3716 3732 3748 3764 3780 3796 3812 3828
5 3717 3733 3749 3765 3781 3797 3813 3829
6 3718 3734 3750 3766 3782 3798 3814 3830
7 3719 3735 3751 3767 3783 3799 3815 3831

8 3720 3736 3752 3768 3784 3800 3816 3832
9 3721 3737 3753 3769 3785 3801 3817 3833
A 3722 3738 3754 3770 3786 3802 3818 3834
B 3723 3739 3755 3771 3787 3803 3819 3835

C 3724 3740 3756 3772 3788 3804 3820 3836
D 3725 3741 3757 3773 3789 3805 3821 3837
E 3726 3742 3758 3774 3790 3806 3822 3838
F 3727 3743 3759 3775 3791 3807 3823 3839

F0* F1* F2* F3* F4* F5* F6* F7*

0 3840 3856 3872 3888 3904 3920 3936 3952
1 3841 3857 3873 3889 3905 3921 3937 3953
2 3842 3858 3874 3890 3906 3922 3938 3954
3 3843 3859 3875 3891 3907 3923 3939 3955

4 3844 3860 3876 3892 3908 3924 3940 3956
5 3845 3861 3877 3893 3909 3925 3941 3957
6 3846 3862 3878 3894 3910 3926 3942 3958
7 3847 3863 3879 3895 3911 3927 3943 3959

8 3848 3864 3880 3896 3912 3928 3944 3960
9 3849 3865 3881 3897 3913 3929 3945 3961
A 3850 3866 3882 3898 3914 3930 3946 3962
B 3851 3867 3883 3899 3915 3931 3947 3963

C 3852 3868 3884 3900 3916 3932 3948 3964
D 3853 3869 3885 3901 3917 3933 3949 3965
E 3854 3870 3886 3902 3918 3934 3950 3966
F 3855 3871 3887 3903 3919 3935 3951 3967

F8* F9* FA* FB* FC* FD* FE* FF*

0 3968 3984 4000 4016 4032 4048 4064 4080
1 3969 3985 4001 4017 4033 4049 4065 4081
2 3970 3986 4002 4018 4034 4050 4066 4082
3 3971 3987 4003 4019 4035 4051 4067 4083

4 3972 3988 4004 4020 4036 4052 4068 4084
5 3973 3989 4005 4021 4037 4053 4069 4085
6 3974 3990 4006 4022 4038 4054 4070 4086
7 3975 3991 4007 4023 4039 4055 4071 4087

8 3976 3992 4008 4024 4040 4056 4072 4088
9 3977 3993 4009 4025 4041 4057 4073 4089
A 3978 3994 4010 4026 4042 4058 4074 4090
B 3979 3995 4011 4027 4043 4059 4075 4091

C 3980 3996 4012 4028 4044 4060 4076 4092
D 3981 3997 4013 4029 4045 4061 4077 4093
E 3982 3998 4014 4030 4046 4062 4078 4094
F 3983 3999 4015 4031 4047 4063 4079 4095

1010 Assembler Language Programming for IBM System z™ Servers Version 2.00

Conversion Tables for Hexadecimal Fractions
The six pairs of columns give respectively a hexadecimal fraction and its decimal equivalent. For example,
the decimal value of the hexadecimal fraction .FF is .9375+.05859375, or 0.99609375.

 .1 .0625 .01 .00390625 .001 .000244140625
 .2 .1250 .02 .00781250 .002 .000488281250
 .3 .1875 .03 .01171875 .003 .000732421875
 .4 .2500 .04 .01562500 .004 .000976562500
 .5 .3125 .05 .01953125 .005 .001220703125
 .6 .3750 .06 .02343750 .006 .001464843750
 .7 .4375 .07 .02734375 .007 .001708984375
 .8 .5000 .08 .03125000 .008 .001953125000
 .9 .5625 .09 .03515625 .009 .002197265625
 .A .6250 .0A .03906250 .00A .002441406250
 .B .6875 .0B .04296875 .00B .002685546875
 .C .7500 .0C .04687500 .00C .002929687500
 .D .8125 .0D .05078125 .00D .003173828125
 .E .8750 .0E .05468750 .00E .003417968750
 .F .9375 .0F .05859375 .00F .003662109375
.

.0001 .0000152587890625 .00001 .00000095367431640625

.0002 .0000305175781250 .00002 .00000190734863281250

.0003 .0000457763671875 .00003 .00000286102294921875

.0004 .0000610351562500 .00004 .00000381469726562500

.0005 .0000762939453125 .00005 .00000476837158203125

.0006 .0000915527343750 .00006 .00000572204589843750

.0007 .0001068115234375 .00007 .00000667572021484375

.0008 .0001220703125000 .00008 .00000762939453125000

.0009 .0001373291015625 .00009 .00000858306884765625

.000A .0001525878906250 .0000A .00000953674316406250

.000B .0001678466796875 .0000B .00001049041748046875

.000C .0001831054687500 .0000C .00001144409179687500

.000D .0001983642578125 .0000D .00001239776611328125

.000E .0002136230468750 .0000E .00001335144042968750

.000F .0002288818359375 .0000F .00001430511474609375

.000001 .000000059604644775390625

.000002 .000000119209289550781250

.000003 .000000178813934326171875

.000004 .000000238418579101562500

.000005 .000000298023223876953125

.000006 .000000357627868652343750

.000007 .000000417232513427734375

.000008 .000000476837158203125000

.000009 .000000536441802978515625

.00000A .000000596046447753906250

.00000B .000000655651092529296875

.00000C .000000715255737304687500

.00000D .000000774860382080078125

.00000E .000000834465026855468750

.00000F .000000894069671630859375

Appendix A: Conversion and Reference Tables 1011

EBCDIC Character Representation in Assembler Language Programs
This table uses IBM code page 037.

Table 446. Assembler Language EBCDIC character represen-
tation
Char Hex Char Hex Char Hex Char Hex

Blank 40 e 85 y A8 S E2
. 4B f 86 z A9 T E3
(4D g 87 A C1 U E4
+ 4E h 88 B C2 V E5
& 50 i 89 C C3 W E6
$ 5B j 91 D C4 X E7
* 5C k 92 E C5 Y E8
) 5D l 93 F C6 Z E9
- 60 m 94 G C7 0 F0
/ 61 n 95 H C8 1 F1
, 6B o 96 I C9 2 F2
_ 6D p 97 J D1 3 F3
7B q 98 K D2 4 F4
@ 7C r 99 L D3 5 F5
' 7D s A2 M D4 6 F6
= 7E t A3 N D5 7 F7
a 81 u A4 O D6 8 F8
b 82 v A5 P D7 9 F9
c 83 w A6 Q D8
d 84 x A7 R D9

1012 Assembler Language Programming for IBM System z™ Servers Version 2.00

ASCII Character Representation in Assembler Language Programs

Table 447. 7-bit ASCII character representation

Char Code Char Code Char Code Char Code

blank 20 8 38 P 50 h 68

! 21 9 39 Q 51 i 69

″ 22 : 3A R 52 j 6A

23 ; 3B S 53 k 6B

$ 24 < 3C T 54 l 6C

% 25 = 3D U 55 m 6D

& 26 > 3E V 56 n 6E

' 27 ? 3F W 57 o 6F

(28 @ 40 X 58 p 70

) 29 A 41 Y 59 q 71

* 2A B 42 Z 5A r 72

+ 2B C 43 [5B s 73

, 2C D 44 5C t 74

- 2D E 45] 5D u 75

. 2E F 46 ^ 5E v 76

/ 2F G 47 _ 5F w 77

0 30 H 48 ` 60 x 78

1 31 I 49 a 61 y 79

2 32 J 4A b 62 z 7A

3 33 K 4B c 63 { 7B

4 34 L 4C d 64 | 7C

5 35 M 4D 4 65 } 7D

6 36 N 4E f 66 ˜ 7E

7 37 O 4F g 67 (none) 7F

Appendix A: Conversion and Reference Tables 1013

DC Statement Types

Table 448. High Level Assembler DC-Statement Constant Types

Type Subtype(s) Default
Length(s) Modifiers Pad/

Truncate Constant

A (D) 4 (8) L Left Absolute or relocatable expression

B Minimum L Left Binary

C Minimum L Right EBCDIC Characters

C A Minimum L Right ASCII characters generated

C E Minimum L Right EBCDIC characters generated

C U Minimum L Right Unicode characters generated

D 8 L,S,E Right Hexadecimal floating-point

D B 8 L,E Right Binary floating-point

D D 8 E None Decimal floating-point

D H 8 L,S,E Right Hexadecimal floating-point (improved rounding)

E 4 L,S,E Right Hexadecimal floating-point

E B 4 L,E Right Binary floating-point

E D 4 E None Decimal floating-point

E H 4 L,S,E Right Hexadecimal floating-point (improved rounding)

F (D) 4 (8) L,S,E Left Fixed-point binary

G Minimum L Right Graphic (usually Kanji)

H (D) 2 (8) L,S,E Left Fixed-point binary

J (D) 4 (8) L Left Class length

L 16 L,S,E Right Hexadecimal floating-point

L B 16 L,E Right Binary floating-point

L D 16 E None Decimal floating-point

L H 16 L,S,E Right Hexadecimal floating-point (improved rounding)

P Minimum L Left Packed decimal

Q (D) 4 (8) L None DXD or Part offset

Q Y 3 L3 None Long-displacement DXD or Part offset

R (D) 4 (8) L Left PSECT address

S 2 L2 None 12-bit-displacement base-displacement address

S Y 3 L3 None Long-displacement base-displacement address

V (D) 4 (8) L None External symbol

Y 2 L Left Absolute or relocatable expression

Z Minimum L Left Zoned decimal

1014 Assembler Language Programming for IBM System z™ Servers Version 2.00

Appendix B: Simple I/O Macros

IIIIIIIIII // OOOOOOOOOOOO
IIIIIIIIII // OOOOOOOOOOOO

II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO
II // OO OO

IIIIIIIIII // OOOOOOOOOOOO
IIIIIIIIII // OOOOOOOOOOOO

The forms that I/O takes within and across z/Architecture operating systems are varied enough that it takes
many books to describe them. So that you won't need to understand the I/O rules associated with a partic-
ular Operating System, the simple needs of small programs like the Programming Problems here can be
satisfied by the following facilities:

1. An instruction (CONVERTI) to convert decimal characters in memory to a signed binary value in a
General Purpose register.

2. An instruction (CONVERTO) to convert the contents of a General Purpose register to a string of decimal
characters in memory.

3. An instruction (DUMPOUT) to generate a formatted hexadecimal dump of specified areas of memory.

4. An instruction (PRINTLIN) to print line images on a printer file, with carriage control characters and
optional specification of the length of the character string to be printed.

5. An instruction (PRINTOUT) to:

• print the value of the contents of an area of memory, giving its name as well as the value of the
contents in an easily-readable format.

• print the contents of the General Purpose and Floating-Point registers.

• return control to the Supervisor when program execution has been successfully completed.

6. An instruction (READCARD) to read 80-character records into a named area in your program, with pro-
vision for optionally transferring control to some out-of-line location if no further records are available.

These macro instructions do not change the Condition Code.

B.1. Macro Facilities
The arguments of the CONVERTI, CONVERTO, DUMPOUT, PRINTLIN, PRINTOUT, and READCARD macro-
instructions use these notational abbreviations in their descriptions.

<name> any valid symbol naming an area of memory which is addressable from the point where
it is used in a macro-instruction.

<number> any valid self-defining term; limits on the size of the term are described for each macro-
instruction. In most cases, a predefined absolute symbol may be used.

<d(b)> any valid operand providing an addressable displacement and base.

<address> an addressable <name> or <d(b)>.

<nfs> a valid (and optional) name-field symbol (label) naming the macro-instruction in whose
name field it appears.

Appendix B: Simple I/O Macros 1015

[optional] square brackets around a term means that it is optional.

... an ellipsis means that the preceding item may be repeated any number of times.

Examples of these macro instructions are given below.

You may want to precede the first call to any of these macros with a

PRINT NOGEN
statement; otherwise your listing will include many generated statements that won't have much meaning to
you until you've had more experience with Assembler Language and System z.

B.1.1. The CONVERTI Macro Instruction
CONVERTI is generally used to scan a data record received by the READCARD macro instruction. It converts a
string of optionally signed decimal characters to binary into a specified 32-bit or 64-bit general register, and
sets GR1 to the address of the non-digit character at which scanning was stopped. This means that you can
convert multiple values from the same character string.

The CONVERTI macro instruction is written in the form

<nfs> CONVERTI <number>,<address>[,ERR=<address>] [,STOP=<address>]
where <number> specifies a general register, and <address> is the starting address of a string of bytes in
storage of characters to be converted to binary. The <address> operand may also be written as <d(b)>.

The first non-blank character must be a plus sign, a minus sign, or a decimal digit; otherwise, GR1 is set to
the address of that character and the register specified by <number> is unchanged. (If you expect unusual
characters to be scanned, you should specify the STOP= operand on the CONVERTI statement.)

Be Careful!

Don't specify either 1 or 17 for the <number> operand, because any converted
value in GR1 or GG1 will be replaced by the address of the “stop” character.

The optional keyword operands ERR= and STOP= specify locations in your program where the CONVERTI will
transfer control if certain conditions occur:

ERR= If the value of the <number> operand is greater than 31, or if the value of the significant decimal
digits at the <address> operand is too large to be converted correctly to the general register speci-
fied by the <number> operand, control will be transferred to the <address> given by the ERR=
operand.

STOP= If an invalid character is found in the string of characters starting at the <address> operand, GR1
is set to the address of that character and control will be transferred to the <address> given by the
STOP= operand. (See example 3 below.)

If either of these conditions occurs and the needed ERR= or STOP= <address> is not specified, CONVERTI will
print a message and terminate the program.

32-bit general register
A <number> between 0 and 15 specifies the corresponding 32-bit general register. The number to be
converted must have no more than 10 significant digits. Insignificant leading zero digits are ignored.

64-bit general register
A <number> between 16 and 31 specifies the corresponding (less 16) 64-bit general register. The
number to be converted must have no more than 19 significant digits. Insignificant leading zero digits
are ignored.

Execution on z/Architecture is required.

For example:

1. Convert the digits at D1 to binary in 32-bit GR3:

CONVERTI 3,D1
- - -

D1 DC C' +019 '
The contents of GR3 will be X'00000013' and GR1 will contain the address of the blank character
following the digit 9.

2. Convert the digits at D2 to binary in 64-bit GG5:

1016 Assembler Language Programming for IBM System z™ Servers Version 2.00

CONVERTI 21,D2
- - -

D2 DC C'-9223372036854775808 '
The contents of GG5 will be X'8000000 00000000' and GR1 will contain the address of the blank
character following the final digit 8.

3. The character string at D3 contains several values to be stored at Table. The scan is terminated by the
character *.

LA 3,Table
LA 2,D3 Start of string

CvtLoop CONVERTI 0,0(2),STOP=Check Invalid character? Test at Check
ST 0,0(,3) Store an entry at Table
LA 3,4(,3) Point to next Table entry
B CvtLoop Resume converting
- - -

Check CLI 0(1),C'*' Is the invalid character ours?
JNE BadChar No, a bad character appeared
- - -

D3 DC C' +1 -2+3 -0000000000000004 *'
and the four words starting at Table will contain the values 1, − 2, 3, and − 4.

Providing a known “stop” character lets you scan an input string for all the values provided. For
example, a record stored at InRec by the READCARD macro could be followed by a stop character:

InRec DS CL80 Buffer area
StopChar DC C'*' Stop character

B.1.2. The CONVERTO Macro Instruction
The CONVERTO macro instruction is written in the form

<nfs> CONVERTO <number>,<address>
where the <number> is the number of a general or floating-point register, and <address> points to a string of
bytes in storage where the converted result is stored. The <address> operand may also be written as
<d(b)>.

CONVERTO converts the contents of the designated register from binary to decimal characters (for general
registers) or to hexadecimal characters (for floating-point registers). The first character of the converted
result is always blank, so it may be printed immediately using the PRINTLIN macro.

If the contents of a general register argument is negative, a minus sign is placed before the first decimal
digit.

Note that the length of the generated character string is always as specified below; be careful to allocate
enough space for the result so that you won't overwrite other data or instructions.

If the value of the <number> operand does not lie in the range 0 ≤ <number> ≤ 47, the macro call is
ignored.

32-bit general register
A <number> between 0 and 15 specifies the corresponding 32-bit general register. For example, if the
operand is 9, the contents of GR9 will be converted to a string of 12 characters. For example, if
c (GR9)=X'80000000', the formatted string will be the 12 characters (where • is our representation
for a blank character):

•-2147483648
64-bit general register

A <number> between 16 and 31 specifies the corresponding (less 16) 64-bit general register. For
example, if the operand is 16, the contents of GG0 will be converted to a string of 21 characters. For
example, if c(GG9)=X'80000000 00000000', the formatted string will be the 21 characters (where •
is our representation for a blank character):

•-9223372036854775808
Execution on z/Architecture is required.

Floating-Point Register

Appendix B: Simple I/O Macros 1017

A <number> between 32 and 47 specifies the corresponding (less 32) Floating-Point Register.317 For
example, if the operand is 36, the contents of FPR4 will be printed as a string of 20 characters (where
• is our representation for a blank character):

•X'FEDCBA9876543210'
Because there are three floating-point representations, and because accurate conversion from
hexadecimal and binary floating-point formats is quite difficult, only hexadecimal values are displayed.

B.1.3. The DUMPOUT Macro Instruction
The DUMPOUT macro instruction is written in the form

<nfs> DUMPOUT <name>[,<name>]
where either <name> operand can be written as <d(b)>.

DUMPOUT prints a formatted hexadecimal dump of the area of memory starting with the fullword con-
taining the first operand, 32 bytes to a line. If the second operand is omitted, one line will be printed. If the
second operand is given, all of memory between the two addresses will be dumped. The dump starts from
the lower of the two addresses and proceeds toward the higher. The lower address is “rounded down” to a
fullword boundary, and 32 bytes are displayed on each line even if some bytes are at addresses greater than
the higher address.318

No checks are made to avoid possible storage access violations. For example,

DumpA DUMPOUT A
will cause the 32-byte area of memory starting at (or very near) A to be dumped. Similarly,

DumpAB DUMPOUT A,B
would print a dump of the area of memory starting with a line containing the byte at A and ending with a
line which includes the byte named B.

B.1.4. The PRINTLIN Macro Instruction
The PRINTLIN macro instruction is written in the form

<nfs> PRINTLIN <address>[,<number>]
where the <name> and optional <number> operands may also be written as <d(b)>.

PRINTLIN causes the character string beginning at the location defined by the first operand to be printed;
the number of characters is specified by the second operand (which may be a predefined absolute symbol).
The print-line length is limited to 121 characters.

The first character of the string will be detached and used for spacing control. The ANSI Standard car-
riage control characters are:

• an EBCDIC ' ' (blank) means single space,
• an EBCDIC '0' (zero) means double space,
• an EBCDIC '-' (minus) means triple space,
• an EBCDIC '1' (one) means start at the top of a new page, and
• an EBCDIC '+' (plus) means no spacing (the new line will be printed over the previous one).

If the second operand is omitted, the length of the character string is assumed to be 121 bytes, which means
that 120 characters will be printed after the first is detached.319 If the second operand is present, it is taken
to be the length of the string; the number of characters specified will be placed at the left end of an internal
buffer, extended to 121 bytes with blanks if necessary, and then sent to the printer file. For example, we
could write

317 If your system does not support z/Architecture instructions or the full set of 16 Floating-Point registers, trying to display their
contents may cause a program interruption for an invalid operation code or a specification exception.

318 That is, the dump is from the smaller to the larger of (LowAddr/4)×4 and ((HighAddr+31)/32)×32.
319 See the discussion at “B.3.1. Operating System Environment and Installation Considerations” on page 1023 for information on

setting the default print-line length.

1018 Assembler Language Programming for IBM System z™ Servers Version 2.00

PrTtl PRINTLIN Title
- - -

Title DC CL121'1Title for top line of the page'
to print the indicated title at the top of a new page. If we wrote

PRINTLIN Title,1
then the printer would skip to the top of a new page and print a blank line there, because only the spacing
control character (the “1”) is transmitted from the program to the print file.

B.1.5. The PRINTOUT Macro Instruction
The PRINTOUT macro-instruction lets you print the value of the contents of named areas of memory, the
contents of registers, and to terminate execution.

The operand field of the PRINTOUT macro-instruction may contain any number of <name>s or <number>s
separated by commas, with no intervening blanks. An operand consisting of a single asterisk will terminate
execution. The basic forms of the PRINTOUT macro instruction are written

<nfs> PRINTOUT [<name>...] [,<number>...] [,<d(b)>...]

<nfs> PRINTOUT *
where any combination of the <name> and <number> operands may be used in an operand list. Either may
be written in the form <d(b)>. If the asterisk operand is used, it is treated as the last operand in the list.
For example,

AllDone PRINTOUT 0,*
will display the contents of GR0 and then terminate execution.

A <number> operand with value between 0 and 47 causes the contents of a register to be printed in hex and
decimal; larger values are treated as addresses. The <number> may in most cases be a predefined absolute
symbol.

32-bit general register
a <number> between 0 and 15 specifies the corresponding 32-bit general register. For example, if the
operand is 12, the contents of GR12 will be printed:

GPR 12 = X'FFFFFFF3' = -13
64-bit general register

a <number> between 16 and 31 specifies the corresponding (less 16) 64-bit general register. For
example, if the operand is 16, the contents of GG0 will be printed:

 GGR 0 = X'1234567890ABCDEF' = 1311768467294899695
Execution on z/Architecture is required.

Floating-Point Register
a <number> between 32 and 47 specifies the corresponding (less 32) Floating-Point Register.320 For
example, if the operand is 36, the contents of FPR4 will be printed:

FPR 4 = X'FEDCBA9876543210'
Because there are three floating-point representations, and because accurate conversion from
hexadecimal and binary floating-point formats is quite difficult, only hexadecimal values are displayed.

To print the contents of the “original” four System/360 floating-point registers F0, F2, F4, and F6, we
could write

FourFPRs PRINTOUT 32,34,36,38

Printing the contents of any other Floating-Point Register requires those registers to be installed and avail-
able on your machine.

To print the contents of R14 and then terminate execution, we could write

PRINTOUT X'E',*

320 If your system does not support z/Architecture instructions or the full set of 16 Floating-Point registers, trying to display their
contents may cause a program interruption for an invalid operation code or a specification exception.

Appendix B: Simple I/O Macros 1019

To print the contents of memory areas named A, B, and C, we could write

PRINTOUT A,B,C

The format of the output depends on the type attribute of the symbol naming the memory area:

• Type attribute C (character) data is shown as strings of at most 100 characters.
• Type attribute F or H data are shown as signed decimal numbers.
• If you use forms like PRINTOUT d(b) and d has attributes C, F, or H, the result will be formatted as

above; otherwise, the data is displayed as 16 hexadecimal digits.
• Other type attributes cause data to be displayed as 2 to 100 hexadecimal digits, depending on the length

attribute of the operand.

Specifying PRINTOUT with no operand is useful for flow tracing; only a header line is printed. An example is
shown below.

PRINTOUT
If you want a comment field on the statement, put a single comma as the operand:

PRINTOUT , Your comments here

Finally, if you want to terminate execution with no message:

PRINTOUT *,Header=NO Terminate quietly
Any value other than “No” (in any mixture of upper and lower case) is treated as “Yes”.

B.1.6. The READCARD Macro Instruction
READCARD reads records into an 80-byte buffer in the program. This macro-instruction is written

<nfs> READCARD <name>[,<name>]
where either <name> operand may also be written as <d(b)>.

It reads a record from the input file into the 80-byte area beginning at the first operand address. If no
record is available, then (1) control is returned to the instruction specified by the second operand if it is
present, or (2) if no second operand is present, execution is terminated with the message

 *** Execution terminated by Reader EOF
For example,

READCARD MyRecord
will read the next record and place it as an 80-byte EBCDIC character string at the location named
MyRecord; if no record is present, execution will be terminated. The instruction

GetARec READCARD MyRecord,EndFile
- - -

EndFile - - - Do something about no more records
does the same as the previous example, except that if no record is available, control will be transferred to
the instruction named EndFile.

B.1.7. PRINTOUT and DUMPOUT Header
Normally, the output produced by the PRINTOUT and DUMPOUT macros will be preceded by a “header” line:

*** PRINTOUT requested at Address xxxxxx, Statement sssss, CC=n
or

*** DUMPOUT requested at Address xxxxxx, Statement sssss, CC=n
where sssss is the statement number of the macro, and CC=n shows the current Condition Code setting.

To suppress this header line, you can specify an additional operand HEADER=NO on the PRINTOUT or DUMPOUT
macro. For example:

PRINTOUT A,B,C,Header=No
ABDMP DUMPOUT A,B,header=no

The default is HEADER=YES.

1020 Assembler Language Programming for IBM System z™ Servers Version 2.00

B.1.8. Usage Notes
1. All the macros require residence in RMODE(24) storage below the 16MB “line”, and execute in

AMODE(24). The generated code is frequently self-modifying, and is not re-enterable.

2. Most operands of the form <name>, <d(b)>, <address>, and <number> are resolved in S-type address
constants, so addressability is required when all macros except $$GENIO are invoked.

3. When you execute a macro, be sure that the base register used at assembly time to resolve the S-type
constants has the correct address at execution time.

4. Be careful not to reference areas outside your program, as you may risk interruptions for memory
protection violations.

5. If you use PRINTOUT to display named areas of memory, it uses the name's attributes for formatting
the result.

6. At most eight characters of the <name> and <d(b)> operands are displayed. If you write

PRINTOUT 00000000(3),00000000(7)
the eight bytes addressed by registers GR3 and GR7 will be displayed in hexadecimal, but both will
have the “name” 00000000.

B.2. Sample Program
Here is a small sample program that uses all of these macros. The assembly listing and its output are in the
following figures.

Print Nogen Suppress expansions
IOSamp CSect , Sample Program

Using *,15 Local base register
SR 1,1 Clear card counter

 * Next statement for flow tracing
PrintOut

 Read ReadCard CardOut,EOF Read card until endfile
LA 1,1(0,1) Increment card counter
PrintOut 1 Print the count register
PrintLin Out,Linelen Print a line
ConvertI 2,CardOut Convert a number into GR2
ConvertO 2,OutData Put it in printable form
PrintLin OutData,L'OutData Print the value
B Read Go back and read again

 EOF DumpOut IOSamp,Last Dump everything
XGR 3,3 Set GG3 to 0
BCTGR 3,0 Now set GG3 to -1
PrintOut 1,19,32,* Print GR1, GG3, FPR0, terminate

 Out DC C'0Input Record = ″' First part of line
 CardOut DC CL80' ',C'″' Card image here
 LineLen Equ *-Out Define line length
 OutData DS CL12 Converted characters
 Last Equ * Last byte of program

End

The program uses READCARD to read two card images, keeps a count in GR1 which is displayed with
PRINTOUT. The card image just read is shown with a prefix using PRINTLIN. Then, one number from each
record is converted to binary using CONVERTI, and then to printable format using CONVERTO. The result of
each conversion is printed using PRINTLIN.

When there are no more input records, DUMPOUT shows the entire program. Finally PRINTOUT * also displays
the contents of GR1, GG3, and FPR0 before terminating the program.

The two 80-byte card-image input records look like this:

+123456 * First record
-000034567890 * Second and last record

Here is a portion of the assembly listing, including a carriage control character on the first line:

Appendix B: Simple I/O Macros 1021

0 1 Print Nogen Suppress expansions
000000 00000 001E4 2 IOSamp CSect , Sample Program

R:F 00000 3 Using *,15 Local base register
 000000 1B11 4 SR 1,1 Clear card counter

5 * Next statement for flow tracing
 000002 90EF F00C 0000C 6 PrintOut
 000024 0700 743 Read ReadCard CardOut,EOF Read card until endfile
 00004A 4110 1001 00001 752 LA 1,1(0,1) Increment card counter
 00004E 90EF F058 00058 753 PrintOut 1 Print the count register
 00007C 0700 764 PrintLin Out,Linelen Print a line
 00009C 0700 772 ConvertI 2,CardOut Convert a number into GR2
 0000BC 0700 780 ConvertO 2,OutData Put it in printable form
 0000DC 0700 788 PrintLin OutData,L'OutData Print the value
 0000FC 47F0 F026 00026 796 B Read Go back and read again
 000100 0700 797 EOF DumpOut IOSamp,Last Dump everything
 000128 B982 0033 806 XGR 3,3 Set GG3 to 0
 00012C B946 0030 807 BCTGR 3,0 Now set GG3 to -1
 000130 0700 808 PrintOut 1,19,32,* Print GR1, GG3, FPR0, terminate
 000176 F0C99597A4A340D9 823 Out DC C'0Input Record = ″' First part of line
 000187 4040404040404040 824 CardOut DC CL80' ',C'″' Card image here

00062 825 LineLen Equ *-Out Define line length
 0001D8 826 OutData DS CL12 Converted characters

001E4 827 Last Equ * Last byte of program
828 End

The output from this sample program is shown below. The listing shows the carriage control characters.

 *** PRINTOUT requested at Address 01A002, Statement 6, CC=0
 *** PRINTOUT requested at Address 01A04E, Statement 753, CC=0
 GPR 1 = X'00000001' = 1
0Input Record = ″ +123456 * First record ″

123456
 *** PRINTOUT requested at Address 01A04E, Statement 753, CC=0
 GPR 1 = X'0001A192' = 106898
0Input Record = ″ -000034567890 * Second and last record ″

-34567890
 *** DUMPOUT requested at Address 01A102, Statement 797, CC=0
 01A000 1B1190EF F00C58F0 F01405EF 00F12802 0001A000 0001A204 F001A002 00000006 *....0..00....1........s.0.......*
 01A020 98EFE000 070090EF F03058F0 F03805EF 00F12802 0001A000 8001A22C 0001A026 *q.......0..00....1........s.....*
 01A040 F18798EF E00047F0 F1024110 100190EF F05858F0 F06005EF 00F12802 0001A000 *1gq....01.......0..00-...1......*
 01A060 0001A204 0001A04E 000002F1 A0070001 F1404040 40404040 98EFE000 070090EF *..s....+...1....1 q.......*
 01A080 F08858F0 F09005EF 00F12802 0001A000 0001A1F8 F1760062 98EFE000 070090EF *0h.00....1.........81...q.......*
 01A0A0 F0A858F0 F0B005EF 00F12802 0001A000 0001A220 0002F187 98EFE000 070090EF *0y.00....1........s...1gq.......*
 01A0C0 F0C858F0 F0D005EF 00F12802 0001A000 0001A214 0002F1D8 98EFE000 070090EF *0H.00....1........s...1Qq.......*
 01A0E0 F0E858F0 F0F005EF 00F12802 0001A000 0001A1F8 F1D8000C 98EFE000 47F0F026 *0Y.000...1.........81Q..q....00.*
 01A100 070090EF F10C58F0 F11405EF 00F12802 0001A000 0001A1E8 0001A102 0000031D *....1..01....1.........Y........*
 01A120 F000F1E4 98EFE000 B9820033 B9460030 070090EF F13C58F0 F14405EF 00000000 *0.1Uq....b..........1..01.......*
 01A140 00000000 0001A204 0001A132 00000328 20070001 F1404040 40404040 20070013 *......s.............1*
 01A160 F1F94040 40404040 20070020 F3F24040 40404040 0800F0C9 9597A4A3 40D98583 *1932 ..0Input Rec*
 01A180 96998440 7E407F40 404060F0 F0F0F0F3 F4F5F6F7 F8F9F040 40404040 40404040 *ord = ″ -000034567890 *
 01A1A0 40404040 5C40E285 83969584 40819584 409381A2 A3409985 83969984 40404040 * * Second and last record *
 01A1C0 40404040 40404040 40404040 40404040 40404040 4040407F 40404060 F3F4F5F6 * ″ -3456*
 01A1E0 F7F8F9F0 00000000 900FF098 9201F136 41C00008 A7F40020 900FF088 41C00004 *7890......0qk.1.....x4....0h....*
 *** PRINTOUT requested at Address 01A132, Statement 808, CC=0
 GPR 1 = X'0001A197' = 106903
 GGR 3 = X'FFFFFFFFFFFFFFFF' = -1
 FPR 0 = X'0000000000000000'
 *** Execution terminated by PRINTOUT * at Address 01A132

B.3. The Macro Instruction Definitions
The macro definitions that follow can be used to implement the macro instructions described above. An
important feature of these macro instructions is that they may be used anywhere in a program: they make
no changes to any register (except for CONVERTI, which changes the contents of GR1 and the specified
result register), do not change the Condition Code, and do not contain any USING or DROP instructions
that could affect addressability in your program.

The last macro definition (for $$GENIO) generates the module that performs the functions requested by the
other macros. It does not require the user to do anything special about addressability, so the macros may
be used in any program.

1022 Assembler Language Programming for IBM System z™ Servers Version 2.00

B.3.1. Operating System Environment and Installation Considerations
First, place the macro definitions in a macro library accessible to the Assembler. The default print-line
length (121) can be changed in the PRINTLIN macro, and in the $$GENIO macro by modifying the variable
&$$PLL. The default DDnames are

Print MVS/CMS=SYSPRINT, VSE=SYSLST
Read MVS/CMS=SYSIN, VSE=SYSIPT
and can be changed by modifying the &$$ONAM and &$$INAM variable symbols in macro $$GENIO.

The $$GENIO macro is complex. It generates the $$IOSECT CSECT with six entry points. It can be used in
two ways:

1. The instructions in the $$IOSECT can be generated as part of the user's program, if the variable symbol
&$$LIBIO is set to 0 in the first few lines of the $$GENIO macro. This is simpler, but causes an “invisible
gap” in the statement numbers of the listing. The hidden statements can be displayed by specifying the
Assembler option PCONTROL(GEN,ON) but the generated code will be confusing to all but advanced stu-
dents.

2. Alternatively, you can generate the $$IOSECT instructions into a separate module. (This has the advan-
tage of hiding the complexities of the $$GENIO macro, but requires a little bit more initial setup.) First,
set the &$$LIBIO variable symbol to 0, and create and assemble this short program:

$$GENIO
End

Link the generated object module into a library accessible at program linking and loading time. Then,
change the $$LIBIO variable symbol to 1 to suppress subsequent inline generation, and store the macro
back in the macro library.

All symbols generated in the expansions of these macros begin with the two characters $$. If this conflicts
with your conventions (or desires), change each occurrence of '$$' to whatever two other characters you
like. (The symbol cross-reference for any assembly using these macros will include many symbols starting
with those two characters.)

The macros have been extensively tested under MVS, CMS, and VSE, and are set up to run under MVS or
CMS as the default. To run them under VSE, change the &$$DOS SETB statement (near the front of the
$$GENIO macro definition) according to the instructions there. Similarly, to change the default file names or
print line length, modify the specifying SETC statements, as indicated there.

Appendix B: Simple I/O Macros 1023

B.4.1. CONVERTI Macro Definition
Macro

&L CONVERTI &R,&A,&ERR=,&STOP=
.***
 .* This macro converts a character string starting at the *
 .* address to a binary integer in the register operand. If the *
 .* register operand is greater than 31, and if the number being*
 .* scanned is too large, the ERR= exit is taken, and R1 is set *
 .* to the address of the next character to be scanned. If an *
 .* invalid character is encountered, the STOP= exit is taken, *
 .* and R1 is set to the address of that character. *
 .* *
 .* If either of these error occurs and no exit address is *
 .* provided, a message is issued and the program halts. *
 .* *
 .* Generated parameter list: *
 .* DC 2F'0' For caller's R14,R15 *
 .* DC AL1(Flag),VL3($$CNVRTI) *
 .* DC S(register),S(memory_address) *
 .* BC 0,&ERR+0 if register or number is invalid *
 .* BC 0,&STOP+0 if an invalid character is found *
 .* These two BCs are not generated if no keywords are present. *
 .***

LCLA &F
AIF (N'&SysList eq 2).A
MNote 8,'CONVERTI: 2 operands required'
MExit ,

 .A ANop ,
 &L CNop 2,4

STM 14,15,*+10
L 15,*+14
BALR 14,15
AIF ('&ERR' eq '').B

 &F SetA 1
 .B AIF ('&STOP' eq '').GenData
 &F SetA &F+2
 .GenData DC 2F'0',AL1(&F),VL3($$CNVRTI),S(&R),S(&A)

LM 14,15,0(14)
AIF (NOT &F).GenIO
BC 0,&ERR+0 Error in register or number
BC 0,&STOP+0 Invalid character found in scan

 .GenIO $$GENIO
MEnd

B.4.2. CONVERTO Macro Definition
Macro

&L CONVERTO &R,&A
.***
 .* This macro converts the value in the register operand to *
 .* a signed string of decimal characters, placing the result *
 .* in the second operand field. If the register operand is *
 .* between 32 and 47, the floating point register is converted *
 .* to hexadecimal characters. *
 .* *
 .* Generated parameter list: *
 .* DC 2F'0' For caller's R14,R15 *
 .* DC V($$CNVRTO) *
 .* DC S(register),S(memory_address) *
 .***

AIF (N'&SysList eq 2).CVT0
 .BadArg MNote 8,'Invalid CONVERTO argument list.'

MExit ,
 .CVT0 ANOP
 &V SetA &R

AIF (0 LE &V and &V LT 48).CVT1
 .BadReg MNote 8,'Invalid CONVERTO register argument.'

MExit ,
 .CVT1 AIF ('&L' eq '').CVT2
 &L DC 0H'0'
 .CVT2 CNop 2,4

STM 14,15,*+10

1024 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 15,*+14
BALR 14,15
DC 2F'0',V($$CNVRTO),S(&R),S(&A)
LM 14,15,0(14)
$$GENIO
MEnd

B.4.3. DUMPOUT Macro Definition
MACRO

&LABEL DUMPOUT &LOW,&HIGH,&HEADER=YES
.***
 .* This macro dumps out an area of memory between the addresses*
 .* specified by &LOW and &HIGH. The dump is in standard form, *
 .* with eight words per line along with their EBCDIC character *
 .* format at the right end. The header, giving the location *
 .* from which the macro was called, is optional. *
 .* *
 .* Generated parameter list: *
 .* DC 2F'0' For caller's R41,R15 *
 .* DC V($$DMPOUT) *
 .* DC AL1(flags),AL3(call_address) *
 .* DC A(calling statement number *
 .* DC S(low_dump_addr),S(high_dump_addr) *
 .***

LCLA &HDR,&N &HDR = 1 IF NO HEADER
LCLC &HDRC HEADER

 &N SetA &SYSSTMT-1 Save statement number
 .NL AIF ('&LOW' NE '').LOW FIRST PARM IS THERE

MNOTE 8,'No starting address. DUMPOUT ignored.'
MEXIT

 .LOW CNOP 2,4 ALIGNMENT
&LABEL STM 14,15,*+10 SAVE R14 & R15

L 15,*+14 ADDR DUMPOUT ROUTINE
BALR 14,15 CALL

 &HDRC SetC Upper('&HEADER') Force to upper case
AIF ('&HDRC' EQ 'YES').NHDR SKIP IF A HEADER
AIF ('&HDRC' NE 'NO').NHDR SKIP IF A HEADER

 &HDR SETA 1 SET TO IGNORE HEADER
.NHDR DC 2F'0',V($$DMPOUT),AL1(&HDR),AL3(*-23),A(&N)

AIF ('&HIGH' EQ '').NOHIGH NO HIGH PARM
DC S(&LOW),S(&HIGH) DUMPOUT ADDRESSES
AGO .FINIS

 .NOHIGH DC 2S(&LOW) DUMPOUT ADDRESS
 .FINIS LM 14,15,0(14) RESTORE REGISTERS

$$GENIO GENERATE I/O SECTION
MEND

Appendix B: Simple I/O Macros 1025

B.4.4. PRINTLIN Macro Definition
MACRO

&LABEL PRINTLIN &DATA,&LEN
.***
 .* This macro sends a line image to a printer. The first *
 .* character of the string starting at &DATA is assumed to be *
 .* an ASA carriage control character. The default line length *
 .* is 121 characters, but this value may be overridden by the *
 .* value given in the optional second parameter, &LEN. If the *
 .* value of &LEN is greater than 121, then 121 will be used. *
 .* *
 .* Format of parameter list: *
 .* DC 2F'0' Save R14 & R15 *
 .* DC V($$PRTLIN),S(data),S(Len) *
 .***

AIF ('&LABEL'EQ '').AA SKIP LABEL DEFINITION
 &LABEL DC 0H'0' DECLARE LABEL
 .AA AIF ('&DATA' NE '').PARMOK ERR IF NO DATA AREA

MNOTE 8,'Missing data area parameter. PRINTLIN ignored.'
MEXIT

.PARMOK CNOP 2,4 ALIGNMENT
STM 14,15,*+10 SAVE R14 & R15
L 15,*+14 ADDR PRINTLIN ROUTINE
BALR 14,15 CALL
AIF ('&LEN' EQ '').DEFLEN IF LEN OMIT. USE DEFAULT
DC 2F'0',V($$PRTLIN),S(&DATA),S(&LEN)
AGO .LM

 .DEFLEN DC 2F'0',V($$PRTLIN),S(&DATA),S(121) DEFAULT LENGTH
 .LM LM 14,15,0(14) RESTORE REGS.

$$GENIO GENERATE I/O SECTION
MEND

B.4.5. PRINTOUT Macro Definition
MACRO

 &LABEL PRINTOUT &HEADER=YES
 .***
 .* This macro lets you print register contents, areas of *
 .* memory, and terminate execution. To print an area of memory,*
 .* specify its symbolic name. *
 .* *
 .* Memory operands must be addressable by an S-type address *
 .* constant to be printed by this macro -- all such arguments *
 .* must be addressable. There may be any number of arguments *
 .* for each macro call. *
 .* *
 .* The printed output will contain the name of the item and *
 .* the value of the named item. The output for each call may *
 .* be preceded by a header message, which will be omitted if *
 .* HEADER=NO is coded (after the last operand, usually). *
 .* *
 .* To terminate execution of the program, code * as the last *
 .* (or only) operand. *
 .* *
 .* Format of parameter list: *
 .* DC 2F'0' Save caller's R14/R15 *
 .* DC V($$PRTOUT) *
 .* DC AL1(flags),AL3(call_address) *
 .* DC A(call_statement_number) *
 .* operand-specific data is described later in the macro.*
 .***

LCLA &CNT,&LPCNT,&TCODE,&LENGTH,&A,&N
LCLB &BADOP Missing/Ignored operand
LCLC &HDRC Uppercase HEADER operand

 .* &CNT is number of parameters; &LPCNT is loop counter;
 .* &TCODE is operand code,
 &N SetA &SYSSTMT-1 Calling statement number

LCLC &T TYPE CODE OF PARAM.
 &CNT SETA N'&SYSLIST GET NO. OF ARGS.

CNOP 2,4 ALIGNMENT
&LABEL STM 14,15,*+10 SAVE REGS.

L 15,*+14 ADDR PRINTOUT ROUTINE

1026 Assembler Language Programming for IBM System z™ Servers Version 2.00

BALR 14,15 CALL ROUTINE
DC 2F'0',V($$PRTOUT) SAVE AREA, ADDR PRINTOUT

 &HDRC SetC Upper('&HEADER') Upper case
AIF ('&HDRC' NE 'NO').NHDR

 &A SETA 1 INDICATE NO HEADER
 .NHDR AIF (&CNT NE 0).SS1
 &A SETA &A+240 INDICATE NO PARMS
 .SS1 DC AL1(&A),AL3(*-23),A(&N) PARAMETER FLAGS

AIF (&CNT EQ 0).ENDLOOP EXIT IF NO PARMS
 .PARMLP AIF (&CNT LE &LPCNT).ENDLOOP TEST IF LOOP COMPLETE
 &LPCNT SETA &LPCNT+1 INC. LOOP CNTR
 &T SETC T'&SYSLIST(&LPCNT) TYPE CODE OF OPERAND
 &TCODE SETA 32 HEX IS DEFAULT
&LENGTH SETA 8 DEFAULT LENGTH

AIF ('&SYSLIST(&LPCNT)' NE '*').SS4 BRANCH IF NOT *
DC X'0800' PRINTOUT *
AGO .GENIO GENERATE I/O SECTION

 .SS4 AIF ('&T' EQ 'C').CHAR BRANCH IF OPER. CHAR.
AIF ('&T' EQ 'F' OR '&T' EQ 'H').DEC PRINT AS DEC
AIF ('&T' EQ 'J' OR '&T' EQ 'M').LOK DEFAULT ATTR.
AIF ('&T' EQ 'T' OR '&T' EQ 'U').LOK DEFAULT ATTR.
AIF ('&T' EQ 'N').LOKN DEFAULT ATTRIBUTES
AIF ('&T' NE 'O').GETLEN GET LENGTH ATTRIB.
MNOTE *,'Omitted argument &LPCNT ignored.'

 &BADOP SETB (1) Indicate bad/missing operand
AGO .PARMLP

 .LOKN ANOP
 &A SETA &SYSLIST(&LPCNT) GET VALUE OF ARGUMENT

AIF (&A LT 48).LOK BRANCH IF VALID
MNOTE *,'Operand &LPCNT ignored: value (&A) too big.'

 &BADOP SETB (1) Indicate bad operand
AGO .PARMLP SKIP THIS ARGUMENT

 .DEC ANOP F OR H CONSTANT
 &TCODE SETA 64 PRINT AS DECIMAL HWORD

AIF ('&T' EQ 'H').GETLEN GET LENGTH ATTRIB HWORD
 &TCODE SETA 65 PRINT AS DECIMAL FWORD

AGO .GETLEN GET LENGTH ATTRIB.
 .CHAR ANOP CHARACTER STRING
 &TCODE SETA 16 TYPE IS CHARACTER
 .GETLEN ANOP
&LENGTH SETA L'&SYSLIST(&LPCNT) LENGTH ATTRIBUTE
 .* Max length chosen so printed data will fit on one print line

AIF (&LENGTH LE 50).LOK IF LENGTH < 50 O.K.
AIF (&LENGTH LE 100 AND '&T' EQ 'C').LOK CHAR, 100 OK.

 &LENGTH SETA 100 MAX LENGTH FOR CHAR STR
AIF ('&T' EQ 'C').LOK

 &LENGTH SETA 50 MAX LENGTH FOR HEX STR
 .LOK ANOP

AIF (&LPCNT NE &CNT).TCODEOK CHECK IF LAST OPERAND
 &TCODE SETA &TCODE+128 LAST OPERAND
 .TCODEOK ANOP
&LENGTH SETA &LENGTH-1 USE LENGTH-1 AS PARM.
.***
 .* PARAMS TO PRINTOUT--TYPE,LENGTH-1,S(ADDRESS),PRINTNAME
 .* Type code: X'80' = last item X'40' = decimal conversion
 .* X'20' = hexadecimal X'10' = character
 .* X'08' = Prtout * X'01' = decimal fullword
 .* All zero halfword means last operand was bad
 .***

DC AL1(&TCODE),AL1(&LENGTH),S(&SYSLIST(&LPCNT))
DC CL8'&SYSLIST(&LPCNT)' 8 Characters of print name

 &BADOP SETB (0) Indicate OK operand
AGO .PARMLP GET NEXT OPERAND

 .ENDLOOP AIF (NOT &BADOP).DOLM Check bad last operand
DC H'0' Indicate null last operand

 .DOLM LM 14,15,0(14) RESTORE REGISTERS
 .GENIO $$GENIO GENERATE I/O SECT

MEND

Appendix B: Simple I/O Macros 1027

B.4.6. READCARD Macro Definition
MACRO

 &LABEL READCARD &DATA,&EOFADDR BOTH ARGS ADDRESSABLE
 .***
 .* This macro reads a single 80-byte ″card image″ record into *
 .* the buffer provided by &DATA. If an end-of-file condition *
 .* is sensed on the input file, and the end-file parameter *
 .* &EOFADDR is present, then control will be returned to that *
 .* location. If no end-file parameter is present, the job *
 .* is terminated with an appropriate message. *
 .* *
 .* Generated argument list: *
 .* DC 2F'0' Save R14 & R15 *
 .* DC AL1(flag),VL3($$READCD) *
 .* DC A(calling_statement_number) *
 .* DC S(data) *
 .* BC 0,EndFile_Address *
 .***

LCLB &EOFFLG 1 IF THERE IS EOFADDR
LCLA &T

 .AA AIF ('&EOFADDR' EQ '').DECLAB TEST IF EOFADDR PRESENT
 &EOFFLG SETB 1 EOFADDR PRESENT
 .DECLAB AIF ('&DATA' NE '').PARMOK SEE IF FIRST PARAM THERE

MNote 8,'Missing data area parameter. READCARD ignored.'
MEXIT ERROR EXIT FROM MACRO

 .PARMOK ANOP ,
CNOP 2,4 ALIGNMENT

&LABEL STM 14,15,*+10 SAVE REGS 14 & 15
L 15,*+14 ADDRESS READCARD ROUTINE
BALR 14,15 CALL ROUTINE

 &T SETA 128*&EOFFLG
DC 2F'0',AL1(&T),VL3($$READCD),A(*-22),S(&DATA)
LM 14,15,0(14) RESTORE R14 & R15
AIF (NOT(&EOFFLG)).GENIO NO EOFFADDR, NO BC INSTR
BC 0,&EOFADDR COND. JUMP TO EOFADDR

 .GENIO $$GENIO GENERATE I/O SECTION
MEND

B.4.7. $$GENIO Macro Definition
MACRO
$$GENIO

.***
 .* This macro generates the code which implements the READCARD,*
 .* PRINTLIN, DUMPOUT, and PRINTOUT macros. the OS version was *
 .* first implemented by James R. Low, and modified for DOS by *
 .* Paul M. Dantzig, students at Stanford University. *
 .* Later additions and extensions by John Ehrman. *
 .***
 .* The following local set symbols determine various options
 .* for the generated control section.

GBLB &$$IOFLG 1 IF IOSECT GENERATED
LCLA &$$PLL PRINT LINE LEN, .GE. 121
LCLB &$$DOS SET TO 1 IF SYSTEM=DOS

 &$$DOS SETB 0 SYSTEM IS OS/360 et seq.
LCLB &$$LIBIO 1 IF IOSECT is in a library.

 &$$LIBIO SetB 0 Generate IOSect inline if 0,
 .* else generated code is in a runtime library if 1

LCLC &$$INAM INPUT DDNAME
LCLC &$$ONAM OUTPUT DDNAME
LCLC &$$CSNam,&$$CSTyp Caller's CSect name and type

.*
AIF (&$$IOFLG).MExit Exit if not required

 &$$CSNam SetC '&SYSECT' Save caller's CSect name
 &$$CSTyp SetC '&SYSSTYP' Save caller's CSect type
 &$$IOFLG SetB 1 Set expansion not needed flag

AIF (Not &$$LIBIO).Gen If not in library, gen
 .MExit MExit
 .***
 .* Register usage: R13 = local base *
 .* R14,R15,R0,R1 = scratch and OS linkage *
 .* R7 = local link register, R12 = call type *

1028 Assembler Language Programming for IBM System z™ Servers Version 2.00

 .* R11 = parm ptr, retaddr, R10 = parm ptr(original R14) *
 .* R9 = data length, R2,R3,R4,R8 = work registers *
 .***
 .Gen Push Print,NoPrint Save PRINT status

Print OFF,NoPrint Suppress this stuff
 &$$IOFLG SETB 1 Set flag for $$GENIO generated
 .* SET OPTIONAL VALUES
 &$$PLL SETA 121 LINE LENGTH = 121
 .* If the line length defined above is changed from 121 to 133,
 .* remember to make the corresponding changes in the PRINTLIN
 .* macro definition.

AIF (&$$DOS).OSNAME GO DO DOS FILENAMES
&$$INAM SETC 'SYSIN' INPUT DDNAME
&$$ONAM SETC 'SYSPRINT' OUTPUT DDNAME

AGO .CSECT GO GENERATE CSECTNAME
 .OSNAME ANOP
&$$ONAM SETC 'SYSLST' DOS DEFAULT OUTPUT FILE
&$$INAM SETC 'SYSIPT' DOS DEFAULT INPUT FILE
.CSECT ANOP
 $$IOSECT CSECT
 $$IOSECT AMode 24
 $$IOSECT RMode 24

ENTRY $$READCD,$$PRTLIN,$$PRTOUT,$$DMPOUT
ENTRY $$CNVRTO,$$CNVRTI

 .*
 $$DMPOUT STM 0,15,$$REGS-*(15) SAVE REGS. R15 AS BASE

MVI $$FLGS-*+4(15),1 INDICATE DUMPOUT CALL
LA 12,8 CODE FOR DUMP/PRINTOUT
J $$LOAD13 BRANCH TO COMMON CODE

 .*
 $$PRTLIN STM 0,15,$$REGS-*(15) SAVE REGS. R15 AS BASE

LA 12,4 CODE INDICATES PRINTLIN
J $$LOAD13 BRANCH TO COMMON CODE

 .*
 $$PRTOUT STM 0,15,$$REGS-*(15) SAVE REGS.

MVI $$FLGS-*+4(15),0 INDICATE PRINTOUT
LA 12,8 CODE FOR DUMP/PRINTOUT
J $$LOAD13 BRANCH TO COMMON CODE

 .*
 $$CNVRTO STM 0,15,$$REGS-*(15) SAVE REGS.

LA 12,12 CODE FOR CONVERTO
J $$LOAD13 BRANCH TO COMMON CODE

 .*
 $$CNVRTI STM 0,15,$$REGS-*(15) SAVE REGS.

LA 12,16 CODE FOR CONVERTI
J $$LOAD13 BRANCH TO COMMON CODE

 .*
 $$READCD STM 0,15,$$REGS-*(15) SAVE REGS. R15 AS BASE

SR 12,12 CODE INDICATES READ
 .*
 * $$LOAD13 BALR 13,0 LOAD BASE REGISTER
 .* USING *,13 ADDRESSABILITY IMPLIED

CNOP 0,4 ALIGNMENT
 $$LOAD13 JAS 13,$$MOVE SET BASE REG, JUMP DATA
 .* The following USING statement, although a comment, is implied
 .* throughout the code generated here. By using absolute
 .* displacements (calculated relative to $$, whose address is in
 .* R13), we can avoid having to issue another using statement
 .* anywhere in the code generated for the I/O package, and
 .* therefore the user can call these macros with assurance that
 .* there will be no adverse effects on his code, no matter how
 .* tortured it may be. Note that we go to great lengths to
 .* avoid the generation of literals, also.
 * USING $$,13 IS ASSUMED
 .* USING *,13 ADDRESSABILITY IMPLIED
 $$ EQU * SET BASE FOR R13

AIF (&$$DOS).REGS NO SAVE AREA FOR DOS
DC 18F'0' OS SAVE AREA

 .REGS ANOP
 $$REGS DC 16F'0' LOCAL SAVE AREA for user's regs
$$FFF DC A(X'FFFFFF') MASK USED FOR EFF ADDR
 $$F000 DC A(X'F000') MASK TO GET BASE REG.
 $$ACALL DC F'0' Calling address

AIF (&$$DOS).NUMC SKIP DCB EXIT IF DOS

Appendix B: Simple I/O Macros 1029

 .* DCB EXIT SETS BLKSIZE TO LRECL IF NOT SPECIFIED OTHERWISE
 $$DCBXIT DC X'85',AL3(*+3) DCB EXIT POINTER

OC 62(2,1),62(1) CHECK DCBBLKSIZ
BCR 7,14 RETURN IF NOT ZERO
MVC 62(2,1),82(1) ELSE SET TO LRECL
BR 14 COMPLETE OPEN

 .NUMC ANOP
 $$CVIASt DS F Digit string start address
 $$CVIAEn DS F Digit string end+1 address
 $$RDATA DC D'0' For reg conversion subroutines
 $$SAVG0 DC D'0' To save GGR0 temporarily
 $$DWORD DC 2D'0' USED FOR CVD,FLPTR,UNPK,CVDG

DC X'0' USED FOR UNPK INTO HEX
 $$CVIM32 DC P'2147483648' Maximum 32-bit binary magnitude
 $$CVIM64 DC P'9223372036854775808' Max 64-bit binary magnitude
 $$XTemp DS XL4 For packing high-order digits
 $$FLG2 DC X'00' Temp save for no-header bit
 $$FLGS DC X'00' PRINTOUT PARAM FLGS.
 $$CVIFlg DC X'00' 80=signed; 40=+; 20=-, 01=ERR exit
 .* ALSO USED TO INDICATE DUMPOUT/PRINTOUT CALL
 $$CC DC C', CC=' FOR PRINTOUT HEADING
$$CCV DC C'0' CC VALUE
 $$ST DC C', Statement' Statement number text
$$GPR DC C'GPR' FOR REGISTER PRINTOUT
 $$PC DC C'*** PRINTOUT requested at Address' MESSAGE
 $$DC DC C' DUMP' OVERLAY FOR ABOVE MSG
 $$XQUOTE DC C'= X''' FOR PRINTING HEX DATA
 $$CVIMC DC C'CONVERTI: Invalid character encountered'
 $$CVIMN DC C'CONVERTI: Invalid register or number too large'
 $$EX DC C'*** Execution terminated by' TERMINATION MSG
 $$REOF DC C'Reader EOF' READCARD EOF TERMINATION
 $$PEND DC C'PRINTOUT *' PRINTOUT * TERMINATION
 $$ATLOC DC C'at Address' Where it happened
$$LOCP Equ L'$$EX+L'$$PEND+3 Offset for 'AT LOCATION'

DC C' ' USED TO CLEAR LINE BUFF
 $$OUTBUF DC CL&$$PLL' ' LINE BUFFER
 $$PAT1 DC X'40202120' PATTERN TO PRINT Reg #
 $$PAT2 DC X'402020202020202020202120' PATTERN TO PRINT DEC.
 $$PAT3 DC 0XL21'0',2X'40',17X'20',X'2120' Pattern for GGR
$$PAT4 DC X'402020202120' Pattern for statement number
 $$DUMPTB DC 64C'.',C' ',9C'.',C'¢.<(+|&&',10C'.',C'$*);¬-/'

DC 9C'.',C',%_>?',10C'.',C':#@''=″ . abcdefghi',7C'.'
DC C'jklmnopqr',8C'.',C'stuvwxyz',23C'.',C'ABCDEFGHI'
DC 7C'.',C'JKLMNOPQR',8C'.',C'STUVWXYZ',6C'.'
DC C'0123456789',6C'.'

 $$TRTAB DC C'0123456789ABCDEF' Hex translation taboel
 $$CVITbl DS 0XL256 Input conversion translate table
 * Codes: hex 4=Invalid, 8=blank, C=+, 10=-, 14=digit

DC (C' ')X'04' Invalid chars
DC XL1'8' Blank
DC (C'+'-C' '-1)X'04' X'41'-X'4D' invalid
DC XL1'C' +
DC (C'-'-C'+'-1)X'04' X'4F'-X'5F' invalid
DC XL1'10' -
DC (C'0'-C'-'-1)X'04' X'61'-X'EF' invalid
DC 10X'14' Digits
DC 6X'4' Invalid

 $$RCVT DC XL(L'$$PAT3)'0'
 $$FLGSIO DC X'00' IOFLGS
 .* BIT 0 OF $$FLGSIO ONE IF OUTPUT FILE OPENED.
 .* BIT 1 OF $$FLGSIO ONE IF INPUT FILE OPENED.
 .* BIT 2 OF $$FLGSIO ONE IF INPUT FILE EOF ENCOUNTERED.

AIF (&$$DOS).BUF SKIP OS MACROS IF DOS
 .* The List and Execute forms of the OPEN and CLOSE macros are
 .* used because they do not require addressability, as do the
 .* standard forms, which make regular use of implied addresses.
 $$PROPEN OPEN ($$OUDCB,(OUTPUT)),MF=L OPEN LIST FOR SYSPRINT
 $$RDOPEN OPEN ($$INDCB,(INPUT)),MF=L OPEN LIST FOR SYSIN
 $$PRCLOS CLOSE ($$OUDCB),MF=L CLOSE LIST FOR SYSPRINT
 $$RDCLOS CLOSE ($$INDCB),MF=L CLOSE LIST FOR SYSIN
 .* Input and output DCBs. BLKSISE might be provided on DD statement.
 $$OUDCB DCB MACRF=PM,DSORG=PS,RECFM=FBA,EXLST=$$DCBXIT, X

LRECL=&$$PLL,DDNAME=&$$ONAM
 $$INDCB DCB MACRF=GM,DSORG=PS,LRECL=80,RECFM=FB, X

1030 Assembler Language Programming for IBM System z™ Servers Version 2.00

DDNAME=&$$INAM,EODAD=$$EOF,EXLST=$$DCBXIT
AGO .BLANK

 .BUF ANOP DO DOS DEFINITIONS
 $$ADDRI DC A($$INDCB) ADDRESS OF INPUT DTF
 $$ADDRO DC A($$OUDCB) ADDRESS OF OUTPUT DTF
 .* The use of X'5b' in the following two definitions is so that
 .* one can change all occurrences of '$$' to some other neutral
 .* characters without violating the DOS naming conventions for
 .* its open and close routines.
 $$OPEN DC 2X'5B',CL6'BOPEN' DOS OPEN ROUTINE NAME
 $$CLOSE DC 2X'5B',CL6'BCLOSE' DOS CLOSE ROUTINE NAME
$$ASA DC C'CBA98765432+-10 ' VALID ASA CONTROL CHARS
$$OUDCB DTFPR CTLCHR=ASA,WORKA=YES,IOAREA1=$$IOAOU1, X

IOAREA2=$$IOAOU2,DEVADDR=&$$ONAM,BLKSIZE=&$$PLL
$$INDCB DTFCD WORKA=YES,EOFADDR=$$EOF,IOAREA1=$$IOAIN1, X

IOAREA2=$$IOAIN2,BLKSIZE=80,DEVADDR=&$$INAM
 $$IOAIN1 DS CL80 INPUT BUFFER 1
 $$IOAIN2 DS CL80 INPUT BUFFER 2
 $$IOAOU1 DS CL&$$PLL OUTPUT BUFFER 1
 $$IOAOU2 DS CL&$$PLL OUTPUT BUFFER 2
 .BLANK ANOP
$$MOVE MVC $$REGS+56-$$(8,13),0(14) COPY USER'S R14 & R15
 .* At this point R14 points to parameter list. R12 contains a code
 .* indicating which macro was called--0 means READCARD, 4 means
 .* PRINTLIN, and 8 means DUMPOUT or PRINTOUT ($$FLGS set also).
 .* R10 will contain a copy of R14, the first param address.
 .* R11 will point to the next param in the list.
 .* $$EFADDR calculates the effective address from the halfword
 .* in the right half of R2 and returns it in R0 and R2.

LR 11,14 COPY FIRST PARAM ADDRESS
LR 10,11 COPY FIRST PARAM ADDRESS

 .* SAVE CALLER'S CC VALUE
LR 0,10 COPY CALLER'S BALR 14 REG
SLL 0,2 DROP ILC
SRL 0,30 KEEP ONLY CC
STC 0,$$CCV-$$(0,13) STORE IN CC= TEXT
OI $$CCV-$$(13),X'F0' MAKE A CHARACTER
MVC $$ACALL-$$(3,13),13(11) Save PO/DO/RC call address
LTR 12,12 CHECK FOR READCARD
JZ $$OPNRD BRANCH IF READCARD to open input
JAS 7,$$OPNOUT OPEN PRINTER
B *-$$(12,13) Branch to processing routine
J $$LINP PRINTLIN
J $$PODO PRINTOUT/DUMPOUT
J $$CVTO CONVERTO

 .* J $$CVTI CONVERTI (follows immediately!)
 .*---
 .* CONVERTI -- convert to 32 or 64 bit signed integer in GR
 .*---
 .*State 0: validate register operand

LH 2,14(,11) Get memory addressing halfword
JAS 7,$$EFADDR Convert to an address
LR 3,2 Pointer carried in R3
LH 2,12(,11) Get register addressing halfword
JAS 7,$$EFADDR Convert to an address
LA 11,16(,11) Set return address
CHI 2,31 Test register value
JH $$CVIER1 Value error if reg too big
LR 4,2 Carry register number in R4
MVI $$CVIFlg-$$(13),0 Initialize flags
TM 8(14),X'03' Are there any exits?
JZ $$CVISt1 If no, nothing more to do
MVC $$CVIFlg-$$(13),8(14) Copy byte with exit flag bits
NI 21(14),X'0F' Reset ERR= branch mask to zero
NI 25(14),X'0F' Reset STOP= branch mask to zero

 .*State 1: scan for non-blank: +, -, or digit
 $$CVISt1 XR 2,2 Initial state

TRT 0(1,3),$$CVITbl-$$(13) Scan one character
LA 3,1(,3) Step to next char
LA 2,*+2-$$(2,13) Address-4 of first branch
BR 2 Branch per character type
J $$CVIErC Invalid character; error exit
J $$CVISt1 Blank; repeat initial-state scan
J $$CVIP Plus

Appendix B: Simple I/O Macros 1031

J $$CVIM Minus
J $$CVIS1A Digit

 $$CVIP OI $$CVIFlg-$$(13),X'C0' Sign found, + value
ST 3,$$CVIASt-$$(,13) Save digit starting address
J $$CVISt2 Now scan for digits

 $$CVIM OI $$CVIFlg-$$(13),X'A0' Sign found, - value
ST 3,$$CVIASt-$$(,13) Save digit starting address
J $$CVISt2 Now scan for digits

 $$CVIS1A OI $$CVIFlg-$$(13),X'C0' Set default + sign
LR 2,3 Copy pointer for digit start
BCTR 2,0 Back up to digit start address
ST 2,$$CVIASt-$$(,13) Save digit starting address
J $$CVISt3 Now scan for more digits

 .*State 2: have a sign; scan for required digit; non-digit -> error
 $$CVISt2 XR 2,2 Clear GR2 for TRT

TRT 0(1,3),$$CVITbl-$$(13) Scan one character
LA 3,1(,3) Step to next char
LA 2,*+2-$$(2,13) Address-4 of first branch
BR 2 Branch per character type
J $$CVIEr2 Invalid character
J $$CVIEr2 Blank = invalid char
J $$CVIEr2 + = invalid char
J $$CVIEr2 - = invalid char
CLI 0(3),C'0' Is next char less than C'0'?
JL $$CVIS4C If yes, scan is ended
CLI 0(3),C'9' Is it greater than C'9'?
JH $$CVIS4C If yes, scan ended, R3=A(stop char)

 .*State 3: only digits allowed; everything else terminates scan
 $$CVISt3 XR 2,2 Clear GR2 for TRT

TRT 0(1,3),$$CVITbl-$$(13) Scan one character
LA 3,1(,3) Step to next char
LA 2,*+2-$$(2,13) Address-4 of first branch
BR 2 Branch per character type
J $$CVIErC Invalid char ends scan
J $$CVISt4 Blank = non-digit char
J $$CVISt4 + = non-digit char
J $$CVISt4 - = non-digit char
J $$CVISt3 Digit = repeat state 3

 .*State 4: remove leading 0s; save end addr, new start addr
 $$CVISt4 BCTR 3,0 Back up to stop character
 $$CVIS4C ST 3,$$CVIAEn-$$(,13) Save stop address for user's R1

LR 0,3 Copy end address
BCTR 0,0 Back up to last digit
L 2,$$CVIASt-$$(,13) Get starting address

 $$CVIS4A CLI 0(2),C'0' Check for leading zero
JNE $$CVIS4B Exit loop if nonzero
CR 2,0 Is the number entirely zeros?
JNL $$CVIS4B Yes, have start of valid number
LA 2,1(,2) Step to next digit
J $$CVIS4A Repeat the scan

 $$CVIS4B ST 2,$$CVIASt-$$(,13) Save significance start address
LR 1,2 Save start addr in GR1 for packing
SR 0,2 Last-first = (Number-1) of digits
LR 2,0 Save L-1 for packing and moving

 .*State 5: check reg type vs. length of digit string
CHI 2,18 More than 19 digits?
JH $$CVIEr1 Error if so
CHI 4,15 Check for 32- bs 64-bit register
JH $$CVISt6 Go process data for 64-bit reg
CHI 2,9 Check length of 32-bit data
JH $$CVIEr1 Digit string too long, >10 digits
AHI 2,X'0070' Include length 8 for the doubleword
STC 2,*+5-$$(,13) Store L1,L2 in Pack instruction
PACK $$DWORD-$$(8,13),0(*-*,1) Pack up to 10 digits
CP $$DWORD-$$(,13),$$CVIM32-$$(,13) Check vs. max 32
JL $$CVIS5A If smaller, go ahead and convert
JH $$CVIEr1 Error if too big
TM $$CVIFlg-$$(13),X'C0' Equals max; is sign positive?
JO $$CVIEr1 Error if +max
LA 0,1 Create max negative result
SLL 0,31 Have -2**31 in R0
J $$CVIV32 Go store and test 32-bit value

 $$CVIS5A CVB 0,$$DWORD-$$(,13) Convert to binary
TM $$CVIFlg-$$(13),X'A0' Was there a minus sign?

1032 Assembler Language Programming for IBM System z™ Servers Version 2.00

JNO $$CVIV32 Skip if +
LCR 0,0 Make the result negative

 $$CVIV32 SLL 4,2 Make a word index from reg value
ST 0,$$REGS-$$(4,13) Store result in user's register
J $$CVIRet And return to caller

 .*State 5: Convert to 64-bit register
 $$CVISt6 XC $$DWORD-$$(13),$$DWORD-$$(13) Clear high-order 8 bytes

STG 0,$$SAVG0-$$(,13) Save user's GG0
CHI 2,15 Check for 16 or more digits
JNL $$CVIS6B Go do 16 to 19 digits
AHI 2,X'0070' Simple case; set L1,L2 for pack
STC 2,*+5-$$(,13) Set length fields
PACK $$DWORD+8-$$(,13),0(*-*,1) Pack 1-15 digits
CVBG 0,$$DWORD-$$(,13) Convert to 64-bit binary
TM $$CVIFlg-$$(13),X'20' Was there a minus sign?
JNO $$CVIV64 If not, prepare to deliver result
LCGR 0,0
J $$CVIV64 Go store result

 $$CVIS6B LR 0,2 Copy length-1 for long number
AHI 0,-15 Length in R4 now 0-3 (16-19 digits)
LR 2,0 Save difference
AHI 0,X'0030' Add in length for pack
STC 0,*+5-$$(,13) Store L1,L2 in pack instructin
PACK $$XTemp-$$(*-*,13),0(*-*,1) Pack 1 to 4 digits
SRP $$XTemp-$$(13),1,0 Shift left once to eliminate sign
LA 1,1(1,2) Address of remaining 15 digits
PACK $$DWORD+8-$$(,13),0(15,1) Pack remaining 15 digits
MVC $$DWORD+5-$$(3,13),$$XTemp-$$(13) Copy 1-4 digits
CP $$DWORD-$$(16,13),$$CVIM64-$$(13) Check digit magnitude
JH $$CVIEr1 Error if too large
JL $$CVIS6C If smaller, go ahead and convert
TM $$CVIFlg-$$(13),X'C0' Max magnitude: was there a - sign?
JO $$CVIEr1 No, number too large by 1 bit
LA 0,1 Set up max negative value
SLLG 0,0,63 Now only a high-order bit in G0
J $$CVIV64 Go store result

 $$CVIS6C CVBG 0,$$DWORD-$$(,13) Convert to 64-bit binary
TM $$CVIFlg-$$(13),X'A0' Was there a minus sign?
JNO $$CVIV64 No, store result
LCGR 0,0 Complement it

 $$CVIV64 LTR 4,4 Is the user's reg zero?
JNZ $$CVI64L Jump if no, simpler case
ST 0,$$REGS-$$(,13) Store low (GR0) half of GG0
J $$CVIRet No more to do; high half is set

 $$CVI64L LR 0,4 Copy register number
SLL 4,4 Move reg number left 4 bits
OR 4,0 Now have X'rr' in R4
STC 4,*+5-$$(,13) Store in LMH instruction
LMH *-*,*-*,$$DWORD-$$(13) Load high half of user's Greg
LR 1,0 User's reg number now in R1
SLL 1,2 Make a word index from it
L 0,$$DWORD+4-$$(,13) Get low half of 64-bit result
ST 0,$$Regs-$$(1,13) Store low half in user's register
LG 0,$$SAVG0-$$(,13) Restore GG0
J $$CVIRet Return to caller

 .*
 .* $$CVIErr BCTR 3,0 Invalid value, R3=A(stop char)
 $$CVIEr1 ST 3,$$CVIAEn-$$(,13) Store stop char address

TM $$CVIFlg-$$(13),X'01' Is there an ERR= operand?
JZ $$CVIErN If not, don't set its branch mask
OI 21(10),X'F0' Set ERR= return branch mask to F
J $$CVIRet Return to caller's ERR= address

 $$CVIErN MVC $$OUTBUF+1-$$(L'$$CVIMN,13),$$CVIMN-$$(13)
JAS 7,$$OPNOUT Make sure printer is opened
JAS 7,$$PUTLIN Print the line
J $$TERM1 And terminate

 .*
 $$CVIEr2 BCTR 3,0 Invalid char
 $$CVIErC BCTR 3,0 Invalid data, R3=A(stop char)

ST 3,$$CVIAEn-$$(,13) Store stop char address
TM $$CVIFlg-$$(13),X'02' Is there a STOP= operand?
JZ $$CVIErX If not, don't set its branch mask
OI 25(10),X'F0' Set ERR= return branch mask to F
J $$CVIRet Return to caller's STOP= address

Appendix B: Simple I/O Macros 1033

 $$CVIRet L 0,$$CVIAEn-$$(,13) Get address of stop character
ST 0,$$REGS-$$+4(,13) Store in GR1 slot
J $$RETURN Return to caller

 $$CVIErX MVC $$OUTBUF+1-$$(L'$$CVIMC,13),$$CVIMC-$$(13)
JAS 7,$$OPNOUT Make sure printer is opened
JAS 7,$$PUTLIN Print the line
J $$TERM1 And terminate

 .*---
 .* CONVERTO -- convert 32 or 64 bit signed integer to characters
 .*---
 $$CVTO LH 2,12(,11) Get register operand

JAS 7,$$EFAddr Convert to effective address
LR 9,2 Save
CHI 2,47 Check value
JH $$CVTX Exit if too big, ignore the call
LH 2,14(,11) Get storage address operand
JAS 7,$$EFAddr Convert to effective address
CHI 9,15 Want a 4-byte GPR?
JH $$CVTOD No, want either GGR or FPR
SLL 9,28 Drop off unwanted bits
SRL 9,26 Make index for load
L 0,$$Regs-$$(9,13) Get the user's register
ST 0,$$RData-$$(,13) Store for conversion
JAS 7,$$CVT4 Convert to a character string
MVC 0(L'$$Pat2,2),$$RCVT-$$(13) Move to caller's area
J $$CVTX And return

 *
 $$CVTOD CHI 9,31 Want an 8-byte GPR?

JH $$CVTOF No, must be a FPR
SLL 9,28 Drop off unwanted bits
SRL 9,24 Make a register number
STC 9,*+5-$$(,13) Store in STG
STG *-*,$$RData-$$(,13) Store high half of user's GGR
SRL 9,2 Make a word index
L 0,$$Regs-$$(9,13) Get low half of user's register
ST 0,$$RData+4-$$(,13) Store low half for conversion
JAS 7,$$CVT8 Convert to characters
MVC 0(L'$$Pat3,2),$$RCVT-$$(13) Move to caller's area
J $$CVTX And return

 *
 $$CVTOF MVC 0(3,2),$$XQUOTE+1-$$(13) Initialize first 3 chars

SLL 9,28 Drop off unwanted bits
SRL 9,24 Make a register number
STC 9,*+5-$$(,13) Store in STD
STD *-*,$$RData-$$(,13) Store user's FPR
UNPK 3(16,2),$$RData-$$(9,13) Convert to spread hex
UNPK 18(2,2),$$RData+7-$$(2,13) Convert to spread hex
TR 3(16,2),$$TRTAB-240-$$(13) Translate to EBCDIC
MVI 19(2),C'''' Insert closing quote

 *
 $$CVTX LA 11,16(,11) Set return address

J $$RETURN Return to caller
 .*---
 .* PRINTOUT/DUMPOUT HEADER LINE
 .*---
$$PODO MVC $$FLG2-$$(1,13),12(11) Copy No-header bit

TM 12(11),1 TEST NO-HEADER BIT
JO $$NOHDR SKIP HEADER IF SET
MVC $$OUTBUF+1-$$(L'$$PC,13),$$PC-$$(13) HEADER MSG
CLI $$FLGS-$$(13),0 CHECK FOR PRINTOUT
JE *+10 BRANCH IF PRINTOUT
MVC $$OUTBUF+5-$$(5,13),$$DC-$$(13) OVERLAY WITH DUMP
MVC $$DWORD-$$(3,13),13(11) MOVE CALL ADDRESS
JAS 7,$$HEXCV CONVERT TO HEX
MVC $$OUTBUF+L'$$PC+2-$$(6,13),$$DWORD-$$(13) TO LINE
LA 1,$$OUTBUF+L'$$PC+2+6-$$(,13) Do statement number
MVC 0(L'$$ST,1),$$ST-$$(13) Move text
LA 1,L'$$ST(,1) Step output pointer
L 0,16(,11) Get statement number
CVD 0,$$DWORD-$$(,13) Convert to packed
MVC 0(L'$$PAT4,1),$$PAT4-$$(13) Move pattern to line
ED 0(L'$$PAT4,1),$$DWORD+5-$$(13) Edit statement number
LA 1,L'$$PAT4(,1) Step output pointer
MVC 0(L'$$CC+1,1),$$CC-$$(13) Move CC value

1034 Assembler Language Programming for IBM System z™ Servers Version 2.00

 .* MVC $$OUTBUF+L'$$PC+8-$$(L'$$CC+1,13),$$CC-$$(13) CC VALUE
JAS 7,$$PUTLIN PRINT CALLFROM MESSAGE

 $$NOHDR CLI $$FLGS-$$(13),1 CHECK FOR DUMPOUT
JE $$DUMP GO PROCESS DUMP

 .*---
 .* PRINTOUT -- First, CHECK IF NULL PARAMETER LIST
 .*---

TM 12(11),X'F0' FLAGS IF NO PARAMS
LA 11,20(0,11) ADDR NEXT PARM OR RET.
JO $$RETURN IF NO PARMS, RETURN

$$OUTLP MVC $$FLGS-$$(1,13),0(11) COPY PARM FLAGS
OC 0(2,11),0(11) Check for null-last indicator
JNZ $$STAR Not null-last, check for *
LA 11,2(,11) Step over indicator
J $$RETURN And return to caller

$$STAR TM $$FLGS-$$(13),8 SEE IF PRINTOUT *
JNO $$GETADD BRANCH IF NOT PRTO *
TM $$FLG2-$$(13),1 PRINTOUT * and no header?
JO $$TERM Yes, just terminate
MVC $$OUTBUF+2+L'$$EX-$$(L'$$PEND,13),$$PEND-$$(13)
J $$TERM AND GO TERMINATE

 $$GETADD LH 2,2(,11) ADDR HWORD PARAM.
JAS 7,$$EFADDR COMPUTE EFFECTIVE ADDR
MVC $$OUTBUF+1-$$(L'$$GPR,13),$$GPR-$$(13) GPR MSG
MVC $$OUTBUF+10-$$(L'$$XQUOTE,13),$$XQUOTE-$$(13)
LA 0,X'F' Mask for register digit
NR 0,2 Mask off all but 4 bits
CVD 0,$$DWORD-$$(,13) CONVERT REG NO TO DEC
MVC $$OUTBUF+4-$$(L'$$PAT1,13),$$PAT1-$$(13) SET UP
ED $$OUTBUF+4-$$(L'$$PAT1,13),$$DWORD+6-$$(13) REGNO
CHI 2,15 SEE IF GPR
JH $$TSTGGR IF NOT, TO NEXT TEST

 .* KNOW WE ARE TO PRINT CONTENTS OF a 32-bit GPR
SLL 2,2 Form word index
LA 2,$$REGS-$$(2,13) ADDRESS USERS REGISTER
MVC $$RDATA-$$(4,13),0(2) Copy user's register contents
LA 9,3 LENGTH-1 OF DATA
JAS 7,$$PHEX PRINT HEX
MVI 2(3),C'=' Put = sign in output line
JAS 7,$$CVT4 Convert it
MVC 3(L'$$PAT2,3),$$RCVT-$$(13) Move result to output
J $$PNPUT Output the line

 $$TSTGGR CHI 2,31 SEE IF 64-bit GPR
JH $$TSTFLT IF NOT, TO NEXT TEST

 .* Print contents of 64-bit General Register
MVI $$OUTBUF+2-$$(13),C'G' Set msg to 'GGR'
LA 0,X'F' Set mask
NR 2,0 Clear high-order bits
SLL 2,4 Shift register number left
STC 2,*+5-$$(,13) Store in next instruction
STG *-*,$$RDATA-$$(,13) Store GGRn high half
SRL 2,2 Reposition register number
LA 2,$$REGS-$$(2,13) Point to user's low half
MVC $$RDATA+4-$$(4,13),0(2) Move user's low order half
LA 2,$$RDATA-$$(,13) Data to convert
LA 9,7 Length-1
JAS 7,$$PHEX PRINT HEX
MVI 2(3),C'=' Put = sign in output line
JAS 7,$$CVT8
MVC 4(L'$$PAT3,3),$$RCVT-$$(13) Move to output
J $$PNPUT Output the data

 $$TSTFLT CHI 2,47 SEE IF FLPTR
JH $$ISSYM IF NOT IS SYMBOL

 .* KNOW IS FLOATING PT REG
MVI $$OUTBUF+1-$$(13),C'F' SET MSG TO 'FPR'
SLL 2,4 PREPARE FOR STD
STC 2,*+5-$$(,13) SELECT FLPTR
STD *-*,$$DWORD-$$(0,13) GET CONTENTS FLPTR
LA 2,$$DWORD-$$(,13) ADDR CONTENTS FOR PHEX
LA 9,7 LENGTH-1 OF DATA
JAS 7,$$PHEX PRINT HEX
J $$PNPUT Output the data

$$ISSYM MVC $$OUTBUF+1-$$(8,13),4(11) SYMBOL NAME TO BUFF.
TM $$FLGS-$$(13),64 SEE IF DECIMAL

Appendix B: Simple I/O Macros 1035

JO $$DEC BRANCH IF DECIMAL
SR 9,9 PREPARE FOR IC
IC 9,1(,11) GET LENGTH-1
TM $$FLGS-$$(13),32 TEST FOR HEX
JNO $$SYM2 BRANCH IF NOT HEX
JAS 7,$$PHEX Convert the data
J $$PNPUT Output the data

 $$SYM2 DC 0H
MVI $$OUTBUF+12-$$(13),C'C' SET FOR CHARACTERS
STC 9,*+5-$$(,13) STORE LENGTH INTO MVC
MVC $$OUTBUF+14-$$(*-*,13),0(2) MOVE CHARACTER DATA
LA 3,$$OUTBUF+15-$$(9,13) Address of trailing quote
MVI 0(3),C'''' Put trailing quote
J $$PNPUT Output the data

 .* DECIMAL FULLWORD OR HALFWORD
 $$DEC CLI 1(11),7 Check for FD data type

JE $$DECD Branch if yes, do long conversion
LH 3,0(0,2) GET HALFWORD
TM $$FLGS-$$(13),1 SEE IF WANTED FULLWORD
JNO *+8 IF NOT DON'T LOAD IT
L 3,0(,2) REALLY WANTED FULLWORD
ST 3,$$RDATA-$$(,13) Store for conversion
JAS 7,$$CVT4 Convert to characters
MVC $$OutBuf+11-$$(L'$$Pat2,13),$$RCVT-$$(13)
J $$PNPUT PRINT LINE

$$DECD MVC $$RDATA-$$(8,13),0(2) Get the doubleword
JAS 7,$$CVT8 Convert to characters
MVC $$OutBuf+12-$$(L'$$Pat3,13),$$RCVT-$$(13)

 $$PNPUT LA 11,12(,11) POINT TO NEXT PARAMETER
 $$PUT JAS 7,$$PUTLIN PRINT LINE

TM $$FLGS-$$(13),128 SEE IF LAST PARAMETER
JNO $$OUTLP LOOP IF NOT

 $$RETURN STM 10,11,$$REGS+56-$$(13) STORE PARM,RETURN ADDRS.
SPM 10 RESET CALLER'S COND CODE
LM 0,15,$$REGS-$$(13) RESTORE REGS

 .* At this point all but R14 & R15 of user are restored;
 .* R14 contains addr of parm list following the BALR, and
 .* R15 contains return addr.

BR 15 RETURN TO USER
 .*---
 .* DUMPOUT
 .*---
 $$DUMP LH 2,22(,11) GET SECOND OPERAND

JAS 7,$$EFADDR SECOND EFFECTIVE ADDRESS
LR 9,2 SAVE FOR A WHILE
LH 2,20(,11) GET FIRST OPERAND
JAS 7,$$EFADDR FIRST EFFECTIVE ADDRESS
LA 11,24(,11) SET RETURN ADDRESS NOW
CR 2,9 COMPARE START TO END
JNH *+10 SKIP SWAP IF OKAY
LR 0,9 SWAP HIGH AND LOW BOUNDS
LR 9,2 2 HAS LOWER BOUND
LR 2,0 AND R9 HAS UPPER BOUND
LA 8,4 SET INCREMENT
LCR 1,8 COMPLEMENT FOR MASKING
NR 2,1 FORCE TO WORD BOUNDARY

 $$DUMPA ST 2,$$DWORD-$$(,13) STORE LINE-START ADDRESS
JAS 7,$$HEXCV CONVERT TO HEX
MVC $$OUTBUF+1-$$(6,13),$$DWORD+2-$$(13) TO LINE
LA 1,$$OUTBUF+9-$$(,13) SET LINE POINTER
MVI $$OUTBUF+82-$$(13),C'*' SET LEFT ASTERISK
MVC $$OUTBUF+83-$$(32,13),0(2) MOVE EBCDIC CHARS
TR $$OUTBUF+83-$$(32,13),$$DUMPTB-$$(13) XLATE
MVI $$OUTBUF+115-$$(13),C'*' SET RIGHT ASTERISK
LA 0,8 SET INNER LOOP COUNT

$$DUMPB MVC $$DWORD-$$(4,13),0(2) GET A WORD FROM CALLER
JAS 7,$$HEXCV CONVERT TO HEX
MVC 0(8,1),$$DWORD-$$(13) TO PRINT LINE
AR 2,8 INCREMENT FETCH ADDRESS
LA 1,9(,1) AND LINE POINTER
JCT 0,$$DUMPB LOOP TILL LINE DONE
JAS 7,$$PUTLIN PRINT THE LINE
CR 2,9 COMPARE LOWER TO UPPER
JNH $$DUMPA GO WORK ON NEXT LINE

1036 Assembler Language Programming for IBM System z™ Servers Version 2.00

J $$RETURN
.*---
 .* PRINTLIN
 .*---
 $$LINP LH 2,14(0,11) ADDR. HWORD USER BUFFER

JAS 7,$$EFADDR CALC. LINE LENGTH
LA 4,&$$PLL MAX LINE SIZE
LTR 3,0 SEE IF CALC LENGTH ZERO
JZ *+10 IF ZERO USE LEN=MAX
CR 3,4 SEE IF LEN GT MAX
JNH *+6 IF NOT USE LEN
LR 3,4 USE LEN=MAX
LH 2,12(,11) ADDR HWORD. USER BUFFER
JAS 7,$$EFADDR CALC. EFFECT. ADDR.
BCTR 3,0 LENGTH -1 FOR MVC
STC 3,*+5-$$(,13) STORE LENGTH INTO MVC
MVC $$OUTBUF-$$(0,13),0(2) MOVE USER LINE TO BUFF
MVI $$FLGS-$$(13),128 MARK AS LAST PARAM
LA 11,16(,11) RETURN ADDR
AIF (NOT &$$DOS).GOPUT SKIP ASA CODE IF NOT DOS
LA 2,L'$$ASA GET LENGTH OF CHARACTERS
SR 0,0 USED FOR USER'S CONTROL
SR 1,1 FOR VALID CHARACTERS
IC 0,$$OUTBUF-$$(,13) GET USER'S CONTROL CHAR
IC 1,$$ASA-1-$$(2,13) GET A VALID ASA CHAR
CR 1,0 COMPARE IT TO USER'S
JE $$PUT GO PRINT IF OKAY
JCT 2,*-10 INDEX DOWN BY 1 IF BAD
MVI $$OUTBUF-$$(13),C' ' FORCE BLANK IF BAD

 .GOPUT J $$PUT PRINT LINE AND RETURN
 .*---
 .* READCARD
 .*---
 $$OPNRD TM $$FLGSIO-$$(13),X'40' SEE IF INPUT FILE OPEN

JO $$INOPN IF SO DON'T OPEN AGAIN
AIF (&$$DOS).OPENRD GO TO DOS OPEN CODE

* OPEN ($$INDCB,(INPUT)) OPEN INPUT FILE
LA 1,$$RDOPEN-$$(,13) ADDR OF OPEN LIST
OPEN MF=(E,(1)) OPEN INPUT FILE
AGO .MARKRD GO SET INPUT OPEN BIT

 .OPENRD ANOP
 * OPEN $$INDCB DOS OPEN MACRO

LA 1,$$OPEN-$$(,13) ADDR OF OPEN NAME
LA 0,$$ADDRI-$$(,13) ADDR OF INPUT DTF
SVC 2 DOS OPEN/CLOSE SVC

 .MARKRD OI $$FLGSIO-$$(13),X'40' INDICATE FILE OPENED
 $$INOPN LA 11,18(,11) DETERMINE RETURN ADDR.

TM $$FLGSIO-$$(13),X'20' SEE IF EOF ENCOUNTERED
JO $$EOFERR IF SO ERROR
LH 2,16(,10) ADDR. HWORD DATA AREA
JAS 7,$$EFADDR CALC. EFFECTIVE ADDR.

 * GET $$INDCB,(0) GET NEW CARD IMAGE
LA 1,$$INDCB-$$(,13) ADDRESS OF INPUT DCB
GET (1),(0) GET NEW CARD IMAGE
J $$RETURN RETURN TO CALLER

$$EOF TM 8(10),X'80' SEE IF CALLER EOF EXIT
JNO $$EOFERR IF NONE, ERROR
OI $$FLGSIO-$$(13),X'20' MARK EOF FLAG
OI 5(11),X'F0' CH USER BC 0 TO BC 15
J $$RETURN RETURN TO CALLER

 $$EOFERR MVC $$OUTBUF+2+L'$$EX-$$(L'$$REOF,13),$$REOF-$$(13)
 .*---
 .* TERMINATE
 .*---
$$TERM TM $$FLG2-$$(13),1 Check for no message

JO $$TERM1 Branch if none
MVC $$OUTBUF+1-$$(L'$$EX,13),$$EX-$$(13) FINIS MSG
MVC $$OUTBUF+$$LOCP-$$(L'$$ATLOC,13),$$ATLOC-$$(13)
MVC $$DWORD-$$(3,13),$$ACALL-$$(13) Get call address
JAS 7,$$HEXCV Convert to hex characters
MVC $$OUTBUF+1+$$LOCP+L'$$ATLOC-$$(6,13),$$DWORD-$$(13)
JAS 7,$$PUTLIN PRINT MESSAGE
AIF (&$$DOS).CLOSP GO TO DOS CLOSE CODE

 * CLOSE ($$OUDCB) CLOSE OUTPUT FILE

Appendix B: Simple I/O Macros 1037

 $$TERM1 LA 1,$$PRCLOS-$$(,13) ADDR OF CLOSE LIST
CLOSE MF=(E,(1)) CLOSE OUTPUT FILE
AGO .CHKCLSR GO TEST INPUT CLOSE

 .CLOSP ANOP
 * CLOSE $$OUDCB CLOSE OUTPUT FILE
 $$TERM1 LA 1,$$CLOSE-$$(,13) SET ADDR OF ROUTINE NAME

LA 0,$$ADDRO-$$(,13) ADDR OF OUTPUT DTF
SVC 2 DOS OPEN/CLOSE SVC

 .CHKCLSR TM $$FLGSIO-$$(13),X'40' CHECK IF INPUT FILE OPEN
JNO $$TERM2 IF NOT DON'T CLOSE
AIF (&$$DOS).CLOSR GO TO DOS CLOSE CODE

 * CLOSE ($$INDCB) CLOSE INPUT FILE
LA 1,$$RDCLOS-$$(,13) ADDR OF CLOSE LIST
CLOSE MF=(E,(1)) CLOSE INPUT FILE
AGO .TERM GO TO TERMINATE CODE

 .CLOSR ANOP
 * CLOSE $$INDCB DOS CLOSE MACRO

LA 1,$$CLOSE-$$(,13) ADDR OF CLOSE NAME
LA 0,$$ADDRI-$$(,13) ADDR OF INPUT DTF
SVC 2 DOS OPEN/CLOSE SVC

 .TERM ANOP
 $$TERM2 MVI $$FLGSIO-$$(13),0 CLEAR IO FLAGS

AIF (&$$DOS).EOJ SKIP TO DOS EXIT
SR 15,15 SET OS RETURN CODE TO 0
SVC 3 OS EXIT MACRO
AGO .PUTL AND GO ON WITH CODE

 .EOJ EOJ
 .PUTL ANOP
 .*---
 .* INTERNAL SUBROUTINES
 .*---
 .* Length-1 is in R9, source address is in R2, target address in R3.
 $$PHEX LA 3,$$OUTBUF+14-$$(,13) ADDRESS FOR HEX DIGIT

LA 8,1(0,9) NUMBER OF BYTES
AR 9,8 NUMBER OF HEX DIGITS -1
UNPK 0(3,3),0(2,2) SPREAD HEX DIGITS
LA 3,2(,3) INC. LINE POINTER
LA 2,1(,2) INCREMENT SOURCE PTR
JCT 8,*-14 LOOP IF MORE BYTES
STC 9,*+5-$$(,13) STORE LENGTH INTO TR
TR $$OUTBUF+14-$$(*-*,13),$$TRTAB-240-$$(13)
LA 3,$$OUTBUF+15-$$(9,13) ADDR. NEXT PRINT POS.
MVI 0(3),C'''' CLOSING QUOTE MARK
BR 7 Return to caller

 .*
 $$CVT4 L 0,$$RDATA-$$(,13) Get 32-bit binary integer

CVD 0,$$DWORD-$$(,13) Convert to packed decimal
MVC $$RCVT-$$(L'$$PAT2,13),$$PAT2-$$(13) move pattern
LA 1,$$RCVT+L'$$PAT2-1-$$(,13) Possible sign position
EDMK $$RCVT-$$(L'$$PAT2,13),$$DWORD+2-$$(13) Edit it
BNMR 7 Return if not -
BCTR 1,0 Back up
MVI 0(1),C'-' Set - sign
BR 7 Return

 .*
$$CVT8 STG 0,$$SAVG0-$$(,13) Save GGR0 (changed by CVDG)

LG 0,$$RDATA-$$(,13) Get 64-bit binary integer
CVDG 0,$$DWORD-$$(,13) Convert to packed decimal
LG 0,$$SAVG0-$$(,13) Restore user's GGR0 (used by CVDG)
MVC $$RCVT-$$(L'$$PAT3,13),$$PAT3-$$(13) move pattern
LA 1,$$RCVT+L'$$PAT3-1-$$(,13) Possible sign position
EDMK $$RCVT-$$(L'$$PAT3,13),$$DWORD+6-$$(13) Edit it
BNMR 7 Return if not -
BCTR 1,0 Back up
MVI 0(1),C'-' Set - sign
BR 7 Return

 .*
 $$EFADDR LA 0,X'FFF' DISPLACEMENT MASK

NR 0,2 DISPLACEMENT IN R0
N 2,$$F000-$$(,13) CALC WHICH BASE REG.
JZ *+16 RETURN IF BASE = 0
SRL 2,10 BASE REG NO. AS INDEX
AL 0,$$REGS-$$(2,13) FORM EFFECTIVE ADDR.
N 0,$$FFF-$$(,13) MASK OFF HIGH-ORDER BYTE

1038 Assembler Language Programming for IBM System z™ Servers Version 2.00

LR 2,0 RESULT IN R2 ALSO
BR 7 RETURN

 .*
 $$OPNOUT TM $$FLGSIO-$$(13),X'80' IS OUTPUT FILE OPEN

BCR 7,7 RETURN NOW IF YES
OI $$FLGSIO-$$(13),X'80' OUTPUT FILE BEING OPENED
AIF (&$$DOS).OPENP DIFFERENT CODE FOR DOS

 * OPEN ($$OUDCB,(OUTPUT)) OPEN OUTPUT FILE
LA 1,$$PROPEN-$$(,13) ADDR OF OPEN LIST
OPEN MF=(E,(1)) OPEN OUTPUT FILE
AGO .CLEAR GO FINISH OPEN

 .OPENP ANOP
 * OPEN $$OUDCB DOS OPEN MACRO

LA 1,$$OPEN-$$(,13) ADDRESS OF ROUTINE NAME
LA 0,$$ADDRO-$$(,13) ADDRESS OF DTF POINTER
SVC 2 DOS OPEN/CLOSE SVC

 .CLEAR BR 7 RETURN TO CALLER
 .*
 $$PUTLIN LA 1,$$OUDCB-$$(,13) ADDRESS OF OUTPUT DCB

LA 0,$$OUTBUF-$$(,13) ADDRESS OF OUTPUT BUFFER
PUT (1),(0) PRINT THE LINE
MVC $$OUTBUF-$$(&$$PLL,13),$$OUTBUF-$$-1(13) CLEAR
BR 7 RETURN TO CALLER

$$HEXCV UNPK $$DWORD-$$(9,13),$$DWORD-$$(5,13) UNPACK 4 BYTES
TR $$DWORD-$$(8,13),$$TRTAB-240-$$(13) TO EBCDIC
BR 7 RETURN TO CALLER

 .*---
AIF ('&SYSSTYP'eq '').NoSect

 &$$CSnam &$$CSTyp RESTORE ORIGINAL SECTION
 .NoSect Pop Print,NoPrint Restore PRINT status

MEnd , End of $$GENIO macro

Appendix B: Simple I/O Macros 1039

1040 Assembler Language Programming for IBM System z™ Servers Version 2.00

Glossary of Terms and Abbreviations

GGGGGGGGGG LL
GGGGGGGGGGGG LL
GG GG LL
GG LL
GG LL
GG LL
GG GGGGG LL
GG GGGGG LL
GG GG LL
GG GG LL
GGGGGGGGGGGG LLLLLLLLLLLL
GGGGGGGGGG LLLLLLLLLLLL

Special Characters

* (1) Multiplication operator (2) Location Counter
Reference.

+ Addition operator.

− Subtraction operator.

/ Division operator.

() (1) Address constant delimiters.
(2) Expression grouping delimiters.

= (1) Literal-constant indicator. (2) Indicator of a
keyword argument or parameter in a macro.

• Indicator of a blank space in this text.

' Apostrophe. (1) Character string delimiter.
(2) Attribute reference operator.

_ Alphabetic character in symbols.

$ Alphabetic character in symbols; not invariant
across all EBCDIC code pages.

@ Alphabetic character in symbols; not invariant
across all EBCDIC code pages.

Alphabetic character in symbols; not invariant
across all EBCDIC code pages.

& Ampersand; indicates the start of a variable
symbol.

. (1) Qualified-symbol separator between qualifier
and symbol. (2) Concatenation operator in condi-
tional assembly SETC expressions.

A

absolute symbol
A symbol whose value behaves in expressions like a
self-defining term. Its value does not change if the
assumed origin of the program changes.

ACONTROL
Assembler instruction statement allowing dynamic
modification of some Assembler options.

adcon
Abbreviation for “address constant”.

addend
see augend

addr(x)
Address of some operand “x”.

address
(1) (n) A number used by the processor at execution
time to locate and reference operands or instructions
in memory. Here, an address is what reference
manuals (such as the Principles of Operation) would
call a virtual address. Sometimes used (incorrectly)
to mean an assembly time location. (2) (v) To refer-
ence; to provide an address (sense no. 1) that may be
used to reference an item in storage.

address constant (“adcon”)
A field within a control section into which a value
(typically, an address) is placed during assembly,
program linking, relocation, and/or loading.

address resolution
The process whereby the Assembler converts implied
addresses into base-displacement form using informa-
tion in its USING Table, or resolves offsets in
relative-immediate instructions.

address table
A table of addresses of individual rows or columns of
an array, allowing faster access to the elements of
that row or column.

address translation (“Dynamic Address Translation”,
DAT)

The procedure used by the CPU to convert virtual
addresses into real addresses.

addressability
(1) The ability of the Assembler to calculate a dis-
placement and assign a base register to an implicit
addressing expression, using information in the
USING Table; or the ability of the Assembler to
assign a valid offset for a relative-immediate refer-
ence. (2) The ability of an executed instruction to ref-
erence an intended location in memory.

addressability error
(1) Inability of the Assembler to derive a valid
addressing field for an implicit operand. (2) An
execution-time interruption for attempting to refer-
ence a non-existent address.

Glossary of Terms and Abbreviations 1041

addressable
(1) At assembly time an implied address is address-
able if it can be validly resolved by the Assembler
into a base-displacement address, using information
contained in the USING Table at the time of the
resolution, or the Assembler can assign a valid offset
to a relative-immediate instruction. (2) At execution
time an operand is addressable if it lies either in the
bytes starting at address zero, or is within the base-
displacement resolution range of one of general
purpose registers 1 through 15, or can be referenced
by a relative-immediate instruction.

addressing halfword
A halfword containing a base register specification
digit in the first 4 bits, and an unsigned displacement
in the remaining 12 bits. A key element of System z
addressing.

addressing mode
One of three modes (24, 31, and 64) supported by
System z that determines the length of an Effective
Address and the addressable areas of memory.

algorithm
A finite sequence of well-defined steps for solving a
problem.321

AMODE
An abbreviation for “addressing mode”.

anchor
(1) The base location or base register specified in the
second operand of a USING statement. (2) The base
location in a Dependent or Labeled Dependent
USING statement. (3) The starting point of a
chained list or queue.

AND operation
A logical (boolean) operation between two bits,
whose result is 1 only if both operand bits are 1.

architecture
A description of “the attributes of a system as seen by
the programmer, i.e., the conceptual structure and
functional behavior, as distinct from the organization
of the data flow and controls, and the physical
implementation.”322

argument
A value supplied by a calling program.

arithmetic division
Division of two signed operands, generating a signed
quotient and signed remainder.

arithmetic multiplication
Multiplication of two signed operands, generating a
signed product.

arithmetic representation
A signed number representation.

arithmetic shift
A movement of bits in a general register to the left or
right, preserving the arithmetic sign of the operand.

array
A collection of data items of the same data types and
lengths, arranged in contiguous storage locations.
Usually accessed using one or more index variables
or “subscripts”. (See also table.)

ASCII
American Standard Code for Information Inter-
change, an 8-bit encoding.

ASCII numeric characters
ASCII characters with representations between X'30'
and X'39'.

Assembler
A program that translates programs written in
Assembler Language to machine language
instructions and data, producing an object module.

Assembler Language
A lower-level language allowing programmers
maximum freedom in specifying processor
instructions, providing powerful “macro-instruction”
facilities supporting encapsulation and economy of
expression.

assembly time
The time when the Assembler is processing a pro-
gram's statements, as distinct from the time when the
machine language instructions created from an
Assembler Language program are executed by the
processor.

attribute
A property of a symbol known to the assembler, typi-
cally the characteristics of the item named by the
symbol, such as its type, length, etc. A program may
request the assembler to provide values of symbol
attributes using attribute references.

A variable symbol may have one attribute specific to
the symbol itself (e.g. its number attribute), and many
attributes specific to the value of the variable symbol.

attribute reference
A notation used to request the value of a symbol
attribute from the assembler's symbol table, or of a
variable symbol or its value.

augend
When two numbers are added, the number being
augmented (the first operand) is the augend, to which
the addend (the second operand) is added.

B

Bn, bn
Base register specification digit for machine instruc-
tion operand n.

B-tree
A tree whose nodes contain one or more data ele-
ments, and two or more links to successor nodes.

base address
(1) The address in one of general purpose registers 1
to 15 to which a displacement is added to obtain an

321 After al Khwarizmi, a nickname of the 9th century Persian astronomer and mathematician Abu Jafar Muhammad ibn Musa, who
authored many books on arithmetic and algebra. He worked in Baghdad and his nickname alludes to his place of origin, Khwarizm
(Khiva), in present-day Uzbekistan and Turkmenistan.

322 G.M. Amdahl, G.A. Blaauw, and F.P. Brooks, Jr. Architecture of the IBM System/360, IBM Journal of Research and Develop-
ment Vol. 8 No. 2, 1964, reprinted in IBM Journal of Research and Development Vol. 44 No. 1/2, January/March 2000.

1042 Assembler Language Programming for IBM System z™ Servers Version 2.00

effective address. (2) The first operand of a USING
statement. (3) The execution-time contents of a base
register.

base digit
See base register specification digit.

base-displacement addressing
A technique for addressing memory using a compact
base-displacement format for representing the deriva-
tion of storage addresses.

base location
(1) In base-displacement address resolution, the first
operand of a USING statement, relative to which dis-
placements are to be calculated. For ordinary
USING statements, the base location is assumed to
be at a relative offset (displacement) of zero from the
address contained in the base register; for dependent
USING statements, the base location may be at a
positive or negative offset from the location specified
in the base register eventually used to resolve an
implied address. (2) Informally, this term is some-
times used to mean (a) the origin of a control section,
(b) a base address in a register at execution time, and
(c) whatever the speaker likes.

base register
(1) The second (and subsequent) operand(s) of a
USING instruction. (2) A general register used at
execution time to form an Effective Address.

base register specification digit
The first 4 bits of a 16- or 20-bit addressing field.

BCD
Binary Coded Decimal. (1) A 4-bit encoding of the
decimal digits 0-9, used in packed decimal arithmetic.
(2) A 6-bit character encoding used on many data
processing systems prior to System/360's introduction
of an 8-bit byte with EBCDIC encoding.

BEAR
The Breaking Event Address Register.

bias
A fixed value added to the exponent of a floating-
point number so that its exponent field always con-
tains a nonnegative value, the characteristic.

biased rounding
A common type of rounding that introduces a small
inaccuracy in the rounded results; typically caused
when rounding decimal values by adding 5 to the last
discarded digit.

Big-Endian
A representation of numbers in which the value of the
digits at successively higher addresses have lower sig-
nificance; the digits have decreasing significance from
left to right. The representation used on System z.

binary floating-point
A floating-point representation having a binary
significand.

binary search
A technique for searching ordered arrays by probing
the midpoint of successively smaller portions of the
array.

binary tree
A data structure in which each element contains links
to two other elements, a “left subtree” or “left child”,
and a “right subtree” or “right child”.

bind time
A time following assembly time during which one or
more object modules are combined to form an exe-
cutable module, ready for loading into memory at
execution time. Also known as “link time”.

Binder
The z/OS program that can generate load modules
and program objects, as well as place a just-linked
program directly into memory.

bit
A binary digit, taking values 0 and 1.

blank
A nonempty, finite-width invisible character; a space.
In contexts where explicit blank spaces appear, we
sometimes use the “•” character.

boundary alignment
(1) The Assembler's action in incrementing the
Location Counter so that its value is adjusted to the
boundary required by an instruction or by a constant
operand. (2) The binder's action in ensuring proper
alignment of the components of a load module or
program object. (3) The Program Loader's action in
ensuring that memory alignment of the components
of a loaded program are correct. (4) The alignment
of the starting address of storage acquired at exe-
cution time.

branch address
The address from which the next instruction will be
fetched if a branch condition is met.

branch condition
The CPU's decision whether to alter the normal
sequential execution of instructions by fetching
instructions at the branch address.

branch mask
A 4-bit field in a Branch on Condition instruction
used to test the value of the Condition Code. If a
1-bit in the branch mask matches the CC value, the
branch condition is met.

byte
A group of 8 bits; the basic addressable unit of
memory.

C

C(x), c(x)
Contents of something named “x”.

C-string
A string of zero or more bytes ending with a zero or
“null” byte.

calling point identifier
A NOP instruction with a halfword identifying
number in place of its addressing halfword, of the
form X'4700nnnn'.

CC
Condition Code, a 2-bit field in the PSW used to indi-
cate the status or result of executing certain
instructions.

characteristic
The true exponent of a floating-point number plus the
bias.

Class
(1) A cross-section of program object data with
uniform format, content, function, and behavioral

Glossary of Terms and Abbreviations 1043

attributes. (2) A component of a program object with
specified loading properties, containing elements sup-
plied by sections. Loadable classes are independently
relocatable. Indicated in the External Symbol Direc-
tory listing with type ED.

code
An informal term for groups of Assembler Language
statements.

code page
A defined collection of characters and control codes
and their associated binary encodings.

cohort
In a given format, a set of decimal floating-point
numbers having the same numeric value but different
quanta.

column order
A way to store arrays so that the elements of each
column follow one another in memory. For arrays of
two or more dimensions, subscripts cycle most
rapidly from left to right.

column-major order
Same as column order.

COM
An assembler instruction statement declaring the start
or resumption of a common section.

common section
A control section having length and alignment attri-
butes (but no text) for which space is reserved in the
load module or Program Object. Common sections
receive special treatment during program linking:
space is allocated for the greatest length received for
all common sections with a given name.

comparand
(1) A quantity whose value is being compared. (2) A
quantity to which an incremented index is compared
to determine whether a loop should be repeated.

complement addition
The addition of binary or packed decimal operands
of unlike sign.

complement decimal addition
The addition of packed decimal operands of unlike
sign.

complex relocatability
A property of a symbol or expression whose relo-
cation attribute is neither absolute or simply relocat-
able.

conditional assembly
A form of assembly whose input is a mixture of con-
ditional assembly language and ordinary assembly
language statements, and whose outputs are state-
ments of the ordinary assembly language. Statements
of the ordinary assembly language are treated as char-
acter strings, and are not obeyed during conditional
assembly.

conditional no-operation
An Assembler CNOP instruction that may generate
NOP and NOPR instructions, causing the Location
Counter to be aligned on a specified even boundary.

constant type
A letter specifying the desired internal data represen-
tation for a generated constant.

control section
An indivisible unit of instructions, data, or uninitial-
ized space that is not further subdivided during
linking and loading.

The smallest independently relocatable unit of
instructions and/or data. All elements of a given
control section maintain the same fixed relative posi-
tions to one another at assembly time. These fixed
relative positions at assembly time are maintained by
the program after control sections are placed into
storage at execution time.

CPU
Central Processing Unit

CSECT
(1) An assembler instruction statement indicating the
start or continuation of a control section. (2) An
informal term for a control section

C-string
A string of zero or more bytes ending with a zero or
“null” byte.

Cx
Characteristic part of a floating-point number “x”

CXD-type address constant
A word holding the length (not the address) of the
virtual area created at link time from all the Dummy
External Sections (PseudoRegisters) in the complete
program.

D

Dn, dn
Displacement specification for machine instruction
operand n.

data exception
An interruption condition caused by invalid data.

Data Exception Code
A field in the FPCR indicating which of various
floating-point or packed decimal exceptions may have
occurred.

DBCS
See “Double-Byte Character Set”.

decimal exponent
A letter E attached at the end of some numeric con-
stants, followed by a positive or negative integer
giving the power of ten by which the preceding
nominal value is multiplied.

decimal data exception
An exception condition caused by invalid numeric or
sign digits in a packed decimal operand, or by invalid
operand lengths for a packed decimal product.

decimal divide exception
An exception condition caused by a packed decimal
quotient being too large for the available space in the
first operand field, or by division by zero.

decimal floating-point
A floating-point representation having a decimal
significand.

decimal overflow exception
An exception condition caused by a packed decimal
sum or difference being too large for the receiving
first operand field.

1044 Assembler Language Programming for IBM System z™ Servers Version 2.00

decimal specification exception
An exception condition caused by a packed decimal
multiplication or division specifying incorrect lengths
for one or both operands.

declet
A 10-bit encoding of three Binary Coded Decimal
(BCD) digits. Declets may have two forms: (1)
canonical: 1,000 preferred (and generated) values,
and (2) non-canonical: any of 24 non-preferred
encodings accepted as operands, but not generated by
any arithmetic operation.

decode
The CPU action of analyzing the contents of the
instruction register to determine the validity and type
of an instruction.

defined symbol
A symbol is defined when the Assembler assigns
values to its value, relocation, and length attributes.

denormalization
A process of shifting the significand of a floating-
point number to the right by enough digit positions so
its exponent will lie in a desired representable range.

denormalized number
(1) A floating-point number with denormalized
significand. (2) A nonzero binary floating-point value
with characteristic zero and a nonzero fraction.

dependent USING
A USING statement allowing implicit references to
symbols in areas mapped by more than one DSECT
to be resolved with a single base register, in which the
first operand is based or anchored at a relocatable
address. May also take the form of a labeled
dependent USING statement. See also anchor,
labeled USING, and ordinary USING.

destructive overlap
Destructive overlap occurs when any part of a target
operand field is used for a source after data has been
moved into it by the same instruction.

DH
In an instruction supporting signed 20-bit displace-
ments, the 5th byte of the instruction containing the
signed High-order 8 bits of the Displacement.

digit selector
One of two edit-pattern characters: a Digit Selector
(DS) having representation X'20', or a Digit Selector
and Significance Starter (SS) having representation
X'21'.

diminished radix-complement representation
A signed representation where the complement of a
number is represented by subtracting each digit from
(the radix minus 1). (See two's complement represen-
tation.)

displacement
(1) An unsigned 12-bit integer field of an addressing
halfword, or a signed 20-bit integer field, both used in
generating Effective Addresses. (2) Sometimes used
to describe the offset (difference) between a given
storage address and a base address that might be
used to address it.

dividend
A number to be divided by a divisor; the first
operand; the numerator.

divisor
A number to be divided into a dividend; the second
operand; the denominator.

DL
In an instruction supporting signed 20-bit displace-
ments, the unsigned Low-order 12 bits of the
Displacement.

Double-Byte Character Set
A 16-bit (Double-Byte) EBCDIC encoding of a char-
acter set having many more characters than can be
accommodated in 8 bits.

double-ended queue
Same as queue. Sometimes called a “dequeue”.

doubly-linked list
Same as queue. Sometimes called a “double-
threaded” list.

DPD
Densely Packed Decimal, a representation used for
encoding decimal floating-point significands.

DROP instruction
An assembler instruction telling the Assembler to
eliminate one or more entries from its USING Table.

DSECT
(1) An assembler instruction defining the start or con-
tinuation of a Dummy Control Section. (2) A
Dummy Control Section, a template used to map the
components of a data structure. (3) An informal
name for a Dummy Control Section.

dummy section
(1) A control section generated by the DSECT state-
ment containing no instructions or data. (2) A virtual
control section created at bind time by the Binder;
generated by the DXD instruction, or a reference to a
DSECT by a Q-type address constant.

duplication factor
The number of times a constant operand should be
assembled.

DXC
Data Exception Code, a field in the Floating-Point
Control Register (FPCR).

DXD
An assembler instruction statement defining an
External Dummy Section.

E

EAR (Effective Address Register)
A (conceptual) internal register used to calculate
Effective Addresses.

EBCDIC
Extended Binary Code Decimal Interchange Code,
an 8-bit encoding used to assign numeric values to
character representations. The many EBCDIC
encodings assign different values to some characters,
but all the alphabetic, numeric, and other syntactic
characters used in the Assembler Language are invar-
iant across EBCDIC encodings, except for the char-
acters “$”, “@”, and “#”.

Effective Address
The address calculated at execution time from a 16-
or 20-bit addressing field of an instruction, possibly
with indexing, or the address calculated from a

Glossary of Terms and Abbreviations 1045

relative-immediate offset and the address of its
instruction.

element
A component of a program object class, defined by
the combination of its section name and its Class
name. The smallest indivisible and separately relocat-
able portion of a program object.

Encoded Length
The contents Ln of a Length Specification Byte or
digit; one less than the value of the Length
Expression Nn (unless the Length Expression is zero,
in which case the Encoded Length is also zero).

entry point
The first instruction to receive control when a routine
is invoked.

entry point identifier
A string of characters following the first instruction at
an entry point, providing descriptive information
about the entry.

EQU Extended Syntax
Additional operands on EQU instructions that
provide additional information about the attributes of
the symbol defined by the EQU statement.

ESD
External Symbol Dictionary.

Ex
Exponent part of a floating-point number “x”

exception condition
(1) An indication of an unusual result or condition.
Some exceptions can deliver a default result if an
interruption has been masked off by appropriate set-
tings, while others always cause an interruption. (2)
One of six conditions defined by the IEEE Floating-
Point Standard: invalid operation, division by zero,
exponent overflow, exponent underflow, quantum.
and inexact result.

executable control section
A control section containing machine language
instructions or data, defined by CSECT, RSECT, or
START instructions.

execute
The CPU's action of performing the operation
requested by the instruction in the instruction register.

execution time
The time when your program has been put in
memory by the Program Loader and given control.
This may happen long after assembly time.323

explicit address
An address in which you specify the base register
specification digit and the displacement as absolute
expressions.

explicit length
(1) A length value specified in a DC or DS statement.
(2) A length field that you specify explicitly, rather
than having the Assembler assign the length field
from the Length Attribute of an operand.

exponent
The power of the radix by which the significand of a
floating-point number must be multiplied to deter-
mine its value.

exponent modifier
A modifier specifying a positive or negative power of
ten to be multiplied by the nominal value of certain
numeric constants.

exponent overflow
A condition arising when the exponent of a calculated
floating-point result is too large to be contained in its
representation.

exponent underflow
A condition arising when the exponent of a calculated
floating-point result is too small to be contained in its
representation.

expression
A combination of terms and operators to be evalu-
ated by the Assembler.

expression evaluation
The procedure used by the Assembler to determine
the value of an expression.

extended mnemonic
An instruction mnemonic provided by the Assembler
allowing you to specify a branch mask or other
instruction fields implicitly.

External Dummy Section
An area having length and alignment defined at
assembly time in a DXD statement that will be
assigned at link/bind time to a PseudoRegister Vector
and for which memory is allocated at execution time.

external symbol
A symbol whose name (and possibly, value) are a
part of the object module text provided by the
Assembler. Such names include (1) control section
names, (2) strong external names declared in V-type
address constants or EXTRN statements, (3) weak
external names declared in WXTRN statements, (3)
names of common sections, (4) names of Pseudo Reg-
isters or external dummy sections, (5) referenced
names declared on ENTRY statements, (6) class
names, and (7) symbols and character strings
renamed through the use of the ALIAS statement.
Compare to internal symbol.

External Symbol Dictionary
The set of external symbols created by an assembly.
They are displayed in the Assembler's listing and are
encoded in the ESD records of the generated object
module.

extreme exponent
A floating-point number's exponent with maximum
positive or negative value.

F

fetch
The CPU's action of bringing halfwords from
memory into the conceptual Instruction Register to
be interpreted as an instruction.

field separator
An edit-pattern character (FS) having value X'22'
indicating that a packed decimal value from the
second operand has been edited, and editing should
continue with the following packed decimal value.

323 Or, the time at which programmers whose programs consistently fail to execute correctly are themselves executed.

1046 Assembler Language Programming for IBM System z™ Servers Version 2.00

fill character
The first byte of an edit pattern.

firmware
A popular term referring to microcode or millicode.

floating-point
A data representation with a sign, an exponent, and a
set of significant digits.

Floating-Point Control Register (FPCR)
A special register containing IEEE masks, status indi-
cators, Data Exception Code, and rounding modes.

floating-point exception condition
One of five conditions defined by the IEEE Floating-
Point Standard: invalid operation, division by zero,
exponent overflow, exponent underflow, and inexact
result.

floating-point system FP(r,p)
A floating-point data representation with a specified
radix r and number of significant digits p, sometimes
denoted FPF(r,p) or FPI(r,p) depending on the type
of encoding.

floating-point system FPF(r,p)
A floating-point system with radix r and p digits of
precision, in which the significant digits are repres-
ented as fractions.

floating-point system FPI(r,p)
A floating-point system with radix r and p digits of
precision, in which the significant digits are repres-
ented as integers.

FPCR
Floating-Point Control Register

FPR
Floating-Point Register

FPRn, FRn
Floating-Point Register n

free storage list
A list containing unused and available elements.
Sometimes abbreviated FSL .

Fx
Fraction part of a floating-point number “x”

G

General Purpose Registers
A set of 16 64-bit registers used in the System z
family of processors for addressing, arithmetic, logic,
shifting, and other general purposes. Compare to
other registers described in the z/Architecture Princi-
ples of Operation such as Access Registers, Control
Registers, and Floating Point Registers.

GGn
A notation referring to 64-bit general register “n”.

GR
General Register, General Purpose Register

GR Gn
A notation referring to the 64-bit general register
specified by Gn.

GR Rn
A notation referring to the rightmost 32 bits of the
general register specified by Rn.

GRn
A notation referring to the rightmost 32 bits of
general register “n”.

glyph
The printed or displayed form of a character that can
be formed with various properties. For example, the
glyphs A, A, A, A, A are representations of the char-
acter “A”, in upper case forms (normal, italic, bold,
bold italic, and “small caps”).

generalized object file format (GOFF)
An extended form of object module produced by
High Level Assembler, providing numerous enhance-
ments and extensions not supported by the traditional
card-image object module format (“OBJ”).

GOFF
See generalized object file format.

GOFF option
An option that causes High Level Assembler to gen-
erate an object module using the generalized object
file format.

GPR
See General Purpose Register

gradual underflow
A technique allowing numbers to become denormal-
ized when they are finite and smaller than the
smallest normalized magnitude.

graphic data type
A representation of characters using a 16-bit
encoding.

guard digit
An extra digit used to increase the accuracy of a cal-
culated floating-point result.

H

hash function
A function that creates a randomized linear subscript
from a data element. Used to avoid lengthy table
searches for large or complex data items.

hash table
A table of data items (possibly including lists and
pointers to other data items) whose entries are
accessed using the results of a hash function.

hexadecimal
A base-16 representation, with digits 0, 1, 2, 3, 4, 5,
6, 7, 8, 9, A, B, C, D, E, F, in increasing numerical
order.324

hex
See hexadecimal.

HLASM
An acronym for the High Level Assembler.

High Level Assembler
IBM's most modern and powerful symbolic assem-
bler for the System z processors, running on the

324 The base 16 representation was originally called “sexadecimal”.

Glossary of Terms and Abbreviations 1047

z/OS, z/VM, z/VSE, and zLinux operating systems.325

The Assembler we describe here.

I

I
Single operand of SVC instruction.

I'
Integer Attribute Reference to a symbol (as in I'SYM)
or to a symbolic parameter in a macro (as in
I'&PARAM)

In
Immediate value specification for machine instruction
operand n

IA
Instruction Address (z/Architecture PSW bits 64-127).

IC
Interruption Code, a value indicating the cause of an
interruption.

ILC
See Instruction Length Code.

immediate operand
An instruction's operand contained in a field of the
instruction itself.

implied address
An address to which you expect the Assembler to
assign a base register specification digit and a dis-
placement, or a relative-immediate offset, to an
addressing field.

implied length
A length field completed by the Assembler based on
its analysis of an operand.

increment
(1) A (normally) constant value used to update the
value of an index for each iteration of a loop. (2) A
(typically small) value added to another.

index
(1) The contents of an index register. (2) A varying
quantity used to control each iteration of a loop.

index register
One of general purpose registers 1 through 15 speci-
fied by the index register specification digit in an
RX-type instruction.

index register specification digit
4 bits of an RX-type instructions specifying a register
with a value to be added to the Effective Address cal-
culated from a base-displacment address.

indexing
Computation of an Effective Address by adding a dis-
placement to the contents of a base register and an
index register.

infix notation
The traditional form of writing arithmetic expressions,
where operators are placed between operands, as in
2*(3+4).

inorder tree traversal
A technique for traversing a binary tree, visiting first
the left subtree, then the parent node, and then the
right subtree.

insert
Place one or more bytes into a register without
changing other bytes.

Instruction Address (IA)
A 64-bit field in the PSW giving the address of the
next instruction to be executed.

instruction cycle
A conceptual view of the CPU's actions in executing
an instruction, visualized as occurring in the steps of
fetch, decode, and execute.

Instruction Length Code
A 2-bit field in low storage indicating the length in
halfwords of an instruction that caused a particular
type of interruption.

Instruction Register (IR)
A conceptual internal register used by the CPU to
decode instructions.

internal symbol
A symbol naming an element of an Assembler Lan-
guage program, which is assigned a single value by
the Assembler, and not part of the object module.
They may be retained in the SYSADATA file .
Compare to external symbol.

internal symbol dictionary
See symbol table.

interruptible
An instruction is interruptible if the CPU suspends its
operation, updates the registers involved in the opera-
tion and subtracts the instruction's length from the
Instruction Address in the PSW, so that when the
program resumes execution, the instruction will start
from the point where it was interrupted.

interruption
A process taking control away from the currently
executing instruction stream, saving information
about the interrupted program, and giving control to
the Operating System Supervisor (which may in turn
pass control to a program-specified routine).

invariant EBCDIC character
Those 82 characters whose EBCDIC representations
do not change among EBCDIC code pages. The syn-
tactic characters used by HLASM are defined on
IBM Code Page 640.

IR
(1) Instruction Register, a conceptual internal register
in the CPU into which fetched instructions are placed
and decoded during the fetch-decode-execute cycle.
(2) An internal register holding a target instruction so
its second byte may be modified (if required) by an
Execute instruction prior to final decoding.

325 The name is not necessarily an oxymoron, as High Level Assembler can do much more than ordinary (low-level) assemblers.

1048 Assembler Language Programming for IBM System z™ Servers Version 2.00

J

Job Control Language
The statements needed to tell an Operating System
how to process your program through the assembly,
linking, and execution phases. “JCL” for short.

jump
An informal name for a relative branch, to distin-
guish it from a based branch using base-displacement
Effective Addresses.

K

K'
Character count attribute reference to a conditional
assembly symbolic parameter or SETC symbol (as in
K'&PARAM)

L

L'
Length Attribute Reference to an ordinary symbol (as
in L'SYMBOL). or conditional assembler symbolic
parameter (as in L'&PARAM). See Length Attribute Ref-
erence.

Ln
Length specification digits for operands in instructions
that support variable-length operands (See also Nn.)

label
(1) Colloquially, the name of an instruction or data
definition. This is more properly called a name field
symbol. (2) In High Level Assembler, the name field
symbol of a USING statement, designating that state-
ment as a labeled USING. The symbol is then
defined as a qualifier.

Labeled Dependent USING
A USING statement allowing implicit references to
symbols in areas mapped by more than one DSECT
to be resolved with by a specific base register.

Labeled USING
A USING statement directing resolution of implicit
references to a specific base register, distinguished
from an ordinary USING statement by the presence
of a qualifier symbol in the name field. Symbolic
expressions resolved with respect to a labeled USING
must use a qualified symbol with the qualifier of that
labeled USING.

LC
Location Counter. See Location Counter.

Length Attribute Reference
A term whose value is the length attribute of a
symbol. The length-attribute operator is L'.

Length Expression
A length value (denoted N) coded implicitly or explic-
itly in a machine instruction statement for an SS-type
instruction, from which the Assembler derives a
Length Specification Byte L or a Length Specification
Digit Ln. In this text, often described by the terms N
or Nn.

length modifier
A modifier specifying the exact length to be used for
a constant, rather than its default length.

Length Specification Byte
The second byte (L) of an SS-type instruction, one
less than the true length of its operand.

Length Specification Digit
A 4-bit hexadecimal digit (Ln) in The second byte of
an SS-type instruction, one less than the true length of
its operand.

library
A general term for a file or data set to save programs
or data for later access.

linear subscript
For arrays of two or more dimensions, the evaluation
of a subscript that treats the array as having been
mapped into a one-dimensional array corresponding
to the CPU's linear arrangement of bytes in memory.

linkage convention
An agreed set of rules for transferring control
between a calling and a called program, passing argu-
ments and receiving results, and preserving caller
information during the execution of the called routine
so it can be restored on return to the caller.

Linkage Editor
The predecessor to the z/OS Binder; its functions are
included in the Binder. A Linkage Editor is used on
z/VSE.

linked list
Same as list. Sometimes called a “single-threaded”
list.

Linker
A program that converts and combines object
modules and load modules into an executable format
ready for quick loading into memory by the Program
Loader.

linking loader
Links and places modules directly into storage with
linking, immediately prior to program execution.

list
(1) A sequence of data elements each containing a
link to its successor. If the first and last elements are
identified and the next element to be accessed is the
last (most recently added, sometimes called a “First
In, First Out” (FIFO) list or stack. (2) Colloquially,
a table.

literal
A special symbol with the side effect of defining a
constant referenced by that symbol.

literal pool
A set of literal-generated constants grouped together
by the Assembler. A program may contain multiple
literal pools.

Little-Endian
A representation of numbers in which the value of the
digits at successively higher addresses have greater
significance; the digits have increasing significance
from left to right.

load module
(1) A generic name for the output of a Linker; a
mixture of machine language instructions and data
ready to be saved in a library, or to be loaded
directly into memory for execution. (2) The original
form of System/360 executable, stored in a Parti-
tioned Data Set (PDS) program library in “record
format”.

Glossary of Terms and Abbreviations 1049

load operation
Replace the contents of a register with a copy of data
from a memory address or from another register.
Other parts of the register may contain sign-extended
bits (for arithmetic loads), or zero-extended bits (for
logical loads). The original contents of the target reg-
ister are not preserved.

Loader
(1) On z/VM systems, a program that can link object
modules directly into memory for execution, or gen-
erate a relocatable MODULE. (2) On older OS/360
systems, a program that links object and load
modules into memory for execution; now called the
“Batch Loader”. (3) The Program Loader.

location
A position within the object code of an assembled
program, as determined by assigning values of the
Location Counter during assembly. An assembly time
value, sometimes confused with an execution time
address.

Location Counter (LC)
A counter used by the Assembler at assembly time to
construct its model of the relative positions of all
components of an assembled program.

logical arithmetic
Binary arithmetic and comparison operations with
unsigned operands.

logical division
Division of two unsigned operands, generating an
unsigned quotient and unsigned remainder.

logical multiplication
Multiplication of two unsigned operands, generating
an unsigned product.

logical operation
An operation between individual bits; one of AND,
OR and Exclusive OR (XOR).

logical representation
An unsigned number representation.

logical shift
A movement of bits in a general register to the left or
right, inserting zero bits into any vacated bit posi-
tions.

M

Mn, mn
Mask field in machine instruction operand n.

machine language
The binary instructions and data interpreted and
manipulated by the processor when a program is exe-
cuted.326 Compare Assembler Language.

machine length
An Encoded Length, one less than the Length
Expression (program length) coded in the instruction
statement.

macro instruction
A powerful means to encapsulate groups of state-
ments under a single name, and then generate them
(with possible programmer-determined modifications)

by using the macro-instruction name as an operation
field entry. Often abbreviated “macro”.

mantissa
A term previously used to describe the significand of
a floating-point number. Because it can be confused
with the mantissa (fractional part) of a logarithm,
avoid its use when describing floating-point represen-
tations.

mask
(1) A bit in an instruction controlling its behavior.
(2) A bit in the FPCR controlling the actions to be
taken when an exception condition occurs. (3) The
Program Mask in the PSW.

MaxReal
The largest representable floating-point magnitude,
also called Max.

MBCS
Multiple-Byte Character Set, in which characters are
represented by one to four bytes.

message character
Any character in an edit pattern that is not a Digit
Selector (DS), a Field Separator (FS), or a Digit
Selector and Significance Starter (SS).

millicode
Internal instructions used by the CPU to perform
operations too complex to be done cost-effectively in
hardware. (Sometimes erroneously called
“microcode”.)

MinReal
The smallest representable floating-point magnitude.
If normalized, it is also called Min; if denormalized, it
is also called DMin.

minuend
see subtrahend

mnemonic
A character string representing an instruction name,
intended to be easier to remember than the operation
code of the instruction. A convenient shorthand for
the name of an instruction. For example, the
“Branch and Save” instruction has mnemonic
“BAS”.

modal instruction
An instruction that places or updates addresses in the
general registers, with results that depend on the
addressing mode.

modifier
A value following the constant type, specifying other
information about the constant's Length, Scale, and
Exponent.

multiplicand
In a multiplication, the number that is to be multi-
plied (the first operand) by another, the multiplier
(the second operand)

multiplier
See multiplicand

multiply and add/subtract
An instruction in which a double-length product is
created internally to which a third operand is added
or subtracted before truncating or rounding the result
to the length of the original operands.

326 It is not meant to be intelligible to normal human beings.

1050 Assembler Language Programming for IBM System z™ Servers Version 2.00

N

N, Nn
The Length Expression you specify in an SS-type
instruction, giving the true length of an operand. The
Assembler converts that value to the Length
Expression used by the CPU when executing the
instruction.

N'
Number attribute reference to a conditional assembly
symbolic parameter or dimensioned SET symbol (as
in N'&PARAM).

NaN
A floating-point “Not-a-Number” having no numeric
or mathematical meaning.

nominal value
The value you write between delimiters or value sepa-
rators to specify the assembled value of a constant.

non-overflowed zero
A calculated zero result that is not the result of an
overflow condition.

no-operation instruction
An executable instruction having no effect other than
to occupy space, usually to align a following instruc-
tion on a desired boundary.

normalization
A process of ensuring that the most significant digit in
a fraction-based floating-point representation is
nonzero.

null byte
A zero or X'00' byte, sometimes indicated by the
character n. Used to terminate a C-string.

numeric digit
The rightmost 4 bits of a byte.

O

object code
The machine language contents of an object module.

object module
Records containing the external symbols, machine
language text, and relocation dictionary information
required for program linking, in either the 80-byte
card image “OBJ” format or in the GOFF format.

offset
(1) The MVO instruction shifts or offsets the second
operand to the left by one hex digit before appending
it to the sign digit of the first operand. (2) A field in
a relative-immediate instruction giving the distance in
halfwords from the instruction. (3) Sometimes used
coloquially to refer to displacement.

ones' complement representation
A signed binary representation where negative
numbers are represented by changing each 0 bit to a
1 bit and vice versa.

opcode
An abbreviation for operation code. Sometimes used
when the term mnemonic is meant.

operand
(1) Something operated on by an instruction. (2) A
field in a machine instruction statement.

operand order dependence
The results of many packed decimal arithmetic
instructions depend on the order of the operands. For
example (007 +)+ (7 +) yields 014+ , but (7 +)+ (007 +)
causes a decimal overflow.

operation code
The z/Architecture definition of that portion of an
instruction specifying the actions to be performed by
the CPU when it executes the instruction. Often
abbreviated “opcode”, sometimes mistakenly used to
refer to a “mnemonic”.

operator
A character specifying a mathematical operation.
One of * (meaning multiplication), / (meaning divi-
sion), + (meaning addition), or − (meaning sub-
traction).

options
Directives to the Assembler specifying various
“global” controls over its behavior. Options are
specified by the user as a string of characters, usually
part of the command or statement that invokes the
assembler, or on *PROCESS statements. Some options
may be dynamically modified by ACONTROL state-
ments.

OR operation
A logical (boolean) operation between two bits,
whose result is 1 if either operand bit is 1.

order dependence
Results of a packed decimal operation can depend on
the order in which the operands are specified.

Ordinary USING
A USING statement directing resolution of unquali-
fied implicit references to a specific base register.

ORG Extended Syntax
Additional operands on ORG statements that allow
Location Counter alignment to a specific
power-of-two boundary, and an offset from that posi-
tion.

origin
A starting value assigned by you (or by the Assem-
bler), used to calculate positions, offsets, and displace-
ments in your program. (Because most programs are
relocated, it's rarely necessary to specify an origin.)

overflow
The sum, difference, product, or quotient of two
numbers is too large to be correctly represented in the
number of digits or range of values available.

overflowed zero
The addition or subtraction of binary or packed
decimal operands for which an overflow generates a
zero result.

P

padding
Extra bits or bytes added to a constant by the Assem-
bler so that it will fill the space allotted to it.

parameter
A place-holder in a called program, to be assigned a
value from an argument provided by a calling
program.

Glossary of Terms and Abbreviations 1051

parameterization
A valuable technique for adding flexibility and gener-
ality to program definitions, typically by defining
assembly-time values in EQU statements.

pattern character
Any byte in an edit pattern.

payload
Diagnostic information contained in the significand of
a NaN.

pipeline
A technique used in modern CPUs to speed instruc-
tion execution by dividing the fetch. decode, and
execute phases into smaller stages.

PM
See Program Mask..

postfix notation
A representation of expressions convenient for evalu-
ation. The infix form 2*(3+4) is represented as
2 3 4 + *.

post-normalization
A process of normalizing a floating-point operand
after operating on it.

postorder tree traversal
A technique for traversing a binary tree, visiting first
the left subtree, then the right subtree, and then the
parent node.

precision
(1) The number of digits that can be held in a register
or memory field. (2) The number of significant digits
in a numeric value. Not the same as accuracy, which
defines the correctness of the digits.

preferred exponent
The exponent of the result of a decimal floating-point
numeric operation has a preferred value, either that
of one of the operands or a value providing the
maximum number of significant digits.

preferred quantum
The quantum selected for the result of a decimal
floating-point operation that maximizes the number
of significant digits, including low-order zero digits.
Equivalent to preferred exponent.

preferred sign code
For packed and zoned decimal numbers, there are
six valid sign codes: X'A', X'C', X'E', and X'F' indi-
cate + , and X'B' and X'D' indicate − . The preferred
codes are X'C' and X'D'; these are the sign codes
generated by packed decimal arithmetic operations.

preorder tree traversal
A technique for traversing a binary tree, visiting first
the parent node, then the left subtree, and then the
right subtree.

pre-normalization
A process of normalizing floating-point operands
before operating on them.

problem state
A state in which the CPU disallows the execution of
certain instructions.

program interruption
An interruption condition caused by an executing
program that can be handled by the interrupted
program.

program length
A Length Expression, not necessarily the length of a
program. The number of bytes the programmer
specifies, not the machine length encoded into the
instruction.

program linking
The process of resolving external names into offsets
or addresses; combining multiple input name spaces
into a composite output name space.

Program Loader
The component of the Operating System that brings
load modules into memory, makes final relocations,
and transfers control to the program.

Program Mask
A 4-bit field in the PSW used to control whether or
not certain types of exception condition should cause
an interruption or take a CPU-defined default action.

program object (PO)
A newer form of executable on z/OS, stored in a
PDSE (Partitioned Data Set Extended) program
library.

PseudoRegister (PR), External Dummy (XD)
A PseudoRegister or external data item having length
and alignment attributes. Space in the loaded module
is reserved for Common control sections; space for
external dummy sections must be obtained at exe-
cution time. (See External Dummy Section.)

PSW
Program Status Word, containing information about
the current state of a program.

Q

QNaN
A Quiet Not-a-Number that does not cause an excep-
tion condition in any floating-point arithmetic opera-
tion.

Q-type address constant
A field containing the offset (not the address) of a
Dummy External Symbol (or PseudoRegister) from
the start of a virtual area mapped at link time and
allocated at execution time.

qualified symbol
A symbol prefixed by a qualifier and separated from
it by a period, as in qualifier.symbol.

qualifier
A symbolic identifier defined in the name field of a
Labeled USING statement. It may be used only as a
qualifier, and not as an ordinary symbol.

quantum
The value of a unit in the low-order digit of a decimal
floating-point number.

queue
A sequence of data elements each containing links to
its successor and to its predecessor. Sometimes called
a “doubly-linked list.”

quotient
The primary result of a division operation.

1052 Assembler Language Programming for IBM System z™ Servers Version 2.00

R

Rn, rn
(1) Register specification digit for machine instruction
operand n. (2) The field of a machine instruction
designating the number of a general register.

Rrn
The GPR designated by register number Rn.

R(r1+1)
The GPR whose number is found by adding 1 to the
even-numbered register specification digit r1.

R(r3|1)
The GPR whose number is found by forcing the low-
order bit of the register specification digit r3 to be a
1-bit. Thus, R(6|1) means R7, and R(7|1) means R7.

R3 |1
A notation referring to the general register containing
the comparand of a branch on index instruction. If
the R3 operand is even, R3 |1 is the next higher odd-
numbered register; and if the R3 operand is odd,
R3 |1 is that odd-numbered register.

radix
The base in which the significant digits of fixed-point
or floating-point numbers are represented.

radix-complement representation
A signed representation where the the complement of
a number is formed by complementing each digit with
respect to the radix minus 1, and then adding 1 to the
lowest-order digit. The numerically significant high-
order digit usually contains sign information.

real address
The “true” (not virtual) address of a byte in memory.

“real” numbers
A powerful abstraction used by mathematicians;
numbers with unlimited range and precision.

“realistic” numbers
Numbers used for computation, having finite range,
precision, and accuracy.

reentrant
See reenterable.

reenterable
A program is reenterable if (1) Its execution can be
suspended, then executed by other processes, and
then resumed by the original process with correct
behavior for all processes; (2) It can be executed
simultaneously by multiple processes, with correct
behavior for all processes. (3) Capable of simul-
taneous execution by two or more asynchronously
executing processes or processors, with only a single
instance of the program image. Typically, reenterable
programs do not modify themselves, but this is
neither a necessary nor sufficient condition for
reenterability.

reference control section
A control section containing no machine language
instructions or data, defined by a DSECT, COM, or
DXD instruction.

relative address
An Effective Address determined by an offset relative
to the location of an instruction containing a relative-
immediate operand.

relocatable
A property of a program allowing it to execute cor-
rectly no matter where it is placed in memory
(respecting alignment requirements) by the Program
Loader.

relocate
Assign actual-storage or module-origin-relative
addresses to address constants.

relocating loader
Places modules into storage and adjusts addresses to
their correct “final” value.

relocation
A procedure used by the Linker and the Program
Loader to ensure that addresses in a relocatable
loaded program are correct and refer to the intended
targets, no matter where it is loaded. This usually
requires assigning true execution-time addresses to
parts of a program.

Relocation Dictionary
A summary of each relocatable address constant in
an assembly, displayed in the Assembler's listing and
encoded in the RLD records of the generated object
module.

remainder
The residual portion of a division left over when a
dividend cannot be evenly divided by a divisor.
Smaller in magnitude than the divisor.

RENT
An Assembler option requesting simple tests be made
for conditions of obvious self-modification of the
program being assembled. These tests are also done
for control sections declared by the RSECT state-
ment.

return address
The address of an instruction to which control should
be passed when a called routine completes its exe-
cution.

return code
A small integer value (usually a multiple of 4), often
placed in GR15 prior to returning to a calling
program.

RMODE
Residence mode, an indication of the desired place-
ment in memory of a Control Section or class.

rotating shift
A movement of bits in a general register to the left in
such a way that bits moved out of the high-order bit
position are inserted into the low-order bit position.
(Also called a “circulating” shift.)

rounding digit
An extra digit used to help correctly round a calcu-
lated floating-point result.

Rounding Mode
(1) A field in the FPCR indicating the rounding
action to be taken after a binary floating-point opera-
tion. (2) A field in an instruction specifying the
rounding to be performed by the instruction, inde-
pendent of any rounding mode specified in the
FPCR.

rounding-mode suffix
A suffix with the letter R and a number, appended to
the numeric value of a floating-point constant speci-
fying the rounding to be used when converting the

Glossary of Terms and Abbreviations 1053

nominal value to hexadecimal, binary, or decimal
floating-point.

rounding modifier
A field in an instruction specifying the type of
rounding to be performed on the result of a floating-
point operation.

row order
A way to store arrays so that the elements of each
row follow one another in memory. For arrays of two
or more dimensions, subscripts cycle most rapidly
from right to left.

row-major order
Same as row order.

RSECT
A reenterable control section, distinguished from an
ordinary control section (CSECT) only by (a) the
presence of a flag in the External Symbol Dictionary
and (b) that High Level Assembler will perform
reenterability checking of instructions within the
RSECT.

run time
See execution time.

S

S'
Scale attribute reference to a symbol (as in S'ABC), or
to a macro parameter (as in S'&PARAM).

Sn
Implied address of machine instruction operand n.

SBCS
See Single-Byte Character Set

scaled arithmetic
Methods for doing arithmetic with non-integer values,
using fixed-point arithmetic instructions such as
binary integer and packed decimal.

section
(1) A generic term for control section, dummy
section, common section, etc.; a collection of items
that must be bound or relocated as an indivisible
unit. (2) A collection of elements belonging to speci-
fied Classes in a program object. Elements defined by
a section are added or deleted as a group. (A
program object section is not the same as a control
section.)

segment
A component of a program object containing classes
with the same properties such as RMODE and
loadability.

self-defining term
One of binary, character, decimal, graphic, and
hexadecimal. Its value is inherent in the term, and
does not depend on the values of other items in the
program.

self-modification
A program modifies its instructions or constants.
Considered a very poor programming practice with

severe execution-time performance penalties, and
usually forbidden if the program must be
reenterable.327

Shift-In
An X'0F' byte code in a stream of DBCS byte pairs
indicating that the following single bytes are
SBCS-encoded. A change from double-byte mode to
single-byte mode.

Shift-Out
An X'0E' byte code in a stream of SBCS bytes indi-
cating that the following pairs of bytes are
DBCS-encoded. A change from single-byte mode to
double-byte mode.

sign extension
The process of copying the sign bit of a shorter
binary operand and extending it to the left, to the
length of a target field.

significance exception
In hexadecimal floating-point, the result of an addi-
tion or subtraction yields a significand of all zero
digits. This exception can either cause a program
interruption with IC=14, or can be masked to
produce a true zero.

significance indicator
An internal bit used by the CPU during ED and
EDMK instructions to control subsequent editing
operations.

significance starter
An edit-pattern character that sets the Significance
Indicator ON. Also known as a “digit selector and
significance starter” because it selects a digit if the
Significance Indicator is already on or if the digit is
nonzero.

significand
The numerically significant digits of a floating-point
number, whether explicitly or implicitly represented.

sign-magnitude representation
The familiar signed representation of numbers with
prefixed or suffixed + or − signs attached to the
number's magnitude.

simple relocatability
A property of an assembly-time symbol or expression
whose value changes by the same amount as a
change to the program's assumed origin.

Single-Byte Character Set
A character set in which characters are represented
by a single byte.

SNaN
A Signaling Not-a-Number that causes an exception
condition in an arithmetic operation.

space
A nonempty, finite-width invisible character; a blank.
In contexts where explicit spaces appear, we some-
times use the “•” character.

special value
A floating-point zero, a denormalized number, an
infinity, a QNaN, or an SNaN.

327 Technically, a self-modifying program can be reenterable if every execution instance makes exactly the same modifications. This is
considered an even poorer practice.

1054 Assembler Language Programming for IBM System z™ Servers Version 2.00

stack
A data structure with a single visible element, the
“stack top”. Sometimes called a “Last In, First Out”
(LIFO) list or queue.

statement
The contents of the records read and processed by
the Assembler. There are four types: comment state-
ments, machine instruction statements, assembler
instruction statements, and macro-instruction state-
ments.

statement field
One of the four fields of an Assembler Language
statement (other than a comment statement): the
name, operation, operand, and remarks fields. Which
fields are required and/or optional depends on the
specific statement.

status flag
A bit in the FPCR indicating that an exception condi-
tion has occurred.

store operation
Place a copy of part or all of a register's contents into
memory.

subtrahend
When one number is subtracted from another, the
number being diminished (the first operand) is the
minuend, and the number being subtracted (the
second operand) is the subtrahend.

supervisor state
A state in which the CPU allows the execution of all
instructions.

symbol
A name known at assembly time, to which various
values are assigned. The values may be absolute,
simply, or complexly relocatable, or determined at
link or execution time.

symbol attribute
Information about the properties of a symbol,
including value, relocation, length, type, scale, and
integer. (Only the first three attributes are important
for most uses.)

Symbol Attribute Reference
(1) A term whose value is that of a symbol's attribute.
The types of Symbol Attribute Reference are length,
scale, integer, definition, type, and opcode. (2) Con-
ditional assembly attribute references include the
above six, plus count, number, assembler type, and
program type.

Symbol Table
A table used by the Assembler to hold the names,
values, and attributes of all symbols in a program.

Syntactic Character Set
A set of 82 characters with the same encodings across
all EBCDIC Code Pages.

T

T'
Type Attribute Reference to a conditional assembly
symbolic parameter (as in T'&PARAM).

table
A term often used to describe a one-dimensional
array whose columns may contain a mixture of dif-
ferent data types and lengths. (See array.)

target instruction
(1) The instruction to which a branch instruction
might transfer control. (2) An instruction addressed
by an Execute instruction.

term
A symbol, self-defining term, Location Counter refer-
ence, literal, or symbol attribute reference.

text
(1) The instructions and data generated by an
assembly, encoded in the TXT records of an object
module. (2) The portions of an object module con-
taining machine language instructions and data. (3)
A program object class attribute indicating that
locations within the class may contain and/or be the
target of address constants.

true addition
The addition of binary or packed decimal operands
of like sign.

true decimal addition
The addition of packed decimal operands of like sign.

truncation
(1) Removing bits or bytes from a constant so that it
will fit in the space allotted to it. (2) A method of
“rounding” numeric results or constants by dis-
carding digits or characters beyond the length of the
representation.

two's complement
A method for negating a binary integer, by converting
each 1 to 0 and each 0 to 1, and then adding a low-
order 1.

two's complement representation
A signed binary representation where the high-order
bit contains sign information, and has weight − 2n −1.

type extension
A second letter following the constant type, providing
additional information about the constant's length or
representation.

U

UCS
Universal Character Set. UCS-2 was a predecessor of
Unicode that defined only 65,536 values. Sometimes
used as an alternative name for UTF.

ulp
An abbreviation for “unit in the last place”, a
measure of the relative precision of a floating-point
number.

unbiased rounding
A technique for avoiding the inaccuracies introduced
by biased rounding, typically by rounding results
exactly half way between two representable results to
the value with an even low-order digit.

Unicode
An international standard encoding of (almost) all
characters, represented as groups of 8-bit bytes
(UTF-8), one or two byte pairs (UTF-16), or 32-bit
units (UTF-32).

Unicode numeric characters
Unicode characters with representations between
X'0030' and X'0039'.

Glossary of Terms and Abbreviations 1055

unnormalized add/subtract
Hexadecimal floating-point addition and subtraction
in which the result is not normalized.

unnormalized number
A hexadecimal floating-point number in which the
significand is unnormalized.

USING statement
A promise to the Assembler that base-displacement
addressing fields can be derived correctly from the
base location and base address information provided
in the statement.

USING Table
An internal table used by the Assembler to hold
information provided in USING instructions.

UTF
Unicode Transformation Format. Three encodings
(UTF-8, UTF-16, and UTF-32) that are easily con-
verted (“transformed”) among one another.

V

V-type address constant
A field containing the address of an external symbol,
resolved during linking and loading.

virtual address
The apparent address of a memory location that may
physically reside at a different real address.

virtual origin
The address of a (possibly nonexistent) array element
all of whose subscripts are zero.

X

Xn, xn
Index register specification digit for machine instruc-
tion operand n.

XOR operation
A logical (boolean) exclusive-OR operation between
two bits, whose result is 1 if either operand bit is 1
while the other is zero. If the operand bits are iden-
tical, the result is zero.

Z

zero duplication factor
A duplication factor that causes Location Counter
alignment without generating a constant. Skipped
bytes are zeroed for DC instructions if the imme-
diately preceding byte contains object code.

zero extension
The process of adding zero bits to the left of a shorter
operand, to extend it to the length of a target field.

zone digit
The leftmost 4 bits of a byte.

zoned digit
An unpacked or edited packed decimal numeric digit.

1056 Assembler Language Programming for IBM System z™ Servers Version 2.00

Bibliography

BBBBBBBBBBB IIIIIIIIII BBBBBBBBBBB
BBBBBBBBBBBB IIIIIIIIII BBBBBBBBBBBB
BB BB II BB BB
BB BB II BB BB
BB BB II BB BB
BBBBBBBBBB II BBBBBBBBBB
BBBBBBBBBB II BBBBBBBBBB
BB BB II BB BB
BB BB II BB BB
BB BB II BB BB
BBBBBBBBBBBB IIIIIIIIII BBBBBBBBBBBB
BBBBBBBBBBB IIIIIIIIII BBBBBBBBBBB

Basic References
These are useful references you may want to have available. They should be available at these web sites:

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/webqs.html
http://www-03.ibm.com/software/products/en/hlasm
• z/Architecture Processor

− z/Architecture Principles of Operation, SA22-7832

− z/Architecture Reference Summary, SA22-7871

• High Level Assembler

− High Level Assembler Language Reference, SC26-4940

− High Level Assembler Programmer's Guide, SC29-4941

• z/OS System Services

− z/OS MVS Programming: Assembler Services Guide, SA23-1368

− z/OS MVS Programming: Assembler Services Reference, Volumes 1-2, SA23-1369 − SA23-1370

− z/OS MVS Programming: Extended Addressability Guide, SA22-7614

− z/OS MVS System Codes, SA22-7626

− z/OS MVS System Messages, Volumes 1-10, SA22-7631 − SA22-7640

• z/OS Data Areas and Control Blocks

− z/OS MVS Data Areas, Volumes 1-6. GA32-0853 − GA32-0858

• z/OS Input/Output

− z/OS DFSMS Using Data Sets, SC26-7410

− z/OS DFSMS Macro Instructions for Data Sets, SC23-6852

• z/OS Binder

− z/OS MVS Program Management User's Guide and Reference SA22-7643

− z/OS MVS Program Management Advanced Facilities SA22-7644

• z/VM

− z/VM CMS Application Development Guide for Assembler, SC24-6070

Bibliography 1057

• z/VSE

− z/VSE Guide to System Functions, SC33-8312

− z/VSE Messages and Codes, Volumes 1-3, SC33-8306 − SC33-8308

System/360 Architecture History
• IBM System/360 Principles of Operation, Form A22-6821.

• Architecture of the IBM System/360, by G. M. Amdahl, G. A. Blaauw, and F. P. Brooks. IBM Journal of Research
and Development, Volume 8, No. 2, April 1964. (Reprinted in IBM Journal of Research and Development Vol. 44
No. 1/2, January/March 2000.)

• The Structure of System/360, a series of five articles in the IBM Systems Journal, Volume 3, Number 2, 1964.

− Part I - Outline of the Logical Structure, by G. A. Blaauw and F. P. Brooks, Jr.
− Part II - System Implementations, by W. Y. Stevens.
− Part III - Processing Unit Design Considerations, by G. M. Amdahl.
− Part IV - Channel Design Considerations, by A. Padegs.
− Part V - Multisystem Organization, by G. A. Blaauw.

• D. W. Sweeney, An Analysis of Floating-Point Addition, IBM Systems Journal Vol. 4 No. 1 (1965)

• The functional structure of OS/360 Part I: Introductory Survey. IBM Systems Journal Vol. 5 No. 1, 3-11 (1966)

• The functional structure of OS/360 Part II: Job and Task Management. IBM Systems Journal Vol. 5 No. 1, 12-29
(1966)

• The functional structure of OS/360 Part III: Data Management. IBM Systems Journal Vol. 5 No. 1, 30-51 (1966)

• Microprogram Control for System/360, by S. G. Tucker. IBM Systems Journal, Volume 6, Number 4, 1967.

• Lisa Heller and Mark Farrell, Millicode in an IBM zSeries processor, IBM Journal of Research and Development,
Volume 48, Number 3/4, May/July 2004.

Assembler Design and Implementation
• IBM System/360 Operating System Assembler Language, Form C28-6514.

• Macro Language Design for System/360, by D. N. Freeman. IBM Systems Journal, Volume 5, Number 2, 1966.

• Proceedings of the IBM Macro Assembler Conference, May 1-3, 1967, Los Gatos, California. (This collection of nine
papers is an interesting source of “inside” information presented by assembler specialists in the computer industry.)

• PL/360, A Programming Language for the 360 Computers, by Niklaus Wirth. Journal of the ACM, Volume 15,
January 1968.

• Assembler-Language Macroprogramming: A Tutorial Oriented Toward the IBM 360, by William Kent. Computing
Surveys, Volume 1, Number 4, December 1969.

• Assembler Design and its Effect on Language and Performance, by H. Joseph Myers. Proceedings of SHARE
XXXIV, March 1970, Denver, Colorado.

• A Brief System z Assembler History, by John Ehrman. Proceedings of SHARE 120, Session 12235, San Francisco,
California, February 2013.

Other General References
• Donald Knuth, The Art of Computer Programming, Addison-Wesley.

• Pat Sterbenz, Floating-Point Computation, Prentice-Hall, 1974.

1058 Assembler Language Programming for IBM System z™ Servers Version 2.00

Acknowledgments

AAAAAAAAAA CCCCCCCCCC KK KK
AAAAAAAAAAAA CCCCCCCCCCCC KK KK
AA AA CC CC KK KK
AA AA CC KK KK
AA AA CC KK KK
AAAAAAAAAAAA CC KKKKKKK
AAAAAAAAAAAA CC KKKKKKK
AA AA CC KK KK
AA AA CC KK KK
AA AA CC CC KK KK
AA AA CCCCCCCCCCCC KK KK
AA AA CCCCCCCCCC KK KK

My thanks to the following:

ASSEMBLER_LIST discussion group for many interesting suggestions and observations.

Avri Adleman for many useful examples of advanced programming techniques, and for continued encouragement.

William Blair for reviewing several chapters.

Bryan Childs for several helpful suggestions.

Richard Corak for thorough and helpful comments on many drafts.

John Dravnieks for helping me understand the High Level Assembler, and for being a valued colleague for many years.

John Ganci for permission to use several clever solutions to programming exercises, and for his thorough, sharp-eyed and
knowledgable reviews of the entire text, and many thoughtful suggestions.

Dan Greiner for many tutorials on the behavior of System z and its instructions, and for thorough and detailed reviews of
drafts.

Vicki Griffeth for helping me to see an early version of these notes through a reader's eyes.

David Gross for thorough proofreading and many helpful suggestions.

John Kalinich for reviewing several chapters.

Melvyn Maltz for suggestions and very careful proof-reading.

Lisa Moore for helping me understand and clarify the description of character encodings, especially Unicode.

Ed Oddo, William Deason, Ken Edwards, and Virgil Hein for supporting my efforts to complete these notes.

Prof. Joshua Panar of Ryerson University for extensive thoughtful comments, and “field testing” in a university environ-
ment.

Wayne Rhoten for help clarifying many important points.

Michael Stack of Northern Illinois University for his inspiration as a teacher of Assembler Language and as the creator
of the popular SHARE “Assembler Boot Camp”.

Rich Way for catching a variety of my errors.

Romney White for thorough and helpful comments on many drafts.

Stanford University students for their critiques of a very early version of these notes.

Acknowledgments 1059

1060 Assembler Language Programming for IBM System z™ Servers Version 2.00

Notices

NN NN OOOOOOOOOOOO TTTTTTTTTTTT
NNN NN OOOOOOOOOOOO TTTTTTTTTTTT
NNNN NN OO OO TT
NN NN NN OO OO TT
NN NN NN OO OO TT
NN NN NN OO OO TT
NN NN NN OO OO TT
NN NN NN OO OO TT
NN NNNN OO OO TT
NN NNN OO OO TT
NN NN OOOOOOOOOOOO TT
NN N OOOOOOOOOOOO TT

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local
IBM representative for information on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing
of this document does not give you any license to those patents. You can send license inquiries, in writing, to

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are incon-
sistent with local law. INTERNATIONAL BUSINESS MACHINES PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the infor-
mation herein; these changes will be incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Trademarks

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

Notices 1061

ANSI is a registered trademark of the American National Standards Institute in the United States, other countries, or
both.

IEEE is a trademark of the Institute of Electrical and Electronic Engineers in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Unicode is a registered trademark of Unicode, Incorporated in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company product and service names may be trademarks or service marks of others.

BookMaster Enterprise Systems Architecture/370
Enterprise Systems Architecture/390 ESA/370
ESA/390 IBM
MVS OS/360
OS/390 S/360
S/370 System/360
System/370 System/390
System z VSE/ESA
z/Architecture z/OS
z/VM z/VSE
zLinux zSeries
z System

1062 Assembler Language Programming for IBM System z™ Servers Version 2.00

Suggested Solutions to Selected Exercises and Programming
Problems

Suggested Solutions to Selected Exercises and Programming Problems 1063

Section 1 Solutions
Section 1.2

1.2.1. The field is 8 digits wide.

Section 1.3

1.3.1. The reference is to GR9.

1064 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 2 Solutions
Section 2.1

2.1.1. (a) 22, (b) 44, (c) 170, (d) 127.

2.1.2. 2n.

2.1.3. Assuming the number is unsigned, 2n − 1. Later, when we discuss signed numbers in the twos' complement
representation, the answer will be − 1.

Section 2.2

2.2.1. (a) B'1010', (b) B'10 1101', (c) B'11 1110 1000'.

2.2.2.

2.2.3. Groupings always begin at the radix point, which for integers lies to the right of the last digit. (Consider what
would happen to B'111111' if you grouped the bits from the left: should the result be B'1111 1100' = X'FC', rather
than X'3F'?)

2.2.4. These are the hexadecimal addition and multiplication tables.

Binary
Digits

Decimal
Value

Hex
Digit

Octal
Digits

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 8 10
1001 9 9 11
1010 10 A 12
1011 11 B 13
1100 12 C 14
1101 13 D 15
1110 14 E 16
1111 15 F 17
10001 16 10 20

+ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
1 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10
2 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11
3 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12
4 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13
5 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14
6 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
7 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16
8 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17
9 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18
A 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19
B 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A
C 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B
D 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
E 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
F 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

Suggested Solutions to Selected Exercises and Programming Problems 1065

2.2.5.

1. 21474 (base 8) = X'233C'.
2. 77777 (base 8) = 215 − 1 = X'7FFF'.
3. 1750 (base 8) = X'3E8'.
4. 60341303 (base 8) = X'C1C2C3'.
5. 4631 (base 8) = X'999'.

Section 2.3

2.3.1.

1. 26293 = X'66B5' = B'110 0110 1011 0101' = 63265 (base 8) = 12122311 (base 4).
2. X'2FACED' = B'10 1111 1010 1100 1110 1101' = 3124461.
3. X'BABEF00D' = 27257570015 (base 8) = 3133075469.
4. X'C0FFEE' = B'1100 0000 1111 1111 1110 1110' = 12648430.

2.3.2.

1. 2147483647 (a useful number!)
2. 12698307
3. 1077952604

2.3.4.

1. X'257' = 599
2. X'7FFA' = 32762
3. X'8008' = 32776
4. X'E000' = 57344
5. X'FFFA' = 65530
6. X'E1010' = 921616

2.3.5. It is usually most convenient to do the arithmetic in base A (the original base) by expressing B in base A. Some-
times it is simpler to convert from base A to base 10, and from there to B using decimal arithmetic. (We can't do the
arithmetic in base B, since we would have to know the representation of the number to be converted in base B in order
to do the arithmetic!) The result does not depend on the base used for the conversion.

2.3.6. (a) 5061 (octal) = 2609 (decimal); (b) 111, (c) 192 is not a valid octal number (9 is not an octal digit!).

2.3.7. Referring to the tables of powers of 16, we find 9K = 589,284; 5M = 83,866,080; 2G = 2,147,483,648.

Section 2.4

2.4.1.

1. 31659 = 75653 (base 8) = 13232223 (base 4) = B'111 1011 1010 1011'.
2. 6917 = 210132 (base 5) = 31C1 (base 13) = X'1B05'.
3. X'EF2A' = 61226 = 21B39 (base 13).

2.4.2. The hex values are 1, A, 64, 3E8, 2710, 186A0, F4240, 989680, 5F5E100, 3B9ACA00. Did you do many
tedious base-10 divisions by 16, rather than nine base-16 multiplications by X'A'? Try it, it's good practice in hex
arithmetic. (In this way, you can derive further values easily; the next three are 2540BE400, 174876E800, and
E804A51000.)

× 0 1 2 3 4 5 6 7 8 9 A B C D E F

1 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
2 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
3 00 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D
4 00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C
5 00 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B
6 00 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 00 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
8 00 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 00 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 00 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 00 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 00 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D 00 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
E 00 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F 00 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1

1066 Assembler Language Programming for IBM System z™ Servers Version 2.00

2.4.4. Your answer should be 1000 (decimal).

2.4.5. 73294 = 58001 (base 11) = 374BA (base 12) = 27490 (base 13) = 1C9D4 (base 14) = 16AB4 (base 15). The
previously computed results are of little use in converting to each new base.

2.4.6. Here is a base-7 multiplication table:

(1) 526 (base 7) = 265 = X'109'. (2) 11010 (base 7) = 2751 = 5277 (base 8). (3) 61436 (base 7) = 35174 (base 8).
(4) 666 (base 7) = 342, since 666 in base 7 is the same as 73 − 1, or 343 − 1.

2.4.7. 757 (base 10), 531 (base 12).

2.4.8. (1) 2F3 (base 25) = 1628. (2) 61436 (base 8) = 25374. (3) X'DEFACE' = 14613198. (4) 999 = X'3E7'.

2.4.9. Whatever base is convenient; base A is most natural; occasionally it is simpler to use decimal arithmetic.

2.4.10. (1) 526 = X'10E'. (2) B'10110' = 42 (base 5). (3) 61436 (base 8) = 25374. (4) 666 = 1641 (base 7).

2.4.11. 10, 11, 12, 13, 20, 22, 1000, 00000000 (or eight marks of some sort; the only reason to write zeros is because
the numeric “digit” available in base 1 is zero).

2.4.12. One base must be a power of the other. (This doesn't necessarily mean it will be easy!)

2.4.13. The values are 11, 12, 13, 14, 15, 16, 17, 20, 22, 24, 31, 100, and 121. (You may have seen this sequence as a
puzzle question “What is the next number in this series?”)

2.4.14. 4357 = 22210, and 647 = 4610. Their sum in base 7 is 532, or 268 in decimal. Their base-7 product is 41526,
or 10212 in decimal.

2.4.15. The base-3* values are respectively 2, 20, 101, 121, 1001, 1112, 10200, and 10212.

Section 2.6

2.6.1.

1. X'DEADBEEF' = 3735928559
2. X'FFFFFFFF' = 4294967295
3. X'DEC0DED1' = 3737181905

Section 2.7

2.7.1. The quotients and remainders for each division step are:

1. X'B675', X'3';
2. X'C29', X'E';
3. X'CF', X'8';
4. X'D', X'C';
5. X'0', X'D'.

The converted value of X'AB0DE' is DC8E3 (base 15).

2.7.2. (1) 0729, (2) 9271, (3) 9999, (4) 9999 (not valid), (5) 5000, (6) 5000 (not valid), (7) 0001 (not valid). Valid values
in the 4-digit ten's-complement representation must lie between − 5000 (the maximum negative number) and +4999 (the
maximum positive number).

2.7.3. − 211 +1, or − 2047.

2.7.4. − 2(n −1) +1.

× 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 11 13 15
3 3 6 12 15 21 24
4 4 11 15 22 26 33
5 5 13 21 26 34 42
6 6 15 24 33 42 51

* Mathematician's joke: There are three types of people: those who can count, and those who can't.

Suggested Solutions to Selected Exercises and Programming Problems 1067

2.7.5. The three values are

1. X'DEADBEEF' = − 559038737
2. X'FFFFFFFF' = − 1
3. X'DEC0DED1' = − 557785391

Section 2.8

2.8.1. Because it was chosen that way. It would be awkward to use a representation in which the process of converting
a positive number to negative was different from the process for converting from negative to positive.

2.8.2. (See Exercise 2.4.4 also)

1. X'0257' = 599
2. X'7FFA' = 32762
3. X'8008' = −32760
4. X'E000' = −8192
5. X'FFFA' = −6

2.8.3. The two's complement of the binary representation of a number X is the two's complement binary representation
of the number − X, unless X is the negative number of greatest representable magnitude.

2.8.4. In decimal, c(A) = +32064, c(B) = − 12288, c(C) = +5538, c(D) = − 32758.

2.8.5. The variables, their decimal values, and their 9-bit representations for both positive and negative values, are
shown below. N.R. means the value cannot be represented.

Positive Negative
Z 0 B'000000000' N.R.
A 1 B'000000001' B'111111111'
B 9 B'000001001' B'111110111'
C 62 B'000111110' B'111000010'
D 101 B'001100101' B'110011011'
E 255 B'011111111' B'100000001'
F 256 N.R. B'100000000'

2.8.6.

1. +10 X'0000000A', −10 = X'FFFFFFF6'
2. +729 = X'000002D9', −729 = X'FFFFFD27'
3. +106 = 1000000 = X'000F4240', − 1000000 = X'FFF0BDC0'
4. +109 = 1000000000 = X'3B9BCA00', − 1000000000 = X'C4643600'
5. +2147483648 = 231 is not representable, − 231 = X'80000000'
6. +65535 = 216 − 1 = X'0000FFFF', − 65535 = X'FFFF0001'
7. +2147483647 = 231 − 1 = X'7FFFFFFF', − (231 − 1) = X'80000001'

2.8.7. The two processes give the same bit patterns. The only case where you might consider them different is in com-
plementing the maximum negative number: our recipe would indicate an overflow in the second step (when we add a
low-order 1 bit), whereas the suggested method would indicate an overflow in the first (subtraction) step. If subtraction
plus complementation is thought of as a single operation, then the two procedures are the same.

2.8.8.

1. +13055 = X'32FF'
2. − 9582 = X'DA92' (two's complement of X'256E')

2.8.9.

 1. +5 = X'00000005'
 2. −97 = X'FFFFFF9F'
 3. +65795 = X'00010103'
 4. −16777158 = X'FF00003A'
 5. +16777219 = X'01000003'
 6. −78606 = X'FFFECCF2'

2.8.10. The values are:

1068 Assembler Language Programming for IBM System z™ Servers Version 2.00

 1. X'B00F' = -20465
 2. X'FFF1' = -15
 3. X'0FFF' = +4095
 4. X'F001' = -4095

Section 2.9

2.9.1.

 1. X'00000257' = B'0000 0000 0000 0000 0000 0010 0101 0111'
 2. X'00007FFF' = B'0000 0000 0000 0000 0111 1111 1111 1111'
 3. X'FFFF8008' = B'1111 1111 1111 1111 1000 0000 0000 1000'
 4. X'FFFFE000' = B'1111 1111 1111 1111 1110 0000 0000 0000'
 5. X'FFFFFFFA' = B'1111 1111 1111 1111 1111 1111 1111 1010'

Section 2.10

2.10.1. No. Overflow must be detected using binary arithmetic. Since the four high-order bits are B'1111', their sum is
B'1 1110', so the carries into and out of the high-order bit positions agree.

Section 2.11

2.11.1.

1. 10 − (− 10) = X'0000000A' − X'FFFFFFF6' = X'00000014' (no overflow, no carry);
2. 729 − 65535 = X'000002D9' − X'0000FFFF' = X'FFFEFD28' (no overflow, carry);
3. 2147483647 +2 = X'7FFFFFFF' + X'00000002' = X'80000001' (overflow, no carry);
4. 109 + (− (231 − 1)) = X'3B9BCA00' + X'80000001' = X'BB9BCA01' (no overflow, no carry);
5. 0 − (+0) = X'00000000' − X'00000000' = X'00000000' (no overflow, carry);
6. (− 10) +10 = X'FFFFFFF6' + X'0000000A' = X'00000000' (no overflow, carry).

2.11.2. C(X) = X'679E', no overflow; C(Y) = X'500A', overflow; C(Z) = X'FD4A', no overflow.

2.11.3. The procedure is correct. Consider these examples, using 4-bit signed binary numbers.

 Number Step 1 Step 2
0000 1111 1111 0 −1
0001 0000 0000 1 0
0111 0111 0110 7 6
1111 1111 1110 −1 −2
1000 1111 0111 −8 +7 (with overflow)

2.11.5.

 1. X'7D26F071'+X'B40E99A4' = X'31358A15', carry, no overflow
 2. X'7D26F071'-X'B40E99A4' = X'C91856CD', no carry, overflow
 3. X'FFFFF39A'+X'FFFE4B06' = X'FFFE3EA0', carry, no overflow
 4. X'FFFFF39A'-X'FFFE4B06' = X'0001A894', carry, no overflow
 5. X'80000003'+X'0000007C' = X'8000007F', no carry, no overflow
 6. X'80000003'+X'8000007C' = X'0000007F', carry, overflow

Section 2.12

2.12.1. In a 9 − bit hexadecimal representation,

(1) A +C = X'001+X'03E' = X'03F' (no carry, no overflow);
(2) D − E = X'065'−X'0FF' = X'166' (no carry, no overflow);
(3) Z + (− F) = X'000'+X'100' = X'100' (no carry, no overflow);
(4) (− E) − C = X'101'−X'03E' = X'0C3' (carry, overflow);
(5) (− B) +A = X'1F7'+X'001' = X'1F8' (no carry, no overflow);
(6) C − Z = X'03E'−X'000' = X'03E' (carry, no overflow);
(7) A + (− A) = X'001'+X'1FF' = X'000' (carry, no overflow).

Section 2.13

2.13.1. Consider subtracting X'80000000' from zero. If we assume that the two's complement of X'80000000' is added
to the first operand (zero), then no carries occur out of the two high-order bit positions, and no overflow condition is
detected. If we add the ones' complement of the second operand and a low-order 1-bit to the first operand, the two
carries will differ and the overflow will be correctly detected. Any overflow that occurs in forming the two's comple-

Suggested Solutions to Selected Exercises and Programming Problems 1069

ment of the second operand will be lost prior to adding if we believe the incorrect description. Similarly, suppose we
subtract zero from anything. If we add the two's complement of zero, no carry occurs, but if we add its ones' comple-
ment and a low-order 1-bit, a carry always occurs. Thus “our” rule describes both the carry and overflow cases
correctly.*

Section 2.14

2.14.1. The decimal values, and their corresponding logical and arithmetic representations (written as 11-bit
hexadecimal numbers), are as follows; “N.R.” means that no valid representation exists to the given accuracy.

Positive Negative
(1) 200 X'0C8' X'0C8'
(2) 1023 X'3FF' X'3FF'
(3) -1000 N.R. X'418'
(4) 2047 X'7FF' N.R.
(5) -1 N.R. X'7FF'
(6) -1024 N.R. X'400'
(7) -1023 N.R. X'401'
(8) 1024 X'400' N.R.
(9) -0 N.R. N.R.

2.14.2. The following table shows the results, where the abbreviations “C” means “Carry”, “NC” means “No Carry”,
“O” means “Overflow”, and “NO” means “No Overflow”.

2.14.3. Using the same abbreviations as in the previous exercise, the results will look like this (the values in the first row
are A−A, B−A, C−A, D−A):

Section 2.15

2.15.1. (1) 0028, (2) 9951, (3) 0527, (4) 9667, (5) 8766, (6) 2469.

2.15.2.

(a) 0028 (b) 0527 (c) 8766
+9951 +9667 +2469
9979 = −21 0194 1235

These calculations were simpler because no intermediate complementations were required.

2.15.3. (a) 0028, (b) 9950, (c) 0527, (d) 9666, (e) 8765, (f) 2469.

+ A B C D
A 11110

C, NO
00001
C, NO

01111
C, O

01110
C, NO

B — 00100
NC, NO

10010
NC, NO

10001
NC, O

C — — 00000
C, O

11111
NC, NO

D — — — 11110
NC, O

A B C D
−A 00000

C, NO
00011
NC, NO

10001
NC, NO

10000
NC, O

−B 11101
C, NO

00000
C, NO

01110
C, O

01101
C, NO

−C 01111
C, NO

10010
NC, O

00000
C, NO

11111
NC, O

−D 10000
C, NO

10011
NC, NO

00001
C, O

00000
C, NO

* The error wasn't corrected until the 8th edition!

1070 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 3 Solutions
Section 3.1

3.1.1. Because X'30A6'−X'2EC9' = X'1DD', the area contains X'1DE' or 478 bytes. Because you must consider
boundary alignments for half-, full-, and doublewords, some bytes on either end can't be used. Thus, the area can
contain 238 halfwords, 118 words, and 58 doublewords. (Try the same exercise with the ending address at X'30A7',
and note the differences.)

3.1.2. No. The smallest addressable entity in memory is a byte. The bits within a byte are not individually addressable.

3.1.3. The area contains X'17' = 23 complete bytes, plus 3 bits at X'1A023' plus 2 bits at X'1A03B', giving 8*23+3+2
= 189 bits in all.

3.1.4. (1) halfword; (2) none; (3) halfword, word, and doubleword; (4) halfword and word.

3.1.5. (1) 131,072; (2) 32,768; (3) 2,097,152.

3.1.6. 322 in octal, and D2 in hex.

3.1.7. Let “x” mean either a 0-bit or a 1-bit. Then these bit patterns of the rightmost hex digit mean the indicated
alignments:

 0000 quadword
 x000 doubleword
 xx00 word
 xxx0 halfword
 xxx1 byte

Section 3.3

3.3.1. No (GR7 and GR8 are not part of an even-odd pair); no (for the same reason); yes.

3.3.2. Sixteen. Actually, depending on the instructions used to load data from memory into the general registers, the
number can vary from 1 to 16. (Prior to System z, each general register contained only four bytes, so a pair contained
eight.)

Section 3.4

3.4.1. Only one: the right half of the register is ignored for 32-bit operands.

3.4.2. Probably so that the Floating-Point Feature could be omitted if the customer didn't want it.* In many programs,
the amount of arithmetic involving exchanges of data between the general and Floating-Point registers is small, so that
little would be gained by using a single register set for both types of operands. For other more complex programs,
however, this capability is extremely valuable.

One useful aspect of such a shared-register arrangement is that the programmer can decide the most efficient use of the
registers by his program; he can allocate as many or as few to floating-point operands as he feels are needed.

* Or, as one cynic put it, so IBM could charge more for a processor with a full instruction set.

Suggested Solutions to Selected Exercises and Programming Problems 1071

Section 4 Solutions
Section 4.1

4.1.1. You can do this if each instruction contains the address of its successor. This technique was used on the IBM
650, but it also meant that instructions had to be longer, to hold both the operand memory address and the successor
instruction address.

Section 4.2

4.2.1. No, only on a halfword boundary. It is possible to require a word alignment in memory for the operand referred
to by the instruction, but not for the instruction itself.

4.2.2. Two bytes.

4.2.3. Because (1) each instruction is an integral number of halfwords in length, and (2) can start on any halfword
boundary.

4.2.4. Yes. A word or doubleword boundary is also a halfword boundary.

4.2.5. There's no way to tell the difference.

Section 4.3

4.3.1. No, because the first two bits of the operation code uniquely determine the length of the instruction.

4.3.2. Twenty-four (decimal) bytes. The instructions are 2, 4, 4, 4, 6, and 4 bytes long. (Types are RR, RX, RS, RX,
SS, RX.)

4.3.3. In binary, the values are 01, 10, 10, 10, 11, 10.

4.3.4. 2× ((sum of first two opcode bits)+1) bytes.

4.3.5. The table entries could look something like this:

00 RR 2 01 0
01 RX 4 10 1
10 RS,SI 4 10 1
11 SS 6 11 2

(But you could also study Table 10!)

4.3.6. There are seven instructions, of lengths 4, 2, 4, 6, 2, 4, and 2 bytes respectively. The types are RS, RR, RX, SS,
RR, RX, and RR.

4.3.7. In most cases, you can find the required address by subtracting twice the ILC (the number of halfwords in the
previous instruction) from the IA in the PSW.

4.3.8. The System z CPU will fetch whatever bytes are in the gaps, and try to decode them as instructions. There is no
escape.

(You can cheat by using a branch instruction to jump over each gap, but then your program would be much larger
than necessary. Some early computers handled this problem by having each instruction contain the address of its suc-
cessor, but those programs were also bigger. See Exercise 4.1.1 above.)

Section 4.4

4.4.1. (1) the RR-type instruction has opcode X'05'. (2) the RX-type instruction has opcode X'58'. (3) the RS-type
instruction has opcode X'89'. (4) the RX-type instruction has opcode X'5A'. (5) the SS-type instruction has opcode
X'D2'. (6) the RX-type instruction has opcode X'50'.

Section 4.6

4.6.1. The Instruction Address in the PSW is odd, which violates the requirement that all instructions begin at a
halfword boundary.

4.6.2. Because the New PSW's Instruction Address is odd, the attempt to fetch the first instruction at memory location
X'A237' would cause another program interruption. The current PSW stored at the “old PSW” area would be the one
shown, overlaying the “old PSW” that described the original error. The CPU would then stay in a program inter-
ruption loop until the processor was reset (which other executing programs would consider very unfriendly).

1072 Assembler Language Programming for IBM System z™ Servers Version 2.00

4.6.3. The causes of the Interruption Codes are:

1. 0001: an invalid instruction code that can't be executed by the CPU.
2. 0009: your program tried to divide two binary numbers; either the divisor is zero, or the quotient is too large to be

represented in a single general register.
3. 000C: the product of two hexadecimal floating-point numbers is too large to be correctly represented.

Suggested Solutions to Selected Exercises and Programming Problems 1073

Section 5 Solutions
(All answers are in hexadecimal unless otherwise indicated.)

Section 5.1

5.1.1. Yes, and don't forget it! (You can of course put an addressing halfword somewhere not on a halfword
boundary, but then it can't be part of an executable instruction.)

5.1.2. Sixteen and fifteen.

Section 5.2

5.2.1. (1) X'1AAF10', (2) X'02AF0C', (3) X'000FB0'.

5.2.2. (1) X'02B00F', (2) X'000FC8', (3) X'1ABD48'.

Section 5.3

5.3.2. If the instruction type is RX, then the fourth digit of the instruction is an index digit; if it is not zero, an indexing
cycle is needed.

5.3.3. For RR instructions, none; for RX, two (the base and index registers); for RS and SI, one; for SS, two (one for
each operand).

5.3.4. If the instruction is type RR, or if the CPU needs repair.

Section 5.4

5.4.1. Register zero is never used as a base or index register. In all other respects, however, GR0 is a perfectly normal
and well-behaved general register. (Later, we'll see instructions that use GR0 to hold addresses.)

5.4.2. (1) X'1AAF10', (2) X'02AF0C', (3) X'000323', (4) X'8AADD2', (5) X'000166', (6) X'000FB0'. It is important to
distinguish the RX and the RS-SI instructions.

5.4.3. (1) X'0710FC' (the carry is lost!), (2) X'0903AA', (3) X'000000', (4) X'00006C', (5) X'000044', (6) X'090518', (7)
X'071F49'.

5.4.4. X'FF0503' (RX instruction with base=0 and index=4, and for this particular instruction the operand could be
misaligned); (2) X'31C000'; (3) X'2B4FFE' (RX instruction with base=7, index=15).

Section 5.5

5.5.1. (1) X'1BAD', (2) X'3A55' or X'0A4D', (3) not addressable, (4) not addressable, (5) not addressable.

5.5.2. It is most important to remember that addressability depends on the contents of the general registers. The fact
that a byte has an address does not mean it is addressable; it is possible that it is inaccessible to the program. (1) not
addressable (R0 can't be used as a base register); (2) X'F000'; (3) not addressable; (4) not addressable (R1 would
require a displacement of 1002, and GR11 would require − 1); (5) X'C3FC'; (6) X'5FC3'; (7) not addressable; (8)
X'8921' or X'BFE6' (the Assembler has a problem deciding, too); (9) not addressable; (10) X'5000'.

5.5.3. (See the note in the solutions to Exercise 5.5.2 also.) We will write the index digit and addressing halfword as
five hex digits in the form xbddd. (1) 010A20 is not addressable; (2) FFFFFF is addressable by 0F000, F0000, FF001,
EF000, FE000; (3) 6A0054 is not addressable; (4) 31AB7E is addressable by FB000, BF000, 19FF2, 91FF2, 1C1CA,
C11CA; (5) 001234 is addressable by 0C3FC, C03FC, FC3FD, CF3FD, 9C3EC, C93EC, EC3FC, CE3FC; (6)
07D3C4 is addressable by 05F03, 50F03, E5F03, 5EF03, F5F04, 5FF04, 5C0CC, C50CC, 95EF3, 59EF3; (7) 00A004
is addressable by DD004; (8) 31BB65 is addressable by 08921, 80921, E8921, 8E921, 98911, 89911, 0BFE6, B0FE6,
BEFE6, EBFE6, 9BFD6, B9FD6, F8920, 8F920, FBFE7, BFFE7; (9) 9ABCDE is not addressable; (10) 07C401 is
addressable by 05000, 50000, E5000, 5E000, F5001, 5F001.

5.5.4. The possible hex values are 0EEB, 3EEC, 6FEB, 7EEB, 8EEB, ..., FEEB (12 solutions); (2) no solutions; (3)
2F04.

5.5.5. We write the index digit and addressing halfword in the form xbddd. Then (1) 02ABCD may be addressed by
01BAD, 10BAD, 31BB5, 13BB5; (2) 000A4D may be addressed by 00A4D, 03A55, 30A55, 33A5D; (3-5) all of
001139, 88888E, and 02A010 are not addressable.

1074 Assembler Language Programming for IBM System z™ Servers Version 2.00

5.5.6. Even though the base register specification digit would be zero in each addressing halfword, GR0 would still not
be used (or usable) as a base register!

5.5.7. (1) X'31C161', X'07CBC5;' (2) X'005CFF', X'2B42A3;' (3) X'023B43', X'000050;' (4) X'000E4E', X'000E4E'.

Section 5.6

5.6.1. Because 15 registers are available for addressing purposes, there is considerably less need to use addresses in
memory to locate an operand; the added cost of accessing memory is also avoided. An additional bit would also be
required in all instructions for which indirection was allowed. In some processors allowing indirect addressing, it is
possible to put the CPU into a loop by having two instructions in an indirect-address chain refer to one another.

Suggested Solutions to Selected Exercises and Programming Problems 1075

Section 6 Solutions
Section 6.2

6.2.1. The default rule is that columns 1 to 15 must be blank. It is a common practice to group comments into blocks
of descriptive statements, all of which have an asterisk in column 1. If one of those statements has a nonblank char-
acter in column 72, the following record will not be blank in columns 1 to 15, as required.

Section 6.3

6.3.1. The statement will be read by the Assembler during assembly time, when it will be translated into a machine
language instruction in the object module. This will be linked into the load module; after the load module has been
placed in memory at the start of execution time, the CPU can fetch, decode, and execute the instruction.

6.3.2. The choice is up to you; any column at least one space past the operand field is acceptable.

6.3.3. Any column except 1. It should not extend into column 72!

6.3.4. The operation field is always required.

6.3.5. Comment statements have no operation field entry; some Assembler instructions (such as SPACE, EJECT,
START, ORG, CSECT, etc.) require no operand field entry; any statement may be written without a remarks field.

6.3.6. Because column 1 is blank, the operation field entry is LOAD; the operand field entry is therefore “LR”; the rest of
the statement is comments!

6.3.7. (a) Only comment statements; (b) All non-comment statements.

Section 6.5

6.5.2. The END statement is only an indication to the Assembler that the source module is complete, and it is not any
part of the executing program. If you understand the phrase “control reaches the END statement” to mean that the
CPU attempts to execute instructions outside the bounds of the program, an error is likely to cause the “end” (termi-
nation) of program execution. There's no way to know how the CPU will interpret whatever bit patterns it may then
“stumble” into.

6.5.3. Lines 4 and 10 have name-field entries; all but line 6 have operation field entries, operand field entries, and
comment field entries.

Programming Problem 6.1.

Here is the Assembler's listing of my program:

 Loc Object Code Addr1 Addr2 Stmt Source Statement

000000 00000 00038 1 Test Start 0 First line of program Line 4
2 Print NoGen Line 5
3 * Sample Program Line 6

000000 0DF0 4 BASR 15,0 Establish a base register Line 7
R:F 00002 5 Using *,15 Inform the assembler Line 8

000002 90EF F00A 0000C 6 PRINTOUT MyName,* Print name and stop Line 9
00002A D196889540D94B40 436 MyName DC C'John R. Ehrman' Define constant with name Line 10
000000 437 END Test Last statement Line 11

When the program was executed, it produced this printed output;

 *** PRINTOUT REQUESTED AT LOCATION 021002, CC=1
 MyName = 'John R. Ehrman'
 *** EXECUTION TERMINATED BY PRINTOUT * AT LOCATION 021002

1076 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 7 Solutions
Section 7.1

7.1.1. (1) 12345 = X'3039'; (2) X'15555'; (3) X'B4DAD'; (4) too long (9 significant digits); (5) the + sign is not valid on a
self-defining term; (6) X'3C3C3D'; (7) too long (33 significant bits).

Section 7.2

7.2.1. (1) X'007B7C5B'; (2) incorrectly paired apostrophes; (3) X'40C140C2';
(4) X'00D9E4C4'; (5) X'0000F1F2'; (6) too long (five characters).

7.2.2. The values are (1) X'50' (the ampersands are paired), (2) X'F7F5', (3) X'7D' (the apostrophes are paired), (4)
X'C37D', (5) X'F0', (6) X'E2C4E3'.

7.2.3. This table shows the ASCII encodings for the same characters shown in Table 13 on page 87. (Here, they are
not in order of increasing encoding values.)

7.2.4. (1) X'7D7D7D', (2) X'3E8', (3) X'8', (4) X'507D50', (5) X'6B', (6) X'C17EC2'.

7.2.5.

(1) 64 = X'40' = B'01000000'= C ' ' (in our notation, C'• ')
(2) 245 = X'F5' = B'11110101'= C '5 '
(3) 80 = X'50' = B'01010000' = C'&&'
(4) 16476 = X'405C'. = B'0100000001011100' = C ' *' (in our notation, C'•*')
(5) − 101058055 = X'F9F9F9F9' = B'11111001111110011111100111111001' = C'9999'
(6) 12966353 = X'C5D9D1' = B'110001011101100111010001' = C 'ERJ '

7.2.6. The bits 11010010 are the EBCDIC representation of the capital letter K.

7.2.7. The terms and their values are:

(1) B'110010110000010111010110' = X'00CB05D6'
(2) C'A&&B' = X'00C150C2'
(3) 54721 = X'0000D5C1'
(4) X'B00B00' = X'00B00B00'

Table 449. ASCII Character Representation. (((alntb7b)))
Char Hex Char Hex Char Hex Char Hex

Blank 20 . 2E (28 + 2B
& 26 $ 24 * 2A) 29
- 2D / 2F , 2C _ 5F
23 @ 40 ' 27 = 3D
a 61 b 62 c 63 d 64
e 65 f 66 g 67 h 68
i 69 j 6A k 6B l 6C
m 6D n 6E o 6F p 70
q 71 r 72 s 73 t 74
u 75 v 76 w 77 x 78
y 79 z 7A A 41 B 42
C 43 D 44 E 45 F 46
G 47 H 48 I 49 J 4A
K 4B L 4C M 4D N 4E
O 4F P 50 Q 51 R 52
S 53 T 54 U 55 V 56
W 57 X 58 Y 59 Z 5A
0 30 1 31 2 32 3 33
4 34 5 35 6 36 7 37
8 38 9 39

Suggested Solutions to Selected Exercises and Programming Problems 1077

7.2.8. The respective values are:

1. X'D1C5'
2. 53701
3. − 11835
4. C'JE'

7.2.9. The values are:

 1. B'110010111000010111011001' = X'CB85D9'
 2. C'R&&Z' = X'D950E9'
 3. 51401 = X'C8C9'

7.2.10. (1) B'01110101100010' = X'1D62', (2) C'''+' = X'7D4E', (3) 10010 = X'271A'

Section 7.3

7.3.1. Symbols (1), (3), (4), and (9) are valid. The second is invalid if you think of it as a single symbol because the
blank is not allowed, but Captain and Major are valid symbols. The other invalid symbols are (5) (exclamation point is
not allowed, to say nothing of the language), (6) (starts with a digit), (7) (naturally), (8) (parentheses are not allowed).

7.3.2. Consider the “symbol” 1234567J. The Assembler's term-scanning routine might be well on its way into con-
verting what appeared to be a decimal self-defining term when the letter J appeared. This would require either backing
up, or necessitate multiple scans wherever a symbol could appear.

Section 7.5

7.5.1. All the symbols (EX7_5_1, BEGIN, DUMMY, N, and ONE) are relocatable. The LC values (and therefore the values
of the symbols) are as shown.

LC Stmt
5000 EX7_5_1 START X'5000'
5000 BASR 6,0
5002 BEGIN L 2,N
5006 A 2,ONE
500A ST 2,N
500E DUMMY DS XL22
5024 N DC F'8'
5028 ONE DC F'1'

Section 7.6

7.6.1. You shouldn't need to check this answer!

7.6.2. The symbol TEN is three characters long.

1078 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 8 Solutions
Section 8.2

8.2.1. The results are A+B, A-B, and A-B.

8.2.2. The expression has value 19.

8.2.3.

a. A+-+-B Valid A+(-(+(-B))) --> A+B
b. A*--B Valid A*(-(-B)) --> A*B
c. A-*-B Invalid A-(*(-B))
d. A---B Valid A-(-(-B)) --> A-B
e. --A-++B Valid -(-A(-(+(+B)))) ..) A-B

Section 8.3

8.3.1. If none of these expressions is further combined with other expressions, then A−R is invalid because the only
relocatable term is preceded by a − sign. (If it was combined with another expression such as in (A−R)+(A+R) the
result would be valid and absolute. (It's important to look at the whole expression!)

R +R is invalid because the sum will be complexly relocatable; all the expressions involving multiplication or division
with a relocatable term are always invalid; the remaining expressions are always valid.

8.3.2. If you think so, you may still be uncertain about the difference between the Assembler's computation of
expression values at assembly time, and the program's computation of whatever it likes at execution time. A program
can compute remainders, as we will see when we discuss the Divide instructions.

8.3.3. The two symbols may have different relocatability attributes. (We will meet such symbols when we discuss
external symbols and control sections.)

Section 8.4

8.4.1. 75, 32, and 2400 respectively.

8.4.2. R6 is the only absolute symbol, and it has value X'000009' (a poor practice). The other symbols are relocatable;
their values are A (X'000466'), B (X'00046C'), C (X'000470'),
X (X'000474'). The expressions, their values, and their relocatability attributes, are:

B+X'1C' X'000488' relocatable
C-A+X-2*(R6/2) X'000476' relocatable
2*C'-'-C'A'+2 X'000001' absolute
B-2 X'00046A' relocatable
R6-2 X'000007' absolute

8.4.3. Expressions 1 and 6 are relocatable; the rest are absolute. They have values X'10A99', X'FFFFE884', X'7', X'3',
X'8D', and X'12098' respectively.

8.4.4. Item 4 is invalid; if you look at it long enough you will see why. Expressions 1, 3, 5, 6, and 7 are valid.
Expressions 3 and 5 are syntactically valid, but the value overflows a word. Only the rightmost 32 bits would be
retained.

8.4.5. (1) X'000F08', absolute; (2) X'172BE9', relocatable; (3) X'001BD8', absolute;
(4) X'000180', absolute; (5) X'173ACC', relocatable.

8.4.6. Expressions 1 and 5 are invalid, because they contain products involving a relocatable expression. Except for
expression 4, the other expressions are all absolute, and have the following values: (2) X'00558F'; (3) X'0020A9' (if you
got X'0020A8', you forgot to do the multiplication before the division); (4) X'00142D0A' (relocatable); (6) X'FFFFFFFE'
(−2 in decimal).

8.4.7. If we allowed relocatable terms in multiplications and divisions, it would no longer be possible to preserve the
simple additive relationship between the location value of an assembly-time expression and its address value at exe-
cution time. Handling such constructions would require that we pass enough information about the expression to the
Program Loader so that it could compute the correct value when the true address referred to by the symbol is known.

8.4.8.

Suggested Solutions to Selected Exercises and Programming Problems 1079

 1. B-A Value=X'F08', absolute
 2. A+C'.' Value=X'172BE9', relocatable

Section 8.5

8.5.1. (1) second; (2) first; (3) second; (4) second; (5) first; (6) third; (7) third; (8) third,
(9) second. All the operands are valid!

Programming Problem 8.1.

Many of the Length Attribute References I tried were invalid. The reasons are explained among the lines of the Assem-
bler's listing.

 Loc Object Code Addr1 Addr2 Stmt Source Statement

000000 00000 00024 1 P8_1 Start 0
R:F 00000 2 Using *,15

001A9 3 ABS425 Equ 425
000000 0000 0000 00000 4 LA 0,L'2
** ASMA147E Symbol too long, or first character not a letter - 2
The Length Attribute of a self-defining term is undefined; if it had been written X'2', the Assembler would produce a
different error message.

000004 4100 0001 00001 5 LA 0,L'ABS425
** ASMA019W Length of EQUated symbol ABS425 undefined; default=1
The Length Attribute of the absolute symbol is undefined, so the Assembler tells us that it has assigned a default length
attribute, 1.

000008 4100 0004 00004 6 LA 0,L'*
The Length Attribute of a Location Counter Reference is valid. The instruction is 4 bytes long, so that's the value of the
Length Attribute Reference.

00000C 0000 0000 00000 7 LA 0,L'*-10
** ASMA028E Invalid displacement
The expression L'*-10 is not addressable, because while L'* has value 4, L'*-10 has value −6. The Assembler could not
create a valid addressing halfword.

000010 0000 0000 00000 8 LA 0,L'(*-10)
** ASMA147E Symbol too long, or first character not a letter - (*-10)
The Length Attribute of a parenthesized expression is undefined.

000014 4100 0004 00004 9 LA 0,L'=F'10'
The Length Attribute of a literal is well defined.

000018 0000 0000 00000 10 LA 0,L'L'*
** ASMA150E Symbol has non-alphanumeric character or invalid delimiter - L'*
The Length Attribute of a Length Attribute Reference is not allowed.

11 End P8_1
000020 0000000A 12 =F'10'

Programming Problem 8.2.
 Loc Object Code Addr1 Addr2 Stmt Source Statement

00005 1 A Equ 5
00003 2 B Equ 3
00003 3 C1 Equ L'A*B

** ASMA019W Length of EQUated symbol A undefined; default=1
00005 4 C2 Equ A*L'B

** ASMA019W Length of EQUated symbol B undefined; default=1
The Length Attribute of the symbols A and B is undefined, so the Assembler tells us that it has assigned a default length
attribute, 1.

1080 Assembler Language Programming for IBM System z™ Servers Version 2.00

5 C3 Equ L'(A*B)
** ASMA147E Symbol too long, or first character not a letter - (A*B)
** ASMA158E Operand expression is defective; set to *
A Length Attribute Reference to an expression is undefined. In this case, the Assembler tells us that it has assigned a
default value, the Length Attribute of the current Location Counter.

Suggested Solutions to Selected Exercises and Programming Problems 1081

Section 9 Solutions
Section 9.2

9.2.1. The values of the expressions are (1) 0, (2) 13, (3) 17, (4) 15, and (5) 16. This means that (3) and (5) are invalid.

9.2.2. Only (a) is valid; (e) is even, but too large.

Section 9.5

9.5.1. The operand D2(X2,B2) is of the form expr(expr,expr); D2(,B2) is of the form expr(,expr); S2(X2) is of the form
expr(expr); S2 is of the form expr.

9.5.2. (1) implied, no indexing; (2) implied, with indexing; (3) implied, with indexing; (4) explicit, with indexing; (5)
implied, with indexing; (6) explicit, no indexing.

9.5.3. (1) implied (invalid if A and B are both relocatable); (2) implied (invalid if both A and B are relocatable); (3)
implied, with indexing (but invalid, since C')' has value greater than 15); (4) implied, with indexing (but invalid, since
C',C' exceeds 15); (5) implied; (6) explicit, with indexing (but invalid, since the X2 and B2 expressions are both too
large); (7) explicit, with an index expression); (8) explicit, no indexing.

Section 9.7

9.7.1. The implied addresses are S1 and S2.

(1) Can be only SI: 1=D1, 2=B1, 3=I2.
(2) Can be only RS-1: 4=R1, 5 = D2, 6=B2.
(3) Can be only RS-2: 7=R1, 8 = R3, 9=S2.
(4) Can be either RS-1: 10=R1, 11=S2; or SI: 10=S1, 11=I2.
(5) Can be only RS-1: 14=R1, 15=D2, but 16 is not a valid value for B2.
(6) Can be only SI: 100=S1, 101=I2.

Section 9.9

9.9.1. In the following table, the headings “SS-1” and “SS-2” refer to the two SS-type instruction formats.

Note:

(c) The form D(B) is valid only if A is absolute and L'B is between 0 and 15; but it is very unlikely anyone would
specify B2 that way!

(e) 80 cannot be either a length or a base register for an SS-2-type instruction.
(f) The symbol XX must be absolute.

Operand SS-1 Format Length SS-2 Format Length

(1) 1(2) S1(N1) or D2(B2) explicit S1(N1) or S2(N2) explicit

(2) 4(5,6) D1(N1,B1) explicit D1(N1,B1) or D2(N2,B2) explicit

(3) A(L'B) S1(N1) or D2(B2) explicit S1(N1), D2(B2), S2(N2) or D2(B2) explicit

(4) Line S1, S2 implicit S1, S2 implicit

(5) Line(80) S1(N1) explicit Invalid!

(6) XX(,5) D1(,B1) implicit D1(,B1) or D2(,B2) implicit

1082 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 10 Solutions
Section 10.5

10.5.1. The two statements are in reversed order. The value of the LC before the BASR is encountered may be 2 (or
even 3) less than the value of the LC after the BASR has been assembled. Thus the value placed in the USING Table
by the Assembler will cause it to calculate displacements that are 2 (or 3) bytes too large. This will undoubtedly lead to
incorrect operand addresses when the program is executed.

Stated differently: the value of the USING base_location (at assembly time) relative to the start of the program will not
be the same as the base address (at execution time), relative to the start of the program.

Section 10.6

10.6.1. If by chance the contents of the word at N had been the decimal integer 20450=X'4FE2' instead of 8, then the
Effective Address of the A instruction would be X'4FE2' + X'26' = X'5008', a perfectly acceptable memory address for a
word (and, besides, it's somewhere inside our program!). The subsequent instructions would have proceeded blindly,
adding the contents of the word at memory location X'5008' (portions of the A and ST instructions!) to the unknown
contents of register 2, and storing the result at location X'5004'.

Following execution of the ST instruction, the first portion of the program segment would then contain

0D60 5860 xxxx xxxx 6026 5020 6022 ...
where xxxx xxxx is whatever sum resulted in register 2. The constants named N and ONE would be unchanged.

Section 10.7

10.7.1. The object code should be

0DA0
41D0A12A
4110A172
450EA19E
500FA176

10.8.1. The object code should be

5830B064
4A30B060
1043
9034B058
4240B056
4770B02A

Section 10.10

10.10.1. The statements are syntactically valid. However, the DROP statement should refer to the number of a general
register, which must be between 0 and 15. The resulting diagnostic will likely say something about an invalid register
number.

10.10.2. Following the first USING, the USING Table contains

┌───────┬───────────────┬────┐
│basereg│ base location │ RA │
├───────┼───────────────┼────┤
│ 9 │ 00004002 │ 01 │
└───────┴───────────────┴────┘

Following the second USING, the new entry in the USING Table will be

┌───────┬───────────────┬────┐
│basereg│ base location │ RA │
├───────┼───────────────┼────┤
│ A │ 00004008 │ 01 │
└───────┴───────────────┴────┘

The DROP 9 eliminates the first entry, and the DROP 10 eliminates the second. The generated code is as follows:

Suggested Solutions to Selected Exercises and Programming Problems 1083

Loc Stmt Generated Code

4000 BASR 9,0 0D90
4002 USING *,9 none
4002 L 4,*+54 58409036
4006 BASR 10,0 0DA0
4008 USING *,10 none
 4008 L 3,*+52 5830A034 (GPR 10 has a smaller displacement)
 400C DROP 9 none
 400C L 2,*+48 5820A034
 4010 DROP 10 none
 4010 L 1,10(,9) 5810900A
Because register 9 was unchanged when the last instruction was executed, it can still be used by the CPU to calculate
effective addresses. Thus, the word at X'400C' will be loaded into register 1; its contents will therefore be X'5820A034'.

The result does not depend on where the instructions were loaded into memory.

Section 10.11

10.11.1. The symbol at B is not addressable by the L instruction, because a displacement − 2 would be required.
Because HLASM normally zeros instructions with serious errors (like this one), execution would probably fail with a
program interruption for an invalid operation code. This may help show why it's important to fix all assembly errors
before execution.

Section 10.12

10.12.1. This is generally desirable; an implied address such as X'356' in a statement should lead to an effective
address of the same value. If the Assembler did not automatically supply a zero base digit, we would have to write
machine instruction operands in the form X'356'(0,0) or XX'356'(0) which is less convenient, although it is more
explicit.

Programming Problem 10.1

Here is a source program:

TITLE 'SOLUTION TO PROBLEM 10.1'
P10_1 START X'5000'

BASR 6,0
USING BEGIN,6

BEGIN L 2,N
A 2,ONE
ST 2,N
DS 22X

N DC F'8'
ONE DC F'1'

END P10_1

The assembly listing looks like this:

005000 05000 0002C 2 P10_1 START X'5000'
005000 0D60 3 BASR 6,0

R:6 05002 4 USING BEGIN,6
005002 5820 6022 05024 5 BEGIN L 2,N
005006 5A20 6026 05028 6 A 2,ONE
00500A 5020 6022 05024 7 ST 2,N
00500E 8 DS 22X
005024 00000008 9 N DC F'8'
005028 00000001 10 ONE DC F'1'
005000 11 END P10_1

The addressing halfwords of the instructions in statements 5, 6, and 7 are the same as those we calculated by hand.

1084 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 11 Solutions
Section 11.1

11.1.1. Because System z supports a wide variety of data types, it would be difficult to know what conversion should be
used to convert “8” to the correct internal representation. (Some assemblers use a different instruction mnemonic to
indicate the desired type of internal representation.)

Section 11.4

11.4.1. The generated constants are

(1) X'81'
(2) X'0080'
(3) X'FFFF9D000063'
(4) X'7F'

11.4.2. The alignments are byte, halfword, and word respectively.

Section 11.6

11.6.1. He defined four word constants, having values 1, 0, 0, and 0. (The four generated words contain the value 296

as a 128-bit binary constant, which might be useful to someone doing 128-bit binary arithmetic.)

He could either rewrite the constant without the commas (and learn to count carefully), or use blanks, as in

TEN_to_9 DC F'1 000 000 000'
The resulting constant is X'3B9ACA00'.

11.6.2. The generated constant is X'00000001 FFFFFFFF 00000001 FFFFFFFF' (where spaces have been inserted for
readability).

Section 11.8.

11.8.1. The four values are

(1) F'20000' or F'2E4' X'00004E20' Aligned
(2) F'50000' or F'5E4' X'0000C350' Aligned
(3) FL2'20000' or FL2'2E4' X'2710' Not aligned
(4) FL4'80' or FL4'8E1' X'00000050' Not aligned

11.8.2. Consider these two constants:

Ten_to_9 DC F'1E9'
Ten_to_9 DC FE9'1'

11.8.3. The object code is X'5820F036, 5A20F03A, 5B20F03E, 5020F042'. The four missing LC values are
X'000038, 00003C, 000040, 000044'.

Suggested Solutions to Selected Exercises and Programming Problems 1085

Section 12 Solutions
Section 12.1

12.1.1. Try F'1E9'.

12.1.2. The first constant will generate X'00000001'; all the others generate zero.

12.1.3. The Assembler rounds the fraction part — the bits lost at the right of the radix point — so the generated con-
stant is X'0001'. (If you use a scale or exponent modifier, you can create fixed-point binary constants with fractional
parts. We'll see some examples later.)

12.1.4. The generated constant will be X'80000000', with an Assembler error message saying the value is too large.
The operand is treated as a signed value, and exceeds 231 − 1 by 1.

12.1.5. The two binary integer constant words (named N and ONE) must be on a word boundary, so their addresses will
increase by 4 (not 2!) to X'5028' and X'502C'.

12.1.6. The values are:

DC F'-2147483620' X'8000001C'
DC H'-32594' X'80AE'
DC F'+2147483260' X'7FFFFE7C'

Section 12.2

12.2.1. The values are X'0000026C', X'00000564', and X'00000012'.

Section 12.3

12.3.1. The values are X'00C1', X'0B5E', and X'002D'.

12.3.2. S-constants 1, 3, 4, and 5 are valid, but S(A(N)) is not, since the displacement A is not absolute. Constants 1
and 5 depend on USING information, but normally there will be no USING statement that would affect S(N). In
S(N(7)), N must have a value between 0 and 4095, and in S(7(N)), N must have a value between 0 and 15.

Section 12.4

12.4.1. 33, 7, and 5 bytes respectively. (Did you peek at Section 12.5?)

12.4.2. You'd really be doing it the hard way this way. Since the implied length is 100 bytes, you must write between
793 and 800 binary digits. Assuming you write 54 per record (using the usual continuation rules), you would need 15
records, which could exceed the allowable maximum for your Assembler. There may be a better way.

12.4.3. You can't; think about it again. (In a character constant, a comma is part of the nominal value, not a sepa-
rator.)

12.4.4. Two possible interpretations, and their Assembler Language defining statements, are:

DC F'1077952604' Word binary integers
DC C'•••*' Characters (three blanks and an asterisk)

Other interpretations are possible, as we'll see later.

12.4.5. The value of four blank characters interpreted as an integer is 1,077,952,576.

12.4.6. The generated constants are:

(1) X'F1'
(2) X'001F'
(3) X'00123456'

12.4.7. The generated constants are

1. X'C17DC250C3'
2. X'7DC150C27D7DC3'
3. X'C1C2C3C67D'

12.4.8. Just write

1086 Assembler Language Programming for IBM System z™ Servers Version 2.00

EBCHex DC C'0123456789ABCDEF'

12.4.9. The generated constants for each symbol, and the differences, are:

Symbol Generated Constant Differences
A X'0000000000' Both constants generate the same data,
B X'0000000000' A and B have different length attributes.

C X'0707070707' Different data is generated, and
D X'0000000007' C and D have different length attributes.

E X'4040404040' Both constants generate the same data,
F X'4040404040' E and F have different length attributes.

G X'5C5C5C5C5C' Different data is generated, and
H X'5C40404040' G and H have different length attributes.

12.4.11. X'F3F4F540'.

Section 12.5

12.5.1. The DC operand CL2'ABC' is truncated on the right, so the generated constant will be X'C1C2'. In the
address constant, the value of the expression is X'00C1C2C3', which will be truncated on the left, giving X'C2C3' for
the generated constant.

12.5.2. The constants and their alignments are

(1) F'1000' X'000003E8' Word
(2) H'1000' X'03E8' Halfword
(3) B'1000' X'08' Byte
(4) XL1'1000' X'00' Byte (truncated)
(5) CL1'1000' X'F1' Byte (truncated)
(6) AL1(1000) X'E8' Byte (the last 8 bits of the term)
(7) YL3(1000) Length error
The constant AL1(1000) does not generate an error message!

12.5.3. The values are:

(1) X'00F1'
(2) X'01E2'
(3) X'001234'
(4) X'2345'

12.5.4. The constants that cannot be fit into smaller fields are X'56789' and Y(X'124').

Section 12.6

12.6.1. The generated constant is X'000005000002'.

12.6.2. The generated constant is X'C2D3C1D5D25040'.

12.6.4. If the constant named Message starts on a word boundary, it will end one byte past a word boundary, so that
three bytes must be skipped to align the A-type constant named MsgLen. If it starts at a location one byte before a word
boundary, zero bytes must be skipped. Thus, anywhere between zero and three bytes will be skipped.

Suggested Solutions to Selected Exercises and Programming Problems 1087

Section 13 Solutions
Section 13.1

13.1.1. Nothing is generated, since they are all DS statements. The length attribute of each symbol is 4, with the length
of Y being implied. The values of the symbols are X'12345', X'1234C' (note alignment), and X'12350' respectively.

Section 13.2

13.2.2. The solutions are shown in this table:

13.2.3. The values and Length Attributes are:

 1. A DC F'2' A has value X'348', Length Attr. = 4

 2. DS 0H
DC C'*'

A DC C'Asterisk' Value=X'347', Length=8

 3. DC 0F'1'
A DC 0XL27'0' Value=X'348', Length=27

 4. A DC A(A) Value=X'348', Length=4

 5. DS 19H
A DC X'12345' Value=X'36C', Length=3

 6. DC 3CL4'ABCDE'
A DC C'A&&B' Value=X'351', Length=3

 7. DS CL400
A DC F'12,34,56' Value=X'4D8', Length=4

Section 13.3

13.3.1. The length attribute of a symbol is determined from the length attribute of the first term in the first-operand
expression. In this case, that term is the symbol Table, which has length attribute 4.

13.3.2. The result will be incorrect only if the length attribute of the symbol HW8 is expected to be 2. This is considered
a poor programming practice. It runs the risk that someone might change the constant named FW8 to some other value
with another name, and then the symbol HW8 could be undefined!

13.3.3. The first two definitions are equivalent, and the last two are equivalent (the parentheses have no effect other
than improving readability). The first two definitions, however, are incorrect: if the value of TblSiz is odd, the value
assigned to MidTbl will be aligned on a halfword boundary between two word boundaries, and attempts to refer to the
word at MidTbl would be erroneous.

13.3.4. (See your solution to Exercise 11.7.1 also.) The symbols A3 and A5 behave in exactly the same way as the
symbols they are equated to. Symbol A4 will not have the expected value, because the Assembler does not allow
literals as operands of EQU statements. (What advantages would there be to allowing literals as EQU operands?)

13.3.6. The definitions are circular, so the Assembler can't determine what should be done.

13.3.7. Both pairs are valid. (For some very old assemblers, the second pair would cause the symbol BAKER to be
undefined because its operand was not yet defined.)

13.3.8. All symbols are relocatable. The symbols, their values, and their length attributes, are:

Sym Value LA

J X'346' 2

K X'34C' 1

L X'350' 4

P X'345' 3

Q X'348' 3

R X'350' 4

T X'345' 2

V X'348' 2

W X'350' 4

1088 Assembler Language Programming for IBM System z™ Servers Version 2.00

Symbol Value Length
ST 01DBC5 8
W 01DBC8 4
X 01DBD0 4

P 01DBC8 4
Q 01DBC8 2
R 01DBC8 1
S 01DBCC 1

13.3.9. You will remember from Section 8.3 that the assembler evaluates division by zero in an expression as zero.
First, we show how to break the calculation into four steps, using four auxiliary symbols K1, K2, K3, and K4.

K1 Equ A/B 0 if A < B, > 0 otherwise
K2 Equ B/A 0 if B < A, > 0 otherwise
K3 Equ K1/K2 0 if A < B, 1 otherwise
K4 Equ K2/K1 0 if B < A, 1 otherwise
MaxOfA_B EQU A*K3*(1-K4)+B*K4 Final result
The factor (1-K4) is needed in case A and B are equal. Then, we can write the full expression as follows:

MaxOfA_B EQU ((A/B)/(A/B))*A+(1-((A/B)/(A/B)))*((B/A)/(B/A))*B
It's not very pretty, but it works!

13.3.10. The values and Length Attributes are:

1. Value = X'2924', Length attribute = 4

2. Value = X'291B', Length attribute = 3

3. Value = X'0009', Length attribute = 2

13.3.11. The symbols and their value and Length Attributes are:

 1. A DS F Value=X'12348', Length=4
B DS 2H Value=X'1234C', Length=2
C DS 2CL2 Value=X'12350', Length=2

 2. F DC A(F) Value=X'12348', Length=4
G DC 3AL3(F,G,H) Value=X'1234C', Length=3
H DC Y(*-F,275) Value=X'12368', Length=2

 3. P DC 2C'3&&' Value=X'12345', Length=2
Q DC 2A(C'3&&') Value=X'1234C', Length=4
R DS 3XL3'FEDCBA93' Value=X'12354', Length=3

 4. X DC 0FL5'5,10,20' Value=X'12345', Length=5
Y DC FL3'5,10,20' Value=X'12345', Length=3
Z DC 2C'5,10,20' Value=X'1234E', Length=7

13.3.12. The symbols and their generated data are:

• F X'00012348'
• G X'012348 01234C 012368' (repeated 2 more times!)
• H X'00200113'
• P X'F350F350'
• Q X'0000F3500000F350'
• Y X'00000500000A000014'

13.3.13. The symbols and their values and Length Attributes are:

 1. STR DS 0CL8 Value=X'1DBC5', Length=8
W DS 2F Value=X'1DBC8', Length=4
X DS 2F Value=X'1DBD0', Length=4

 2. P DS 0F Value=X'1DBC8', Length=4
Q DS 0H Value=X'1DBC8', Length=2
R DC 4X'40' Value=X'1DBC8', Length=1
S EQU *-P Value=X'00004', Length=1

13.3.14. The values of the symbols, the length attributes, the data locations, the final LC value, and the assembled data
are given in hex. Underlined zeros indicate padding bytes inserted by the Assembler.

Suggested Solutions to Selected Exercises and Programming Problems 1089

Symbol Value L.Att DataLoc LCval data

1. A 128 4 128 000000FFFFFFEF
B 12C 2 12C 12E 0021

2. D 125 4 125 00000011
C 12A 2 12A 12C 00FFDF

3. E 125 8 125 C1C2C3C4C5C6C7C8
F 130 4 130 134 000000000003E8

4. G 126 2
H 12C 4 12C 130 0000129E

5. J 126 2
K 126 1
L 128 4
M 128 6
N 128 4 128 12C FFFFFC18

6. P 125 3 125 C17DC2C17DC2C17DC2
Q 130 4 130 138 000000C17DC200C17DC2

7. R 128 4
S 2B8 50 308

8. AB 128 4 128 134 00000000000384 0080000002 000001

9. BC 125 2 125 00070007000701
CD 12C 2 12C 130 3FFFC001

10. DE 128 4
EF 13C 4 13C

11. T 125 2 125 0CAB
V 127 2 127 015C015C
W 12B 8 12B 13B C3C1C24040404040C3C1C24040404040

12. Y 126 2
X 128 2 128 12C 00020002

13. Z 125 2 125 E9E9
ZZ 128 4 128 130 00000000030000000300000003

13.3.15.

REven Equ ((N+1)/2)*2 In case N is odd!
ROdd Equ REven+1 Next higher odd number

13.3.16. In the last three cases (11-13) at least one expression depends on the value of a symbol being defined by the
same statement that is using it. For many early assemblers this required making more complex decisions than could be
justified at that time. All 13 cases are successfully resolved by the High Level Assembler.

13.3.17. Consider

E Equ ((1-A)/(1+A)) Explain why it works!

13.3.18. Consider

E Equ (A/A) Explain why it works!
What happens if A has negative values?

Section 13.4

13.4.1. The length and value attributes are:

Symbol Length Value
Cost 8 X'2024'
Desc 60 X'202C'
Fill 29 X'2068'
LFill 1 X'201D'
Pfx 24 X'2000'
Prod 12 X'2018'
Result 133 X'2000'

1090 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 13.5

13.5.1. This technique will work correctly so long as nothing is ever stored at either FW8 or HW8. Another way to get the
same result is to write

FW8 DC F'8'
HW8 Equ FW8+2,2 Define halfword, length attribute 2

13.5.2. The asterisk in column 1 indicates a comment, not the value of the LC! The last statement should be replaced
by ORG Here.

13.5.3. (1) B has value X'9830', and length attribute 2. (2) B has value X'9838', and length attribute 8. (3) B has value
X'9860', and length attribute 4.

13.5.4. (1) B is relocatable, has value X'9837', and length attribute 5. (2) B is relocatable, has value X'B942', and
length attribute 1.

13.5.5. We could write

F1 DC F'1' First constant
X2 DC X'2' Second constant
* Three zero (skipped) bytes here
F3 DC F'3' Third constant

ORG X2+1
SKIP3 DS XL3 Name and length of skipped bytes
Using Extended EQU Syntax, we could replace the last two statements:

SKIP3 Equ X2+1,3 Name and length of skipped bytes

13.5.6. The symbol SET will be the operand of the ORG instruction, which is undoubtedly not what was intended. If a
symbol SET has been defined somewhere in the program (which is just a matter of chance), the LC will be assigned its
value, but that is quite unlikely to be the highest LC value attained in the program. (Or what is wanted!)

13.5.7. The assigned and desired lengths are both 80 bytes.

For the “Bonus” question, you could write something like

DS (80-StmtLen)XL(StmtLen-80+1)
If StmtLen has exactly the desired value 80, this statement becomes

DS 0XL1
but if its value is greater than 80 the duplication factor will be negative; and if its value is less than 80, the explicit
length will not be greater than zero. In both cases, the Assembler will issue an error message.

Section 13.6

13.6.1. The storage definitions are the same, but the length attributes of the symbol FGroup are different. (What are
their values?) One way to see the similarity of the definitions is to consider defining

NWords Equ 1 Table has one word
Both definitions will allocate both Table and LastWord at the same location.

Section 13.7

13.7.1. The Assembler doesn't rescan LC-dependent expressions unless they appear as nominal values in A-type or
Y-type constants. The statements will generate ten copies of the first constant, X'00000001'. (It would be helpful if
the Assembler indicated that the operand has a modifier requiring re-scanning if a Location Counter Reference appears
in the expression.)

13.7.2. The solutions are shown in this table:

Sym Value LA Generated constant

A X'12345' 3 X'E450C9'
B X'12348' 4 X'00012348'
C X'12346' 2 X'0089'
D X'12345' 3 X'00020002'
E X'12345' 4 X'C14D405D00000000000040'
F X'12345' 1 X'0000010003'

Suggested Solutions to Selected Exercises and Programming Problems 1091

The underscored bytes in the generated constant for E are zero bytes inserted for alignment in the middle of the con-
stant. Whether or not the underscored bytes for F are generated depends on whether the immediately preceding field
contains just-generated bytes (in which case the padding byte is present).

13.7.3. The expression (*-Sqrs) increases by 2 each time a constant is generated; because the table starts at one-
squared, we add 2. Then, because the product increases by 4 for each constant, we divide by 4.

13.7.4. Your assembled table should look like this (use the Assembler's PRINT DATA statement to see all the generated
data):

0001010201020203 0102020302030304
0102020302030304 0203030403040405 <-- Note the '03' byte
0102020302030304 0203030403040405
0203030403040405 0304040504050506
0102020302030304 0203030403040405
0203030403040405 0304040504050506
0203030403040405 0304040504050506
0304040504050506 0405050605060607
0102020302030304 0203030403040405
0203030403040405 0304040504050506
0203030403040405 0304040504050506
0304040504050506 0405050605060607
0203030403040405 0304040504050506
0304040504050506 0405050605060607
0304040504050506 0405050605060607
0405050605060607 0506060706070708

To see how the DC statement works, consider the underscored byte at offset 19. The first term is *-T, or 19. The next
term subtracts (*-T)/2, or 9. The next term subtracts (*-T)/4, or 4. The fourth term subtracts (*-T)/8, or 2, and the
fifth term subtracts 19/16, or 1. All succeeding terms subtract zero. Thus the final value is 19-9-4-2-1, or 3. The binary
representation of 19 is B'10011' which has three 3 1-bits.

Programming Problem 13.2.

You can write your program this way:

P13_2 Start 0
Using *,15
Printout Chars,*
DS 0F Align to fullword boundary

Chars DS 0CL16
Ints DC F'-1046306171,-1803381883,-1723823710,1082565781'

End P13_2

You should believe the printed result!

 Chars = C'Assembler is fun'

1092 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 14 Solutions
Section 14.1

14.1.1. The first pair of instructions will load the word from memory at address X'00000008' into GR5 (and who
knows what that will be?) The second will load a word integer constant X'00000008' into GR5. The distinction here is
between the value of an addressing expression, and the value of the object in memory referenced by an addressing
expression.

Section 14.2

14.2.1. There is no difference in their actions. However, the ST instruction can be indexed, while STM cannot.

14.2.2. The first word of an area of memory occupied by successive words has displacement 0 from the start of the
area; thus the fourth word has displacement 12.

14.2.3. All sixteen registers can be modified by an appropriate LM instruction.

14.2.4. (1) c(X) replaces c(GR15); (2) c(GR0) replaces c(X); (3) c(X) replaces c(GR0). In each case, only one register
participates.

14.2.5. Let A be the R1 register expression, and B be the R3 register expression. Then NREGS is defined by

NREGS EQU (B-A)+17*(A/A)-((A-1)/(A+1))-16*((B/A)/(B/A))
The value is the sum of four expressions: the first parenthesized expression is simply the usual difference; the second is
added if A is nonzero; the third is nonzero only when A is zero; and the last expression is added when B is greater than
or equal to A. Try some actual examples to see how it works.

Section 14.3

14.3.1. This form of the STH instruction would produce a bit pattern with the correct sign and the 15 low-order bits of
the true 32-bit representation. For example:

X'00010001' when stored would become X'0001'
X'0000FFFF' when stored would become X'7FFF'
X'FFFF0001' when stored would become X'8001'

so there would be no improvement; use halfword data carefully! To be truly useful, such “STH” instructions should
indicate an overflow condition if the sign bit was not identical to the next 16 bits to its immediate right.

14.3.2. After the first execution, c(GR2)=X'00005678' After the second, c(GR2)=X'FFFFBA98'.

14.3.3. It could be either. These three statements generate the same object code:

STH 4,X'05C'(0,4)
DC C' *' 3 spaces and an asterisk
DC F'1077952604' 4-byte binary integer

14.3.4. All the “L” opcodes end in 8, and all the “ST” opcodes end in 0. Similarly, the L/ST, LH/STH, and LM/STM
pairs each start with the same first hex digit.

Section 14.4

14.4.1. A useful solution is to construct a table of bytes, each containing the count of 1-bits in the difference between its
location and the location of the beginning of the table. Thus, we would define the constant

* 0 1 2 3 4 5 6 7 8 9 ... 15 16 ... (value of byte at XX)
NBits DC AL1(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,...) (number of 1-bits)
and use it as follows:

L 1,=F'0' Set GR1 to zero for IC instruction
IC 1,XX Get byte at XX with bits to count
IC 0,NBits(1) Use it as index into NBits table
STC 0,XX Replace byte at XX by its bit count

Suggested Solutions to Selected Exercises and Programming Problems 1093

Section 14.5

14.5.1. These two instructions and a two-byte temporary memory area will do the job:

STCM 1,B'0110',Temp
ICM 1,B'0110',Temp
- - -

Temp DS XL2

Section 14.6

14.6.1. The Assembler could simply interpret

STR R1,R2
as

LR R2,R1
This can be done easily with a macro-instruction, and no changes to the Assembler would be needed.

14.6.2. For LR, LTR, and LNR, the CC will never be set to 3 for any operand in GR R2. For LCR and LPR, the CC
will be set to 3 if the GR R2 operand is the maximum negative number X'80000000' or − 2147483648.

Section 14.7

14.7.1. There is no STGH instruction because its function would be exactly the same as STH.

14.7.2. Here is a solution using Load and Store instructions:

STG 0,DSave Save all of GR0
L 0,DSave Load high-order half into low-order 32 bits
LMH 0,0,DSave+4 Load low-order half into high-order 32 bits
- - -

DSave DS D Temporary storage
There are easier ways to do this, as we'll see when we examine the shift instructions.

Section 14.8

14.8.1. Suppose GR2 contains X'xxxxFEDC', where the rightmost 4 digits are a valid halfword integer and the
“xxxx” are unwanted bits. Writing

LHR 2,2
will extend the sign, leaving X'F F F F F E D C' in GR2.

14.8.2. After the first execution, c(GR2)=X'00005678' After the second, c(GR2)=X'FFFFBA98'.

Section 14.9

14.9.1. Indexing applies only to the RX- and RXY-type instructions L and LG, but the result is equivalent to using LT
and LTG, both of which can be indexed.

14.9.1. None.

Section 14.10

14.10.1. The third digit of the opcode is 0 for the RRE-type instructions that deal with all 64 bits of a general register,
and 1 for the equivalent instructions that extend 32-bit data to 64 bits.

14.10.2. Complementing before sign extension could produce incorrect overflow indications. Remember that all 32-bit
binary numbers can be complemented in a 64-bit representation without overflow. Thus, the source operand
X'80000000' (− 231) would produce an overflow when complemented.

14.10.3. Complementing a 64-bit operand can cause overflow, but after extending a 32-bit operand to 64 bits,
complementation cannot cause overflow.

14.10.4. The contents of general register 0 and the CC settings are:

(1) X'........ 80000000', CC=3 (overflow), high-order 32 bits unchanged
(2) X'FFFFFFFF 80000000', CC is unchanged
(3) X'00000000 80000000', CC=2 (positive)
(4) X'FFFFFFFF 80000000', CC=1 (negative)

1094 Assembler Language Programming for IBM System z™ Servers Version 2.00

14.10.5. All 32-bit integer complements can be correctly represented in 64 bits.

Section 14.11

14.11.1. Load zeros into the R1 register, and then insert the desired byte using an IC instruction.

14.11.1. Load zeros into the R1 register, and then load the desired word using a L instruction.

Suggested Solutions to Selected Exercises and Programming Problems 1095

Section 15 Solutions
Section 15.2

15.2.1. The value of the CC is exactly the offset of the tested bit in the M1 field of the instruction.

15.2.2. The CC must take one of the values 0, 1, 2, or 3, each of which corresponds to a 1-bit in the mask. The branch
condition is always met.

15.2.3. The next instruction to be fetched will come from memory address zero, which (very!) rarely contains your
program's instructions.

15.2.4. If n = 0, or the branch condition is not met, nothing happens. If n ≠ 0 the Effective Address is
n +c(GRn) +c(GRn). Then, if n is even and the branch condition is met, there could be an error if the Effective
Address is too large or is the address of a non-instruction. If n is odd, a specification error would occur because the
Effective Address is odd.

Section 15.4

15.4.1. The given code sequence correctly aligns the address constant on a word boundary immediately preceded by the
BASR. However, the DS 0F may have caused one, two, or three bytes to be skipped preceding the NOPR!

15.4.2. There are many possibilities; you only need 2-byte or 4-byte instructions that do not branch “out of line” or
change the CC. For example, in place of NOPR you could use LR 0,0; and in place of NOP you could use ICM 0,0,0
or LGR 0,0 or BC 15,*+4. (Operands like *+4 are considered poor programming practice.)

NOPR and NOP are preferred, because the CPU need not “move” data uselessly. For NOPR, the CPU can determine
from the zero branch mask that it need not consider alternative targets for the next instruction to be fetched, which it
must do for BC 15,*+4.328

15.4.3. No branch will occur, because the R2 digit is zero; this was described in Section 15.1. (Review the discussion in
Section 15.4 about possible side-effects of this instruction.)

15.4.4. The first BCR branches to address zero, where something undesirable is likely to happen; the second BCR
“drains the instruction pipeline” and then continues execution.

Section 15.5

15.5.1. The LC values are: (1) X'0246' (2) X'0248' (3) X'0246' (4) X'024A' (5) X'0254' (6) X'0246'
15.5.2. The length and value attributes are:

15.5.3. c(D) = X'C440C4C340C37DC4C37D'.

15.5.4. The values and Length Attributes are:

 1. Value = X'346', Length = 4
 2. Value = X'34A', Length = 4

15.5.5. Either zero, two, four, or six bytes of No-Ops, depending on the current value of the Location Counter.

Sym Len Value

A 3 X'000743'
B 4 X'000748'

C 7 X'000743'
D 10 X'00074C'

E 4 X'00074C'
F 1 X'000754'

328 Modern processors try to improve the performance of branch instructions by maintaining a “Branch History Table” containing the
address of recent branch instructions, whether or not they branched, and their branch addresses. This lets the CPU guess more
reliably whether an instruction will or won't branch, and whether it might need to begin pre-fetching instructions at the branch
address. Adding branch instructions like BC 15,*+4 may force other useful entries out of the Branch History Table, possibly
slowing execution of your program.

1096 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 15.6

15.6.1. Every branch condition specified by a set of mask bits has a complementary branch condition determined by
forming the ones' complement of the mask bits. Thus, pairs of branches such as

BNZ Next
B LOOP

Next - - -
should be replaced by BZ LOOP.

15.6.2. If we think of the extended mnemonics as representing separate instructions, then this description is not mis-
leading, but it implies that the opcode is 12 bits long. It is more accurate to say that the extended mnemonics provide
statements that simplify the many ways to write conditional branch instructions.

15.6.3. An example of an instruction sequence:

LT 0,VAL Load and test, set CC
BP POS Branch if positive
BM NEG Branch if negative
B ZERO Branch if zero

The last instruction is B. Should it be BZ instead?

15.6.4. The operation code X'40' is the STH instruction, so that the “instruction” X'40404040' appears to be the
RX-type instruction

STH 4,X'040'(0,4) Store a halfword
Depending on the contents of GR4 (the apparent base register), its contents could be stored almost anywhere, 64 bytes
beyond the address in GR4. Because there are 132 space characters, the instruction could be repeated 33 times if it
does not cause a program interruption for a protection or addressing exception. The “instruction” executed after the
33rd STH will depend on what follows the constant named Target in memory at execution time.

Section 15.7

15.7.1. The EQU statement is actually a comment statement! If it was in exactly the right place, his “solution” might
work for a while, but if instructions between the BZ and the intended target were added or removed, the target location
*+18 would be incorrect. This is why using * in branch instructions is a poor programming practice.

Section 15.8

15.8.1. All instructions begin on a halfword, or even, boundary.

Section 15.9

15.9.1. Yes. Many first-generation computers used branch instructions tested the sign bit of an “Accumulator” register.
Later machines such as the IBM 7090 provided similar tests, and included comparison instructions that skipped none,
one, or two of the following instructions, depending on whether the result of the comparison determined that the Accu-
mulator's contents were less than, equal to, or greater than the memory operand.

Most later machines had status flags such as “Accumulator Overflow” that served some of the function of a condition
code.

15.9.2. Since the CC is a 2-bit unsigned integer, only a single value can be assigned in a single instruction execution.

Suggested Solutions to Selected Exercises and Programming Problems 1097

Section 16 Solutions
Section 16.2

16.2.1. The BNM instruction will branch to ST if overflow occurs, so the result in c(ANS) = c(X)+c(Y) will undoubt-
edly be incorrect.

16.2.2. This solution uses “mathematical induction”: if (1) you can show that an assumption holds for the number 1,
and (2) you can also show that if you assume it holds for a positive integer N then the assumption also holds for N +1,
then (3) your assumption holds for all positive integers.

We assume that the sum of the first N odd integers is N2.

• Our assumption is true for 1, since 1=12.

• Now we need to show that if the sum of the first N odd integers is N2, it is true that the sum of the first N + 1
integers is (N +1)2.

• Now, the sum of the first N odd integers is

[1 + 3 + 5 + ... + 2×N-1]
and the sum of the first N +1 odd integers is

[1 + 3 + 5 + ... + 2×N-1] + [2×(N+1)-1]
The last term is 2× N + 2 − 1 = 2 × N +1, so we can write

[1 + 3 + 5 + ... + 2×N-1] + [2×(N+1)-1] = [N2] + 2×N + 1
which is the same as (N +1)2.

So our assumption is true for all positive integers.

16.2.3. The following instructions test for the possibility that N may be 1, so that only a single odd number (1) is stored.

LH 3,NN Get the value of N from c(NN)
LM 6,9,=F'0,2,1,1' Load GR6-GR9 with 0,2,1,1

ADDUP AR 6,8 Add odd integer to sum in GR6
SR 3,9 Decrease N by 1
BZ ST If it was 1, exit the loop
AR 8,7 Next odd integer in GR8
B ADDUP Branch back (N-1) times

ST ST 6,SUM Store result in GR6 at SUM
- - -

NN DC H'6' Number of odd numbers to add
SUM DS F Sum of the first c(NN) odd numbers
A useful exercise is to write a short program to test both forms of this instruction sequence: this one and the one in
Figure 82 on page 218.

16.2.4. The values at ONE are alternately 1 and 3; other references to ONE probably did strange things! This “technique”
is useful when you want to alternate between two values x and y: subtract x from x+y and save the difference for the
next subtraction.

16.2.5. There are many ways to count the number of 1-bits in a word. This solution uses a table of bytes, each of
which contains a number giving the number of 1-bits in the byte whose value is the offset of that byte from the first byte
in the table. For example, the byte at offset 241 = X'F1' = B'11110001' contains 5, the number of 1-bits in
B'11110001'.

SR 0,0 Answer value in GR0
SR 1,1 Work register

Byte1 ICM 1,1,Data Get 1st byte of Data
BZ Byte2 Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte
AR 0,1 Add to answer

Byte2 ICM 1,1,Data+1 Get 2nd byte of Data
BZ Byte3 Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte
AR 0,1 Add to answer

Byte3 ICM 1,1,Data+2 Get 3rd byte of Data
BZ Byte4 Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte

1098 Assembler Language Programming for IBM System z™ Servers Version 2.00

AR 0,1 Add to answer
Byte4 ICM 1,1,Data+3 Get 4th and last byte of Data

BZ Store Skip if zero, no bits to count
IC 1,T(1) Get the count of 1-bits in this byte
AR 0,1 Add to answer

Store STH 0,NBits Store final bit count

This is the table with the “bits-per-byte” counts:

T DC AL1(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4) 00-0F
DC AL1(1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5) 10-1F
DC AL1(1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5) 20-2F
DC AL1(2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6) 30-3F
DC AL1(1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5) 40-4F
DC AL1(2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6) 50-5F
DC AL1(2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6) 60-6F
DC AL1(3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7) 70-7F
DC AL1(1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5) 80-8F
DC AL1(2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6) 90-9F
DC AL1(2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6) A0-AF
DC AL1(3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7) B0-BF
DC AL1(2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6) C0-CF
DC AL1(3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7) D0-DF
DC AL1(3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7) E0-EF
DC AL1(4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8) F0-FF

16.2.6. As in the previous solution, we'll use a table to simplify. Each byte in the table has a number corresponding to
the number of leading 0-bits in the byte whose numeric value gives its offset from the start of the table. For example,
the byte at offset 26=X'1A'= B '00011010' contains 3, the number of leading 0-bits in B'00011010'.

LA 0,31 Answer in GR0; initialize to 31
SR 1,1 Work register in GR1

Byte1 ICM 1,1,Data Get 1st byte of Data
BP Finish Have found first nonzero bit; exit
BZ Byte1Z Skip if zero, test following byte
LCR 0,0 Negative argument; set error value
B Store And store the result

Byte1Z SH 0,=H'8' Subtract 8 from GR0; no 1-bits found
Byte2 ICM 1,1,Data+1 Get 2nd byte of Data

BNZ Finish Have found first nonzero bit; exit
SH 0,=H'8' Subtract 8 from GR0; no 1-bits found

Byte3 ICM 1,1,Data+2 Get 3rd byte of Data
BNZ Finish Have found first nonzero bit; exit
SH 0,=H'8' Subtract 8 from GR0; no 1-bits found

Byte4 ICM 1,1,Data+3 Get 4rd byte of Data
BNZ Finish Have found first nonzero bit; exit

* If zero, c(Data) is identically zero, so result will be -1
Finish IC 1,T(1) Get number of leading 0-bits in byte

SR 0,1 Deduct from running count for answer
Store STH 0,MaxPow Store the result
*
T DC AL1(8,7,6,6,5,5,5,5),8AL1(4)

DC 16AL1(3),32AL1(2),64AL1(1),128AL1(0)
There are other, simpler, and better ways to do this!

16.2.7. Because the first two bytes of the constant at NN are zero, the program would have looped until it either ran out
of time, or was interrupted for a fixed-point overflow in GR6.

16.2.8. The assembled program looks like this:

Suggested Solutions to Selected Exercises and Programming Problems 1099

 Loc Object Code Assembler Language Statements
Ex16_2_8 Start X'5000'

 5000 0D40 BASR 4,0
 ____ Using *,4
 5002 1B22 SR 2,2
 5004 4320 401D IC 2,XX+3
 5008 1202 LTR 0,2
 500A 4780 4010 BZ Looper
 500E 4000 401A STH 0,XX
 5012 47F0 4010 Looper B * Loop forever here
 5016 E4878840 YY DC CL4'Ugh'
 501A 0000 (Skipped bytes!)
 501C FFFFFFF6 XX DC F'-10'

16.2.9. The contents of the word at XX will be X'00F6FFF6'.

16.2.10. Yes. Consider either of these instruction sequences:

L 0,=X'7FFFFFFF' L 1,=X'80000000'
AH 0,=H'1' SH 1,=H'1'

In both cases the magnitude of the result will be too large to represent correctly in 32 bits.

16.2.11. The first two instructions clear the work registers (R0 and R1) so that the original contents of their low-order
bytes can't cause a carry into the high-order 24 bits.

SR 0,0 Clear GR0
SR 1,1 Clear GR1
ICM 0,B'1110',X Get value at X
ICM 1,B'1110',Y Get value at Y
AR 0,1 Add the values
STCM 0,B'1110',W Store the result
BO Over Branch if the sum overflowed

16.2.12. The constant is X'74CBB1'.

16.2.13. The first pair of instructions sets GR1 to zero, and then branches to address zero (not a good idea!). The
second pair of sets GR0 to zero and then does not branch; BCR 15,0 is a no-operation instruction.

16.2.14. The assembled program looks like this:

 Loc Object Code Assembler Language Statements
 8000 Ex16_2_E Start X'8000'
 8000 0D40 BASR 4,0
 8002 Using *,4
 8002 9812 4016 LM 1,2,Value
 8006 BE27 401E STCM 2,B'111',First
 800A 1301 LCR 0,1
 800C 47A0 4012 BC 10,*+8
 8010 4001 4022 STH 0,Last(1)
 8014 07FE BCR 15,14 Followed by ...
 8016 0000 Two padding bytes!
8018 00000005 Value DC F'4'
801C FFFFFFFA DC F'-6'
8020 First DS F
8024 Last DS H'-10'

End Ex16_2_E

16.2.15.

 1. CC=3, c(GR2) = X'13579BDE'

 2. CC=3, c(GR2) = X'80000001'

 3. CC=2, c(GR2) = X'00010147' (set by ICM)

16.2.16.

1100 Assembler Language Programming for IBM System z™ Servers Version 2.00

 1. CC=0, c(GR1) = X'00000000'

 2. CC=3, c(GR2) = X'80000000'

 3. CC=1, c(GR3) = X'FDB97530'

 4. CC=2, c(GR4) = X'77777777'

Section 16.3

16.3.1. Two possible instruction sequences are:

(1) LH 1,HW Load and extend 16 bits to 32 in GR1
AGFR 0,1 Extend 32-bit value to 64 and add

(2) STG 0,DTemp Save c(GG0) temporarily
LGH 0,HW Load and extend 16 bits to 64
AG 0,DTemp Add original contents of GG0
- - -

DTemp DS FD Temporary storage for c(GG0)
Both sequences have disadvantages: (1) requires an additional register, and (2) requires two accesses to a doubleword
in memory.

16.3.2. Two possible instruction sequences are:

(1) LH 1,HW Load and extend 16 bits to 32 in GR1
SGFR 0,1 Extend 32-bit value to 64 and subtract

(2) STG 0,DTemp Save c(GG0) temporarily
LGH 0,HW Load and extend 16 bits to 64
LCGR 0,0 Complement the original halfword value
AG 0,DTemp Add original contents of GG0
- - -

DTemp DS FD Temporary storage for c(GG0)
Both sequences have disadvantages: (1) requires an additional register, and (2) requires two memory accesses to a
doubleword in memory and two additional instructions. (1) is preferable unless all the other general registers contain
data or addresses that you don't want to have to save briefly in memory.

Section 16.4

16.4.1. Because a comparison does not produce an arithmetic result — only a CC setting — no overflow can occur.

16.4.2. If an overflow occurs, the difference must be nonzero; thus the “sense” of the comparison is either “greater-
than” or “less-than”. If for example you perform the internal arithmetic for comparing 0 to X'80000000', you will see
that the CPU should reverse the “sense”, as implied by the sign of the internal difference. Practically speaking, if the
result of nonzero, the CPU need only invert the sign bit when overflow occurs, and then set the CC in its usual way.

16.4.3. Because the CH instruction compares c(GR1) (which is zero) to only the first two bytes of =F'5', the CC setting
will be 0, implying that the operands are equal. (It's easy to make this type of programming error!)

16.4.4. The assembled program looks like this:

 Loc Object Code Assembler Language Statements
Ex16_4_4 Start X'4800'

 4800 0DA0 BASR 10,0
 4802 Using *,10
4802 5800 A056 Loop L 0,One
4806 5A00 A056 A 0,One
480A 5000 A052 ST 0,Number
480E <other ops> PrintOut Number
4824 5900 A05A C 0,Ten
4828 4740 A000 BL Loop
482C <other ops> PrintOut *
4854 00000000 Number DC F'0'
4858 00000001 One DC F'1'
485C 0000000A Ten DC F'10'

End Ex16_4_4

Suggested Solutions to Selected Exercises and Programming Problems 1101

Section 16.5

16.5.2. First, we write the original instruction sequences in Figures 90 and 91 in two columns:

L 0,=F'-1' LM 0,1,ARG
LR 1,0 LCR 0,0
SL 0,ARG LCR 1,1
SL 1,ARG+4 BZ XXX
AL 1,=F'1' SL 0,=F'1'
BC B'1100',NoC XXX STM 0,1,ARG
AL 0,=F'1'

 NoC STM 0,1,ARG
The only operand that properly causes overflow is the 64-bit maximum negative number X'8000000000000000'. The
instructions in the first column use only logical addition and subtraction, so they cannot cause an overflow condition.
Both LCR instructions in the second column can potentially cause an overflow condition, so we would have to take
steps to suppress a Fixed-Point Overflow interruption. If we do this, then both instruction sequences could be followed
by these:

LTR 1,1 Check low-order word for zero
BNZ NoOver If it's nonzero, operand can't overflow
C 0,=A(X'80000000') Check high-order word for max neg #
BE Overflow 64-bit complementation would indicate overflow

NoOver - - -

16.5.3. Consider the following instructions:

LM 0,1,A Get all 64 bits of 1st operand
AL 1,B+4 Add low-order half of second operand
BC 12,NoCarry Branch if no carry, it's easy

CProp A 0,=F'1' Now add the carry
BNO NoCarry If no overflow, finish up normally

Carry A 0,B Now add high-order halves
BNO Overflow If no oflo now, sum has overflowed
B Okay Sum is correct

NoCarry A 0,B Add high-order halves normally
Okay STM 0,1,C 64-bit sum stored at C

BO Overflow If overflow now, it's true
If an overflow occurs in propagating the low-order carry at the instruction named CProp, the original contents of GR0
(the first word of the first operand) must have been X'7 F F F F F F F'. Thus, when adding the high-order words at the
instruction named Carry, if no overflow occurs, the contents of the fullword at B must have been nonnegative, implying
that the 64-bit sum must have overflowed.

This solution isn't obvious; try writing a program with some sample data to test it.

16.5.5. With the LCR instructions, there's no easy way to avoid the possibility of intermediate overflow conditions; and
there is no “logical complement” instruction to help. Thus, the sequence shown in Figure 90 on page 225 could be
used.

We'll see in Section 16.9 the instructions that let us modify the bits in the Program Mask.

16.5.11. This figure shows how the CC bits are set:

┌──────────────────┬─────────────────────┐
CC bits │ Second bit=0 │ Second bit=1 │

┌───────────────┼──────────────────┼─────────────────────┤
│ First bit=0 │ zero, no carry │ nonzero, no carry │
│ First bit=1 │ zero, carry │ nonzero, carry │
└───────────────┴──────────────────┴─────────────────────┘

16.5.12. Subtraction requires adding the ones' complement of the second operand (which will be all 1-bits) and a low-
order 1-bit to the first operand (which will force a carry along the complete length of the sum, and off the left end). The
CC value B'10' reflects the zero result, with a high-order carry.

Section 16.8

16.8.1. If the CC settings following SL or SLR are 1, 2, or 3, then the settings following CL or CLR (with the same
operands) will be 1, 0, or 2 respectively. Remember that the CC cannot be 0 following SL or SLR; see Exercise 16.4.1.

16.8.2. This is most easily done (now) with a CLM and CLMH instruction.

1102 Assembler Language Programming for IBM System z™ Servers Version 2.00

CLMH 0,B'0011',StgOp Compare bytes 2 and 3 of GG0
BL RegLow c(GG0) is low
BH RegHigh c(GG0) is high
CLM 0,B'1100',StgOp+2 Compare bytes 4/5 of GG0 (0/1 of GR0)
BL RegLow c(GG0) is low
BH RegHigh c(GG0) is high
BE RegEqual c(GG0) = selected bytes of StgOp

If a temporary register is available, the shift instructions we'll discuss in Section 17 can solve this problem more easily.

16.8.3. After executing the two instructions with the first pair of operands, the CC setting is 1 (c(GR0) < c(GR1)) for
CR and 2 (c(GR0) > c(GR1)) for CLR. After executing the two instructions with the second pair of operands, the CC
setting is 2 (c(GR0) > c(GR1)) for CR and 1 (c(GR0) < c(GR1)) for CLR.

This technique is often used in sorting, where many other types of data are compared logically. By inverting the sign bit
of binary integers, (formerly) negative numbers are now logically less than (formerly) positive numbers. After the com-
parisons are complete, the sign bits are inverted again to restore the original values of the numbers.

16.8.5. With arithmetic comparison, all non-negative values are greater than all negative values; with logical values, all
“negative” values are greater than all non-negative values. For example, compare + 1 = X '00000001' and
− 1 = X'F F F F F F F F'.

16.8.6. Consider this test program:

X16_8_6 CSect ,
Using *,15
L 0,Oldest
L 1,Later
L 2,Newest
LR 3,1 Copy Later value to GR3
SLR 3,0 Subtract Oldest value
LTR 3,3 Test result
Printout 3
LR 3,2 Copy Newest value to GR3
SLR 3,1 Subtract Later value
LTR 3,3 Test result
Printout 3,*,Header=No

*
DS 0F Align on fullword

Oldest DC X'FFFFFFFE' Oldest value
Later DC X'FFFFFFFF' A later value
Newest DC X'00000001' Most recent value

EndX16_8_6
The calculated values in GR3 are both positive, as expected.

16.9.3.

BALR 1,0 Program mask in GR1
SLL 1,4 Drop off ILC and CC bits
ICM 0,B'1000',CCode New CC value in GR0
SRDL 0,4 Shift into GR1
SPM 1 Set new CC without changing pm

16.9.4.

BALR 0,0 ILC, CC, PM, and IA in GR0
SLL 0,2 Drop ILC bits
SRL 0,30 Shift to right end of GR0
ST 0,CCode Store Condition Code

16.9.5.

BALR 0,0 ILC, CC, PM, and IA in GR0
STCM 0,B'1000',PMask Store that leftmost byte
NI PMask,B''1111' Set all but Program Mask to zeros

Suggested Solutions to Selected Exercises and Programming Problems 1103

Programming Problem 16.1.

The key to solving this problem is to define all the terms in A-type address constants.

* Display 3 arithmetic expressions as a 12-byte character string.
* c(X) = B'100000000000000' + X'C7A98' - 231471192,
* c(Y) = X'C0FFEE' - C'@#$' - 694895668, and
* c(Z) = 1073741824 + X'F194F6' + X'ABCD'.
P16_1 Start 0

Print Nogen
Using *,15
B Start

*
X1 DC A(B'100000000000000')
X2 DC A(X'C7A98')
X3 DC A(231471192)
*
Y1 DC A(X'C0FFEE')
Y2 DC A(C'@#$')
Y3 DC A(694895668)
*
Z1 DC A(1073741823)
Z2 DC A(X'F194F6')
Z3 DC A(X'ABCD')
*
XANS DS 0XL12
ANS DS 0CL12
X DS F
Y DS F
Z DS F
*
Start DC 0H

L 0,X1
A 0,X2
S 0,X3
ST 0,X

*
L 1,Y1
S 1,Y2
S 1,Y3
ST 1,Y

*
L 2,Z1
A 2,Z2
A 2,Z3
ST 2,Z

*
Printout XANS,ANS,*
End

Your printed output will look something like this:

XANS = X'F240C240D6D9405F40F240C2'
 ANS = '2 B OR ¬ 2 B'

1104 Assembler Language Programming for IBM System z™ Servers Version 2.00

Programming Problem 16.2.

The key to solving this problem is to define all the terms with length attribute 4. This is different from Problem 16.1,
because the alignment and padding of the terms is different.

* Display 4 arithmetic expressions as a 16-byte character string.
* c(W) = c(WA) + c(WB) - 929065920, where
* c(WA) = B'100000000000000',
* c(WB) = X'1230000'.
* c(X) = c(XA) + 50344169 + c(XB), where
* c(XA) = X'5CF17',
* c(XB) = C'000'.
* c(Y) = c(YA) + c(YB) + c(YC), where
* c(YA) = B'11111111',
* c(YB) = X'1261F02',
* c(YC) = C'ABCD'.
* c(Z) = c(ZA) + c(ZB) - c(ZC), where
* c(ZA) = X'CAF75A',
* c(ZB) = B'1000011',
* c(ZC) = 511686493.
P16_2 Start 0

Print Nogen
Using *,15
B Start

*
CANS DS 0CL16
XANS DS 0XL16
W DS F
X DS F
Y DS F
Z DS F
Start DC 0H

L 0,=BL4'100000000000000'
A 0,=XL4'1230000'
S 0,=F'929065920'
ST 0,W

*
L 1,=XL4'5CF17'
A 1,=F'50344169'
A 1,=CL4'000'
ST 1,X

*
L 2,=BL4'11111111'
A 2,=XL4'1261F02'
A 2,=C'ABCD'
ST 2,Y

*
L 3,=XL4'CAF75A'
A 3,=BL4'1000011'
S 3,=F'511686493'
ST 3,Z
Printout CANS,XANS,*
End

Your printed output will look something like this:

 CANS = 'IBM 360 BYTES. '
 XANS = X'C9C2D440F3F6F040C2E8E3C5E24B4040'

Suggested Solutions to Selected Exercises and Programming Problems 1105

Programming Problem 16.3.
* c(W) = c(WA) + c(WB) - 759375551, where
* c(WA) = B'100000000000000',
* c(WB) = X'CBA98'.
* c(X) = c(XA) - c(XB) + 1386388536, where
* c(XA) = X'C0FFEE',
* c(XB) = C'@#$'.
* c(Y) = c(YA) + c(YB) + c(YC), where
* c(YA) = B'11111111',
* c(YB) = X'1F7C05',
* c(YC) = C'ABCD'.
* c(Z) = c(ZA) + c(ZB) - 975583924, where
* c(ZA) = X'FFFF',
* c(ZB) = -65536.
P16_3 Start 0

Print Nogen
Using *,15
B Start

*
CANS DS 0CL16
XANS DS 0XL16
W DS F
X DS F
Y DS F
Z DS F
*
Start DC 0H

L 0,=BL4'100000000000000'
A 0,=XL4'CBA98'
S 0,=F'759375551'
ST 0,W

*
L 1,=XL4'C0FFEE'
S 1,=CL4'@#$'
A 1,=F'1386388536'
ST 1,X

*
L 2,=BL4'11111111'
A 2,=XL4'1F7C05'
A 2,=C'ABCD'
ST 2,Y

*
L 3,=XL4'FFFF'
A 3,=A(-65536)
S 3,=F'975583924'
ST 3,Z

*
Printout CANS,XANS,*
End

Your printed output will look something like this:

 CANS = 'KILROY WAS HERE.'
 XANS = X'D2C9D3D9D6E840E6C1E240C8C5D9C54B'

1106 Assembler Language Programming for IBM System z™ Servers Version 2.00

Programming Problem 16.4.

The three values starting at Consts define initial values that make it easier to start the sequence.

Title 'Solution to Problem 16.4'
P16_4 START 0

BASR 15,0 Execution-time base register
USING *,15 Establish addressability
LM 0,2,Consts Initialize first 3 terms
L 3,Count Set print counter

LOOP LR 4,0 Move oldest term
AR 4,1 Add middle term
AR 4,2 And youngest term
ST 4,Value Store for printing
PRINTOUT Value Print it next
LR 0,1 Move middle to oldest
LR 1,2 And previous new to middle
LR 2,4 And new one to youngest
S 3,One Subtract 1 from term counter
BP LOOP Branch if still positive
PrintOut * Stop here

Consts DC F'-1,0' Previous 3 terms of sequence, with..
One DC F'+1' Constant +1, third starting term
Count DC F'25' Number of terms
Value DS F Space for printed value

END P16_4

This solution requires that the constant named One immediately follow the two constants named Consts. This is not a
good programming practice; suppose someone replaced references to One with the literal =F'1'?

The 25th term is X'0011CB8C' = 1166220.

This solution uses an array of values, adding three and storing the sum at the fourth. Halfword values can't be used
because the value of the 21st term exceeds 15 bits.

Title 'Solution to Problem 16.4'
P16_4A START 0

BASR 15,0 Execution-time base register
USING *,15 Establish addressability
LH 0,=H'22' Count of new terms
LM 2,4,Table Get first three values
PrintOut 2,3,4,Header=No Print the first 3 terms
SR 1,1 Initialize index

Loop L 2,Table(1) Get oldest value
A 2,Table+4(1) Add second-oldest value
A 2,Table+8(1) Add most recent value
ST 2,Table+12(1) Store in new position in table
PrintOut 2,Header=No Print the new value
AH 1,=Y(L'Table) Increment the index
SH 0,=H'1' Decrement count
BP Loop Repeat until count = 0
PrintOut *,Header=No Stop
LtOrg , Place literals here

Table DC F'0,1,2' Three initial values
DS 22F Remaining values
END P16_4A

Programming Problem 16.7.

Suggested Solutions to Selected Exercises and Programming Problems 1107

P16_7 Start 0
Using P16_7,15 Provide addressability

* Set up initial values.
LA 2,0 Previous value.
LA 3,1 Current value.

Loop PrintOut 3 Print a value
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value
C 4,=F'1000000' Compare to one million
BNL Done If sum overflowed, we're done
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Repeat the calculation

Done PrintOut *,Header=No Terminate the program
End P16_7

The output will look something like this:

 GPR 3 = X'00000001' = 1
 GPR 3 = X'00000001' = 1
 GPR 3 = X'00000002' = 2

 GPR 3 = X'00000003' = 3
 GPR 3 = X'0004D973' = 317811
 GPR 3 = X'0007D8B5' = 514229
 GPR 3 = X'000CB228' = 832040

You may want to revise your solution to use the CONVERTO macro instead of PRINTOUT. (See Programming
Problem 16.9.)

Programming Problem 16.8.
P16_8 Start 0

Using P16_8,15 Provide addressability
LA 2,0 Previous value.
LA 3,1 Current value.

Loop PrintOut 3 Print a value
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value
BO Done If sum overflowed, we're done
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Repeat the calculation

Done PrintOut *,Header=No Terminate the program
End P16_8

The printed output looks something like this:

 GPR 3 = X'00000001' = 1
 GPR 3 = X'00000001' = 1
 GPR 3 = X'00000002' = 2
 GPR 3 = X'00000003' = 3

 GPR 3 = X'43A53F82' = 1134903170
 GPR 3 = X'6D73E55F' = 1836311903

It's not always a good idea to test for overflow, as an interruption may have occurred. Here are three other ways to test
for the largest value:

1. Check for the largest number:

C r,=F'1836311903' r = register with current number
BE Done

• Not an “honest” method, because you have to know the last value!

2. Use a logical addition that doesn't cause overflow, and check for an arithmetically negative result:

1108 Assembler Language Programming for IBM System z™ Servers Version 2.00

ALR r,rprev rprev = register with previous number
LTR r,r Test sign of r
BNP DONE If not +, previous number was last

3. After output, test the current value against maximum positive number:

L t,=F'2147483647' Maximum positive integer in temp reg
SR t,r Subtract current from max
CR t,rprev Compare difference to previous value
BL DONE If smaller, current number is last

• If (max-current) < (previous), we know that previous+current will overflow.

Programming Problem 16.9.

Note that the DC statement labeled Title starts in column 15, so that the constant need not be continued (the terminal
apostrophe is in column 71).

P16_9 Start 0
Using P16_9,15 Provide addressability

* Set up initial values.
LA 2,0 Previous value.
LA 3,1 Current value.
PrintLin Title,TLen Print a header line.
PrintLin OutRec,1 Print a blank line.

Loop CONVERTO 3,OutRec Convert the number to characters
PrintLin OutRec,OutLen Print the results.
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value
BO Done If sum overflowed, we're done
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Repeat the calculation

Done PrintLin EndRec,EndLen Print an ending line
PrintOut *,Header=No Terminate the program

OutRec DC CL12' ' Output from CONVERTO
OutLen Equ *-OutRec
Title DC C'1Fibonacci Sequence to Maximum Positive Fullword Value'
TLen Equ *-Title
EndRec DC C'0Program ends.'
EndLen Equ *-EndRec

End P16_9

The output lines will look like this; note that the carriage control characters are shown.

1Fibonacci Sequence to Maximum Positive Fullword Value

1
1
2
3

701408733
1134903170
1836311903

0Program ends.

Programming Problem 16.10.

Suggested Solutions to Selected Exercises and Programming Problems 1109

P16_10 Start 0
USING P16_10,15 Establish addressability
SGR 2,2 Previous value in GG2; F(0)=0.
LGB 3,Byte1 Current value in GG3; F(1)=1.
PrintLin Title,TLen Print a title line
PrintLin OutRec,1 Print a blank line

Loop CONVERTO 19,OutRec Convert integer in GG3 to characters
PrintLin OutRec,OutLen Print the results.
LGR 4,2 Get a copy of the previous value.
AGR 4,3 Compute the next value.
BO Done Overflow means we're done.
LGR 2,3 Copy current value to previous.
LGR 3,4 Copy next value to current.
B Loop Repeat the loop

Done PrintLin EndRec,EndLen Print an ending line.
PrintOut *,Header=No Terminate the program

Byte1 DC FL1'1' Initial value for F(1)
OutRec DC CL21' ' Carriage control for output.
OutLen Equ *-OutRec Length of record.
Title DC C'1Fibonacci Sequence to Maximum Doubleword Value'
TLen Equ *-Title
EndRec DC C'0Program ends.'
EndLen Equ *-EndRec

End P16_10

The output looks like this (with carriage control characters):

1Fibonacci Sequence to Maximum Doubleword Value

1
1
2

.
2880067194370816120
4660046610375530309
7540113804746346429

0Program ends.

Programming Problem 16.11.

The assembled program looks like this:

000000 00000 0001A 1 P16_11 CSect ,
R:C 00000 2 Using *,12

000000 18CF 3 LR 12,15
000002 5AF0 C008 00008 4 A 15,X
000006 0DCF 5 BASR 12,15
000008 00000012 6 X DC F'18'
00000C 00000004 7 DC F'4'
000010 07FE 8 Exit BR 14
000012 58A0 C004 00004 9 L 10,X-4
000016 47FA C004 00004 10 B X-4(10)
000000 11 End P16_11

The key to following its execution is to not study the source code, because the BASR instruction changes the contents of
GR12, the base register! You must calculate effective addresses carefully at each step.

Programming Problem 16.12.

Your results might look like these:

1110 Assembler Language Programming for IBM System z™ Servers Version 2.00

 *** PRINTOUT requested at Address 01A008, Statement 7, CC=0
 GPR 1 = X'00000000' = 0
 *** PRINTOUT requested at Address 01A040, Statement 758, CC=3
 GPR 2 = X'80000000' = -2147483648
 *** PRINTOUT requested at Address 01A078, Statement 776, CC=1
 GPR 3 = X'FDB97530' = -38177488
 *** PRINTOUT requested at Address 01A0B0, Statement 794, CC=2
 GPR 4 = X'77777777' = 2004318071
 *** PRINTOUT requested at Address 01A0E0, Statement 809, CC=2

Suggested Solutions to Selected Exercises and Programming Problems 1111

Section 17 Solutions
Section 17.1

17.1.1. (1) 7, (2) 56, (3) 33, (4) 45, (5) 63, (6) 1, (7) 0.

Section 17.2

17.2.1. To find the bit, its byte address is simply K divided by 8, and the remainder of the division gives the position of
the bit within that byte.

L 2,KK Get bit number K
SRDL 2,3 Byte count in GR2
SRL 3,29 And bit number in GR3
IC 1,BStrg(2) Get desired byte in GR1
SLL 1,24 Position at left end of GR1
SLL 1,0(3) Shift off undesired bits
SR 0,0 Now clear GR0
SLDL 0,1 And move the bit into GR0 from GR1

17.2.2. First, we use a right shift:

L 1,K Shift amount in GR1
L 0,=A(X'80') Put a 1-bit in byte-position zero
SRL 0,0(1) Shift correct number of places
STC 0,KthBit Store result bit

Another solution, shifting left:

L 1,=F'7'
S 1,K Compute 7-K
L 0,=F'1' 1-bit in GR0, byte-position 7
SLL 0,0(1) Shift left 7-K places
STC 0,KthBit Store the k-th bit

17.2.3. The table at BTbl contains 8 bytes with a 1-bit in a position corresponding to its offset from BTbl.

L 1,K Load bit counter into GR1
IC 1,BTbl(1) Insert byte with indexing
STC 1,KthBit Store result
- - -

BTbl DC X'8040201008040201' Bytes with bits 0-7

17.2.4. Even though the register is only 32 bits long, the shift amount is determined from the six (not five!) low-order
bits of the Effective Address. The shift will set all bits in GR0 to zero.

17.2.5. If you want to use the shift instructions, you could write:

IC 1,DPG+3 c(GR1)=xxxxxx78
SLL 1,8 c(GR1)=xxxx7800
IC 1,DPG+2 c(GR1)=xxxx7856
SLL 1,8 c(GR1)=xx785600
IC 1,DPG+1 c(GR1)=xx786534
SLL 1,8 c(GR1)=78563400
IC 1,DPG c(GR1)=78563412

With ICM instructions, you could write:

ICM 1,B'0001',DPG+0 c(GR1)=xxxxxx12
ICM 1,B'0010',DPG+1 c(GR1)=xxxx3412
ICM 1,B'0100',DPG+2 c(GR1)=xx563412
ICM 1,B'1000',DPG+3 c(GR1)=78563412

17.2.6. These instructions do the job:

1112 Assembler Language Programming for IBM System z™ Servers Version 2.00

SR 1,1 Set GR1 to zero
Test C 0,=A(X'40000000') Test value in GR0

BNL Done If c(GR0) not low, we're done
A 1,=F'1' Increment shift count
SLL 0,1 Shift left 1 bit
B Test Repeat test

Done - - - Shift count in GR1

17.2.7. The representations of the data at X and Y are c(X)=X'12D687' and c(Y)=X'74CBB1'. These instructions
will do the job:

ICM 0,B'0111',X Put X in right end of GR0
ICM 1,B'0111',Y Put Y in right end of GR1
SLDL 0,8 Shift both left 8 bits
AR 0,1 Add the values arithmetically
STCM 0,B'1110',W Store result
JO OverFlo Branch if the sum overflowed

The representation of c(W)=X'87A238'; the sum overflows.

17.2.8. If n=0, nothing happens; if n≠ 0, calculate n+c(GRn) (modulo 64: the rightmost 6 bits) and shift GRn that
amount.

17.2.9. Yes: for signed integers, the LH instruction propagates the sign bit; but if the number is unsigned and its left-
most bit is 1, LH treats that bit as a sign that is propagated when it should not be. (Details like this can be very
important!)

Section 17.3

17.3.1. Simulating SLDL in this case is fairly easy:

LH 1,NShifts Get shift amount N
L 0,DataWord Load the data word
SLL 0,0(1) Shift left N bits
ST 0,DWord Store high-order 32 bits
SR 0,0 Set GR0 to zero
ST 0,DWord+4 Store low-order 32 bits

17.3.2. Because we have assumed that the low-order word is zero, the solution to Exercise 17.3.1 will also work.
(Remember that if N >32, all bits in GR0 will be lost, and c(DWord) will be zero.)

17.3.3. In this case, we must handle the portion of the high-order word that shifts into the low-order word of the
double-length result.

LH 1,NShifts Load shift count N into GR1
L 0,DataWord Get high-order word into GR0
SRL 0,0(1) Shift off low-order bits
ST 0,DWord Store high-order half of result
L 0,DataWord Reload a copy of original data
LCR 1,1 Complement shift count, now -N
SLL 0,32(1) Drop off high-order (N-32) bits
ST 0,DWord+4 Store low-order half of result

17.3.4. In this case, we check for N≥ 32: if true, the high-order word of the resulting double-length logical right shift will
be zero.

LH 1,NShifts Load shift count N into GR1
L 0,DataWord Get high-order word into GR0
CH 1,=H'32' Check shift count
BL Under32 Branch if less than 32 shifts
SRL 0,32(1) Shift N-32 bits (see note below)
ST 0,DWord+4 Store low-order half of result
SR 0,0 Set GR0 to zero
ST 0,DWord Store high-order half of result
B Done ... and finish

Under32 SRL 0,0(1) Shift off low-order bits
ST 0,DWord Store high-order half of result
L 0,DataWord Reload a copy of original data
LCR 1,1 Complement shift count, now -N
SLL 0,32(1) Drop off high-order (N-32) bits

Suggested Solutions to Selected Exercises and Programming Problems 1113

ST 0,DWord+4 Store low-order half of result
Done - - -
The shift amount of the instruction SRL 0,32(1) is 32+N (mod 64); but since N≥32, the result gives the same shift count
as N-32.

17.3.5. In this case, the initial data is 64 bits long, and is to be shifted left 0 to 31 bits. Some comment statements have
been inserted to clarify the operation of the instructions.

LH 1,NShifts Get shift count N
LM 2,3,DWData 64-bit shifting data in (GR2,GR3)

 * GR2/GR3: HHHHH....HHHHHLLLLL....LLLLL High and low order bits
LR 0,3 Copy low-order word to GR0
SLL 0,0(1) Shift N bits left

* GR0: LLLL0000...000
ST 0,DWord+4 Done with low-order half of result
LR 0,2 Copy high-order word to GR0
SLL 0,0(1) Shift left; now done with HO data

* GR0: HHH...HHH...000
LCR 2,1 Put -N in GR2
SRL 3,32(2) Shift low-order data right 32-N bits

* GR3: 000...000...LLL
ALR 0,3 Merge the two pieces in GR0

* GR0: HHH...HHHLLLLLL
ST 0,DWord Store high-order half of result

* Result: HHH...HHHLLLLL LLLL0000...000

17.3.6. This solution is similar to that of Exercise 17.3.5:

LH 1,NShifts Get shift count N
LM 2,3,DWData Load 64 bits to be shifted right
LR 0,2 Copy high-order half to GR0
SRL 0,0(1) Shift right N bits
ST 0,DWord Store high-order half of result
LR 0,3 Copy low-order half to GR0
SRL 0,0(1) Shift; low bits of low result word
LCR 3,1 -N in GR3
SLL 2,32(3) Shift high-order half 32-N bits
ALR 2,0 Merge pieces of high/low halves
ST 2,DWord+4 Store low-order half of result

17.3.9. The following sequence makes no checks for whether or not significant bits are lost in the rearrangement. The
word containing four integers in the old format is at OLD, and the four in their new format are to be stored at NEW.

L 0,OLD Fetch the word with 4 integers
SRDL 0,6 Shift 6 bits of 4th integer into GR1
SRL 1,2 Extend to 8 bits
SRDL 0,13 All 13 bits of 3rd integer into GR1
SRL 1,2 Extend to 15 bits
SRDL 0,2 Shift 2 low-order 2nd integer bits
SRL 0,2 Drop 2 high-order bits of 2nd
SRDL 0,7 Shift last 7 bits into GR1
ST 1,NEW Store final result

17.3.10. This first solution works so long as the number of bits allowed for the value of each integer is sufficient; the
integers may then be in either the logical or the arithmetic representation.

L 0,Fourth Get 4th integer
SRDL 0,6 Shift into GR1
L 0,Third Get 3rd integer
SRDL 0,13 shift into GR1 next to 4th
L 0,Second Get 2nd integer
SRDL 0,4 Shift into GR1 next to 3rd and 4th
L 0,First Get 1st integer
SRDL 0,9 Fill up the new word
ST 1,NEW And store the result

A second solution using A instructions (to Add) also does the job economically, but only if the integers are unsigned.
(Explain why this is so.)

1114 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 0,First Get 1st integer
SLL 0,4 Make room for second
A 0,Second Add 2nd integer
SLL 0,13 Make room for third
A 0,Third Add 3rd integer
SLL 0,6 Make room for last
A 0,Fourth Add 4th and last integer
ST 0,NEW Store result

17.3.11. This solution is almost identical to that for Exercise 17.3.10.

L 0,Fourth Get 4th integer
LH 2,L4 Get bit length for 4th integer
SRDL 0,0(2) Shift by specified amount
L 0,Third Get 3rd integer
LH 2,L3 Etc...
SRDL 0,0(2) Etc...

17.3.12. The solution to Exercise 17.3.11 also works for integers in the arithmetic representation, provided that enough
bits are allotted to correctly represent the given values.

17.3.13. In Figure 113 on page 248 the value zero would be stored. In Figure 114 on page 249 the program would
stay in an unending loop comprising the SRDL, LTR, and BNM instructions until the program was halted.

17.3.14. For nonnegative values of N, a solution might be:

L 1,NN Get N
LR 2,1 Move a copy to GR2
A 2,=F'1' Force a carry if low bit = 1
SRL 2,1 Now have Ceiling(N/2) in GR2
AR 1,2 Ceiling(N+N/2) now in GR1

17.3.15. To set the flag bytes correctly, we must test each integer as it is packed into the result word.

LM 2,3,=F'0,1' For setting data-fit flags
L 0,Fourth Get 4th integer
SRDL 0,9 Shift 9 bits into GR1
STC 2,FLAG4 Set 4th-integer FLAG4 to 'fit' value
LTR 0,0 Now test if it really did fit
BZ OKFour Skip one instruction if it did
STC 3,FLAG4 Set data-fit FLAG4 to 'no-fit' value

OKFour L 1,Third Fetch 3rd integer
SRDL 0,13 Shift 13 bits into GR1
STC 2,FLAG3 Set 4th-integer FLAG3 to 'fit' value
LTR 0,0 Now test if it really did fit
BZ OKThree Skip one instruction if it did
STC 3,FLAG3 Set data-fit FLAG3 to 'no-fit' value

OKThree L 0,Second Get 2nd integer
SRDL 0,4 Shift 4 bits into GR1
- - - ...similarly for the other integers

17.3.16. We will illustrate two solutions: the first moves the bits from GR0 to GR1, then to GR3 and to GR2. (A
sketch may help.)

L 4,=F'32' Set bit counter in GR4
Loop SRDL 0,1 Shift a bit off right end of GR0

LR 3,1 Move the shifted bit to GR3
SLDL 2,1 Move into GR2, going left
S 4,=F'1' Count down by 1
BP Loop If count is positive, repeat
LR 1,2 Leave result in GR1

The second solution uses logical addition to test for 1-bits at the left end of R0. (Again, a sketch may help.)

Suggested Solutions to Selected Exercises and Programming Problems 1115

L 4,=F'32' Set bit counter in GR4
Loop SRL 1,1 Make room in GR1 for a bit

ALR 0,0 Force a bit off left end of GR0
BC 12,Count If no carry out, it was a zero bit
AL 1,SignBit If carry, put a 1-bit in sign of GR1

Count S 4,=F'1' Count down by 1
BP Loop Repeat if count is positive
- - -

SignBit DC A(X'80000000') Leftmost 1-bit in a fullword
17.3.19. It works correctly. We'll see in Chapter VI that the LA instruction can replace the literals, and in Chapter VII
that the UNPK and TR instructions let us do this type of conversion more easily.

Section 17.4

17.4.1. The final CC setting in this instruction sequence is a correct emulation of SLDA:

SR 0,0 Set GR0 to zero
ST 0,DWord+4 Store low-order half of result
LH 1,NShifts Get shift count
L 0,DataWord Get datum to be shifted
SLA 0,0(1) Shift left N places
ST 0,DWord Store high-order half of result

17.4.2. The instruction sequence shown for the solution to Exercise 17.4.1 above can still be used, because the low-
order half of the source operand was assumed to be zero.

17.4.3. In this instruction sequence, the final CC setting will not be correct:

LH 1,NShifts Get shift count N
L 0,DataWord Get data to be shifted
LR 2,0 Copy to GR2 (for low-order bits shift)
LCR 3,1 Complement N in GR3
SLL 2,32(3) Shift 32-N bits left
ST 2,DWord+4 Store low-order half of result
SRA 0,0(1) Now, shift high-order half
ST 0,DWord Store high-order half of result

The reason the CC setting is not reliable is that if the original operand was nonnegative, a nonzero bit may have been
shifted into the low-order half of the result, leaving the high-order half zero. The SLA instruction would indicate
CC=0, whereas SRDA would indicate CC=2 for a positive nonzero result.

17.4.4. Here, we must test for 32 or more shifts:

L 0,DataWord Get data to be shifted
LR 2,0 Copy it to GR2
LH 1,NShifts Get shift count N
CH 1,=H'32' Check its size
BL Under32 Branch if less than 32
SRA 2,32(1) Shift right N-32 bit positions
ST 2,DWord+4 Store low-order half of result
SRA 0,32 Shift GR0 32 bits: only sign bits left
ST 0,DWord Store high-order half of result
B Done ...and exit

Under32 LCR 3,1 Put -N in GR3
SLL 2,32(3) Shift data 32-N places left
ST 2,DWord+4 Store low-order half of result
SRA 0,0(1) Shift high-order half N bit positions
ST 0,DWord Store high-order half of result

Done - - -
The CC setting at Done will not be correct. The first SRA instruction shifts N-32 positions because N≥ 32, and adding
32 is equivalent to subtracting 32 in the rightmost 6 bit positions of the Effective Address.

17.4.5. In this case, we must shift a 64-bit signed operand:

1116 Assembler Language Programming for IBM System z™ Servers Version 2.00

LH 1,NShifts Get shift count N
LM 2,3,DWData Put 64-bit operand in (GR2,GR3)
LR 0,3 Copy low-order word to GR0
SLL 0,0(1) Shift left N bits
ST 0,DWord+4 Store low-order half of result
LR 0,2 Copy high-order word to GR0
SLA 0,0(1) Shift left N bit positions
ST 0,DWord Store temporarily
LCR 1,1 Complement to get -N in GR1
SRL 3,32(1) Shift low-order word right N-32 bits
AL 3,DWord Add in the high-order bits
ST 3,DWord Store high-order half of result

The CC setting is not correct, because its value will depend on the result of the AL instruction.

17.4.6. We must right-shift a 32-bit operand right N bits:

LH 1,NShifts Get shift count
LM 2,3,DWData Put shift operand into (GR2,GR3)
LR 0,3 Copy low-order half to GR0
SRL 0,0(1) Shift right N bits
ST 0,DWord+4 Store low-order part temporarily
LR 0,2 Copy high-order half to GR0
SRA 0,0(1) Shift right arithmetically N bits
ST 0,DWord Store high-order half of result
LCR 1,1 Complement N
SLL 2,32(1) Shift out unneeded bits of high half
AL 2,DWord+4 Add back the low-order half's bits
ST 2,DWord+4 Store low-order half of result

The CC setting is not correct.

17.4.10. Because two bits are to be removed from the high-order part of the first and second integers, sign extension is
required only for the third and fourth integers.

L 0,OLD Fetch the word with 4 integers
SRDL 0,6 Shift 6 bits of 4th integer into GR1
SRA 1,2 Sign-extend to 8 bits
SRDL 0,13 All 13 bits of 3rd integer into GR1
SRA 1,2 Sign-extend to 15 bits
SRDL 0,2 Shift 2 low-order bits of integer 2
SRL 0,2 Drop 2 high-order bits of integer 2
SRDL 0,7 Shift last 7 bits into GR1
ST 1,NEW Store final result

17.4.11. Since c(NUM) is positive and nonzero, we will count the number of arithmetic right shifts:

L 1,NUM Get number to be checked
L 0,=F'1' Place starting exponent in GR0

Test SRA 1,1 Shift number right once
BZ Done Finished if now zero
SLL 0,1 Double the power of 2 in GR0
B Test And try again

DONE - - - 2**N now in GR0
Check your solution carefully to ensure that it handles cases near a “boundary”, such as an exact power of two or a
number very near a power of two.

17.4.12. Because c(NUM) could be the maximum negative number, we should (in that case) consider the result in
GR0 to be a number in the logical representation.

Suggested Solutions to Selected Exercises and Programming Problems 1117

L 0,NUM Load number to be tested into GR0
LPR 1,0 Move its magnitude to GR1, set CC
L 0,=F'31' Maybe exponent is 31?
BO Done If the LPR overflowed, we're done
SRL 0,5 Force c(GR0)=0 without CC setting
BZ Done If CC=0, c(NUM) was zero
L 0,=F'1' Put starting power of 2 in GR0

ShiftR SRA 1,1 Shift right once
BZ STOP Stop if we lost most significant bit
SLL 0,1 Double the power of 2
B ShiftR And try again

Done - - - C(GR0) = the positive power of 2
You may hve tried another approach: shift a “power-of-two” bit to the right, while shifting c(NUM) to the left and
testing for overflow. (If you didn't, try it!)

17.4.13. The modifications are simple:

L 1,NUM Get number to be checked
SR 0,0 Set exponent to 0

Test SRA 1,1 Shift right once
BZ Done Exit if now zero
A 0,=F'1' Add 1 to exponent
B Test And try again

Done - - - Exponent N now in GR0

17.4.14. It is always true for nonnegative register contents, and for negative values in which the rightmost N bits are
zero. Other positive values will be forced to the next lower integer. For negative integers where nonzero bits are lost,
we can see that the truncation is still “downwards” toward more negative values: consider a single right shift of
X'F F F F F F F D', or − 3. After the shift, the result is X'F F F F F F F E', which has value − 2.

17.4.15. Testing for the possibility of overflow is more difficult than in Exercise 17.3.15, because we cannot simply
examine the high-order bits remaining after shifting the desired part out of the register. Even if the bits to the left of the
shifted part are all 0 or all 1, the most significant bit of the shifted part might be different, which would imply that the
value was too large for the allotted field.

LM 2,3,=F'0,1' For setting data-fit flags
L 0,Fourth Get 4th integer
LR 4,0 Save for overflow check
STC 2,FLAG4 Set FLAG4 to 'fit' value
SRDA 0,9 Position into packed word in GR1
SLA 4,32-9 Test for fit
BNO OKFour Skip if it fits correctly
STC 3,FLAG4 Set FLAG4 to 'no-fit' value

OKFour L 0,Third Get third integer
LR 4,0 Save for check
STC 2,FLAG3 Set FLAG3 assuming a fit
SRDA 0,13 Position in packed word
SLA 4,32-13 Test for fit into 13 bits
BNO OKThree Skip if it fits correctly
STC 3,FLAG3 Set FLAG3 to 'no-fig' value

OKThree - - - ...similarly for the other integers
We will see simpler ways to set indicator flags in Section 24.

17.4.16. Here is one way to do the bit count:

SR 0,0 Clear GR0 for byte to be counted
SR 2,2 Clear GR2 for bit count
IC 0,XX Pick up data byte

Loop SR 1,1 Clear GR1 for shifting a bit
SRDA 0,1 Shift a bit into GR1, set CC
BZ Store Exit loop if no 1-bits left
LTR 1,1 Check GR1 for a 1-bit
BZ Loop Loop if it was a 0
A 2,=F'1' Increment bit count
B Loop Continue testing

Store STC 2,XX Store bit-count back at XX

17.4.17. The values are

1118 Assembler Language Programming for IBM System z™ Servers Version 2.00

(1) X'FFFFFFEDCBA98765', CC=1
(2) X'8765432100000000', CC=3 (fixed-point overflow)
(3) X'FEDCBA9800001D95', CC=2 (the high-order half of GG0 is unchanged)
(4) X'00003FB72EA61D95', CC is unchanged.

17.4.18. The results are:

1. SRA 0,20 − c(GR0) = X'FFFFF876', C C = 1
 2. LPR 0,0 − c(GR0) = X'789ABCDF', C C = 2

3. SLA 0,28 − c(GR0) = X'90000000', C C = 3

17.4.19. This is one of many ways to do this:

LA 0,8 Count bits in GR0
LA 1,Char Address of output characters
ICM 3,B'1000',Byte Insert the byte to be formatted

Loop SR 2,2 Clear GR2
SLDL 2,1 Shift a bit into GR2
LA 2,X'F0'(0,2) Make an EBCDIC character
STC 2,0(,1) Store the formatted digit
LA 1,1(,1) Step to next output character
SH 0,=H'1' Reduce bit count
BP Loop Repeat for all 8 bits

17.4.20. We'll assume the shift count N in GR2 lies between 0 and 63; if not, we can first isolate the rightmost 6 bits of
GR2.

LTR 0,0 Check sign of c(GR0)
SRDL 0,0(2) Shift original argument by N bits
BNM NonNeg Branch if original value nonnegative
L 4,=F'-1' Put 32 1-bits in GR4
C 2,=F'32' Check shift N count < 32?
BL ShortShf Branch if shift count N < 32
LR 0,4 Put 32 1-bits in GR0
SRDL 4,32(2) Shift N-32 bits into GR5
ALR 1,5 Insert leading sign bits in GR1
B SetNegCC Finish by setting Condition Code

ShortShf SRDL 4,0(2) Shift N 1-bits into GR5
ALR 0,5 Insert leading sign bits in GR0

SetNegCC LTR 0,0 Set CC=1
B Done

NonNeg LTR 0,0 Check for nonzero bits in GR0
BP Done CC=2 if c(GR0)>0
LTR 1,1 Otherwise CC=0 or 2

Done - - - Shifted result in c(GR0,GR1)

17.4.21. The solution is to check whether a one bit was shifted out; if so, add 1 to the shifted operand.

L 0,=F'-5' c(GR0) = X'FFFFFFFB' = -5
SR 1,1 Clear GR1
SRDA 0,1 C(GR0) = X'FFFFFFFD' = -3
BNM OK OK if number was non-negative
LTR 1,1 Test shifted bits
BZ OK Some bit is not 1
A 0,=F'1' Add 1 to GR0, c(GR0) = -2

OK - - -
Note that if the original value is even, the shifted bit is always zero. What happens if you start with − 1? (See Exercise
17.4.14 also.)

17.4.22. Use an arithmetic shift (in either direction) with a zero shift amount.

17.4.23. 0 and − 1.

Suggested Solutions to Selected Exercises and Programming Problems 1119

Section 17.5

17.5.1. Here's a possible solution:

LH 2,NN Get shift count
SRDL 2,5 Shift 5 bits right
SR 2,2 Now set GR2 to zero
SLDL 2,5 Rotate count (modulo 32) in GR2
L 0,DataWord Get data to be rotated (abc...xyz)
LR 1,0 Copy it to GR1
SLL 0,0(2) Shift left N (cd...xyz00)
LCR 2,2 -N in GR2
SRL 2,32(2) Shift right 32-N (00abc...x)
ALR 0,1 Merge the parts (cd...xyzab)
ST 0,RotateWd Store the rotated result

17.5.2. Here, we can use SLDL to help:

LH 2,NN Get shift count
SRDL 2,6 Shift 6 bits into GR3
SR 2,2 Set GR2 to zero
SLDL 2,6 Shift count (modulo 64) in GR2
LM 0,1,DWData Get operand to be rotated
CH 2,=H'32' Rotating more than 32 bits?
BL Under32 Branch if yes

* Swap the halves, and then rotate N-32 bits
LR 3,0 Copy high-order half to GR3
LR 0,1 Move low-order half to GR0
LR 1,3 And high-order half to GR1
SH 2,=H'32' Reduce count by 32

Under32 LR 3,0 Copy high-order half to GR3
SLDL 0,0(2) Shift both halves left N(mod 32) bits
STM 0,1,RotatDWd Store both parts of (temporary) answer
LCR 2,2 Complement N (now within (-31,0))
SRL 3,32(2) Shift high-order part right 32-N bits
AL 3,RotatDWd+4 Add low-order piece of result
ST 3,RotatDWd+4 Store final low-order half of result

17.5.3. RLLG r,r,32

Section 17.6

17.6.1. The statement will be assembled as though we had written

SLL 9,0(2)
The contents of GR2 will depend on its position in the program, so the shift amount could vary with each assembly.
(Not a good idea!) It's possible that some USING statements specifying the same relocatable value as A and a higher
register number were available for resolving Addressing Halfwords, in which case that register would be used as the
base register for the shift. (An even worse idea!)

17.6.2. Assuming normal base register usage conventions, the shift amount might be any even number from 0 to 62. In
any given execution of the program, the number of shifts will be fixed, but it will depend on where the program was
placed in memory. (Again, not a good idea!)

17.6.3. The number of shifts is not 12! As in Exercise 17.7.2, the number of shifts will be found when the address of
AAA is evaluated; this could be any multiple of 4 between 0 and 60, because AAA is fullword aligned.

17.6.4. Be careful! If the original value in Rx is negative, SLDA and SRDA won't be able to set it to zero. Further-
more, if x is an odd-numbered register, none of the double-length shift instructions can be used. If x is even, SLDL and
SLDA clear register x+1 instead, and SRDL and SRDA effectively move c(GRx) to c(GRx+1). Thus, (4), (6), (7),
and (8) should be avoided.

17.6.5. Your table might look like this:

1120 Assembler Language Programming for IBM System z™ Servers Version 2.00

17.6.6. There is no reason to shift more than 31 positions in a single register; the result can be obtained either with a
shift of 31 or fewer positions, or with a different (and probably faster) instruction.

17.6.7. We will see later that the UNPK instruction provides a simpler solution to this problem.

SR 2,2 Clear GR2 for data byte
IC 2,DATA Get 2 hex digits from data
SRDL 2,4 Shift right digit into GR3
IC 2,ChTbl(2) Get EBCDIC character for left digit
SRL 3,28 Position right digit for indexing
IC 3,ChTbl(3) Get EBCDIC character for right digit
STC 2,CH Store first character of result
STC 3,CH+1 And second character also
- - -

ChTbl DC C'0123456789ABCDEF'

17.6.8. The values by which the Effective Address should be divisible are:

 1. L − 4
 2. BC − 2 (it must be!)
 3. LH − 2
 4. ICM − 1
 5. LR − Irrelevant: LR generates no Effective Address!
 6. SRDA − 1
 7. STM − 4
 8. STC − 1

17.6.9. The shift amount depends on the Effective Address, so it could be any multiple of 4 between 0 and 60
(assuming the Assembler has placed the literal on a word boundary).

Section 17.7

17.7.1. The three statements will generate the same bit patterns, but only the constant named A will always be aligned
on a word boundary.

17.7.2. The generated constant is X'D864E26F'. If the letter U is omitted, all four data items are too large for the
allotted fields.

17.7.3. The generated constant is X'8C4417E1'.

17.7.4. You could write the constants as

DS 0F
UnsdVals DC FL.(LA)'U432',FL.(LB)'U12',FL.(LC)'U5001',FL.(LD)'U47'
SgndVals DC FL.(LA)'-232',FL.(LB)'-8',FL.(LC)'-4001',FL.(LD)'-31'

17.7.5. Write the length modifier as L.(8*A+B)

Programming Problem 17.1.

This solution uses a logical left shift to move bits into the sign position, where they are tested with the LTR instruction.
Can you think of a way to use an SLA instruction and a test for overflow instead? Modify this solution to test for several
data values.

Shift Direction Length Type Mnemonic

S L S L SLL
S L S A SLA
S L D L SLDL
S L D A SLDA
S R S L SRL
S R S A SRA
S R D L SRDL
S R D A SRDA

Suggested Solutions to Selected Exercises and Programming Problems 1121

Title 'Solution to Problem 17.1'
* Count the number of 1-bits in a word

Print NoGen
P17_1 START 0

BASR 15,0 Set GR15 as base register
USING *,15 Inform the assembler
L 0,DATA Get data from memory
SR 1,1 Set shift counter to zero

Loop SLL 0,1 Shift data left one bit
LTR 0,0 See if sign bit is a one
BZ Error Error if zero, no one-bits there
BM Finish Branch if yes, all done
A 1,=F'1' Add one to shift count
B Loop And go shift the data again

*
Finish STH 1,Count Store the shift count

SRL 0,1 Move the data back once
ST 0,Norm Store shifted result
PrintOut Data,Norm,Count,*,Header=NO Print answers and stop

Data DC F'7294' A number to be tested
Norm DS XL4 Space for shifted result
Count DS H Space for final shift count
*
Error PRINTOUT * Error stop for bad data

END P17_1

The output for this sample Data item is:

Data = 7294
Norm = X'71F80000'
Count = 18

Programming Problem 17.3.

This solution uses the arithmetic shifts:

P17_3 Start 0
* Unpack four signed integers packed in a word.

Print NoGen
Using *,15

LA Equ 9 Bit length of integer A
LB Equ 4 Length of B
LC Equ 13 Length of C
LD Equ 6 Length of D

L 0,SgndVals Get data word into GR0
SRDA 0,LD Shift 6 bits into GR1
SRA 1,32-LD Sign-extend to right
ST 1,Fourth Store fullword result D
SRDA 0,LC Shift off 13 more bits into GR1
SRA 1,32-LC Shift with sign extension
ST 1,Third Store signed result of C
SRDA 0,LB Shift off next 4 bits for B
SRA 1,32-LB Sign-extend second integer
ST 1,Second Store final result of B
ST 0,First Store correct first integer A
PrintOut First,Second,Third,Fourth,*,Header=NO

First DS F
Second DS F
Third DS F
Fourth DS F
SgndVals DC 0F,FL.9'-232',FL.4'-8',FL.13'-4001',FL.6'-31'

End

The printed output shows the desired values:

1122 Assembler Language Programming for IBM System z™ Servers Version 2.00

First = -232
Second = -8
Third = -4001
Fourth = -31

Suggested Solutions to Selected Exercises and Programming Problems 1123

Section 18 Solutions
Section 18.2

18.2.1. For 32-bit operands using signed multiplication, the product of two maximum negative integers yields the 64-bit
signed product + 262 = X'40000000 00000000', or 4611686018427387904.

18.2.2. If the operands x and y are positive, the products XY and xy are identical. If x is negative and y is positive, the
logical product XY is actually (232+x)y; thus we need to add Y to the high-order half of the product xy as computed
by the M (or MR) instruction. Similarly, if both x and y are negative,

XY = (232+x)(232+y) = 232(x+y) + xy
The 264 term is ignored in our 64-bit product, so we simply add x and y to the high-order half of the product xy.

L 2,X Get first logical operand
L 1,Y Get second logical operand
LTR 3,1 Save for addition, and set CC
MR 0,2 Form arithmetic product
BNM NonNeg1 Branch if 2nd operand not negative
ALR 0,2 Add first operand to high-order half

NotNeg1 LTR 2,2 Check sign of first operand
BNM NotNeg2 Branch if arithmetic rep. not minus
ALR 0,3 Add 2nd operand to high-order half

NotNeg2 STM 0,1,LogProd Store 64-bit logical product
Thus:

• If X < 0, add Y× 232

• If Y < 0, add X× 232

18.2.3. The largest signed 32-bit magnitude is (− 231), and the largest signed 16-bit magnitude is (− 215), so the largest
48-bit product is 246=70368744177664. The largest signed 64-bit magnitude is (− 263), so the largest 96-bit product is
294=19807040628566084398385987584.

18.2.4. Because the two operands are positive, the test is simple:

L 1,A Get multiplier
M 0,B Form product
LTR 0,0 Test high-order half
BNZ Overflow Error if not all zero
LTR 1,1 Test leftmost bit of low-order half
BM Overflow If a 1-bit, result is too large

18.2.5. In this case it is simplest to use SLDA for the test. Because the product must be left intact in (GR0,GR1), the
shift must be done in a different register pair.

L 1,A Load multiplier
M 0,B Form product
LR 2,0 Copy left and ...
LR 3,1 Right halves to (GR2,GR3)
SLDA 2,32 Now test for fit in one word
BO Overflow If overflow, product won't fit

18.2.6.

L 1,A Load A into GR1
M 0,B Multiply by B in (GR0,GR1)
LR 2,0 Copy high-order word to GR2
LR 3,1 Copy low-orer word to GR3
SLDA 2,32 Test for any overflow
BNO Okay Branch if no overflow
LTR 0,0 Test sign of original result
BM OverNeg Branch if negative result is too big
B OverPos Branch if positive result is too big

Okay - - - Result is representable in a fullword

18.2.7. This solution references each pair of halfwords using the addresses in GR11 and GR12, incrementing them by 2
each time. The accumulating sum is in (GR0,GR1):

1124 Assembler Language Programming for IBM System z™ Servers Version 2.00

L 2,=F'10' Count items in GR2
SR 0,0 Accumulate sum in (GR0,GR1)
LR 1,0 Initialize sum to zero

Loop LH 4,0(,11) Get an operand
MH 4,0(,12) Multiply by the other
SRDA 4,32 Extend word product to 64 bits
ALR 1,5 Add low-order words
BC 12,NoCarry Skip carry add if none to add
AL 0,=F'1' Add a carry bit

NoCarry ALR 0,4 Now add high-order words
AL 11,=F'2' Add 2 to address of first table
AL 12,=F'2' And to the address of second table
S 2,=F'1' Count down items by 1
BP Loop Repeat if not done
STM 0,1,DwSum Store accumulated sum

18.2.8. Since x is always positive, we only need to test the sign of y:

L 2,Y Get (possibly negative) 2nd operand
LTR 1,2 Move to GR1 and set CC
M 0,X Multiply to form arithmetic product
BNM Y_NonNeg Now skip if y is nonnegative
AL 0,X Otherwise add correction term

Y_NonNeg STM 0,1,LProd Store 64-bit logical product

18.2.9. Because the CPU must eventually access the even-numbered register, its “address” is needed anyway. Further-
more, it is consistent to require all instructions referring to a register pair to do so with the even-numbered register.

18.2.10. Only one instruction is needed:

SLDA 0,32 Destroys original (GR0,GR1) contents
BO Overflow Branch if overflow is indicated

18.2.11. The largest positive 32-bit magnitude is (231 − 1), and the largest positive 16-bit magnitude is (215 − 1), so the
largest 48-bit product is 70366596661249. The largest positive 64-bit magnitude is (263 − 1), so the largest 96-bit
product is 19807040619342712359383728129.

18.2.12. This technique is used: form the 64-bit product of A and B; then, if an arithmetic test of B indicates that it's
negative, add B× 232 to the product.

L 1,A A in GR1
L 0,B B in GR0
LTR 0,0 Test sign of B
MR 0,0 Form the product A*B
BNM Skip Skip adding if B is not negative
AL 0,B Complete the 64-bit product

Skip DC 0H'0'

18.2.13. His instructions are incomplete. Consider multiplying 75141×56789: the product X'FE5808A9' is indeed 32
bits long but appears to be negative, − 27785047. An additional test is needed:

L 1,X Load first operand
M 0,Y Multiply by second operand
LTR 0,0 Check high-order 32 bits
BNZ NotOK If not zero, product is too big
LTR 1,1 Check high-order bit of GR1
BZ ProdOK Branch if high-order 33 bits are 0s
- - - Not OK

X DC F'75141'
Y DC F'56789'
x

18.2.14. In the following sketch, the characters “L<” and “L≥ ” mean “Logically Less Than” and “Logically Greater
Than Or Equal”, respectively

Suggested Solutions to Selected Exercises and Programming Problems 1125

N + − N
P64 �─── c(R0) = all 0─bits? �─── SRDA 0,64 ───� c(R0) = all 1─bits? ───� P64

Y│ 0│ Y│
│ │ │

N � Y � Y � Y
P64 �─── c(R1) L< X'80000000'? ───� P32 �─── c(R1) L≥ X'80000000'? ───� P64

Some instructions to determine which of the two possible product fields should be used could be like these:

SRDA 0,0 Check sign and possible zero
BZ P32 Product is zero, store as 32 bits
BP Plus Go handle positive product
C 0,=F'-1' Is high half all 1-bits?
BNE P64 No, must store 64-bit product
CL 1,=X'80000000' Is low half logically < 2**31?
BNL P32 Yes, can store 32-bit product
B P64 Otherwise, store 64-bit product

Plus LTR 1,1 Is low half all 0-bits?
BNE P64 If not, must store 64-bit product
CL 1,=X'80000000' Is low half logically >= 2**31?
JL P32 No, OK to store 32-bit product

P64 STM 0,1,Prod64 Store 64-bit product
B Done

P32 ST 1,Prod32 Store 32-bit product
Done - - -
The solution above illustrates the general idea that testing only the high-order half of the product is not sufficient. This
more elegant solution takes many fewer instructions:

LR 2,1 Copy low-order half of product
SRA 2,31 Copy sign bit through R2
CR 2,0 Compare to high-order half of prod
JNE Prod64 If not equal, it's a 64-bit product
ST 1,Prod32 Store the 32-bit product
J Done Finish

Prod64 STM 0,1,Prod64 Store the full 64-bit product
Done - - -
The key to this solution is that the SRA fills R2 with sign bits of the low-order half of the product, so R2 contains
either 0 or − 1. If that compares unequal to c(R0), we know there are significant bits in R0; and if it compares equal,
we know that the sign bit of R1 is the same as the bits in R0 so the product has only 32 significant bits. Worth
studying!

18.2.15. X'FFFFFFC0' = − 64.

18.2.16. The values are (1) X'40000000' and (2) X'00000001' (the square of − 1).

Section 18.3

18.3.1. For 32-bit operands using logical multiplication, the product of two 32-bit maximum unsigned integers (232 − 1,
X'F F F F F F F F') yields the 64-bit unsigned product X'FFFFFFFE00000001', or 18446744065119617025.

18.3.2. Using the same analysis as in Exercise 18.2.2, we form an arithmetic product using logical multiply instructions:

L 1,P Load P into GR1
L 2,Q Load Q into GR2
LTR 1,1 Set CC for P
MLR 0,Y Logical product of P and Q
BNM B1 Branch if P >= 0
SLR 0,2 Subtract Q, correct for negative P

B1 LTR 2,2 Check sign of Q
BZ B2 Branch if Q >= 0
SL 0,P Subtract P, correct for negative Q

B2 STM 0,1,ArProd Store signed product

1126 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 18.5

18.5.1. The range of QD values is 1 ≤ QD ≤ ND, and the range of RD values is 1 ≤ R D ≤ DD. (The lower bound
of 1 is because zero is a one-digit number.)

Section 18.6

18.6.1. Because the quotient is represented as a signed two's complement number, its magnitude is less than or equal to
231. We might say that room must be left for the quotient's sign bit.

18.6.2. A specification error occurs if n is odd. If n is even, a divide-check interruption occurs only if the dividend is not
a negative number between − 1 and − (231 − 1) and the divisor is − 1. Thus it is highly probable that an interruption will
occur. Here's a more detailed analysis:

• If c(GRn) is positive, the inequality in Figure 132 on page 277 is not satisfied.
• If c(GRn) is zero, an immediate interruption occurs.
• If c(GRn) is negative and not equal to − 1, the inequality in Figure 132 on page 277 is not satisfied.
• If c(GRn) is negative and equal to − 1, we must then consider the contents of c(GRn +1):

− If c(GRn +1) is non-negative, the inequality in Figure 132 on page 277 is not satisfied.
− If c(GRn +1) is negative, and equal to the maximum negative number, (− 231 − 1)÷ (− 1) fails because the quotient

would be + 231.
− Any other negative value is satisfactory.

18.6.3. A fixed-point divide interruption can occur only if the divisor is zero. The quotient may be too large to fit in a
halfword, but no error indication is given.

L 0,WDividen Fetch 32-bit dividend
SRDA 0,32 Extend sign to 64 bits
LH 2,HDivisor Extend divisor to 32 bits
DR 0,2 Divide
STH 0,HRemaind Store halfword remainder
STH 1,HQuotent And halfword quotient

18.6.4. A fixed-point divide exception is possible only if you divide the maximum negative number − 231 by − 1,
because the quotient + 231 cannot be represented correctly.

18.6.5. A fixed-point divide interruption cannot occur: the dividend must be less than 231 in magnitude, so division by 3
must yield a quotient whose magnitude is less than 230.

18.6.6. Because c(NN) is positive, there is no need to worry about a carry: at worst, a carry could propagate into the
sign bit of the low-order half of the dividend. Since that bit is not a sign bit, no overflow need be signaled.

L 7,NN Get positive dividend
SR 6,6 Set high-order half to zero
AL 7,=F'5' Add rounding factor logically
D 6,=F'10' Compute rounded quotient
ST 7,QQ And store the result

18.6.7. As in the solution to Exercise 18.6.6, it can be shown that subtracting 5 from the low-order half of a dividend
cannot cause a borrow from the high-order register. Thus we could write the code sequence as follows:

L 0,=F'5' Set up rounding factor
L 6,NN Get signed dividend
SRDA 6,32 Extend to 64 bits, and set CC
BNM Skip1 Branch if nonnegative
LCR 0,0 Complement the rounding factor

Skip1 ALR 7,0 Add signed roundoff to right half
D 6,=F'10' Divide by 10
ST 7,QQ Store signed rounded quotient

18.6.8. Simulating logical division using arithmetic divide instructions is more difficult than it might first appear. It can
be done, however. If you try, be sure to test your code sequence with many values representing “boundary” conditions.

18.6.9. This solution shows one way to do it:

SR 0,0 Assume c(GR1) is nonnegative
LTR 1,1 Check sign of c(GR1)
BNM Next Branch if not negative
L 0,=F'-1' Fill GR0 with sign bits

Next DR 0,2 Do the division

Suggested Solutions to Selected Exercises and Programming Problems 1127

This exercise was provided purely for its educational (and entertainment) value; the coding technique is clumsy and
unnecessary.

18.6.11. Because you can't represent 1/2 as an integer, you can revise the rounding formula like this:

(a) quotient = ((2*dividend) + divisor) / (2*divisor)
or

(b) quotient = (dividend + (divisor/2)) / divisor
Your choice of formulas might depend on the magnitudes of dividend and divisor, and whether the divisor is even.
Here's how you might code formula (a):

L 0,Dividend Assume a 32-bit dividend
L 2,Divisor Assume a 32-bit divisor
AR 0,0 2*dividend
AR 0,2 (2*dividend+divisor)
SRDA 0,32 Extend to 64 bits for division
AR 2,2 2*dividend
DR 0,2 Rounded quotient now in GR1

We've assumed that magnitudes are small enough that no overflows will occur.

18.6.12. It's simpler to write

SRA 5,2 Divide c(GR5) by 2
Because c(GR5) is nonnegative, SRL could also be used.

18.6.13. Let N, D, Q, and R represent the numerator, divisor, quotient, and remainder respectively. Then we want to
calculate Q = (N/D) + (1/2). We can rewrite this as Q = (N+D/2) /D. After dividing, if 2×R ≥ D, we add 1 to Q.
For positive N and D, we can write these instructions:

L 2,N Get numerator
L 4,D Get divisor
LR 3,4 Copy to GR3
SRA 3,1 Form D/2
AR 2,3 Form modified numerator
SRDA 2,32 Form 64-bit
DR 2,4 Calculate tentative quotient in R3
AR 2,2 Calculate 2*R
CR 2,4 Compare to divisor
BL NoRound If less, no rounding
A 3,=F'1' Round up the quotient

NoRound - - -
Now, you should revise these instructions to handle N and D with arbitrary signs.

Section 18.7

18.7.1. Simulating arithmetic division using logical division instructions is more complex than a related simulation of
arithmetic multiplication. This sequence of instructions handles most cases, but does not test for possible divide
exceptions and does not preserve the Condition Code.

LM 0,1,NumL Get signed dividend in (GR0,GR1)
LTR 3,0 Check dividend sign; save in GR3
BNM GetDivsr Not negative, no need to complement
LCR 0,0 Complement high-order dividend
LCR 1,1 Complement low-order half
BZ GetDivsr If low word zero, high word is OK
S 0,=F'1' Complemented dividend now +

GetDivsr L 2,DenL Divisor in GR2
LTR 4,2 Check divisor sign; save in GR4
BNM Divide If not negative, skip complement
LCR 2,2 Complement to make + divisor

Divide DLR 0,2 Logical division, positive operands
LTR 2,2 Check dividend sign
BNM PosDvdnd Branch if nonnegative dividend
LCR 0,0 Must have negative remainder
LTR 4,4 - dividend; check sign of divisor
BNM CompQuot Mixed signs, complement quotient
B Store Both -, store result

PosDvdnd LTR 4,4 + dividend; check divisor sign

1128 Assembler Language Programming for IBM System z™ Servers Version 2.00

BNM Store Both +, store result
CompQuot LCR 1,1 Complement quotient
Store STM 0,1,RemQuot Store arithmetic remainder/quotient
You may want to test this code sequence with some sample data, and compare the results of “normal” and simulated
arithmetic division operations.

18.7.2. Both quotient and remainder are 232 − 2, and the divisor is 231 − 1. Thus, quotient×divisor = 264 − 233 − 232 +2;
adding the remainder gives 264 − 233, the dividend.

Section 18.8

18.8.1. Though ease of hardware implementation is important, the method you choose is up to you, and depends
mainly on your habits and intuitive expectations. Consider the following examples:

Table 450. Examples of different types of integer division

1. With the System z rules, you expect the integer division of 8 by 3 to give quotient 2 and remainder 2, “except for
signs”.

2. With a nonnegative remainder, the magnitudes of quotient and remainder behave less comfortably.

3. The quotient of ± 8/± 3 should be “near” 3, and the remainder will “fix it up”. The “rounded” rule might be
chosen if the processor architecture represented all integer quantities in floating-point format.

18.8.2. Errors might occur in each case:

1. AR n,n will generate a fixed-point overflow if the result is not representable and an interruption if it is not masked
off. This occurs if c(GRn)≥ 230 or c(GRn)< − 230.

2. A specification error will occur if n is odd.

3. A specification error will occur if n is odd; if n is even, a fixed point divide exception always occurs either because
c(GRn,GRn+1)≥ 232×c(GRn), or because c(GRn)=0.

Programming Problem 18.1.

We start with a value of x=F/2, and reduce x until a divisor is found.

Title 'Solution to Problem 18.1'
* Find prime divisors of N**3-1
P18_1 START 0

BASR 15,0 Set base register
USING *,15
L 1,N Get n

Outer MR 0,1 n*n
M 0,N n*n*n
S 1,=F'1' F(n)
LR 0,1 Initial x = F/2
SRA 0,1 x in GR0

Inner LR 3,1 Set up divide
SR 2,2 Extend dividend
DR 2,0 F(n)/x
LTR 2,2 Check remainder
BZ Store Branch if zero
S 0,=F'1' x=x-1
B Inner Loop for next trial

Store ST 0,X Store x
PrintOut N,X Print values
L 1,N Pick up n again
A 1,=F'1' n=n+1

dividend / divisor System z rem ≥ 0 rounded

quot. rem. quot. rem. quot. rem.

+8 / + 3 + 2 + 2 + 2 + 2 + 3 − 1

+8 / − 3 − 2 + 2 − 2 + 2 − 3 − 1

− 8 / + 3 − 2 − 2 − 3 + 1 − 3 + 1

− 8 / − 3 + 2 − 2 + 3 + 1 + 3 + 1

Suggested Solutions to Selected Exercises and Programming Problems 1129

ST 1,N Restore n
C 1,=F'8' Test if done
BNH Outer Loop if not for next n
PrintOut *,Header=NO Stop

N DC F'2' Initial value of n
X DS F

END P18_1

Programming Problem 18.2.

The only real difficulty in this problem is computing the numerator function. In subtracting the final term 14, a logical
subtract must be used to detect carry conditions correctly. The method used in this solution for computing the denomi-
nator avoids the possibility of the fixed-point overflow that will occur when computing 2*Xn-5 for the last time.

Title 'Solution to Problem 18.2'
P18_2 START 0

BASR 15,0 Set base register
USING *,15
LA 3,1 Xn in GR3
LA 10,11 n in GR10
SR 5,5 3*n in GR5

Begin LR 4,3 Calculate denominator
S 4,=F'5' Xn-5
AR 4,3 Xn + (Xn-5)
LR 1,3 Now start on numerator
A 1,=F'10727' Xn + 10727
SR 0,0 Clear GR0
SLDA 0,0(5) Xn*(Xn + 10727) in (GR0,GR1)
SL 1,=F'14' -14
BC 3,Skip Branch if a carry
S 0,=F'1' Else borrow one

Skip DR 0,4 Quotient in GR1, remainder in GR0
STM 0,1,REM Store both for print
ST 3,XN Store Xn for print
PrintOut XN,Quot,Rem print results
SLL 3,3 Form new Xn
A 5,=F'3' 3*n
S 10,=F'1' Count down on number of tests
BP Begin Loop for next n value
PrintOut *,Header=NO Terminate

Rem DS F
Quot DS F
XN DS F

END P18_2

Programming Problem 18.3.

By using an integer table containing values of length 1 byte, this solution can use the same numeric quantity to index
through the list of primes and to count for termination.

Title 'Solution to Problem 18.3'
P18_3 START 0

BALR 12,0
USING *,12
LA 11,10 Number of primes p to test
SR 10,10 Carry p in GR10

LoopA IC 10,Table-1(11) Get a prime from table
ST 10,P Store p for printing
LA 9,1 Compute 2**p; set GR9 = 1
SLL 9,0(10) Shift left p places
S 9,=F'1' M(p) now in GR9
ST 9,MP Store M(p) for printing
LA 7,4 Set up S1=4
S 10,=F'2' Set counter for p-2 calculations

LoopB MR 6,7 Sn*Sn

1130 Assembler Language Programming for IBM System z™ Servers Version 2.00

SL 7,=F'2' Subtract two
BC 3,Carry Jump if a carry, no borrow
S 6,=F'1' Otherwise borrow from GR6

Carry DR 6,9 Compute remainder modulo M(p)
LR 7,6 Move back to GR7
S 10,=F'1' Count down number of multiplies
BP LoopB Loop if still positive
ST 7,Residue Store final residue
PrintOut P,MP,Residue Print results
S 11,=F'1' Count down number of primes by 1
BP LoopA Get next p
PrintOut *,Header=NO Terminate

F2 DC F'2' .*
Table DC FL1'31,29,23,19,18,13,11,7,5,3' One-byte primes
P DS F
MP DS F
Residue DS F

END P18_3

Programming Problem 18.4.
Title 'Solution to Problem 18.4'

P18_4 START 0
BASR 15,0 Set base register
USING *,15 Inform assembler
SR 1,1 Initial value of X

* Assume worst case (denominator = 0)
Loop L 2,Max Set remainder

LR 3,2 And quotient
* Calculate denominator

LR 5,1 c(GR5) = X
SH 5,=H'21' Subtract 21
MR 4,1 X*(X-21)
AH 5,=H'131' Add 131
MR 4,1 X*(X*(X-21)+131)
SH 5,=H'231' Subtract 231
BZ Print Go print if zero

* Calculate numerator
LR 7,1 Move X to GR7
MR 6,7 X squared in GR7
LR 3,7 Move X**2 to GR3
AH 3,=H'7' Add 7
MR 2,7 Multiply by X**2
LR 2,3 Move to GR2 for shift
SH 2,=H'11' Subtract 11
SRDA 2,32 Position for division
DR 2,5 Divide by denominator

* Store for printing
Print STM 1,3,X Store X, Rem, Quot

PrintOut X,Rem,Quot Print results
AH 1,=H'1' Add 1 to X
CH 1,=H'12' Compare to 12
BNH LOOP Branch if less or =
PrintOut *,Header=NO Terminate program

* Data areas
X DS F Value of argument X
Rem DS F Calculated remainder
Quot DS F Calculated quotient
Max DC F'-2147483648'

END P18_4

Suggested Solutions to Selected Exercises and Programming Problems 1131

Programming Problem 18.5.

The largest value printed is 12 factorial = 479001600

Print NoGen
P18_5 Start 0

Using *,15
LA 1,1 Start with 1!

Loop L 3,NFact Get current value
ST 1,N Store value of N
MR 2,1 Form N!
ST 3,NFact Store new value
SLDA 2,32 Check for overflow
JO Done If overflow, all done
PrintOut N,NFact Print values
LA 1,1(,1) Increment N
J Loop Repeat

Done PrintOut *,Header=No Stop
N DS F Current value of N
NFact DC F'1' 0! = 1

End P18_5

1132 Assembler Language Programming for IBM System z™ Servers Version 2.00

Programming Problem 18.6.

Note that all arithmetic is done in the general registers!

Title 'Solution to Problem 18.6'
P18_6 START 0
* Calculate date of Easter for a specified year.

Using *,15
* Step (1)

LHI 0,19 Step (1) divisor
L 2,Year Get year
SRDA 2,32 Extend to 64 bits
LR 5,3 Copy to GR5
LR 4,2 Copy high-order zeros to GR4
DR 2,0 Calculate Y/19, A in GR2

* Step (2)
LHI 0,100 Step (2) divisor
DR 4,0 B in GR5, C in GR4

* Step (3)
LR 6,5 Copy B to GR6
SRDL 6,2 D in GR6
SRL 7,30 E in GR7

* Step (4)
LHI 0,25 Step (4) divisor
LR 8,5 Copy B to GR8
SLA 8,3 8B in GR8
AHI 8,13 8B+13 in GR8
SRDL 8,32 Extend to 64 bits
DR 8,0 G in GR9

* Step (5)
LHI 0,30 Step (5) divisor
LR 10,2 Copy A to GR10
MHI 10,19 19A
AR 10,5 19A+B
SR 10,6 19A+B-D
SR 10,9 19A+B-D-G
AHI 10,15 19A+B-D-G+15
SRDL 10,32 Extend to 64 bits
DR 10,0 H in GR10

* Step (6)
LHI 0,319 Step (6) divisor
LR 3,10 Copy H to GR3
MHI 3,11 11H
AR 3,2 A+11H
SR 2,2 Clear GR2
DR 2,0 M in GR3

* Step (7)
SRDL 4,2 Divide C by 4
SRL 5,30 J in GR4, K in GR5

* Step (8)
LHI 0,7 Step (8) divisor
AR 7,7 2E in GR7
AR 7,4 2E+J
AR 7,4 2E+2J
SR 7,5 2E+2J-K
SR 7,10 2E+2J-K-H
AR 7,3 2E+2J-K-H+M
AHI 7,32 2E+2J-K-H+M+32
SR 6,6 Clear high-order 32 bits
DR 6,0 L in GR6

* Step (9)
LHI 1,25 Step (9) divisor
LR 0,10 H in GR0
SR 0,3 H-M

Suggested Solutions to Selected Exercises and Programming Problems 1133

AR 0,6 H-M+L
LR 5,0 H-M+L in GR5
AHI 5,90 H-M+L+90
SR 4,4 Clear high-order 32 bits
DR 4,1 N in GR5
ST 5,Month

* Step (10)
AR 0,5 H-M+L+N in GR0
AHI 0,19 H-M+L+N+19
SRDL 0,5 Divide by 32
SRL 1,27 P in GR1
ST 1,Day
Printout Year,Month,Day,*,Header=NO

Year DC F'2010'
Month DS F
Day DS F

END P18_6

Programming Problem 18.7.
Title 'Problem 18.7: Create a hexadecimal addition table'
Print Nogen

P18_7 Start 0
Using *,15 Establish addressability
PrintLin HeadLine,L'HeadLine Print heading line
SR 0,0 Initialize row value in GR0
L 6,=A(X'F') Initialize digit mask

Col_Loop SR 1,1 Initialize column value in GR1
LR 2,1 Copy column value to GR2
IC 2,Chars(2) Get its EBCDIC representation
STC 2,Line+1 Store in the print line
L 3,=A(Line+3) Initialize product-value position

Row_Loop LR 5,1 Copy column value
AR 5,0 Multiply by row value
LR 4,5 Copy product to GR4
SRL 4,4 Move to rightmost 4 bits
NR 4,6 Leave high-order digit in GR4
NR 5,6 Leave low-order digit in GR5
IC 4,Chars(4) Get EBCDIC char for high digit
IC 5,Chars(5) And for low digit
STC 4,0(,3) Store high digit in print line
STC 5,1(,3) Store low digit in print line
A 3,=F'3' Step to next print-line position
A 1,=F'1' Increment column value
C 1,=F'16' Check for finished with this line
BL Row_Loop If not done, repeat for next column
PrintLin Line,L'Line Print a line of the table
A 0,=F'1' Step to next row
C 0,=F'16' Check if all rows done
BL Col_Loop If not done, repeat for next row
Printout *,Header=NO Terminate the program

Chars DC C'0123456789ABCDEF' EBCDIC characters
HeadLine DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F'
Line DC CL(L'Headline)' '

End P18_7

Programming Problem 18.8.

1134 Assembler Language Programming for IBM System z™ Servers Version 2.00

Title 'Problem 18.8: Create a hex multiplication table'
Print Nogen

P18_8 Start 0
Using *,15 Establish addressability
PrintLin HeadLine,L'HeadLine Print heading line
SR 0,0 Initialize row value in GR0
L 6,=A(X'F') Initialize digit mask

Col_Loop SR 1,1 Initialize column value in GR1
LR 2,1 Copy column value to GR2
IC 2,Chars(2) Get its EBCDIC representation
STC 2,Line+1 Store in the print line
L 3,=A(Line+3) Initialize product-value position

Row_Loop LR 5,1 Copy column value
MR 4,0 Multiply by row value
LR 4,5 Copy product to GR4
SRL 4,4 Move to rightmost 4 bits
NR 4,6 Leave high-order digit in GR4
NR 5,6 Leave low-order digit in GR5
IC 4,Chars(4) Get EBCDIC char for high digit
IC 5,Chars(5) And for low digit
STC 4,0(,3) Store high digit in print line
STC 5,1(,3) Store low digit in print line
A 3,=F'3' Step to next print-line position
A 1,=F'1' Increment column value
C 1,=F'16' Check for finished with this line
BL Row_Loop If not done, repeat for next column
PrintLin Line,L'Line Print a line of the table
A 0,=F'1' Step to next row
C 0,=F'16' Check if all rows done
BL Col_Loop If not done, repeat for next row
Printout *,Header=NO Terminate the program

Chars DC C'0123456789ABCDEF' EBCDIC characters
HeadLine DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F'
Line DC CL(L'Headline)' '

End P18_8

Programming Problem 18.9. This solution uses a symbolic constant ND to define the number of terms in the
sequence, and the number of fraction digits to be printed. The suggested limit of 115 digits is simply because the result
displayed by the PrintLin macro is limited by the length of a print line to 121 bytes.

P18_9 CSect , Calculate E to ND digits (ND < 115)
Print NoGen
Using *,15

ND Equ 60
XR 1,1 Output digit index
LA 2,ND Counter for digit index

A XR 6,6 Q = 0
LA 3,ND-1 Count K
LA 4,1(,3) K

B XR 7,7 Inner loop to generate a digit
IC 7,N(3) Get working fraction R(K)
MHI 7,10 10*R(K)
AR 7,6 10*R(K)+Q(K+1)
XR 6,6 Clear high-order dividend
DR 6,4 Divide by K
STC 6,N(3) Save new R(K)
LR 6,7 Copy Q(K)
BCTR 4,0 K=K-1
JCT 3,B Repeat inner loop

LA 6,X'F0'(,6) Make a zoned digit
STC 6,D(1) Store in output string
LA 1,1(,1) Step output-digit index
JCT 2,A Repeat for next digits

PrintLin V,L'V+ND Print the result

Suggested Solutions to Selected Exercises and Programming Problems 1135

PrintOut *,Header=NO
N DC (ND)X'1' Initial fraction numerators
V DC C'-E=2.'
D DC (ND)C' ' Digit string

End P18_9

The printed output is:

-E=2.718281828459045235360287471352662497757247093699959574966967

By choosing a larger size for each array element, you can make the number of terms greater; and by multiplying by a
larger power of 10 you can generate multiple fraction digits on each iteration. You might enjoy using (for example)
halfword terms and generating four fraction digits on each iteration. You'll have to work out how best to display the
result on multiple print lines.

Programming Problem 18.10. This solution is not a very efficient way to search for prime numbers: test divi-
sors need not be larger than the largest number less than the square root of the tested value.

Print NoGen
P18_10 CSect ,
MaxTest Equ 99 Largest Odd value to test

Using *,15
LA 2,2
PrintOut Prime,Header=No Print the only even prime
LA 2,3
STH 2,Prime
PrintOut Prime,Header=No Print the smallest odd prime

LoopA LA 2,2(,2) Generate next test value
LA 3,3 Initial test divisor

LoopB LR 4,2 Copy test number to GR4
SRDA 4,32 Position test number for division
DR 4,3 Divide by test divisor
LTR 4,4 Test remainder
BZ NotPrime Zero remainder, not prime
LA 3,2(,3) Next test divisor
CR 3,2 Test for enough tests done
BL LoopB Try again if test divisor not too big
STH 2,Prime
PrintOut Prime,Header=No Print the next odd prime

NotPrime C 2,=A(MaxTest) See if test value is too big
BL LoopA Repeat if not
PrintOut *,Header=No Stop

Prime DC H'2' Initial value
End P18_10

1136 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 19 Solutions
Section 19.2.

19.2.1. I can't think of a good reason. Maybe they thought it wouldn't happen often enough?

Section 19.3.

19.3.1. This can be done using the instruction

N 8,=A(X'01FFFFFF') First seven mask bits are zero
We will see in Section 21 that newer instructions can eliminate the need for a mask operand in memory!

Section 19.4.

19.4.1. The only important feature of the solution is the logical AND instruction. Since we are shifting in a 64-bit
register pair, we must guard against the possibility that a shift amount greater than 31 is specified, since this would lead
to loss of bits when the SLDL is executed. Thus, we mask off all but the rightmost 5 bits of the shift amount. (A
circular shift of 32 bits produces the original argument.)

SR 0,0 Clear high-order register, GR0
L 1,Data Get word to be shifted into GR1
L 2,NShifts Load shift count into GR2
N 2,=A(X'1F') Mask shift count to 5-bit value
SLDL 0,0(2) Shift by required amount
OR 1,0 Rotate high bits to bottom end
ST 1,Data Store rotated data

19.4.2. A simple solution follows from the observation that a 32-bit circular right shift of N places is the same as a
circular left shift of 32 − N places.

SR 0,0 Clear GR0
L 1,Data Get data to be shifted into GR1
L 2,NShifts Get the shift count in Gr2
LTR 2,2 Check sign of shift
BNM GoAhead Proceed if nonnegative
LCR 2,2 Form -N
A 2,=F'32' And now 32-N

GoAhead N 2,=A(X'1F') Mask shift amount to 5 bits
SLDL 0,0(2) Shift by required amount
OR 1,0 Rotate high bits to bottom end
ST 1,Data Store rotated data

Alternatively, and maybe more obviously:

- - - Initialize GR0, GR1, and GR2
LTR 2,2 Check sign of N
BNM Go Proceed if not negative
SLDL 0,32 Exchange GR0 and GR1
N 2,=A(X'1F') Mask shift amount to 5 bits
SRDL 0,0(2) Shift right the specified amount
B Finish And go complete the result

Go N 2,=A(X'1F') Mask for left shift
SLDL 0,0(2) Shift left the specified amount

Finish OR 1,0 Complete the circular shift
ST 1,Data Store the rotated answer

19.4.3. The register contents are unchanged, and the CC setting indicates a zero or a nonzero result. The LTR instruc-
tion sets the CC for nonzero results depending on the sign, so the methods are not strictly equivalent, because NR and
OR will not set the CC to 2.

Section 19.5

19.5.1. Consider all four possible bit combinations:

Initially After XR 1,2 After XR 2,1 After XR 1,2
c(GR1) = 1100 0110 0110 1010
c(GR2) = 1010 1010 1100 1100

Suggested Solutions to Selected Exercises and Programming Problems 1137

and the two bit patterns have been interchanged.

This can't be done in the same way between registers and memory, because there is no Exclusive OR instruction that
operates between operands in memory and in a register, and leaves the result in memory.

19.5.2. Useless and unintelligible junk.

19.5.3. Consider a 2-bit register (no pun intended), and the four possible values 00, 01, 10, and 11 for A and B. Make
a table with 16 rows corresponding to the combinations of values of A and B, and columns for A, B, A+B, A AND
B, (A+B) − (A AND B), A OR B, (A OR B) − (A AND B), and A XOR B. It works!

19.5.4. XOR is commutative — that is, (A XOR B) is always the same as (B XOR A). The order of the operands
doesn't affect the final result, which is B in each case.

19.5.5. It works! The reasoning is the same as in Exercise 19.5.4:

XR 1,0 means Old XOR New
XR 0,1 means Old XOR (Old XOR New)

so the final result is the same as “New” because (Old XOR Old) is zero!

19.5.6. The second use of =F'1' can be replaced by SL 8,=F'-1'.

Now: if we replace the preceding AL by SL 9,=F'-1', do we need to worry about the following BC? If you recall that
the subtraction is performed by adding the ones' complement of the second operand (that will be zero) and a low-order
1-bit to the first operand, we see that nothing need be changed in the other instructions.

19.5.7. This statement also eliminates the need for the DS 0F:

DC A(X'7FFC0')

Section 19.6

19.6.10. These instructions need only as many iterations as there are numbers of 1-bits in c(GR0).

SR 2,2 Set count of 1-bits to zero
A LTR 1,0 Test if any 1-bits of X are left

JZ Done Finished if none are left
BCTR 1,0 Form X-1
NR 0,1 Eliminate a 1-bit
JCT 2,A Count down and test for completion

Done LCR 2,2 Count of 1-bits now in GR2

19.6.11. Yes. Consider X=231 − 1X'7FFFFFFF'; then X +1 is X'80000000'. Try the same for X=232 − 1.

19.6.12. If X=-1, the mask is zero: (NOT X) is zero, and (X+1) is also zero, so their AND is necessarily zero.

19.6.13. If X=0, the mask is all 1-bits.

19.6.14. If X=0, the mask is all 1-bits: (X-1) is all 1-bits, and XORing that with zero produces all 1-bits.

Section 19.7

19.7.1. Start with A=B'1010' and B=B'1100', and see what results from NOT(A), NOT(B), AND(A,B), OR(A,B),
and XOR(A,B). The tables below show some combinations; note that not all combinations appear to be possible.

• Simulating AND(A,B):

OR and NOT OR and XOR XOR and NOT

NOT((NOT A) OR (NOT B)) (A OR B) XOR (A XOR B)

• Simulating OR(A,B):

AND and NOT XOR and NOT XOR and AND

NOT((NOT A) AND (NOT B)) (A XOR B) XOR NOT(A XOR B) (A AND B) XOR (A XOR B)

• Simulating XOR(A,B):

1138 Assembler Language Programming for IBM System z™ Servers Version 2.00

AND and OR AND and NOT OR and NOT

Not possible: (1 AND 1) and (1 OR 1)
can never be 0.

NOT(NOT((NOT A) AND B) AND
(NOT(A AND (NOT B))))

(NOT(A OR (NOT B))) OR
(NOT((NOT A) OR B))

• Simulating NOT(A): remember that (NOT 0) is always 1, but none of (0 AND 0), (0 OR 0), and (0 XOR 0) can
ever return 1. Thus there's no way to simulate NOT using any two of the other logical operators.

Programming Problem 19.1. This solution does not calculate the CC value for an arithmetic sum.

Print NoGen
P19_1 Start 0
RCar Equ 10 Carries kept in GR10
RAop Equ 4 A operand in GR4 (even)
RA Equ 5 'A' bit kept in GR5 (next odd)
RBop Equ 6 B operand kept in GR6 (even)
RB Equ 7 'B' bit kept in GR7 (next odd)
RCC Equ 12 Condition code formed in GR12
RSum Equ 8 Sum developed in GR8
Rct Equ 11 Count reg for number of bits
RT Equ 0 Temporary register
*

Using *,15
LM 1,3,DataPtr Set loop registers for cases

Start SR RCC,RCC Initial CC set to 0
LR RCar,RCC Initial carry = 0
LR RSum,RCC Initial sum = 0
L RAop,Data(1) Initial 'A' operand
L RBop,Data+4(1) Initial 'B' operand
LA Rct,32 Initialize bit counter
ST RAop,A Save A for printing
ST RBop,B Same with B

*
Inner SRDL RAop,1 Shift out the 'A' bit

SRL RA,31 Position at right end
SRDL RBop,1 Shift out 'B' bit
SRL RB,31 Position at right end
OR RSum,RA Insert the new 'a' bit
XR RSum,RB Exclusive or with 'B' bit
XR RSum,RCar And with old carry bit.
OR RCC,RSum Use sum for zero/nonzero CC
SRDL RSum,1 Move sum bit 1 place to right
LR RT,RCar Compute new carry bit
NR RT,RA (Old carry) and ('A' bit)
NR RA,RB ('A' bit) and ('B' bit)
NR RCar,RB ('B' bit) and (old carry)
OR RCar,RA
OR RCar,RT New carry bit now complete
S Rct,=F'1' Reduce count
BP Inner Process next bit
ALR RCar,RCar Double final carry bit
OR RCC,RCar Pack into condition code
STC RCC,CCL Store for printing
ST RSum+1,Sum Store sum for printing
PrintOut A,B,Sum,CCL,Header=No Print results
AR 1,2 Increment data index
CR 1,3 Compare to last address
BNH Start Continue with next data pair
PrintOut *,Header=No Terminat program

*
Data DS 0D Start of test cases

DC X'FFFFFFFF,00000001' Sum zero, carry: LCC=2, ACC=3
DC X'11111111,12345678' Sum nonzero, nocarry: LCC=1, ACC=2
DC X'00000000,00000000' Sum zero, nocarry: LCC=0, ACC=0

Suggested Solutions to Selected Exercises and Programming Problems 1139

DC X'FEDCBA98,12345678' Sum nonzero, carry: LCC=3, ACC=1
EnData Equ *
DataPtr DC A(0,8,EnData-Data-8)
Sum DS XL4 Final sum
A DS XL4 Initial A operand
B DS XL4 Initial B operand
CCL DC X'FF' Logical-Add Condition Code

END P19_1

Programming Problem 19.2.

In we first initialize S(0) to A and 2*C(0) to B, we are ready to enter the loop. The sum is accumulated in GR1, carries
are “carried” in GR3, and GR4 holds the working CC setting.

SR 4,4 Cet CC to 'zero, no carry' condition
L 1,A Initialize GR1 to S(0)
L 3,B initialize GR3 to 2*C(0)

Loop LR 2,1 Move S(n) to temporary in GR2
XR 1,3 Form S(n+1) in GR1
NR 3,2 Form C(n+1)
ALR 3,3 'Shift' carries left by 1 position
BC 8,Done If zero and no lost bit, we're done
BC 4,Loop If nonzero and no lost bit, repeat
L 4,=F'2' A bit carried out: set partial CC
BC 1,Loop If more carries to do, repeat

Done ST 1,Sum Store final sum
LTR 1,1 Check for nonzero result
BZ StoreCC Jump if sum is zero, CC is okay
A 4,=F'1' Set CC to indicate nonzero sum

StoreCC ST 4,CCodeL Store final Condition Code
Determining the CC setting for arithmetic addition is left as an additional exercise for you.

Programming Problem 19.4.

The value NMax is defined so that the number of values tested is a multiple of 8; this allows proper packing of the results
in the bit string at PrimeBts.

Print NoGen
P19_4 CSect ,
N Equ 400 Maximum number to test
NMax Equ ((N/8)*8) Round to a multiple of 8
Mark Equ 0 Mark composites with zero

Using *,15
LA 0,NMax Maximum value to test
LA 1,2 Starting value

MarkLoop LR 2,1 Stepping increment
LA 3,0(2,2) Starting index
CR 3,0 Check for end of table
JNL MarkDone Done with marking if so

Marking LA 4,Table-1(3) Address of a Table entry
MVI 0(4),Mark Mark the entry as composite
AR 3,2 Step to next
CR 3,0 Test for past end of table
JL Marking Repeat if not done

FindNext LA 1,1(,1) Increment starting value
CR 1,0 Done all values?
JNL MarkDone Branch if yes
LA 4,Table-1(1) Point to next position in Table
CLI 0(4),Mark Check for marked position
JE FindNext This one marked, look again
J MarkLoop Try next values

MarkDone LA 4,PrimeBts Address of bit string
LA 1,Table Address of marked table entries

ByteLoop LA 2,8 Count bits packed in a byte

1140 Assembler Language Programming for IBM System z™ Servers Version 2.00

SR 3,3 Bits packed in GR3
PackLoop SLL 3,1 Make room for next bit

CLI 0(1),Mark Was this byte marked?
JE NotPrime Skip bit insertion if yes
LA 3,1(,3) Insert a 1-bit for a prime

NotPrime LA 1,1(,1) Point to next byte for mark test
S 2,=F'1' Count down bits in the byte
JP PackLoop Repeat for all 8 bits
STC 3,0(,4) Store the packed byte in the string
LA 4,1(,4) Step to next packed byte position
S 0,=F'8' Count down number of bytes tested
JP ByteLoop Repeat if more bytes to be packed
PrintOut PrimeBts,*,Header=No Show the results

Table DC (NMax)X'1' Initialize all to 'prime'
PrimeBts DC XL(NMax/8)'0' Prime bits

End P19_4

The output is:

 PrimeBts = X'EA28A20A08A20828228220808A28800220A00A08220828028A00200228828020820A08A00800228800208028820208220809'

Programming Problem 19.5.

The modifications to the solution to Problem 19.4 are simple; the output is:

 PrimeBts = X'F6D32D265948B6814C325261B0416984932C205A0486912522'

The largest prime representable in a string of 230 bits would be less than 234..

Suggested Solutions to Selected Exercises and Programming Problems 1141

Section 20 Solutions
Section 20.1

20.1.1. The generated Effective Addresses are:

1. X'0174629A'
2. X'01749816'
3. X'0172629C'
4. X'0174629E'

20.1.2. The generated Effective Addresses are:

1. X'007B1EEE'
2. X'007D68D2'
3. X'00734EC4'
4. X'007B1EF6'

20.1.3. The generated Effective Addresses are:

1. X'9610C63C'
2. X'9610D2FC'
3. X'9610C640'
4. X'9610A63A'

20.1.4. The IA has already been incremented by the length of the current instruction, which could be either 4 or 6 bytes
long.

20.1.6. The respective Effective Addresss are:

(1) X'27B9B4'
(2) X'27B976'
(3) X'2839CC'
(4) X'26B9AE'

20.1.7. You can't. The address of an instruction is always even, and 2× I2 is also even.

20.1.8. This might better be called “offset” addressing. It's a risky technique, because something might be inserted
between the symbolic target A or * and whatever is at the offset from that location; finding and correcting such usage is
tedious and error-prone.

Section 20.2

20.2.1. The generated Effective Address in 24-bit mode is X'00360A', in 31-bit mode is X'0200360A', and in 64-bit
mode is X'000000008200360A'.

20.2.2. The generated Effective Addresses are shown in the following table:

Section 20.3

20.3.1. LARL always adds its address to 2× I2, so the value in R1 depends on the address of the LARL itself!

20.3.2. If we write LA reg,0(0,reg) we get the same effect: in 24-bit addressing mode, the high-order byte is set to
zero. The value of “reg” cannot be zero for the LA (why?). It may make a difference in some cases that the N instruc-
tion sets the condition code, but LA leaves it unchanged.

20.3.3. No, because the second operand appears to be an implied indexed address: A may not be a defined symbol,
and NoErr is relocatable and therefore invalid as an index register specification.

No. 24-bit mode 31-bit mode 64-bit mode

1 X'10C63C' X'1610C63C' X'000000009610C63C'
2 X'10D2FC' X'1610D2FC' X'000000009610D2FC'
3 X'10C640' X'1610C640' X'000000009610C640'
4 X'10A63A' X'1610A63A' X'000000009610A63A'

1142 Assembler Language Programming for IBM System z™ Servers Version 2.00

20.3.4. No, because GR9 will contain the address of the literal, not the address of NoErr. Yes, if the LA is replaced by
L and the literal is addressable.

20.3.5. The differences depend on three factors: whether NoErr is addressable, whether the literal is addressable, and
the current addressing mode.

1. If both are indeed addressable, the results will be equivalent. This is true whether NoErr is absolute or relocatable.
LA is preferable if NoErr is addressable, since it saves the four bytes required for the literal and the extra
execution-time memory reference.

2. The second form is necessary if NoErr is not addressable. They are not equivalent if the literal is not addressable.
3. A-type constants don't depend on the addressing mode, while the LA and LAY instructions do. Normally this

won't be a concern.

20.3.6. The claim is true. You could also write this code sequence:

LA 8,X'101'(,5)
SRL 8,0(8)

It's worth understanding how this works!

20.3.7. Using LA to increment general register contents is limited to

(1) values of “number” between 0 and 4095, and to
(2) nonzero values of GRx, and
(3) depends on the current addressing mode. For AMode 24, the sum cannot exceed 224 − 1, and for AMode 31, the
sum cannot exceed 231 − 1. There is no limit on the sum for AMode 64.

If “number” is defined in an EQU statement, the halfword literal can't be used. (But, you could then use =Y(number)
instead!)

In each case, it's possible for the sum to exceed the given limit and “wrap around” to zero. Consider incrementing
c(GR1)=X'00FFFFFF' by 2 in 24-bit addressing mode: the Effective Address is 1!

In most cases, these three restrictions are satisfied. The CC setting is rarely interesting in such situations, so there is
little reason to use AH. Also, the two bytes for the literal and an execution-time memory reference are saved.

20.3.8. The object code from the assembled instructions looks like this:

E300 0120 7A71 LAY 0,500000
E310 0EE0 8571 LAY 1,-500000
In the second instruction, you will see that the high-order bit of DH is X'80', indicating a negative long displacement.

If the addressing mode is 24- or 31-bit mode, the result of the second LAY instruction will be X'00F85EE0' or
X'7FF85EE0', respectively: neither is − 500000! You will get the intended negative value only if the addressing mode
is 64-bit mode.

20.3.9. In the first case, the initial c(GR6) is X'00FFFFFF' and the result will be +1, because the generated Effective
Address X'01000001' retains only the low-order 24 bits. In the second case, the generated Effective Address will be
X'00FFFF02'.

20.3.10. Unless the LAY instruction is executed in 64-bit addressing mode, the Effective Address in GR3 will be
X'00FFFFFF' in 24-bit mode, and X'7 F F F F F F F' in 31-bit mode.

20.3.11. The results depend on the contents of the two registers. If c(GRy) is a non-negative integer with value less
than 224, they are equivalent. Otherwise, the LA instruction will truncate significant high-order bits if the value is either
negative or greater than or equal to that value, for addressing modes 24 and 31. For addressing mode 64, they are
(almost) equivalent except that LA will change the high-order 32 bits of GGx.

20.3.12. You could use something like the following:

LARL 0,BList Address of branch list
AR 15,0 Form address of selected branch
BR 15 Branch to the correct one
- - -

BList J A
J B
J C
J D

None of the instructions requires a base register.

20.3.13. Remember: specifying register zero as a base or index register means “no register”!

Suggested Solutions to Selected Exercises and Programming Problems 1143

20.3.14. In 24-bit addressing mode, the results in GR10 are:

 1. X'00001234'
 2. X'0000ABCD'

and in 31-bit addressing mode, the results in GR10 are

 1. X'00001234' (the same)
 2. X'007FABCD'

20.3.15. The Effective Addresses in 24-bit and 31-bit addressing modes are:

 1. X'0000FE'(24), X'000000FE'(31)
 2. X'01831B'(24), X'1B01831B'(31)
 3. X'000009'(24), X'01000009'(31)

20.3.16. The resulting Effective Addresss are:

(1) No Effective Address can be generated, because the instruction cannot be addressed by the IA in the PSW! The
CPU will attempt to fetch an instruction at address X'003B6D0E'.
(2) The Effective Address is X'543B6D0E'.
(3) The Effective Address is X'00000000543B6D0E'.

1144 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 21 Solutions
Section 21.1

21.1.1. The operand 76543 is too large for a halfword operand, so the instruction can't be assembled without error.
You can use either of these instructions instead:

LGFI 0,76543 ...clears high-order half of GG0
IILF 0,76543 Insert operand into GR0

In each case, the assembled I2 operand is X'00012AFF'.

21.1.2. The difference is in notation: an I2 immediate operand is used in an arithmetic or logical operation, while an
RI2 immediate operand is used in a relative-offset instruction such as a branch.

Section 21.2

21.2.1. The AFI instruction with a negative operand does what the SFI instruction would do with an operand of the
opposite sign. But: why is there a SLFI instruction?

21.2.2. This is the same solution as for Exercise 18.2.7, but with literal references replaced by immediate operands.

LHI 2,10 * Count items in GR2
SR 0,0 Accumulate sum in (GR0,GR1)
LR 1,0 Initialize sum to zero

Loop LH 4,0(,11) Get an operand
MH 4,0(,12) Multiply by the other
SRDA 4,32 Extend word product to 64 bits
ALR 1,5 Add low-order words
BC 12,NoCarry Skip carry add if none to add
ALFI 0,1 * Add a carry bit

NoCarry ALR 0,4 Now add high-order words
AHI 11,2 * Add 2 to address of first table
AHI 12,2 * And to the address of second table
AHI 2,-1 * Count down items by 1
BP Loop Repeat if not done
STM 0,1,DwSum Store accumulated sum

Section 21.3

21.3.1. Consider the (possible) XIHH instruction: its 16-bit operand would be XORed with the high-order 16 bits of
G G R1, where X'wxyz' represents any arbitrary bit pattern.

┌───────────────┬───────────────┬───────────────┬───────────────┐
│ HH │ HL │ LH │ LL │ GG R1
└───────────────┴───────────────┴───────────────┴───────────────┘

�
└───────────────┐

┌───────────────┬───────┴───────┐
│ XIHH │ X'wxyz' │ XIHH Instruction
└───────────────┴───────────────┘

Because XORing a 0-bit to any other bit leaves it unchanged,

XIHH reg,X'wxyz' is equivalent to
XIHF reg,X'wxyz0000' ... so XIHH is not needed.

21.3.2. Consider the NIHH instruction. Because ANDing a 1-bit to any other bit leaves that bit unchanged,

NIHH reg,X'wxyz' is equivalent to
NIHF reg,X'wxyzFFFF' ... so NIHH is not needed.

So, why are NIHH/HL/LH/LL present? System z implemented 16-bit immediate operands much earlier than support
for 32-bit immediate operands, and RIL-type instructions like NIHF and NIHL appeared much later. But, the RI-type
instructions also save 2 bytes in the instruction stream, in case your program needs to be as small as possible.

21.3.3. Consider OIHH: ORing a 0-bit to any other bit leaves the other bit unchanged, so that

Suggested Solutions to Selected Exercises and Programming Problems 1145

OIHH reg,X'wxyz' is equivalent to
OIHF reg,X'wxyz0000' ... so OIHH is not needed.

See the last paragraph of the previous solution for details.

21.3.4. Use NILH 1,X'FF00'

21.3.5. Use XIHF 7,X'80000000'

21.3.6. You can use these three instructions:

AHI 2,15 Force carry if not multiple of 16
OILL 2,15 Set low-order 4 bits to 1
XILL 2,15 Set low-order 4 bits to 0

21.3.7. The code will probably fail to give the intended result, because the NILL instruction operates only on the right-
most 16 bits of GR3. Thus, if GR3 had contained X'F F F F F F F F', after the NILL instruction
c(GR3)=X'FFFF00F0', which is smaller than X'00000070' Similarly, if GR3 had contained X'12345678', its con-
tents after the NILL instruction would be X'12340070', and the branch to BitWas1 would be successful. These might
not be the intended results.

21.3.8. These are possible critiques of the three sequences:

1. A word is required in storage for the literal.

2. Two instructions are required.

3. Three instructions are required, and the contents of GR5 is destroyed.

A better solution is

NILF 4,X'3F' Fullword immediate operand

21.3.9. This solution is almost correct (see the solution to Exercise 21.3.8). Because NILL uses a 16-bit immediate
operand, it fails if there are any nonzero bits in the high-order half of GR4. Suppose c(GR4)=X'12345678': then

NILL 4,X'003F' yields c(GR4) = X'12340038'
which is probably not a satisfactory result.

Programming Problem 21.1. This is another way to produce a hexadecimal addition table:

Title 'Create a hexadecimal addition table'
Print Nogen

P21_1 Start 0
Using *,15 Establish addressability
PrintLin HeadLine,L'HeadLine Print heading line
LHI 0,0 Initialize row value in GR0
LHI 6,X'F' Initialize digit mask

Col_Loop LHI 1,0 Initialize column value in GR1
LR 2,0 Copy column value to GR2
IC 2,Chars(2) Get its EBCDIC representation
STC 2,Line+1 Store in the print line
LA 3,Line+3 Initialize product-value position

Row_Loop LR 5,1 Copy column value
AR 5,0 Multiply by row value
LR 4,5 Copy product to GR4
SRL 4,4 Move to rightmost 4 bits
NR 4,6 Leave high-order digit in GR4
NR 5,6 Leave low-order digit in GR5
IC 4,Chars(4) Get EBCDIC char for high digit
IC 5,Chars(5) And for low digit
STC 4,0(,3) Store high digit in print line
STC 5,1(,3) Store low digit in print line
AHI 3,3 Step to next print-line position
AHI 1,1 Increment column value
CHI 1,16 Check for finished with this line
JL Row_Loop If not done, repeat for next column
PrintLin Line,L'Line Print a line of the table
AHI 0,1 Step to next row
CHI 0,16 Check if all rows done

1146 Assembler Language Programming for IBM System z™ Servers Version 2.00

JL Col_Loop If not done, repeat for next row
Printout *,HEADER=NO Terminate the program

Chars DC C'0123456789ABCDEF' EBCDIC characters
 HeadLine DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F'
 Line DC CL(L'Headline)' '

End P21_1

Suggested Solutions to Selected Exercises and Programming Problems 1147

Section 22 Solutions
Section 22.1

22.1.1. Unfortunately, the letter “L” is used in many mnemonics to mean “Low” as well as “Long”. The branch
relative on condition with a 16-bit I2 operand and mask 4 already uses the JL mnemonic, so the unconditional long
relative branch needed a different name.

22.1.2. If your program uses no “program base” registers for instructions, it's possible that an instruction like

NOP X
could require base-displacement resolution. Using JNOP and JLNOP means you won't need a base register to resolve
the operand address. (You could always write your NOP instruction using explicit base and displacement, but why do
the extra work?)

Sometimes the operands of NOPs are used to indicate a position in the program. For example, if you wanted to
“mark” a set of instructions that can be viewed by debuggers and other diagnostics, you could write

JNOP 137 Marker for item 137's position

22.1.3. The generated machine instructions are:

(1) A7F4 FFFB
(2) A7F4 03FF
(3) A7F4 FFD8
(4) C0F4 0000 0001
Executing the last instruction will cause an operation exception, because it will branch into the second halfword of the
instruction that contains zeros.

Section 22.2

22.2.1. The result will be the same as if you had written

Str DC CL80'String to be Scanned For Special Characters '

22.2.2. The only changes needed are to these three statements:

JNL Okay Branch if a letter or digit
- - -
CHI 1,80 Compare count to 80 (string length)
- - -
JL GetChar Loop if less than 80 done so far

Section 22.3

22.3.2. The indexed branch instruction labeled A2 cannot be changed, because relative branch instructions cannot be
indexed. However, you can fix this by rewriting it as

A2 LA 1,BrTbl(1) Form address of target instruction
BR 1 Branch to it

If local addressability for the LA instruction is not available, you could use this approach:

A2 LARL 0,BrTbl Address of start of branch table
AR 1,0 Add to offset into the table
BR 1 Branch to it

Section 22.4

22.4.1. Replace the two instructions

Loop LA 2,0(1,1) (Count + Count) in GR2
BCTR 2,0 (2 * Count) - 1

with the single instruction

Loop LAY 2,-1(1,1) (Count+Count) - 1 in GR2

22.4.2. Fixed-point overflows never occur in executing Branch on Count instructions.

22.4.4. A direct solution tests every bit, counting the one-bits, until the K-th bit is found. This solution uses some
arithmetic-immediate instructions.

1148 Assembler Language Programming for IBM System z™ Servers Version 2.00

SR 0,0 Initialize bit offset
L 1,KK Initialize 1-bit count
LA 2,Str Initialize byte pointer

Outer IC 3,0(,2) Pick up a byte for testing
SLL 3,24 Position at left end
LA 4,8 Initialize shift count

Inner LTR 3,3 Is the bit a 1-bit?
JNM ZeroBit Branch if not
AHI 1,-1 Have a 1-bit, deduct 1 from K
JZ Found Finished if it's the K-th one

ZeroBit AHI 0,1 Increment bit offset
SLL 3,1 Out with the old, in with the new
JCT 4,Inner Count bits in this byte and loop
AHI 2,1 Increment byte pointer
J Outer ... and go get a new byte

Found ST 0,BitOff Store the desired bit offset

22.4.5. Probably, something strange. If c(GRb) is even (as an instruction address must be) before executing the BCT,
control will arrive at the branch location with an odd value (that address, minus 1) in GRb. If c(GRb) is +1, no
branch occurs and the next instruction after the BCT will be executed. If c(GRb) is odd (and not +1), the program will
try to branch to an odd address, but the number in GRb will then be even; a specification error will occur due to the
odd branch address, which will be hard to find because the contents of the register will now be even. Don't do this!

22.4.6. The only thing needing care here is to be sure we store the first value.

LA 1,100 Count list items in GR1
LA 2,NewList-4 Output table addr in GR2 (delayed)
LA 3,IntList Input table addr in GR3
L 0,IntList Pick up first item
J Store And enter in output list

Loop L 0,0(,3) Get item from list
C 0,0(,2) Compare to previous
JE Next Don't store if equal

Store LA 2,4(,2) Increment storage address
ST 0,0(,2) Store into 'NewList' table

Next LA 3,4(,3) Increment 'IntList' address
JCT 1,Loop And repeat
S 2,=A(NewList-4) Subtract start address
SRL 2,2 Divide by element length
ST 2,NumNews Store number of new elements

22.4.7. It makes one extra iteration of the loop, and therefore calculates (N+1)2.

22.4.8. The USING and BASR are reversed. At execution time, the “implied addresses” AA and Loop will actually refer
to AA+2 and LOOP+2 instead! The sum in GR2 is therefore 2+3+4+5 instead of 1+2+3+4. (It may be worth
reviewing Section 10.)

Here's the assembled program:

000000 1 Ex22_4_8 START 0
2 USING *,8 Establish addressability

000000 0D80 3 BASR 8,0 Set base register
000002 4140 0004 4 LA 4,4 Initialize counter
000006 4170 801C 5 LA 7,AA Initialize address
00000A 1B22 6 SR 2,2 Set sum box to zero
00000C 0700 7 Loop NOPR 0 Let the CPU catch its breath
00000E 4A20 7000 8 AH 2,0(,7) Add a data item to the sum
000012 4170 7002 9 LA 7,2(0,7) Increment address by 2
000016 4640 800C 10 BCT 4,Loop Branch back if not done
00001A 0A03 11 SVC 3 Do something unforgettable
00001C 0001000200030004 12 AA DC H'1,2,3,4,5,6,7,8,9' Table of numbers
000000 13 END Ex22_4_8

22.4.10. This solution uses the techniques of Section 19:

Suggested Solutions to Selected Exercises and Programming Problems 1149

XGR 0,0 Set count in GG0 to zero
X LTGR 2,1 See if all bits of GG1 are zero

JZ Done If all zero, count is finished
BCTGR 2,0 Decrement GG2 by 1
NGR 1,2 Set rightmost bit of GG1 to zero
AHI 0,1 Increment count
J X Repeat until c(GG1) = 0

Done - - - Count of 1-bits now in GG0

22.4.11. Consider these instructions:

XR 1,1 Set shift count to zero
Test CLM 0,8,X'40' Check for 1-bit in bit position 1

JNL Done Branch if it's there
ALR 0,0 Shift c(GR0) left one bit
BCT 1,Test Count down and loop

Done LCR 1,1 Make shift count positive

22.4.12. This shows the generated object code:

 Loc Object Code Assembler Language Statements
 0000 0DC0 BASR 12,0

Using *,12
 0002 4130 0040 LA 3,64
 0006 4170 C03A LA 7,A

Using A,7
000A 5800 7000 Loop L 0,A
000E 5A00 7100 A 0,B
0012 5800 7200 ST 0,C
0016 4630 C008 BCT 3,Loop

Drop 7
001A <something> PrintOut *
003C A DS 64F
013C B DS 64F
023C C DS 64F

22.4.13. The program actually calculates C(1)=A(1) +B(1) 64 times! To make it work correctly, insert

LA 7,4(,7)
before the BCT instruction.

22.4.14. The errors are:

1. The SLL instruction should occur after testing the sign bit; otherwise only 31 bits will be tested.
2. The BZ instruction should be BNM; BZ will branch only if the entire contents of GR1 is zero.
3. An LA instruction can't be used to increment GR0.

The corrected code might look like this:

SR 0,0 Set count to zero
LA 2,32 Count 32 bits

Loop LTR 1,1 Test sign bit
BNM Next Branch if sign bit is zero
A 0,=F'1' Add 1 to count of 1-bits
SLL 1,1 Shift a bit into sign position

Next BCT 2,Loop Repeat for all 32 bits

22.4.15. This solution uses the RLL (Rotate Left Logical) instruction:

SR 0,0 Set count to zero
LA 2,32 Count 32 bits

Loop LTR 1,1 Test sign bit
BNM Next Branch if sign bit is zero
AHI 0,1 Add 1 to count of 1-bits
RLL 1,1,1 Rotate a bit into sign position

Next BCT 2,Loop Repeat for all 32 bits

1150 Assembler Language Programming for IBM System z™ Servers Version 2.00

22.4.16. All five sequences yield the same result, the two's complement of the number in R0. The first two give the
same (arithmetically valid) CC setting. The third will indicate CC values of either 2 (the result is zero), or 1 (the result is
not zero). The fourth and fifth lead to CC settings of 0 (the result is zero) or 1 (the result is not zero).

22.4.17.

(1) The instructions add 1 arithmetically to c(GR0). If c(GR1)=X, the first LCR generates − X. The BCTR gener-
ates − X − 1, and the final LCR generates − (− X − 1) = X +1.
(2) They imitate the action of (a) AHI 0,1 or (b) A 0,=F'1' (among other possibilities).
(3) The Condition Code settings are identical for the two instructions noted in (2).329

Section 22.5

22.5.1. This solution uses indexed LH and STH instructions:

LA 2,2 For incrementing/decrementing
LH 1,NN Start at end of HH array
AR 1,1 N*2 (for halfword indexing of HH)
SR 3,3 Index at RR starts at 0

LOOP LH 0,HH-2(1) Get word from high end of HH
STH 0,RR(3) Store at low end of RR
AR 3,2 Increment RR index
SR 1,2 Decrement HH index
JP LOOP Repeat until index = 0

22.5.3. Do-Until.

Section 22.7

22.7.1. For BXLE, the branch will not be taken, and c(GR3) = 2. For BXH, the branch will be taken, and c(GR3)
= 2 again.

22.7.2. For BXLE, c(GR3) = 6, and no branch occurs. For BXH, c(GR3) = X'C0000000'! The BXH instruction was
executed 29 times.

22.7.3. The branch will occur only if the remainder was zero! If the remainder is greater than zero, the sum of
remainder and quotient will be greater than the quotient in GR7, and no branch will occur.

22.7.5. The claim is true. If the sum c(GRx) +c(GRy) is non-negative, it is also ≤ 231 − 1, so the claim holds. If the sum
is less than zero it has overflowed, and the BXLE instruction does not branch. Logically, the sum cannot exceed
2× 231 − 1, so subtracting 231 − 1 gives the correct result modulo 231 − 1.

Another way to say this: if a,b are ≤ m, and if a + b >m, then a + b − m = a + b (mod m).330

22.7.6. Suppose the next-to-leftmost bit of the positive number is 1. Then the SLA will indicate an overflowed (not a
negative) result. Then (1) the JM should be be JO or JNP, and (2) GR0 should be initialized to contain 1, not 0. The
shift count in GR3 can be reduced to 31:

LA 0,1 Initialize bit position
LR 2,0 Increment of 1 in GR2
LA 3,31 Comparand in GR3

X SLA 1,1 Shift, test bit next to sign
JO Y Exit if it was 1
JXLE 0,2,X Count and loop if it was 0

Y - - -

22.7.9. The BXLE instruction is executed 6 times, and branches 5 times. The sequence of values in GR1 is 7, 24, 41,
58, 75, and 92.

22.7.10. (C − A)/B +1 times. (If the value of the expression is not positive, the body of the loop is executed only once.)

329 A performance expert (Dan Greiner) tested all possible 232 possible values to show their equivalence. The test took only a few
seconds.

330 The “student” was Donald Knuth.

Suggested Solutions to Selected Exercises and Programming Problems 1151

Section 22.8

22.8.1. The results are shown in this table:

Section 22.9

22.9.1. c(GR2) will be 40. The instructions calculate the largest doubling of c(GR2) not exceeding c(GR3). But be
careful: If c(GR3)=X'7FFFFFFF' and c(GR2)=1, 2*c(GR2) will eventually overflow and become negative. At that
point, after at most 32 iterations, c(GR2) will become zero, and the BXLE instruction will then loop endlessly. (Don't
try it!)331

22.9.2. After the BXLE instruction has been executed once, c(GR5)=2. This is compared to the original value in GR5
(the comparand), which was 1. This is no longer less than or equal to the sum, so the final value in GR5 is 2.

For BXH, the sum is greater than the comparand each time BXH is executed, until the sum overflows after 31 iter-
ations. c(GR5) then is negative, which when compared to the comparand X'40000000' is no longer greater, so the
final value in GR5 is X'80000000'.

22.9.3. The two leftmost bits of the positive number in GR1 can be either 00 or 01. If they are 00, then the first BXH
produces a larger but still positive number in GR1, and will branch to ZBit to increment the count. If the leftmost two
bits are 01, the sum (formed by the BXH) in GR1 will become negative, and the BXH at Loop will not branch.

If the number in GR1 was arbitrary, a test for zero would be needed to exit the entire code sequence; if the number
could be negative, LTR/JM instructions could indicate that bit number 0 was a 1-bit.

22.9.4. Consider the two high-order bits of GR1:

1. B'00' means that c(GR1) is positive, and the sum of the index and comparand will not overflow. The sum is
greater than the comparand (the original c(GR1)), so the instruction will branch.

2. B'01' means that c(GR1) is positive, but the sum of the index and comparand will overflow and appear negative.
The sum is then less than the comparand (the original c(GR1)), so the instruction will not branch.

3. B'10' means that c(GR1) is negative, but the sum of the index and comparand will overflow and appear positive.
The sum is then greater than the comparand (the original c(GR1)), so the instruction will branch.

4. B'11' means that c(GR1) is negative, and the sum of the index and comparand will not overflow. The sum is then
less than the comparand (the original c(GR1)), so the instruction will not branch.

22.9.5. Consider the two high-order bits of GR1:

1. B'00' means that c(GR1) is positive, and the sum of the index and comparand will not overflow. The sum is
greater than the comparand (the original c(GR1)), so the instruction will not branch.

2. B'01' means that c(GR1) is positive, but the sum of the index and comparand will overflow and appear negative.
The sum is then less than the comparand (the original c(GR1)), so the instruction will branch.

3. B'10' means that c(GR1) is negative, but the sum of the index and comparand will overflow and appear positive.
The sum is then greater than the comparand (the original c(GR1)), so the instruction will not branch.

4. B'11' means that c(GR1) is negative, and the sum of the index and comparand will not overflow. The sum is then
less than the comparand (the original c(GR1)), so the instruction will branch.

22.9.6. This exercise is most easily analyzed with a table:

c(GR1) BXH BXLE

0, 1 c(GR1)=0
(sum and comparand are 0)

Endless loop
(sum and comparand are 0)

positive,
≥ 2

Endless loop
(sum > comparand)

Set low-order bit of GR1 to 0
(sum > comparand)

negative Set low-order bit of GR1 to 0
(sum − , comparand +)

Endless loop
(sum − , comparand +)

331 I did, and that's why I know you shouldn't.

1152 Assembler Language Programming for IBM System z™ Servers Version 2.00

You can sometimes make efficient use of BXH and BXLE if the operands in the index and increment/comparand
registers fit one of the patterns above.

22.9.7. The solution to this exercise uses the same table as in Exercise 22.9.6, except that each “Yes” and “No” is
reversed.

22.9.8. If the R1 operand is not equal to either the R3 or R3 |1 operands, this description is correct. And since most
uses of the branch on index instructions are used this way, little harm is usually done. However, consider these
instructions:

LHI 6,2 c(GR6) = 2
LHI 7,2 c(GR7) = 2
BXLE 7,6,XXX Will it branch?

In our description, the sum of the index in GR7 (2) and the increment in GR6 (2) is greater than the comparand in
GR7 (2), so the branch will not occur.

In the incorrect description, the sum replaces the index before comparison: the sum (4) replaces the original index in
GR7, which then becomes the comparand. Since those values are equal, a programmer could be misled into believing
the branch will occur.

22.9.9. This is a form of what is known as the “shift-and-square” method for calculating integer powers. For example,
suppose you must evaluate X**5.

• The first exponent bit tested is 1, so the code branches to OneBit, where the BXLE instruction finds that c(GR0) is
not zero, so X is squared in GR5; this result is called the “work value”.

• Then the next exponent bit (0) is shifted into GR1; the BXLE finds that it's zero, and branches to TestMore.
(Remember that the BXLE instruction also leaves zero in GR1.) Since there is still a 1-bit in GR0, the BXH
instruction branches to “Square”, where the work value is squared, leaving X**4 in GR5.

• The last 1-bit of the exponent is shifted into GR1, and the BXLE test does not branch, so the work value is multi-
plied by c(GR3)=X, giving X**5.

• The final test at TestMore finds that c(GR0) is now zero, and control passes to Finished, leaving X**5 in GR3.

Programming Problem 22.1.

We will show two solutions to this problem. Both use similar techniques to generate the table; the first solution assumes
fixed positions for all the data in the table.

c(GR0) c(GR1) Branch?

0 any No

>0 0 Yes

≤ 0 0 No

>0 >0, sum does not overflow Yes

>0 >0, sum overflows No

>0 <0 Yes

<0 <0, sum does not overflow No

<0 <0, sum overflows Yes

<0 >0 No

Suggested Solutions to Selected Exercises and Programming Problems 1153

Title 'Solution to Problem 22.1'
P22_1 CSect , Print a hexadecimal multiplication table

Using *,15 Establish base register
Print NoGen
PrintLin Head,L'Head Print heading line
XR 0,0 Initialize row counter

Row_Loop DC 0H
LR 2,0 Get row value
IC 2,Chars(2) Get character for this row
STC 2,Line+1 Store at left end of print line
XR 1,1 Initialize column counter
LA 4,Line+3 Point to first table position

Col_Loop DC 0H
LR 3,0 Put row value in GR3
MR 2,1 Multiply by column value
LR 2,3 Copy product to GR2
SRL 2,4 Position high-order product digit
NILL 3,X'F' Low-order product digit in GR3
IC 2,Chars(2) Get equivalent EBCDIC character
STC 2,0(,4) Store high-order digit in print line
IC 3,Chars(3) Get equivalent EBCDIC character
STC 3,1(,4) Store low-order digit in print line
AHI 4,3 Step to next print line position
AHI 1,1 Increment column counter
CHI 1,16 See if this row is complete
JL Col_Loop Branch if not
PrintLin Line,L'Line Print this row
AHI 0,1 Increment row counter
CHI 0,16 See if all rows are complete
JL Row_Loop If not, do another row
PrintOut *,Header=NO Terminate the program

Chars DC C'0123456789ABCDEF'
Head DC C'1 0 1 2 3 4 5 6 7 8 9 A B C D E F'
Line DC CL(L'Head)' ' Print line

End

In this second solution, the symbols Margin and Space defined by EQU statements at the beginning of the program
control the position of the left margin and the spacing between columns of the table. Otherwise, the program is straight-
forward.

Title 'Alternate solution to Problem 22.1'
P22_1A START 0
Margin Equ 15 Indentation from left edge
Space Equ 5 Space between columns

BASR 15,0 Establish run-time base
Using *,15 Let assembler know about assumption
PrintLin Title Print title at the top of the page
LA 1,15 Set up 15 X values on the top line
SR 2,2 Initialize pickup index to zero,
LR 3,2 And the character storage index

TopRow IC 0,Char+1(2) Pick up an EBCDIC character
STC 0,Line+Margin+Space+1(3) Store in line
LA 2,1(0,2) Increment X value by 1
LA 3,Space(0,3) Move store index over to next slot
JCT 1,TopRow Do 15 digits in all
PrintLin Line Print the top row of the table

* c(GR1) = 0, c(GR2) = 15
*
NextRow LA 4,1 Initial X value for each row

LA 1,1(0,1) Increment Y value by 1
SR 3,3 Reset line store index
IC 0,Char(1) Fetch left-column character
STC 0,Line+Margin Store in line in left column
LA 0,15 Set column count in GR0 for loop

*
NextCol LR 7,1 Y value

MR 6,4 * Y value

1154 Assembler Language Programming for IBM System z™ Servers Version 2.00

SLDL 6,28 Place high-order digit in GR6
SRL 7,28 Move low-order digit to end of GR7
IC 6,Char(6) Get appropriate ...
IC 7,Char(7) ...EBCDIC characters, and
STC 6,Line+Margin+Space(3) ...store first in line
STC 7,Line+Margin+Space+1(3) ...and second
LA 3,Space(0,3) Increment line index
LA 4,1(0,4) Increment X value
JCT 0,NextCol Loop until line is complete
PrintLin Line Print the line
JCT 2,NextRow And loop until 15 rows are done

*
PrintLin Title,1 Skip a page to get a clean result
PrintOut *,Header=NO Stop

*
Char DC C'0123456789ABCDEF' Ebcdic form of hex digits
Title DC CL121'1Hexadecimal Multiplication Table'
Line DC CL121'0' Print line, with double spacing

END P22_1A

Suggested Solutions to Selected Exercises and Programming Problems 1155

Section 23 Solutions
Section 23.2

23.2.1. Only the first is valid; the I2 operands of the other two require more than 8 bits, so the Assembler will indicate
an error.

23.3.1. The table of EBCDIC character encodings in Table 13 on page 87 shows that C'a' has representation X'81'
and C'A' has representation X'C1'. ORing the representation of C' ', or X'40', into C'a' produces X'C1'.

Section 23.3

23.3.2. NI Flags,B'01111110'

23.3.3. OI Flags,B'10000001'

Section 23.4

23.4.1. Consider the following:

LA 1,Data-1 Set pointer to left of string
LR 0,1 Save start address for later

Loop LA 1,1(0,1) Point to next byte
CLI 0(1),X'FF' Check for all 1-bits
JNE Loop Branch if not all ones
SR 1,0 Subtract start addr to get count

23.4.2. No, because SI-type instructions can't be indexed!

23.4.3. This solution scans characters from right to left.

LHI 0,80 Record length
LA 1,Record+80-1 Point GR1 to last character

Test CLI 0(1),C' ' Check for blank character
JNE Store Branch if it's not a blank
BCTR 1,0 Move pointer left by 1 byte
JCT 0,Test Count down and repeat

Store ST 0,DataLen Store data length
ST 1,LastChAd Store address of last nonblank

If there no nonblank characters, the address stored at LastChAd will be A(Record-1).

23.4.4. Try CLI *,X'FF' — the opcode for CLI is X'95', which is less than X'FF'.*

23.4.5. Try CLI *,0 — the opcode for CLI is X'95', which is greater than 0.*

23.4.6. He can write the test in either of two ways:

 1. CLI Char,C'f'

 2. LowerF Equ C'f'
CLI Char,LowerF

23.4.7. Try CLI *+1,0 — the CLI compares its immediate operand to itself.* A better instruction is CLR 0,0 which
makes no memory reference, but does refer to a register.

Section 23.5

23.5.1. This is essentially the definition of a 9-bit two's complement binary integer, which has values between − 28 and
+ 2 8 − 1.

23.5.2. In step 1, if the I2 mask AND the first-operand byte is zero, all the tested bits were zero. In step 2, some or all
bits from the first step must have been ones. After XORing this field with the I2 mask again, if all the remaining bits
from step 1 were ones, the result is now zero, meaning all tested bits were ones. In step 3, if the result of the XOR is
not zero, the tested bits were mixed zeros and ones.

* This may not be the best technique, because it mixes a reference to an instruction and data.

1156 Assembler Language Programming for IBM System z™ Servers Version 2.00

23.5.3. Try TM *+1,AnyNonZeroValue — because the I2 mask has at least one nonzero bit, each one-bit in the mask
will test itself, so all tested bits will be one.

23.5.4. TUM is not the mnemonic for Test Under Mask; the second operand is written as a decimal term (with value
X'50'), and the branch mnemonic for a zero sign bit is BZ; BP would never branch, because TM doesn't set CC=2.
He should have written:

TM BIN,X'80' Test for zero sign bit
BZ POS Branch if nonnegative

23.5.5. You can use TM *+1,0. (Is there any limitation on the first operand address?)

23.5.6. Yes, because BNM has mask B'1011'. But be careful! There are other TM-like instructions that don't behave
like TM!

Section 23.6

23.6.1. There are many ways to do this; this is a representative solution:

LHI 0,8 Initialize bit count
LA 1,BitChars Point to output character string
ICM 3,B'1000',BitData Source byte in leftmost byte of GR3

Repeat SR 2,2 Clear GR2 for shift
SLDL 2,1 Move a bit into GR2
AHI 2,C'0' Form ECBDIC 0 or 1 character
STC 2,0(,1) Store character in output area
AHI 1,1 Increment output address
JCT 0,Repeat Repeat until 8 bits are done

23.6.2. No, because it doesn't correctly handle the mixed case.

Section 23.7

23.7.1. Yes. After the 'DS B' the Location Counter has been advanced by 1.

23.7.2. Consider these instructions:

(1) NI BitA,255-L'BitA-L'BitB Set both bits to zero

(2) XI BitB,L'BitB Invert BitB

(3) TM BitA,L'BitA+L'BitB Test both bits
JO Both Branch if both are ones

(4) LA 0,2 Assume both bits are ones
TM BitA,L'BitA+L'BitB Test the two bits
JO Done Finished if both are ones
BCTR 0,0 Reduce the ones-count by 1
JM Done Finished if only one is one
BCTR 0,0 Both 0, reduce ones-count to zero

Done - - -
Why can't you use AHI 0,-1 instead of BCTR 0,0? Because AHI sets the Condition Code, and the JM instruction will
branch incorrectly.

Section 23.9

23.9.1. The number in GR6 is alternately 2 and 4, because the SLL instruction is alternately SLL and SRL. (To under-
stand this, you'll have to revisit the opcodes shown in Table 78 on page 242!) The values in GR4 are therefore the
odd numbers which are not multiples of 3.332

23.9.2. The OI and XI have zeros in the right hex digit of the immediate operand, and the NI has all ones.

23.9.3. It saves allocating a byte for Flag! But it also makes the program self-modifying. (At the time HASP was
written, self-modifying programs weren't unusual.)

332 An interesting bit of code from a prime-number generator by Valdo Androsciani.

Suggested Solutions to Selected Exercises and Programming Problems 1157

Section 24 Solutions
Section 24.2

24.2.1. None. The two words mean the same thing.

Section 24.3

24.3.1. No.

24.3.2. Yes and No. This may seem puzzling, because the assembler can derive an implied length attribute of an
operand expression. But consider these statements:

A LA 0,L'* c(GR0) = 4
B LA 0,L'*+3 c(GR0) = 7
C LA 0,L'3+* Error, L' operand not a symbol
D LA 0,L'B c(GR0) = 4
E LA 0,8+L'B c(GR0) = 12
F LA 0,L'(8+L'B) Error, L' operand not a symbol
The operand of an explicit Length Attribute Reference must be either a valid symbol or a Location Counter Reference.
In the third and sixth examples, the expressions are 3+* and (8+L'B). Since the Length Attribute of an expression is
that of its leftmost term, the Assembler issues an ASMA147E error message.

Section 24.4

24.4.1. (1) 2 (the length attribute of A is implicitly 2 bytes), X'0102'; (2) 4 (the length attribute of B is explicitly 4),
C'ABCD'; (3) 3 (the Length Expression is specified explicitly), X'000000'!

24.4.2. The possible operand formats are shown in this table:

24.4.3. Suppose the comma is omitted, so that the operand looks like this:

MVC D1(B1),S2
Because this first operand of the MVC instruction was intended to specify an explicit address, it should have the third
operand format described in Section 8.5. As written, the D1 expression will be interpreted as an implied address, and
the B1 expression will be interpreted as the Length Expression.

Section 24.6

24.6.1. The result would be C'54345'. You might want to experiment with the CPU you are using to see what happens
when you use MVCIN to move various strings onto themselves.

24.6.2.

MVC Prefix,PText Move prefix string
MVCIN Insert,IText+L'Insert-1 Move insert string
MVC Suffix,SText Move suffix string

24.6.3. C'DataData'.

24.6.4. The result fields are:

Result2 DS C'PQRS' From the first 4 bytes at Data2
Data2 DC C'TUVWTUVW'

24.6.5. The effective address of the STC is the same in both cases. However, suppose you needed later to insert an
instruction or two between the STC and the MVC: the *+5 operand would then refer to the wrong instruction. This
shows why references between instructions should use symbols, not expressions involving the Location Counter. (But
you should use an EX instruction, anyway!)

Format As first operand As second operand

7(4) S(N) D(B)
24(6,12) D(N,B) Invalid

A(B) S(N) if B is absolute,
otherwise invalid

D(B) if A and B are absolute,
otherwise invalid

5(,1) D(,B) Invalid

1158 Assembler Language Programming for IBM System z™ Servers Version 2.00

24.6.6. Sketching the operations may help. The first MVCIN moves the last byte of the second operand, C'G', to the
first byte of the first operand, etc. The final byte of the second operand, C'A', is moved to the last byte of the first
operand, which is at the same address!

A similar analysis holds for the second MVCIN, except that the initial byte moved from the second operand is at the
same address as the first byte of the first operand. Thus, the one-byte overlap is harmless in both cases.

The result at X is C'GFEDCBA', and the result at Q is C'54321'.

24.6.7. A reviewer commented “No one in their right mind would/should do such a thing; would it work?”

MVC A-A+C,A
MVC B-B+L'A+C,B

Yes, it works!

24.6.10. For the instruction to work:

1. The symbol N must be absolute.
2. The term L'Rec must be the true length of each record.
3. Their product must be less than or equal to 256.

The instruction will not work if any of the above conditions is not true.

1. The value of the symbol N might be given by a value in memory.

2. L'Rec might not define the length of a record. For example, suppose the record had been defined by statements
like these:

Rec DS 0X Define start of record
Field1 DS CL40 First field in the record
Field2 DS ... Similarly for other fields
RecLen Equ *-Rec True length of the record

In this case, the value of L'Rec will be 1.

24.6.11. The instructions work correctly.

Section 24.7

24.7.1.

MVC Temp,ZZ Move to work area
NC Temp,=X'00780000' Isolate second integer
NC XX,=X'FF87FFFF' Set new-integer position to zeros
OC XX,Temp Insert new second integer value
- - -

Temp DS XL4 Temporary work area

24.7.3. The instructions work correctly. Just before executing the NC instruction, the eight bytes at BitChars will
contain

X'9148241980040201'
The NC instruction will change the bytes to

X'0100000100000001'
and the OC instruction inserts the high-order X'F0' bits to form the eight EBCDIC characters C'10010001'.

Section 24.8

24.8.1. Consider − 1 > − 2. Because CLC does unsigned byte comparisons, X'FFFFFFFF'>X'FFFFFFFE', and the
assertion is true.

24.8.2. Because negative binary integers have a 1 in the sign bit, a logical comparison will consider all negative
numbers to be greater than all non-negative numbers.

Now, suppose you invert the sign bits: now, a logical comparison will consider all non-negative values to be greater
than the originally negative values. For example:

Suggested Solutions to Selected Exercises and Programming Problems 1159

So, these instructions will compare +10 to − 10 correctly:

XI M10,X'80' Invert sign of -10
XI P10,X'80' Invert sign of +10
CLC P10,M10 Compare (modified) +10 to -10
JH P10Big Branch if +10 > -10
JL M10Big Branch if +10 < -10
J Equal Branch if they're equal
- - -

M10 DC F'-10'
P10 DC F'+10'
Comparisons using this technique should reset all inverted signs to their correct values.

24.8.3. It is not true for (3). The CC would be set to 0 if all the bytes were identical, whether or not they were zero.

24.8.4. Since only a single length is provided in the CLC instruction, there is no way to determine a “shorter operand”.
The maximum number of bytes compared is always the number specified; if an inequality occurs, the comparison stops
immediately. Also, there is no reference in the CLC instruction to “blanks” or “padding”. (We'll see padding in
Section 25.)

24.8.5. This solution uses the “one byte at a time” property of the CLC instruction:

CLI Chars,C' ' Check first character for blank
JNE NotBlank If not blank, don't bother the rest
CLC Chars+1(71),Chars Compare the rest of the characters
JE AllBlank Jump if all were blanks

NotBlank - - - Not all 72 characters are blanks

24.8.6. Because the length attribute of the literal =120C' ' is 1, only a single byte will be compared.

24.8.7. The instruction will set CC=0 if all 8 bytes of the field addressed by GR4 are identical. (So the instruction is
very useful.)

Section 24.9

24.9.1. Here is an Assembler listing showing the generated data:

000000 4040404040404040 1 TRTAble DC (C'a')C' ' Anything less than C'a' is blanked
000081 8182838485868788 2 DC C'abcdefghi' Letters are unchanged
00008A 40404040404040 3 DC 7C' ' Non-printing characters are blanked
000091 9192939495969798 4 DC C'jklmnopqr' Print letters as is
00009A 4040404040404040 5 DC CL8' ' More non-printing characters
0000A2 A2A3A4A5A6A7A8A9 6 DC C'stuvwxyz' Last of the lower-case letters
0000AA 4040404040404040 7 DC 23C' ' Blank anything between 'z' and 'A'
0000C1 C1C2C3C4C5C6C7C8 8 DC C'ABCDEFGHI' Letters are unchanged
0000CA 40404040404040 9 DC 7C' ' Non-printing characters are blanked
0000D1 D1D2D3D4D5D6D7D8 10 DC C'JKLMNOPQR' Print letters as is
0000DA 4040404040404040 11 DC CL8' ' More non-printing characters
0000E2 E2E3E4E5E6E7E8E9 12 DC C'STUVWXYZ' Last of the upper-case letters
0000EA 404040404040 13 DC 6C' ' Blank anything between 'Z' and '0'
0000F0 F0F1F2F3F4F5F6F7 14 DC C'0123456789' Digits print okay
0000FA 404040404040 15 DC 6C' ' Tail-enders are blanked too

16 End

If you want to see all 256 bytes of generated data, add a

Print Data
assembler instruction statement at the start of your program.

24.9.2. Only a single TR instruction is needed. The translate table replaces each byte with its rotated equivalent; it
begins like this:

RotaTabl DC X'00800181028203830484058506860787088809...'
* Argument: 000102030405060708090A0B0C0D0E0F101112...'

24.9.3. This translation table uses no hand-counted duplication factors:

arithmetically smallest −20 = X'FFFFFFEC' becomes X'7FFFFFEC' logically smallest

−10 = X'FFFFFFF6' becomes X'7FFFFFF6'
+10 = X'0000000A' becomes X'8000000A'

arithmetically largest +20 = X'00000014' becomes X'80000014' logically largest

1160 Assembler Language Programming for IBM System z™ Servers Version 2.00

TRTable DC (C'a')C' ' Anything less than C'a' is blanked
DC C'abcdefghi' Letters are unchanged
DC (C'j'-C'i'-1)C' ' Non-printing characters are blanked
DC C'jklmnopqr' Print letters as is
DC (C's'-C'r'-1)C' ' More non-printing characters
DC C'stuvwxyz' Last of the lower-case letters
DC (C'A'-C'z'-1)C' ' Blank anything between 'z' and 'A'
DC C'ABCDEFGHI' Letters are unchanged
DC (C'J'-C'I'-1)C' ' Non-printing characters are blanked
DC C'JKLMNOPQR' Print letters as is
DC (C'S'-C'R'-1)C' ' More non-printing characters
DC C'STUVWXYZ' Last of the upper-case letters
DC (C'0'-C'Z'-1)C' ' Non-printing characters are blanked
DC C'0123456789' Digits print okay
DC (X'100'-C'9'-1)C' ' Tail-enders are blanked too

24.9.4. First, define the following data areas and tables; their order is important:

Blank DC C' ' Moved by 0'S in Table
InputRec DS CL80 Moved by 1-80 in Table
A1Format DS 0F
Table DC 80A(((*+4-A1Format)/4)*256*256*256) 320-byte string
Note that the table at A1Format begins X'01000000020000000300000004...'. Then, the following instructions do the
job:

TR A1Format(240),InputRec-1 “Unpack” 60 characters
TR A1Format+240(80),InputRec-1 “Unpack” last 20 characters

24.9.5. The table must be 256 bytes long, because any bit combination is possible. The table is constructed so that the
function byte is the “hex transpose” of the argument byte that would access it. The table would start like this:

TRANS DC X'00,10,20,30,40,50,60,70,80,90,A0,B0,C0,D0,E0,F0'
DC X'01,11,21,31,... etc. ...'
- - -
DC X'0F,1F, ..., ... DF,EF,FF'

24.9.7. Using a TR instruction is simpler than the solution to Exercise 17.4.6. The bytes in the translate table contain
the bit counts:

BitNoTbl DC AL1(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,...)

24.9.8. First, define the translate table:

Gather DS 0CL40
DC 40AL1(4*(*-Gather)) 40-byte string

Then the following instructions do the job.

MVC OutRec(40),Gather
MVC OutRec+40(40),Gather
TR OutRec(40),A1Format
TR OutRec+40(40),A1Format+160

The “translation” must be done in two steps, because we cannot define a full 80-byte table at Gather. (Why? Because
the values stored in the bytes would exceed 255.)

24.9.9. This can be done in several ways; this is one approach.

ASMTable DC (X'100')C' ' Initialize to 256 blanks
ORG ASMTable+C'.' Position at .
DC C'.'
ORG ASMTable+C'(' Position at (
DC C'('
ORG ASMTable+C'+' Position at +
DC C'+'
ORG ASMTable+C'&&' Position at &
DC C'&&'
ORG ASMTable+C'$' Position at $
DC C'$'
- - - Etc., for other special chars
ORG ASMTable+C'=' Position at =

Suggested Solutions to Selected Exercises and Programming Problems 1161

DC C'='
ORG ASMTable+C'''' Position at '
DC C''''
ORG ASMTable+C'a' Position at a
DC C'abcdefghi'
- - -
ORG ASMTable+C'A' Position at A
DC C'ABCDEFGHI'
- - -
ORG ASMTable+C'0' Position at 0
DC C'0123456789'
ORG , Set LC to end of table

ASMTbEnd Equ *

24.9.10. This solution shows a complete program that does both the right and left shifts. As with many problems
involving TR and TRT, the important part of the solution is in the translate tables. The table named TLeft translates
every byte whose leftmost digit is X'X' into a byte X'0X' (shifting the left digit right), and the table named Right
translates every byte whose rightmost digit is X'Y' into a byte X'Y0' (shifting the right digit left). The OC instructions
then merge the translated strings.

XShift CSect ,
Print NoGen
Using *,15
J Start Jump over data definitions

Old DC X'123456789ABCDEF0' Sample data to shift
New DS XL(L'Old) Space for shifted result
Temp DS XL(L'Old) Temporary working storage
Start MVC Temp(L'Old),Old Copy data to temp

TR Temp(L'Old),TLeft Shift left digits to right
MVC New,Temp Move shifted left digits
MVC Temp(L'Old),Old Copy data to temp again
TR Temp(L'Old),TRight Shift right digits to left
OC New+1(L'Old-1),Temp OR right digits, with offset
PrintOut New Print right-shifted result

*
MVC Temp,Old Copy data to temp
TR Temp(L'Old),TRight Shift right digits to left
MVC New,Temp Move shifted right digits
MVC Temp(L'Old),Old Copy data to temp again
TR Temp(L'Old),TLeft Shift left digits right
OC New(L'Old-1),Temp+1 OR left digits, with offset
PrintOut New,*,Header=NO Print left-shifted result

TLeft DC 16X'0',16X'1',16X'2',16X'3',16X'4',16X'5',16X'6',16X'7'
DC 16X'8',16X'9',16X'A',16X'B',16X'C',16X'D',16X'E',16X'F'

TRight DC 16AL1(0,16,32,48,64,80,96,112,128,144,160,176,192,208,22+
4,240)

End

24.9.12. The instruction at Q1 adds C'0' to the hex digit; if it is numeric (between 0 and 9), this is its EBCDIC represen-
tation. The comparison at Q2 tests to see if it is as large as 250 (or C'0'+X'A'); if so, the hex digit must have been A
through F. The AHI instruction at Q3 then corrects the representation; it might better have been written

Q3 AHI 8,C'A'-C'0'-X'A' Map A-F back to correct values

24.9.14. The second byte can be translated with the table constructed in the solution to Exercise 24.9.5. The X'F' can
be inserted most easily with an OI instruction, but you could use another TR instruction and a new table if you were
feeling extravagant.

24.9.15. The result at OddTable will be X'00000202040404'

24.9.16. The program does work. The precautions are:

1. Be sure that L'InString truly represents the number of input bytes, and that it does not exceed 128. (What would
need to be done if is greater than 128?)

2. Be sure that the length attribute of OutStrng is twice the number of input bytes, by defining OutStrng as

OutStrng DS CL(2*L'InString)
3. Assuming that the previous two conditions have been satisfied, write the TR instruction as

1162 Assembler Language Programming for IBM System z™ Servers Version 2.00

TR OutStrng(2*L'InString),=C'0123456789ABCDEF'
so that all operations depend only on the length of InString.

24.9.17. The required translate table can be created in several ways. First, you can do each byte “manually” so that the
table starts like this:

RevBits DC X'008040C020A060E0109050D030B070F00804...'
but this is clearly a tedious and error-prone approach. A better approach is to let the Assembler do the work, but
constructing the operand is not obvious.

We start with the observation that a bit representing the N-th power of 2 can be extracted from a byte named X using
the expression

(X-((X/2(N + 1))*2(N + 1)))/2N

To put this bit in the reversed position in the output byte, it must be multiplied by 2(7-N). Using these expressions, we
can create the translate table this way:

R DC 256AL1((*-R)/128+2*(((*-R)-(((*-R)/128)*128))/64)+4*(((*X
-R)-(((*-R)/64)*64))/32)+8*(((*-R)-(((*-R)/32)*32))/16)+X
16*(((*-R)-(((*-R)/16)*16))/8)+32*(((*-R)-(((*-R)/8)*8))X
/4)+64*(((*-R)-(((*-R)/4)*4))/2)+128*((*-R)-(((*-R)/2)*2X
)))

Consider the second expression 2*(((*-R)-(((*-R)/128)*128))/64): this extracts the second bit of the offset from the
start of the table, corresponding to value 26, and multiplies it by 2 so it will be the second bit from the right in the
corresponding byte of the translate table.

24.9.19. After first time, the table will be X'00010203...7D7E7F 7F7E7D...03020100' (first half, then reversed) each time
after the first. The original table is never recovered! (Can you explain this behavior?)

24.9.20. The table is unchanged every time the TR instruction is executed.

Section 24.10

24.10.2. You can't replace DC XL256'0' by DS because the other 254 bytes of the table won't be correctly initialized.

24.10.7. This complete program uses a translate-and-test table with nonzero entries for all nonblank characters.

X24_10_7 Csect ,
Using *,15
Print NoGen

RecLen Equ 80 Record length
XR 1,1 Clear GR1
XR 3,3 c(GR3) = worst-case string length
LA 4,Record+Reclen-1 c(GR4) = A(last byte of Record)
MVCIN Temp,0(4) Move Record to Temp in reverse order
TRT Temp,FindNonB Scan in reverse to find a nonblank
JZ Store Branch if record was all blanks
LA 3,Temp+Reclen c(GR3) = 1 byte after Temp
SR 3,1 c(GR3) = length of string
LA 4,Record-1(3) c(GR4) = A(last nonblank character)

Store ST 3,DataLen Store length of string
ST 4,LastChAd Store address of last nonblank
Printout DataLen,LastChAd,*,Header=NO Print results

DataLen DS F Significant length of string
LastChAd DS A Address of last nonblank char
Record DC CL(RecLen)'This is a test to see what happens.'
Temp DS CL(RecLen)
FindNonB DC 256X'1' Set all 256 bytes to X'1'

Org FindNonB+C' ' Position at offset X'40'
DC X'0' We won't stop on blanks
Org , Reset Location Counter
End X24_10_7

24.10.8. Suppose the second TRT does not find a nonzero function byte. Then the LTR 2,2 instruction would use the
function byte from the first TRT, probably giving incorrect results.

24.10.9. The first operand generates 64 X'01' bytes, corresponding to offsets from X'00' to X'3F'. The second operand
generates a single X'00' byte at offset X'40'. Finally, the third operand generates 256-C' '-1, or 256-64-1=191 bytes
containing X'01'. Thus, a total of 256 bytes are generated.

Suggested Solutions to Selected Exercises and Programming Problems 1163

24.10.11. The TRT scan stops at the X'02' function byte of XX, with Condition Code 1 meaning the scan is incom-
plete, and c(GR2)=X'00000002'.

24.10.14. The program will continue searching for a blank character somewhere prior to the start of the string, with
unsatisfactory and possibly disastrous results.

Section 24.11

24.11.1. The two sets of USING statements are distinct and independent. The EX reference to the target instruction is
resolved at the location of the EX instruction, while the operands of the target instruction are resolved with the
USINGs in effect at that location. Be careful!

24.11.2. If EX “branched” to the target instruction, he would expect GR1 to contain the address of whatever is named
There. Because EX does not branch, GR1 will actually contain the address of Here.

24.11.3. GR1 will contain the address of the LR instruction, not the address of the AR instruction! This is because the
BASR places the Instruction Address into R1; the PSW still contains the address of the instruction following the EX.
The target instruction (the BASR) does not modify the IA in the PSW, because its R2 digit is zero. The ILC will
contain B'10' (indicating a 4-byte instruction), because EX is an RX-type instruction.

24.11.5. In this solution, we must make two checks: (1) to verify that the number of bytes to move is positive, and (2)
test whether the number is greater than 256. If so, we move blocks of 256 bytes until the residual amount to move is ≤
256 bytes.

LTR 3,3 Check number of bytes to move
JNP Finished If not positive, we're done

Test CHI 3,256 Test if number to move is > 256
JNH LastGrp If not, go handle residual group
MVC 0(256,2),0(1) Move 256 bytes
AHI 1,256 Increment 'from' address
AHI 2,256 Increment 'to' address
AHI 3,-256 Decrement count by 256
J Test And see of any more blocks to move

 LastGrp BCTR 3,0 Make it a machine length
EX 3,MoveLast Move the residual byte count

Finished - - -
- - -

MoveLast MVC 0(*-*,2),0(1) Executed MVC
Compare this to the instructions in Figure 220 on page 392, and explain the differences.

24.11.6. This solution handles pairing, but does not enforce the HLASM rule that character constants and self-defining
terms must always have paired ampersands and apostrophes.

LA 1,DCData Initialize 'From' pointer
LA 4,DCGen Initialize 'To' pointer
LR 3,4 Save 'To' start address for length
LHI 2,L'DCData Get 'From' string length

TestCh CLI 0(1),C'&&' Check for ampersand
JE HaveChar Branch to check for pair
CLI 0(1),C'''' Check for apostrophe
JE HaveChar Branch to check for pair

CopyChar MVC 0(1,4),0(1) Move 'From' character to 'To'
AHI 1,1 Step 'From' pointer
AHI 4,1 Step 'To' pointer
JCT 2,TestCh Test next character
SLR 4,3 Final 'To' final addr - start addr
ST 4,DCGenL Store length of result
J Done

HaveChar CHI 2,1 Was it the last character?
JE CopyChar Branch if yes, include it
CLC 0(1,1),1(1) Does next character match?
JNE CopyChar Branch if not to keep it
BCTR 2,0 Decrement count of remainder
AHI 1,1 Step over the paired character
J TestCh And check for more characters

Done - - -
- - -

DCData DC C'This ''string'' contains &&'s and ''s'

1164 Assembler Language Programming for IBM System z™ Servers Version 2.00

DCGen DS CL(L'DCData) Result string
DCGenL DS F Length of result

24.11.8. The easiest way to do this is to “pre-pad” the receiving field if N > M.

LHI 2,M Length of source field
LHI 3,N Length of target field
CR 2,3 See which is longer
JE Move If the same, just move
JH Pad If N>M, must pad target field
LR 2,3 N<M, move only N characters
J Move And move them now

Pad MVI DataPad,C' ' Initialize first pad byte
LR 1,3 Copy N
AHI 1,-2 Deduct for EX machine length
JNP Move If not >0, only 1 pad byte
EX 1,PadBlank Otherwise complete the padding

Move BCTR 2,0 Now have lesser of (N,M)-1
EX 2,MoveData Move the source bytes to target
- - -

MoveData MVC DataPad(*-*),Data Move the data
PadBlank MVC DataPad+1(*-*),DataPad Ripple blanks

24.11.9. Suppose the two operands are byte strings named A and B, and we want to compare A to B.

LHI 2,L'A Length of A
LHI 3,L'B Length of B
CR 2,3 Compare lengths
JE Compare Equal, do the compare directly
JH ALonger Branch if A is the longer string

BLonger CLC A,B A is shorter, compare to B
JNE Done If an inequality, we're dond
LA 1,L'B-L'A Calculate length of A pad
LA 2,L'A+B Where to start padded compare

APad CLC =C' ',0(2) Compare tail of B to blank
JNE Done If a mismatch, we're done
LA 2,1(,2) Step to next byte of B, CC unchanged
JCT 1,APad And compare again
J Done Strings are equal, with padding

ALonger CLC B,A B is shorter, compare to A
JNE Done If an inequality, we're dond
LA 1,L'A-L'B Calculate length of B pad
LA 2,L'B+A Where to start padded compare

BPad CLC 0(1,2),=C' ' Compare tail of A to blank
JNE Done If a mismatch, we're done
LA 2,1(,2) Step to next byte of A, CC unchanged
JCT 1,BPad And compare again

Done - - - CC set correctly for all compares
While it is possible at assembly time to determine which of L'A and L'B is larger and then define a string of blanks
whose length is the absolute difference, the above approach seems simplest.

24.11.12. The key to this solution is the translation table, in which each function byte rotates the bits of the source byte
to the right by one bit position.

NILF 1,B'111' Use only 3 rightmost bits of GR1
JZ Done Finished if shift count was zero

Rotate1 TR Rotator,RoTable Rotate by 1 bit position
JCT 1,Rotate1 Repeat until N shifts are done

Done - - -
- - -

RoTable DC X'00,80,01,81,02,82,03,83,04,84,05,85,06,86,07,87'
DC X'08,88,09,89, ... etc. ... '
- - - etc.
DC X' ... etc. ... 77,F7'
DC X'78,F8,79,F9,7A,FA,7B,FB,7C,FC,7D,FD,7E,FE,7F,FF'

You could avoid looping by choosing one of seven different “rotation” translate tables, but the gain seems less than the
needed effort.

Suggested Solutions to Selected Exercises and Programming Problems 1165

You can't rotate by N bits using a single translate table, because the source byte could contain any of 256 bit combina-
tions, and the function bytes for each of 7 possible rotations are at different offsets in the table.*

24.11.13. Suppose the rightmost 8 bits of GR9 are B'00000011', indicating an odd number. Then, the executed TM
instruction is effectively

TM OneBit,B'00000011'
But because only one of the tested bits at OneBit is one, the JO instruction would not branch to OddReg as required,
because the tested bits are mixed zero and one.

24.11.14. This can be done by testing the N rightmost bits one at a time in a loop; assume GR0 can be used as a
working register, and the number to be tested is in GR9.

LA 0,N Number of bits to test
Test EX 9,TMTest Test the rightmost bit

JNZ NotPower If 1, not a multiple of 2**N
SRL 9,1 Move to next significant bit
JCT 0,Test And try again
- - -

NotPower - - -
- - -

TMTest TM OneBit,0 Test the rightmost bit
OneBit DC B'00000001' Low-order 1 bit
The limitations of this technique are:

1. GR0 cannot be the register tested.
2. If we aren't allowed to shift the contents of the register, we can't test for powers greater than 8.
3. If we can shift, the original contents of the register is destroyed, and there is no way to check the lost bits.

To do this more general test, if N is known at assembly time we could write

L 0,PowerN Get the test mask
BCTR 0,0 Decrement to form N 1-bits
NR 0,9 See if the bits of GR9 are zero
JNZ NotPower Branch if not
- - -

PowerN DC FS(N)'1' Generate 2**N

24.11.15. The main problem is that the rightmost 4 bits of GR1 will modify the operation code of the executed LHI
instruction! Thus, he should have written

SLL 1,4 Position register number correctly
EX 1,LHIOp Load the constant into a GPR
- - -

LHIOp LHI 0,137 Constant to be loaded somewhere

24.11.16. This solution uses EX and MVI instructions:

LHI 0,8 Set bit counter to 8
LA 1,Char Point GR1 to characters
ICM 3,B'1000',Byte Byte in high-order byte of GR3

A XR 2,2 Clear GR2
SLDL 2,1 Shift a bit from GR3 into GR2
EX 2,MVI Let the MVI ″store″ the character
AHI 1,1 Increment the address by 1
JCT 0,A Count down by 1 and loop
- - -

MVI MVI 0(1),X'F0' Store C'0' or C'1'
Byte DC X'CD' Sample bit pattern
Char DS CL8

24.11.18. First, we create a translate table that can be used to reverse the order of a string of up to 256 bytes:

RevTbl DC 256AL1(255-(*-RevTbl))

* In other words, I couldn't figure out how to do it. Can you?

1166 Assembler Language Programming for IBM System z™ Servers Version 2.00

This table contains 256 byte values starting at X'FF' and decreasing by 1 for each generated byte. Then, we can do the
“inverse move” by first computing the position of the last L bytes of the table, moving them to the Target field, and
then translate the source using these instructions:

LR 1,0 Copy L to GR1
BCTR 1,0 Make effective length in GR1
LA 2,RevTbl+256 Point to byte past end of table
SR 2,0 Point to last L bytes of table
EX 1,Move2Tgt Move those last L bytes to Target
EX 1,Tran2Tgt Translate from Source to Target
- - -

Move2Tgt MVC Target(*-*),0(2) Moves L bytes to Target field
Tran2Tgt TR Target(*-*),Source Moves L bytes in inverse order
This technique was often used before MVCIN was available.

24.11.19. Since the rightmost byte of GR1 is ORed into the second byte of the EX target instruction now in the IR, that
second byte will be 9|5 for the first operand digit and 8|2 for the second operand digit, yielding SR 13,10 as the exe-
cuted instruction.

24.11.20. EX is an RX-type instruction, so it can be indexed.

Programming Problem 24.2.

This solution uses three translate tables: one to do the shuffling, one to convert the hex digits to EBCDIC, and a third to
place all the EBCDIC characters (including the shuffle count) into two output lines. (Note that this is the “Vertical hex”
technique used in Problem 24.12!) The first output line has a blank carriage control character (single space), the shuffle
count, a space, and then a blank followed by the two hex digits of a shuffled value. The second output line has the same
format, except that the first four characters are blank.

Note that only the (even!) value of the symbol NC needs to be changed to modify the number of cards to shuffle. (The
symbol MaxCount is defined as a safety check.)

Print Nogen,Data
P24_2 CSECT ,

USING *,15
NC Equ 52 Number of playing cards
MaxCount Equ NC*2 Maximum number of shuffles(?)
* Arbitrary upper limit

XR 1,1 Initialize shuffle counter
XR 2,2 Clear even work register
XR 3,3 Clear odd work register

NextOut DC 0H Top of shuffling loop
STC 1,Count Store shuffle count
LA 0,NC+1 Number of digits to format
LA 4,Count Addr(start of digit string)
LA 5,Expand Addr(start of expansion string)

ToHex DC 0H Top of expansion loop
IC 2,0(,4) Get a byte
SRDL 2,4 Move low-order digit to GR3
STC 2,0(,5) Store high-order digit
SRL 3,28 Position low-order digit
STC 3,1(,5) Store in next output position
AHI 4,1 Increment input pointer
AHI 5,2 Increment output pointer
JCT 0,ToHex Expand all the digits
TR Expand,Hex2Char Convert X'0?' digits to EBCDIC
MVC Out,Format Move formatting translate table
TR Out,Blank Translate complete output lines
PrintLin Out,L'Out/2 Print first set of shuffled values
PrintLin Out+L'Out/2,L'Out/2 Print second set
PrintLin Blank,1 Blank line
AHI 1,1 Increment count
C 1,=A(MaxCount) Test for enough shuffles
JH Finish Exit if yes
MVC Temp,Shuffle Copy shuffle table
TR Temp,Cards Do the next shuffle

Suggested Solutions to Selected Exercises and Programming Problems 1167

MVC Cards,Temp Put the shuffled cards back
J NextOut And go output the result

Finish DC 0H
PrintOut *,Header=NO Terminate the program

* Note: Count must immediately precede Cards
Count DC X'0' Count of number of shuffles
Cards DC 0XL(NC),(NC)AL1(*-Cards+1) Starting card order
Temp DS XL(NC) Shuffling area
* Define the Shuffle table
Shuffle DC (NC/2)AL1((*-Shuffle)/2,(*-Shuffle)/2+NC/2)
* Note: Blank must immediately precede Expand, for output
Blank DC C' ' Single space for carriage control
Expand DS XL(2*(NC+1)) Digit-expansion area
Out DS XL(2*((NC/2)*3+4)) Two formatted print lines
Format DS 0XL(L'Out) Length of formatting table

DC AL1(0,1,2,0) Blank, 2 count digits, blank
F1 DS 0AL1 Anchor for first line

DC (NC/2)AL1(0,((*-F1)/3)*2+3,((*-F1)/3)*2+4)
DC 4AL1(0) 4 blanks for second line

F2 DS 0AL1 Anchor for second line
DC (NC/2)AL1(0,((*-F2)/3)*2+NC+3,((*-F2)/3)*2+NC+4)

Hex2Char DC C'0123456789ABCDEF' Hex-to-EBCDIC translation table
End P24_2

The output from this program showing the original order of the cards and the results after the first shuffle:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A
1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34

 01 01 1B 02 1C 03 1D 04 1E 05 1F 06 20 07 21 08 22 09 23 0A 24 0B 25 0C 26 0D 27
0E 28 0F 29 10 2A 11 2B 12 2C 13 2D 14 2E 15 2F 16 30 17 31 18 32 19 33 1A 34

Some sample results with other numbers of cards:

Programming Problem 24.3.

The key to this solution is the translate table, which has zero function bytes in the positions of a blank and the decimal
digits. There are better ways to create the (printable) column number!

Print NoGen
P24_3 Start 0

Using *,15 Use caller's GR15 as base register
Read ReadCard Record,EndFile Read a record

LA 0,Record-1
LA 1,Record
TRT 0(L'Record,1),Table Scan the record
JZ Valid No invalid characters found
MVC OutRec,Record Move the record to the display line

* Invalid character found
SR 1,0 Calculate column number
SR 0,0 Clear high-order register
D 0,=F'10' Divide by 10
MVC InvalMsg,ErrorMsg Move error message text to line
STC 1,ErrorCol Store tens digit of column number
STC 0,ErrorCol+1 Store low-order digit of column
OC ErrorCol(2),=2C'0' Add numeric zones
PrintLin OutLine,OutLen Display the error message

Cards Shuffles

8 3

10 6

12 10

24 11

52 8

64 6

1168 Assembler Language Programming for IBM System z™ Servers Version 2.00

MVC OutLine+1(OutLen-1),OutLine Clear the display line
Valid J Read Repeat for another record
EndFile BR 14 Return to the caller
Table DC (C' ')X'1',X'0' Blank valid, lower characters not

DC (C'0'-C' '-1)X'1',10X'0' Numeric digits valid, rest not
DC (255-C'9')X'1' Remaining characters invalid

TabLen Equ *-Table Must be 256 (X'100')
ErrorMsg DC C'Invalid character, column'
Record DS CL80 Input buffer for 80-byte records
*
OutLine DC C' ' Carriage control character
OutRec DC CL(L'Record)' ' Space for the record

DC C' ' Space
InvalMsg DC CL(L'ErrorMsg)' ' Space for error message

DC C' ' Space
ErrorCol DC 2C' ' Space for column number
OutLen Equ *-OutLine Length of the display line

End P24_3

Suggested Solutions to Selected Exercises and Programming Problems 1169

Section 25 Solutions
Section 25.1

25.1.1. When base-displacement addresses are generated, a zero base or index digit is treated as “no base” or “no
index”. Since these instructions don't use base-displacement addressing, GR0 is allowed to contain an operand address.

25.1.2. Interruptible instructions like MVCL and CLCL are treated specially if they are interrupted when targets of an
EX instruction. Instead of “backing up” the Instruction Address by 2 bytes (as indicated in Figures 222 and 225), the
IA is reduced by 4 bytes so that the EX instruction will be re-executed when control returns to your program. Because
the 4 operand registers will have been updated, be sure none of them is used as the R1, X2, or B2 operand of the EX
instruction.

25.1.3. No. Because only one source byte is involved, it is either

• not in the target area, or
• is the only source byte in the target area, in which case overlap occurs only if it is moved to itself, so the overlap

isn't destructive!

25.1.4. It depends on the length of the second operand: if it is positive, the CC is set to 1 because the first operand was
exhausted first; if the second operand length is also zero, the CC is set to 0.

25.1.5. In this instruction sequence, is the first XR instruction needed?

LA 0,Field+1 Target address
LHI 1,3500-1 Target length
XR 2,2 Source address
XR 3,3 Source length
ICM 3,B'1000',Field Pad byte
MVCL 0,2 Propagate the byte

The XR 2,2 isn't really needed, because the length of the source operand is zero, so no memory reference will be made
to the “source” operand other than the pad byte.

25.1.6. Yes. Even if the full operand lengths cause them to overlap, no target byte is used as a source byte. However,
these tests don't indicate non-destructive overlap; see Exercise 25.1.9.

25.1.7. The results of the four operations are shown in this table; for case (2), remember that the length attribute of
STR2 is only 1, not 110!

25.1.8. Some typical cases are shown:

┌─────────────┐ Source operand
┌────┴─────────┬───┘ No destructive overlap
└──────────────┘ Target operand

┌─────┐ Source operand
┌────┴─────┴───┐ No destructive overlap
└──────────────┘ Target operand

┌──────────┐ Source operand
├──────────┴───┐ No destructive overlap
└──────────────┘ Target operand

┌──────────────┐ Source operand
├──────────┬───┘ No destructive overlap
└──────────┘ Target operand

Case GR0, GR2
before

GR1, GR3
before

CC GR0, GR2
after

GR1, GR3
after

(1) X'074212D0'
X'074212D4'

X'00000004'
X'00000004'

1 X'074212D3'
X'074212D7'

X'00000001'
X'00000001'

(2) X'074212D0'
X'07421348'

X'00000078'
X'00000001'

0 X'07421348'
X'07421349'

X'00000000'
X'00000000'

(3) X'074212D0'
X'074212E4'

X'00000014'
X'00000002'

2 X'074212D4'
X'074212E6'

X'00000012'
X'00000000'

(4) X'074212D0'
X'074212D0'

X'00000005'
X'00000004'

0 X'074212D5'
X'074212D4'

X'00000000'
X'00000000'

1170 Assembler Language Programming for IBM System z™ Servers Version 2.00

┌──────────────┐ Source operand
└─┬────────┬───┘ Destructive overlap
└────────┘ Target operand

How are these sketches affected by the presence of the pad byte?

25.1.9. First, we must analyze the possible overlap conditions. c(GR1) is the address of the leftmost byte of the second
(Source) operand, and c(GR2) is the address of the leftmost byte of the first (Target) operand. First, we test for pos-
sible overlap conditions:

• If A(Source) <A(Target) and A(Source)+Length >A(Target), the overlap is destructive.
• If A(Target)+Length≤ A(Source), there is no overlap because the target area lies entirely at lower addresses than

the source.
• If A(Source)+Length≤ A(Target), there is no overlap because the source area lies entirely at lower addresses than

the target.
• If A(Source)=A(Target), the overlap is perfect, and is not destructive.

The symbols naming the registers help clarify the instructions.

RS Equ 1 Source operand address
RT Equ 2 Target operand address
RL Equ 3 Operand length

CR RS,RT Check source vs. target addresses
JNL NoDest Not destructive if source is higher
LR 0,RS Copy source address
AR 0,RL Add operand length
CR 0,RT Compare to target address
JH Destroy Operands overlap destructively

NoDest MVI OLapFlag,0 Test for any overlap: Set flag off
CR RS,RT See if the overlap is perfect
JE SetOlap Set overlap indicator
LR 0,RT Copy target address
AR 0,RL Add operand length
CR 0,RS Compare to source address
JNH NoOlap Jump if target lies below source
LR 0,RS Copy source address
AR 0,RL Add operand length
CR 0,RT Compare to target address
JNH NoOlap Jump if source lies below target

SetOlap MVI OlapFlag,1 Indicate overlap occurs
NoOlap CHI RL,256 Test remaining length to move

JNH DoLast If 256 or less, do final fragment
MVC 0(256,RT),0(RS) Move 256 bytes
AHI RS,256 Increment source address
AHI RT,256 Increment target address
AHI RL,-256 Decrease length remaining to move
J NoOlap And test for more to do

MoveLast MVC 0(*-*,RT),0(RS) Move remaining group of bytes
DoLast BCTR RL,0 Decrease last count for EX

EX RL,MoveLast Move the last set of bytes
TM OlapFlag,1 Test if overlap indicator was set
JO Overlap Branch if it was
- - -

OlapFlag DC X'0' Byte for the overlap flag

25.1.12. See Figure 221 on page 404!

25.1.13. No, because there is destructive overlap. For example:

LA 0,X+1 Target address
LA 1,5 Target length
LA 2,X Source address
LA 3,4 Source length
ICM 3,8,=C'0' Padding character
MVCL 0,2 Move, starting at X, to X+1
- - -

X DS CL5
results in Condition Code 3.

Suggested Solutions to Selected Exercises and Programming Problems 1171

25.1.14. Consider these instructions:

SR 1,1 Set source length and pad to zero
LA 2,New Target address
LHI 3,8192 Set target length
MVCL 2,0 Zero the field at New

Did you try to initialize GR3 using an LA instruction?

Section 25.2

25.2.1. If the instruction is completed with Condition Code 3 and is re-executed, the padding character might change
before the entire compare or move operation is complete.

25.2.2. No; only the shorter operand is padded. If the operand lengths are equal, no padding is needed.

25.2.3. First, consult the z/Architecture Principles of Operation to see what it says about “address wrap-around”. Then,
if you decide to try executing the MVCLE in 24-bit addressing mode with a very long length, don't tell anyone where
you got the idea.

25.2.4. X'2625A000'.

Section 25.3

25.3.1. Consider these three statements: although they define the required C-strings, first ask what are the length attri-
butes of the three symbols?

Len0 DC X'0' C-string with length zero
Len1 DC C'*',X'0' C-string with length one
Len10 DC 10C'*',X'0' C-string with length ten
The length attributes are 1, 1, and 1. You might have written

Len1 DC X'5C00' C-string with length one
but this technique is very clumsy for longer strings, and you must know the representation of each character. Be careful
when you use length attributes with C-strings!

Section 25.4

25.4.1. You can do this by remembering the address of the most recent blank character before the terminating null byte
is found. Another easy way to do this is to use SRST to find the first null, indicating the end of the C-string. Then, use
TRTR to scan backward for the last nonblank character. A test for a null C-string is included in this example.

LA 2,CData GR2 has address of start of string
LR 5,2 Copy starting address to GR5
AL 5,CDataLen GR5 points past last possible byte
XR 0,0 Search character is a null byte

 FindEnd SRST 5,2 Scan for the terminating null byte
JO FindEnd Repeat if not found yet
JH BadData Error! No terminating null found!
CR 5,2 Check whether the C-string is null
JE NullData Null string, no nonblanks
BCTR 5,0 Back up GR5 to the byte before null
LA 2,CData Set GR2 to starting address
LR 1,5 Copy end address to GR1
SR 1,2 Find length to search for nonblank
EX 1,TRTR Use TRTR to search for a nonblank
JZ AllBlank No nonblank character was found
- - - GR1 points to the nonblank

 TRTR TRTR 0(*-*,5),NonBlank Find a nonblank character
NonBlank DC 256X'1' Fill the table with nonzero bytes

ORG NonBlank+C' ' Position at offset X'40'
DC X'0' Don't stop on blanks
ORG , Adjust Location Counter

25.4.2. Consider these instructions:

1172 Assembler Language Programming for IBM System z™ Servers Version 2.00

XR 0,0 Search argument is a null character
LA 7,WorkArea+L'WorkArea-1 End of search area
LA 4,WorkArea Start of search area

Search SRST 7,4 Search for the terminating null
JO Search Repeat if not found yet
JH NotFound No terminating null found?
LA 0,WorkArea Starting address
SR 7,0 Null byte address - start address
ST 7,WorkLen Store the C-string's length

The JH instruction illustrates a way to check for the possibility of invalid C-string data at WorkArea. Taking immediate
remedial action is better than finding the address of a random null character elsewhere in memory and assigning that
as the length of the C-string. (The next operation might try to move the “C-string” to a new work area, possibly over-
writing important parts of your program.)

25.4.3. Be careful! You can't immediately use the SRST instruction, because it won't necessarily stop after N characters
have been tested. You should first set the address in R1 to the address of (A +c(m)), where
m > min(c(N),strlen(WorkArea)). Use your solution to Exercise 25.4.2 to find strlen(WorkArea).

25.4.4. Two searches will be needed:

1. a first search to find a null character to determine the string's length,
2. a second to find the character at OddByte

What will happen if the string at Clutter is a null string?

Section 25.5

25.5.1. If you had written

MVC New,Old
you would first have to know that the length of the characters at Old was fewer than 255 bytes long. If this is true, you
would have correctly moved the string and the null terminator, because the Length Specification byte would be derived
from the length attribute of New. However, if you had written

MVC New(L'Old),Old
the terminating byte would not have been moved.

25.5.3. It contains the token's length without the comma. Consider the first token, LIST. The terminating comma is at
Source + 4 so that when the starting address of Source is subtracted, the token length is 4.

25.5.4. This solution first finds the length of the From string to test whether it will fit within N bytes.

XR 0,0 Search for terminating null byte
LA 1,From Point to start of search string
LR 2,1 Copy address
AL 2,NBytes Address of first byte past valid area

 RepeatS SRST 2,1 Test for null terminator byte
JO RepeatS Branch if not found yet
JL Okay Branch if From string will fit
XR 1,1 From string is too long to fit
L 3,NBytes Length of From to be moved
LR 5,3 Length of Target to be moved into
LA 2,Target Address of target string
LA 4,From Address of source string
MVCL 2,4 Move N bytes
J Done Finished with the move

Okay LA 1,Target Address of Target string
LA 2,From Address of source string

 RepeatM MVST 2,1 Move some bytes
JO RepeatM Move some more bytes if necessary
AHI 1,1 Point GR1 past the final byte

Done - - -

25.5.5.

Suggested Solutions to Selected Exercises and Programming Problems 1173

XR 0,0 Search for terminating null byte
LA 1,Prefix Address of Prefix string
LR 2,1 Copy address
AHI 2,8000 Maximum length of Prefix string

Srch SRST 2,1 Search for terminating null
JO Srch Repeat if not found yet
JH Error Null not found within 8000 bytes!

* GR1 = address of the null byte terminating Prefix string
LA 3,Suffix Address of Suffix string

Move MVST 1,3 Move Suffix string after Prefix
JO Move Repeat if necessary
- - -

25.5.6. If you completed Exercises 25.5.4 and 25.5.5, the solution to this exercise is straightforward.

Section 25.6

25.6.1. Consider these instructions:

XR 0,0 Both strings terminated by null bytes
LA 1,StringA Address of StringA
LA 2,StringB Address of StringB

Test CLST 1,2 Compare the two strings
JO Test Equal so far, repeat comparison
JE Done Strings are equal, c(GR0)=0
JL ALow Jump if StringA < StringB
AHI 0,1 Indicate StringA > StringB, c(GR0)=+1
J Done Finished

ALow BCTR 0,0 StringA < StringB, c(GR0)=-1
Done - - -

25.6.3.

(1) CC1, c(GR1)=X'26F945', c(GR2)=X'26F94A'
 (2) CC0, c(GR1)=X'26F945', c(GR2)=X'26F946'
 (3) CC1, c(GR1)=X'26F947', c(GR2)=X'26F94C'
 (4) CC2, c(GR1)=X'26F945', c(GR2)=X'26F94D'

 Section 25.7

25.7.1. Undoubtedly something unpleasant.

25.7.2. The results are shown in the following table:

Section 25.8

25.8.2. 255, because the substring length is in the rightmost byte of GR0.

25.8.3. If CUSE restarts at the second equal byte, it will discover the same inequality one byte earlier. Thus it should
restart with the bytes following the unequal bytes.

25.8.4. No. Both strings have the same length (4 bytes), and the search for matching substrings stops at the end of the
longer operand.

25.8.5. CLCLE searches for the first pair of unequal bytes (padding the shorter operand if necessary), while CUSE
searches for the first pair of equal bytes matching the padding byte.

c(GR2) c(GR3) CC

X'7F290F' 4 1

X'7F2913' 0 0

X'7F2914' 42 1

1174 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 26 Solutions
Section 26.1

26.1.1. Because BCD characters can take on only 64 values, your translation or mapping table needs only 64 entries.
Here's a typical table, where octal values not representing characters are translated to blanks:

DC C'0123456789 ='' ' Values 00-17 octal
DC C'+ABCDEFGHI .) ' Values 20-37 octal
DC C'-JKLMNOPQR $* ' Values 40-57 octal
DC C' /STUVWXYZ ,(' Values 60-77 octal

26.1.3. The octal digits are

60 60 60 60 60 60 60 60 60 51 25 63 64 51 45 60 60 60 60 60

26.1.5. 2N −1.

Section 26.2

26.2.1. Some other variant characters are:

The ¤ symbol was a technical and political compromise meant to represent the local currency symbol in each country.
Also, the ∈ symbol is meant to represent the European “Euro”, but these notes only have the mathematical “member
of” symbol available as the closest approximation.

26.2.2. If your source program is encoded using code page 037 (the Assembler's default), the generated machine lan-
guage is X'7C7B5B4FC0BABBD0'. However, if the code page used for your source program is different (possibly one of
those in Table 171 on page 431), you might find that the Assembler generates different values.

26.2.3. 82.

Section 26.3

26.3.1. Alphanumeric characters in the ASCII character set have representations less than X'80', but in EBCDIC they
have representations greater than X'80'.

26.3.2. The generated data is:

Con1: X'352A28322E3233362F44656E6F6D292B5069'
Con2: X'496E76616C69642045787072657373696F6E3F'
Con3: X'48656C6C6F2C20576F726C6421'
Con4: X'4269744D61736B26427974657C7C27436861727327'

Section 26.4

26.4.1. Because the DBCS option is active, the third statement causes an error because the explicit length truncates into
the middle of DBCS data.

A DC G'<.A.B.C>' generates X'42C142C242C3'
B DC GL4'<.A.B.C>' X'42C142C2'
C DC CL4'<.A.B.C>' error, truncates into DBCS data
D DC C'<.A.B.C>' generates X'0E42C142C242C30F'

Section 26.5

26.5.1. There would be no changes, because all of the characters are among the ASCII characters in the first 127 bytes
of the Unicode Basic Multilingual Plane.

26.5.3. The generated data is

C1 X'004100420043'
C2 X'004100420043002000200020'
C3 X'0041'
C4 X'0041002600420027'

Page X'4A' X'5A' X'9F' X'A1' X'B0' X'B1' X'BA' X'BB'
037 ¢ ! ¤ ∼ ∧ £ []

1143 § ∈] ü £ [¬ |

Suggested Solutions to Selected Exercises and Programming Problems 1175

Section 26.6

26.6.2. One operand can be padded, but not both; only the shorter operand will be padded.

26.6.5. You can use only those Unicode characters with encodings between U+0000 and U+0FFF, because the displace-
ment of those two instructions is limited to 12 bits.

26.6.6. The instruction LA MapTbl-X'4040' could fail because the required displacement might be negative. Some alter-
natives are

LAY 1,MapTbl-X'4040'
LARL 1,MapTbl-X'4040'
L 1,=A(MapTbl-X'4040')

but the literal in the last instruction must be addressable!

26.6.7. Yes, because no test character is involved when the optional operand is 1.

26.6.8. It depends. If the optional operand is 0, no, because the test character is two bytes long rather than one byte. If
the length is even and the optional operand is 1, yes.

26.6.9. Consider the bit patterns in the first byte:

If a byte starts with B'10', you can scan backward or forward at most three bytes to find one of the valid starting
patterns. This is sometimes called the “self-synchronizing” property of UTF-8.

26.6.12. Here is the required translate table. It was found on the IBM “Globalization” web site.

* SBCS-to-Unicode mapping for 037 to Unicode 10646
DC X'0000,0001,0002,0003,009C,0009,0086,007F'
DC X'0097,008D,008E,000B,000C,000D,000E,000F'
DC X'0010,0011,0012,0013,009D,0085,0008,0087'
DC X'0018,0019,0092,008F,001C,001D,001E,001F'
DC X'0080,0081,0082,0083,0084,000A,0017,001B'
DC X'0088,0089,008A,008B,008C,0005,0006,0007'
DC X'0090,0091,0016,0093,0094,0095,0096,0004'
DC X'0098,0099,009A,009B,0014,0015,009E,001A'
DC X'0020,00A0,00E2,00E4,00E0,00E1,00E3,00E5'
DC X'00E7,00F1,00A2,002E,003C,0028,002B,007C'
DC X'0026,00E9,00EA,00EB,00E8,00ED,00EE,00EF'
DC X'00EC,00DF,0021,0024,002A,0029,003B,00AC'
DC X'002D,002F,00C2,00C4,00C0,00C1,00C3,00C5'
DC X'00C7,00D1,00A6,002C,0025,005F,003E,003F'
DC X'00F8,00C9,00CA,00CB,00C8,00CD,00CE,00CF'
DC X'00CC,0060,003A,0023,0040,0027,003D,0022'
DC X'00D8,0061,0062,0063,0064,0065,0066,0067'
DC X'0068,0069,00AB,00BB,00F0,00FD,00FE,00B1'
DC X'00B0,006A,006B,006C,006D,006E,006F,0070'
DC X'0071,0072,00AA,00BA,00E6,00B8,00C6,00A4'
DC X'00B5,007E,0073,0074,0075,0076,0077,0078'
DC X'0079,007A,00A1,00BF,00D0,00DD,00DE,00AE'
DC X'005E,00A3,00A5,00B7,00A9,00A7,00B6,00BC'
DC X'00BD,00BE,005B,005D,00AF,00A8,00B4,00D7'
DC X'007B,0041,0042,0043,0044,0045,0046,0047'
DC X'0048,0049,00AD,00F4,00F6,00F2,00F3,00F5'
DC X'007D,004A,004B,004C,004D,004E,004F,0050'
DC X'0051,0052,00B9,00FB,00FC,00F9,00FA,00FF'
DC X'005C,00F7,0053,0054,0055,0056,0057,0058'
DC X'0059,005A,00B2,00D4,00D6,00D2,00D3,00D5'

Bit Pattern Total Bytes

0xxx xxxx 1

10xx xxxx Not a starting byte!

110x xxxx 2

1110 xxxx 3

1111 0xxx 4

1176 Assembler Language Programming for IBM System z™ Servers Version 2.00

DC X'0030,0031,0032,0033,0034,0035,0036,0037'
DC X'0038,0039,00B3,00DB,00DC,00D9,00DA,009F'

You would probably use the TROT instruction.

Note that all the characters in code page 037 translate to UTF-16 characters starting with X'00', so they are included
in the Basic Mutlilingual Plane (BMP).

26.6.13. This elegant solution and its analysis are due to John Ganci.

* Generate a 512-byte table of all 2-byte printable hexadecimal *
* values corresponding to every possible 1-byte binary value. *
* For example, the table entry for X'00' is X'F0F0' and the table *
* entry for X'9C' is X'F9C3'. *

* Numeric digits in the following discussion are all base ten. *
* Let h be a hexadecimal digit (0 <= h <= 15). Let t be the *
* 10's digit of h when h is written in base 10 and let u be *
* the unit's digit of h when h is written in base 10. Then *
* *
* h = 10 * t + u *
* *
* Note that t is 0 or 1 and *
* *
* 0 <= u <= 9 when t = 0, *
* 0 <= u <= 5 when t = 1. *
* *
* The printable hexadecimal byte for h is *
* *
* 240 + u = 240 + h = X'F0' + u if 0 <= h <= 9 *
* 193 + u = 183 + h = X'C1' + u if 10 <= h <= 15 *
* *
* In either case, the printable hexadecimal byte for h is *
* *
* 193 + 47(1 - t) + u = 240 - 47t + u *

* Let v = X'hk' be a source byte value represented in hexadecimal. *
* *
* We compute PH(v) = 2-byte Printable Hexadecimal value of v. *
* *
* The value is computed as a 2-byte entry in a table, with the *
* table entry for v at offset 2v in the table. *
* *
* (1) v = (*-ph)/2 = h * 16 + k *
* *
* (2) 16's digit = h = (1) / 16 = ((*-ph)/2)/16 *
* *
* (3) 1's digit = k = (1) - (2) * 16 *
* = (*-ph)/2-(((*-ph)/2)/16)*16 *
* *
* (4) 10's digit for h = r = h/10 = (((*-ph)/2)/16)/10 *
* *
* (5) 1's digit for h = s = h - (h/10)*10 *
* = ((*-ph)/2)/16-((((*-ph)/2)/16)/10)*10 *
* *
* (6) 10's digit for k = t = k/10 = ((*-ph)/2-(((*-ph)/2)/16)*16)/10 *
* *
* (7) 1's digit for k = u = k - (k/10)*10 *
* = (*-ph)/2-(((*-ph)/2)/16)*16-(((*-ph)/2-(((*-ph)/2)/16)*16)/10)*10 *
* *
* (8) PH(v) = printable hex value = (240-47r+s)*16*16+240-47t+u *

Print Data For validating the generated data
SPACE 1

PH DS 0D
DC 256AL2((240-47*((((*-PH)/2)/16)/10)+((*-PH)/2)/16-((((*-X

PH)/2)/16)/10)*10)*16*16+240-47*(((*-PH)/2-(((*-PH)/2)/1X

Suggested Solutions to Selected Exercises and Programming Problems 1177

6)*16)/10)+(*-PH)/2-(((*-PH)/2)/16)*16-(((*-PH)/2-(((*-PX
H)/2)/16)*16)/10)*10)

26.6.14. It's probably easiest to use UTF-8 as an intermediate representation.

For all but surrogate pairs, UTF-16 characters can be transformed to UTF-32 by adding two zero high-order bytes.
For mapping UTF-16 surrogate pairs to UTF-32, the bit mappings in Figures 252 and Figure 253 on page 447 show
how to convert the bits.

To transform UTF-32 characters to UTF-16, if the two high-order bytes are zero simply remove them to create the
UTF-16 format. If there are nonzero bits in the two high-order bytes, again consult the figures in Section 26.5.

26.6.15. See the solution to Exercise 26.6.9 above.

Section 26.7

26.7.1. The function-code table can be either 256 or 512 bytes long. Because you are translating only character values
less than 255, the choice of table size depends on the range of values you want to assign to the function codes. If all
function codes are less than 255 you can use either table size; but if some function codes lie between 256 and 65535,
you must use a 512-byte function code table.

26.7.2. One elegant solution333 is

TL Equ (F+1)*(256+A*(1-L)*5280)
An alternative, but much more complex solution is334 is

TL Equ (((((A+1)/A)/2)*256+((1-A)/(1+A)))*(F+1)*256)*((1-(A*L))=
/(1+(A*L)))+(A*L)*(F+1)*256

Some terms may be worth explaining. In the last addition,

(A*L)*(F+1)*256
will be evaluated as 256 or 512 only if both A and L are 1. This takes care of the last two rows of Table 189 on
page 450. Similarly,

((1-(A*L))/(1+(A*L))
is 1 only if either A or L is zero. This takes care of the first four rows of the table. The remaining subexpressions
calculate the other four values of TL.

26.7.5. Among the similarities and differences:

1. TRTE translates and tests without changing the first operand; the other four only translate.
• TROO is similar to TRTE with A=0, F=0
• TROT is similar to TRTE with A=0, F=1
• TRTO is similar to TRTE with A=1, F=0, L=0
• TRTO is similar to TRTE with A=0, F=0, L=1, with no nonzero bits in the high-order argument byte
• TRTT is similar to TRTE with A=1, F=1, L=0
• TRTT is similar to TRTE with A=1, F=1, L=1. with no nonzero bits in the high-order argument byte

26.7.6. The needed modifications to the example in Figure 255 on page 451 are straightforward.

Z Equ F+1 Argument character length
*
Tbl DC 0D,(X'28')AL(Z)(0)

DC AL(Z)(LP-B) Left parenthesis
DC AL(Z)(RP-B) Right parenthesis
DC AL(Z)(M-B) * (Multiplication)
DC AL(Z)(P-B) + (Addition)
DC AL(Z)(0) Ignored character
DC AL(Z)(S-B) - (Subtraction)
DC AL(Z)(0) Ignored character
DC AL(Z)(D-B) / (Division)
DC 10AL(Z)(N-B) Numeric digit
DC (X'FF'-X'39')AL(Z)(0) Ignored characters

333 Due to Robert Netzlof.
334 My own.

1178 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 26.8

26.8.1. Suppose the bytes in GR2 are labeled wxYZ (from left to right). The LRVR instruction changes the byte order
to ZYxw; the SRA instruction then shifts ZY right, propagating the leftmost bit of Z as the sign of the 32-bit result.
Replacing SRA by SRL leaves an unsigned value in GR2.

26.8.3.

LRV 1,DPG
Compare this one instruction to those in your solution to Exercise 17.2.5.

Suggested Solutions to Selected Exercises and Programming Problems 1179

Section 27 Solutions
Section 27.1

27.1.1. Both instructions in Figure 263 on page 461 use implied lengths, relying on the length attribute of the target
operand. Thus, they move 8 zones or digits. If the fields are defined as 8X'00' their length attribute is 1, and only one
zone or numeric will be moved. Thus, the results would be

c(Numerics) = X'0E'
c(Zones) = X'F0'

27.1.2. The result will be the same as executing

MVC Target,Source
except that it will take more time.

27.1.3. The key to this solution is the translate table, which is arranged like this:

0 9 A F
┌───────────────┬────────┐
0│ │ │
│ Bad Sign │OK Signs│
: : :
9│ │ │
├───────────────┼────────┤
A│ Bad Byte │ Bad │
│ │ Digit │
: : :
F│ │ │
└───────────────┴────────┘

XR 2,2
TRT ZTest+L'ZTest-1(1),ZDLast
B *(2)
J BadSign
J ZPlus
J ZMinus
J BadDigit
J BadByte
- - -

* 4=Bad Sign, 8=Plus, 12=Minus, 16=Bad Digit, 20=Bad Byte
ZDLast DC 10AL1(4,4,4,4,4,4,4,4,4,4,8,12,8,12,8,8)

DC 6AL1(20,20,20,20,20,20,20,20,20,20,16,16,16,16,16,16)
You might try extending the translate table to detect a value of ± 0 in the last byte, and branch to Plus0 and Minus0 as
appropriate. (The TP instruction described in Section 29.1 is much simpler!)

27.1.4. The translate table checks for zoned numerics:

TRT ZTest(L'ZTest-1),ZDNums
JNZ BadZDig Condition Code not zero
- - -

ZDNums DC 240AL1(4) X'00'-X'EF' invalid
DC 10AL1(0) X'F0'-X'F9' valid
DC 6AL1(4) X'FA'-X'FF' invalid

27.1.5. The printed characters will be E, N, C, and R.

27.1.6. For EBCDIC, the rows punched for the + character are 12-8-6, and for the − character only row 11. For
BCD, the − character is also row 11 only, and the + character is row 12 (the top row).

27.1.7. Since only the zone portion of the byte is being moved, any five-byte literal with X'F' zone digits would work.

27.1.8. The second form is incorrect because the duplication factor is not an absolute expression.

1180 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 27.2

27.2.1. All of the constants are 5 bytes long, so the generated data for the last two constants will be different.

27.2.2. The values are (1) X'D1', (2) X'C0', (3) X'F0F4D2', (4) X'F0C5'.

27.2.3. The values are (1) − 09, (2) +2, (3) +007, (4) − 0.

27.2.4. The generated values are (1) X'F0F0F0F0F0F0F0F1F2F3F4F5F6F7F8C9' (7 leading zeros), (2) Length error (too
many digits), (3) X'F5F4F3F2C1' (high-order digit truncated), (4) Error (length modifier greater than 16).

27.2.5. In the rightmost byte, 6×10=60; in any other byte, 10. In the rightmost byte, the 10 decimal digits can be
paired with any of ABCDEF for the sign digit; remember that negative zero is valid.

27.2.6. Because the constant is type C, only the first 5 characters will be present in the assembled constant! (Remember,
the commas are part of the nominal data.)

27.2.7. Both have Length Attribute 5.

27 .2 .8 . I+S=L=N.

Section 27.3

27.3.1. The integer part of (N +2)/2, or (N/2) +1.

27.3.2. In the rightmost byte, 6×10=60; in any other byte, 10×10=100.

27.3.3. The possible bit combinations in each byte of the packed decimal number at Pack need to be analyzed to
determine where they might occur. This diagram divides the possible byte values into four groups:

Box A contains bytes all of whose digits are 9 or less; Box B contains bytes whose first digit is 9 or less and whose
second digit is X'A' or greater. Box C contains bytes whose first digit is greater than X'A' and whose second digit is 9
or less. The remaining bit combinations are in Box D.

By examining the contents of each box, we can use the Condition Code setting after TRT to distinguish many cases:

Now, we can construct and use the required translate table:

LA 1,Pack+L'Pack-1 Point to last byte of Pack (for CC=0)
XR 2,2 Set GR2 to zero
TRT Pack,PDTest Test the packed data
B J0(2) Branch to check resulting CC

*
J0 J BadSign All numerics, sign is invalid
*
P Equ *-J0 Box B Offset for + result

JZ Error CC=0: something went wrong
JM BadDigit CC=1: sign before last digit
J PPlus CC=2: + sign on valid number

*
M Equ *-J0 Box B Offset for - result

0-9 A-F

0
9 Box A Box B

A
F Box C Box D

Box C C = 0 C C = 1 C C = 2

A All bytes contain only numeric
digits so the number has an
invalid sign.

A byte before the last contains a
second digit greater than 9, so it
has an invalid digit.

The last byte has a valid
numeric digit but an invalid
sign.

B Should not occur. Sign digit before the last byte is
invalid.

Valid positive or negative data.

C Should not occur. An invalid digit appears in a
byte before the last.

The last byte contains an invalid
digit and sign.

D Should not occur. A byte before the last contains
an invalid digit.

The last byte contains an invalid
digit.

Suggested Solutions to Selected Exercises and Programming Problems 1181

JZ Error CC=0: something went wrong
JM BadDigit CC=1: sign before last digit
J PMinus CC=2: - sign on valid number

*
C Equ *-J0 Box C offset

JZ Error CC=0: something went wrong
JM BadDigit CC=1: bad digit
JP BadByte CC=2: bad sign and digit

*
D Equ *-J0 Box D offset

JZ Error CC=0: something went wrong
J BadDigit CC=1,2: bad digit

*
PDTest DC 0X
Row0_9 DC 10AL1(0,0,0,0,0,0,0,0,0,0,P,M,P,M,P,P) 1st digit 0-9
RowA_F DC 6AL1(C,C,C,C,C,C,C,C,C,C,D,D,D,D,D,D) 1st digit A-F

27.3.4. One way to do this is with

NI SomeVal+L'SomeVal-1,X'FE' Force last bit to 0
Any sign code with rightmost bit zero (A, C, E) indicates a plus sign.

27.3.6. It can't be done with a single instruction. (Compare this exercise to Exercise 27.3.4.) Sign codes X'B' and X'D'
indicate a negative value, but X'F' indicates a positive value. With two instructions, it's easy. (Show how!)

Section 27.4

27.4.1.

• c(Z1) = X'F2F1F4F7F4F8F3F6F4F8'
• c(Z2) = X'F1F4F7F4F8F3F6F4F7' (truncation of one digit)
• c(P3) = X'99999999999D'
• c(P4) = X'123C456C789C' (three separate constants);
• The explicit length of 20 is illegal for both the packed and the zoned constants.
• c(P6) = X'31415926535C' (decimal point ignored)
• c(P7) = X'0CF0' (both constants truncated)
• c(Z8) = X'F1F2F0F4F0F0F8F0...F0'

27.4.2.

• L'Z1 = 10
• L'Z2 = 9
• L'P3 = 6
• L'P4 = 2 (!)
• L'P6 = 6
• L'P7 = 1
• L'Z8 = 1

27.4.3. The generated constant, X'000D', is truncated.

27.4.4. No. The Assembler complains only if the number of digits in the nominal value is greater than 31, even if
removing leading zero digits would leave fewer than 32 significant digits! (Do you think the Assembler should be less −
or more − fussy?)

27.4.5. Because signed packed decimal numbers always have an odd number of digits, the high-order zero digits in the
nominal values are the same as the (default) zero digits inserted by the Assembler to ensure an odd number of digits.

27.4.6. This can be done with an EX instruction:

XR 6,6 Set GR6 to zero
LA 1,L'P Length of the packed operand
IC 1,T-1(1) Insert appropriate mask bits
EX 1,ICM Insert bytes at right end of GR6
- - -

ICM ICM 6,*-*,P Executed to insert 1-4 bytes
T DC X'1,3,7,F' Masks for ICM instruction

27.4.8. Four possible interpretations, and their Assembler Language defining statements, are:

1182 Assembler Language Programming for IBM System z™ Servers Version 2.00

DC F'1077952604' Fullword binary integer
DC C'•••*' Characters (three blanks and an asterisk)
STH 4,X'05C'(0,4) Store Halfword
DC P'+4040405' Packed decimal

Further interpretations are possible, as we'll see later.

27.4.9. This solution is due to John Ganci:

Print Data To verify all data is generated
S1 DS 0D

DC 1000AL2((((*-S1)/2)/100)*16*16*16+(((*-S1)/2-(((*-S1)/2)/X
100)*100)/10)*16*16+(((*-S1)/2-(((*-S1)/2)/100)*100)-(((X
(*-S1)/2-(((*-S1)/2)/100)*100)/10)*10))*16+12)

To describe this solution, he writes:

1. Let V = (*-S1)/2 = H*100 + T*10 + U (Hundreds, Tens, and Units)

2. H = V/100 = ((*-S1)/2)/100

3. Remove the Hundreds digit: TU = T*10+U = V-H*100 =
(*-S1)/2-(((*-S1)/2)/100)*100

4. T = TU/10 = ((*-S1)/2-(((*-S1)/2/100)/100)*100)/10

5. Remove the Tens digit: U = TU - T*10 = U - (TU/10)*10 =
(*-S1)/2-(((*-S1)/2)/100)*100-(((*-S1)/2-(((*-S1)/2/100)/100)*100)/10)*10

6. Then, generate the packed decimal constant X'HTUC' =
H*16*16*16+T*16*16+U*16+12

What will happen if you replace the constant type AL2 with Y? Try it!

27.4.10. Like the solution to Exercise 27.4.9, this is also due to John Ganci:

Print Data To verify all data is generated
Z3 DS 0D

DC 1000AL3((((*-Z3)/3)/100)*16*16*16*16+(((*-Z3)/3-(((*-Z3)/X
3)/100)*100)/10)*16*16+(((*-Z3)/3-(((*-Z3)/3)/100)*100)-X
((((*-Z3)/3-(((*-Z3)/3)/100)*100)/10)*10))+X'F0F0C0')

The analysis of this exercise is similar to that in Exercise 27.4.9, but the generated data doesn't line up as neatly in the
listing.

27.4.11. The Scale Attribute values are: S'A=7, S'B=3, S'C=1, S'D=4, S'E=0.

27.4.12. The number of packed decimal digits is 2*L'X−1, so the value of the Integer Attribute is I'X = 2*L'X−1−S'X.
That is, the total number of digits minus the number of fraction digits.

27.4.13. The attributes of the symbols are:

27.4.15. L=(N/2)+1; N=(2L-1)=I+S.

Section 27.5

27.5.1.

PACK AA(5),BB(5) F244 ---- ----
UNPK BB,AA F3A1 ---- ----
PACK 0(16,9),65(,2) F2F0 9000 2041
PACK AA(0),BB(0) F200 ---- ----
UNPK BB-AA(,9),BB(L'AA) F3A1 9002 ----
PACK AA,BB+11(3) F212 ---- ----

Symbol L' I' S'
A 5 2 7

B 5 6 3

C 5 8 1

D 4 3 4

E 6 11 0

Suggested Solutions to Selected Exercises and Programming Problems 1183

Section 27.6

27.6.1. NP = (NZ +2)/2, or (NZ/2) +1.

27.6.2. The results for the three operands are:

1. X'0000000FFF7F'
2. X'336B066934A5'
3. X'CCFC07F2C412'

27.6.4. The address of the rightmost byte of the first (target) operand must be greater than or equal to the address of
the rightmost byte of the second (source) operand. This is perhaps deceptive: it might seem that the first operand's
rightmost byte address could be as much as 2 less than the second operand's rightmost byte address, since “the result
byte is stored immediately after fetching the necessary operand bytes”. However, the fetched bytes are those for the
current result byte, not the next result byte!

27.6.5.

• c(P1) = X'468C'
• c(P2) = X'02468C'
• c(P3) = X'6C'
• c(P4) = X'00000681357C'
• c(P5) = X'002468135F'

27.6.6. The result is correct for any length, so the maximum length is 16 and the minimum length is 1.

27.6.7. X'000000013579BDFE'.

27.6.8. Packing a string of blanks gives X'000...004', which has an invalid sign code for arithmetic purposes. The
rightmost byte could be corrected with an OI instruction with mask X'0C'. (Note also that ORing with a mask X;08'
would work when packing any field containing either numeric digits or all blanks!)

27.6.9. The result will be valid for any value of K satisfying 1 ≤ K ≤ N.

27.6.10. The length digit for PackData is in the L1 field, so it must be positioned correctly:

BCTR 2,0 Reduce count for EXecute
SLL 2,4 Position the count digit correctly
EX 2,PackOp Do the Pack instruction
- - -

PackOp Pack PackData(*-*),ZData Executed instruction

27.6.11. The result will be X'00BDFE'.

27.6.12. The result will be X'00BEFE'.

27.6.13. The result will be X'00BDFE'.

27.6.14. There is no difference so long as there are one or more zoned decimal digits at the right end of the source
operand, because both zeros and blanks have numeric digit zero.

27.6.15. The results are

(1) Source = C'34567', Packed = X'0034567F' (valid)
(2) Source = C'ABCDE', Packed = X'0012345C' (valid)
(3) Source = C'****0', Packed = X'00CCCC0F' (invalid digits)
(4) Source = C'$2.98', Packed = X'00B2B98F' (invalid digits)
(5) Source = C' ', Packed = X'00000004' (invalid sign)
(6) Source = C'VWXYZ', Packed = X'0056789E' (valid)
Examples (2) and (6) illustrate the dangers of “successfully” PACKing fields containing character data.

Section 27.7

27.7.1. c(PackOp) = X'12345C'; c(ZonOp) = X'F1F2F3F4C5'.

27.7.2. The results are:

1. X'F0F0FFFFFFFFFFFF7F'
2. X'F9F6F9F9F9F3F8F4A5'
3. X'F6FFF7F2F6FCF6F412'

1184 Assembler Language Programming for IBM System z™ Servers Version 2.00

27.7.3. X'FFFFFCFFFCFCFDFE'. (Were you surprised?)

27.7.5. If the length of either operand is 1 byte, there is no problem with overlap.

Now, assume neither operand is one byte long. Then, the address of the rightmost byte of the first (zoned) operand
must be greater or equal to than the address of the rightmost byte of the second (packed) operand plus the length of the
second operand, minus 2. That is, if ZL is the address of the last byte of the zoned operand, and PL for the second
operand, then

ZL ≥ PL + L'P - 2
where L'P is the length of the packed second operand. This avoids the possibility that the byte pairs of the first
operand being stored before single bytes are fetched for the second operand.

27.7.6.

• c(Z1) = X'F1F2F3F4F5C6'
• c(Z2) = X'F0F1F2F3F4F5C6'
• c(Z3) = X'F5C6'
• c(Z4) = X'F0F0F0F4F5C6'
• c(Z5) = X'F1F2F354'.
• The contents of Z6 is unknown, since the implied length (4) of PData means that unpacking will start with the byte

at PDATA+6. If we assume that the byte at PData+3 contains the two hex digits X'xy', then c(Z6)=X'FCyx'.

27.7.7. The minimum length is of course 1; the maximum length is 3. (See the solution to Exercise 27.7.3 for an
illustration.)

27.7.8. NZ = 2×NP − 1. They are different because we discarded the remainder in evaluating NP=(NZ/2) +1.

27.7.11. The result is X'FFFFFFFFFFFFFDEF'

27.7.12. Use implied lengths for the second operand of PACK and UNPK.

27.7.14. The result will be X'F0F1F2F3F465'.

27.7.15. The result will be X'F0FFF2F3F465'.

27.7.16. The result will be X'F0FFF5F6F565'.

27.7.17. The result at Answer will be X'F0F0F7F6F5F4C3'.

Section 27.8

27.8.1. The result is 16 bytes long: X'00000000 12345678 90123456 789ABCDC' (the spaces are inserted to improve
readability).

27.8.2. The result will be X'0BDFBDFBDFBDFBDFBDFBDFBDFBDFBDFC'.

27.8.3. The result will be X'0DBFDBFDBFDBFDBFDBFDBFDBFDBFDBFC'.

27.8.4. Because the required 16 bytes of the packed decimal operand would overlap the source operand, the results are
unpredictable. (Try it, and see what happens!)

27.8.5. Assuming that no test is made for all unpacked characters being zeros, CC1 should indicate a negative packed
operand, and CC2 should indicate a positive packed operand. If the test for zero characters was made, CC0 should be
set. (Question: should such a test for zeros check the entire packed operand, or only the digits actually unpacked?)

27.8.6. X'0000 0000 0000 0000 0000 0009 8765 432C', where the spaces were inserted for readability.

27.8.7. The CC setting will be zero in both cases!

Section 27.9

27.9.1. Because all of the bytes being translated have values between X'F0' and X'FF', we must ensure that the first
byte of the translate table at TRTab is accessed if the source byte is X'F0'.

27.9.2. X'0F', from swapping the digits of the first byte of the translate table.

27.9.3. Be careful! It is tempting to start by writing

UNPK String(17),DW(9)

Suggested Solutions to Selected Exercises and Programming Problems 1185

only to discover that the length of 17 is invalid. The unpacking must be done in two steps, as in

UNPK String(9),DW(5) First 4 bytes
UNPK String+8(9),DW+4(5) Last 4 bytes
TR String(16),=C'0123456789ABCDEF'-X'F0' Translate

Does it matter in which order the above two UNPK's are executed? Try it, and then explain why or why not.*

27.9.4. The second operand was exhausted before the first operand field was filled.

27.9.5. Suppose a (non-zero) register (say, 7) is free. Then rewrite the TR either as

L 7,=A(TRTab-X'F0') Point to offset from table
TR Char(8),0(7) Use the same translate table

Of course, the literal must be addressable! If not, use LY instead of L. Or, write

LAY 7,TRTab-X'F0' Point to offset from table
TR Char(8),0(7) Use the same translate table

If neither of these methods work, consider rewriting that part of your program.

27.9.6. This elegant technique is due to D. R. Page.** The code is surprisingly simple:

UNPK BinaryCh(3),Byte(2)
TR BinaryCh(2),TBL-X'F0'
UNPK BinaryCh(5),BinaryCh(3)
TR BinaryCh(4),TBL-X'F0'
UNPK BinaryCh(9),BinaryCh(5)
- - -

Byte DC B'10101101' Input Data
DS C Work byte

BinaryCh DS CL8,C Result string + work byte
TBL DC X'00010405101114154041444550515455'

27.9.7. The solution is obtained by “inverting” the solution to Exercise 27.9.6. The translate table is different, however:
although only 16 bytes are used for the translation, an area 86 bytes long is required. (The gaps could be filled with
other data if you like; “Q” can represent any byte value, because those bytes of the table are not referenced.)

Q Equ 0 Or any other value < 256
PACK BinaryCh+4(5),BinaryCh(9)
TR BinaryCh+4(4),Table
PACK BinaryCh+6(3),BinaryCh+4(5)
TR BinaryCh+6(2),Table
PACK BinaryCh+7(2),BinaryCh+6(3)
MVC Byte(1),BinaryCh+7 Move result byte
- - -

BinaryCh DC CL8'10101101',C' ' Input data + work byte
Byte DS X Result byte
Table DC AL1(0,1,Q,Q,2,3),10AL1(Q)

DC AL1(4,5,Q,Q,6,7),10AL1(Q)
DC 32AL1(Q)
DC AL1(8,9,Q,Q,10,11),10AL1(Q)
DC AL1(12,13,Q,Q,14,15) (86 bytes in all!)

* The order does matter. If the UNPKs are reversed, the byte at String+8 will contain the swapped digits of the byte at DW+5.
** IBM Technical Disclosure Bulletin, Volume 18, January 1973, page 2617.

1186 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 28 Solutions
Section 28.1

28.1.1. Even though the result is X'0000000C' (or 0000000+), it's unlikely any packed decimal operand would be gener-
ated this way. (Suppose the second operand of the AHI instruction had been 2140: would you expect the result at
PWord to be a valid packed decimal number?) (Is it?) (If yes, what is its value?)

Section 28.2

28.2.1. Decimal operands may have differing lengths, whereas both operands in a binary addition or subtraction have
the same length (perhaps after internal sign extension). If the decimal operands have the same length, then no decimal
overflow will occur when adding numbers of unlike sign.

28.2.2. The results are:

(1) X'04294967295C', CC=2, no overflow.
(2) X'00001C', CC=3, overflow
(3) X'99997D', CC=1, no overflow
(4) X'4D', CC=3, overflow
(5) X'111C', CC=2, no overflow
(6) X'0C', CC=0, no overflow
(7) X'000D', CC=3, overflow
(8) X'7D', CC=3, overflow

28.2.3. The results are:

(1) X'12690C', CC=2, no overflow.
(2) X'000D', CC=3, overflow
(3) X'000C', CC=0, no overflow
(4) X'458C', CC=3, overflow
(5) X'040000000D', CC=1, no overflow
(6) X'00000C', CC=0, no overflow

Section 28.3

28.3.1. The subtraction would overflow, setting the Condition Code incorrectly to 3 instead of 2, and possibly also
causing an interruption for decimal overflow.

28.3.2. The CC will be set to 1, because the first operand (X'0C') is logically less than the second (X'0D'). Remember
that the Assembler generates the preferred sign codes!

28.3.3. The CC settings are:

(a) CC=1
(b) CC=2
(c) CC=1
(d) CC=1
(e) CC=2
(f) CC=0
(g) CC=1
(h) CC=1

28.3.4. The CC settings are:

(a) CC=2
(b) CC=1
(c) CC=0
(d) CC=0
(e) CC=1
(f) CC=0

28.3.5. The operands may overlap only if their rightmost bytes coincide.

Suggested Solutions to Selected Exercises and Programming Problems 1187

28.3.6. You can't use CP to compare a zoned decimal value, because the X'F' zone digit causes a Data Exception.

Section 28.4

28.4.2. Let the first and second operands be N1 and N2 bytes long respectively. Then operand 2 (the multiplier) can
have at most 2×N2 − 1 nonzero digits, and operand 1 (the multiplicand) is required to have at most 2× (N1 − N2) − 1
nonzero digits. (Remember that N1 >N2.) The largest number of nonzero digits in the product is the sum of these, or
2×N1 − 2, but the product is 2×N1 − 1 digits long.

28.4.3. Because the product is at most 16 bytes long, the shorter operand must be at most 8 bytes long. Even though
multiplication is commutative (a*b is the same as b*a), the fact that operand 1 is to receive the product forces operand
2 to be the shorter operand.

28.4.4. The largest valid first and second operands are

Operand1 DC PL16'999999999999999' (15 9's)
Operand2 DC PL8'999999999999999' (15 9's)
so the largest product is X'0999 9999 9999 9998 0000 0000 0000 001C'. (Spaces added for readability.)

28.4.5. The products are shown in this table:

28.4.6. The result will not be 063 + . Even though the first operand field is long enough to hold the product, it does not
have as many leading zero bytes as the length of the second operand. This will lead to a Data exception, and the IC
will be set to 7.

Section 28.5

28.5.2.

(1) 113 +055 +
(2) decimal divide interruption
(3) 67957045711 − 1 +
(4) 520322163 +202 +
(5) 38460 − 018 +

28.5.3. In 08 − 35 − the quotient sign digit is not in the low-order position of the second byte, and the remainder doesn't
have the same length as the divisor. (Another clue: packed decimal numbers always have an odd number of digits.)

Section 28.7

28.7.4. It seems simplest to add positive and negative terms separately, and then add those two results. But if the list is
long, the number of digits needed to hold the intermediate sums increases, and the addition time for each term there-
fore increases also. The choice probably depends on operand sizes and the number of items in the list. (There's no
simple answer, unfortunately.)

Original Pair Product Reversed Pair Product

(a) (9 +) × (9−) X'081D' (9−) × (9 +) X'081D'

(b) (72−) × (7 +) X'00504D' (7 +) × (72−) X'00504D'

(c) (44 +) × (44 +) X'0001936C' (44 +) × (44 +) X'0001936C'

(d) (15−) × (55 +) X'0000825D' (55 +) × (15−) X'0000825D'

(e) (107 +) × (107 +) X'0011449C' (107 +) × (107 +) X'0011449C'

(f) (28 +) × (3−) X'00084D' (3−) × (28 +) X'00084D'

1188 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 29 Solutions
Section 29.1

29.1.1. The CC settings are:

(1) CC=3
(2) CC=0
(3) CC=1
(4) CC=2: the operand is X'00FF'
(5) The operand is invalid because it is more than 16 bytes long.

(You can't represent pi to this many digits as a packed decimal
constant.)

(6) CC=0: the operand is X'879696845A', or 879696845+

29.1.2. Not really. You could start with the rightmost byte and step the starting address of the operand to the left one
byte at a time; but if any byte had two invalid digits, you couldn't tell which it was. You might get better results with a
TRT instruction and an appropriate translate table.

Also, stepping from right to left would also require remembering which byte had the most recent bad digit.

29.1.3. Because valid digits are in the range from 0 to 9, you could use this test:

CLI BadByte,X'9F'
JH BadLeft c(BadByte) > X'9F'
J BadRight c(BadByte) < X'9F'

This test fails if the byte is actually valid. (Why?)

Section 29.2

29.2.1. The second bytes containing the two length digits for the 7 ZAP instructions are respectively X'10', X'10',
X'12', X'12', X'11', X'10', and X'11'.

29.2.2. When (1) a preferred sign digit is desired, (2) when validity checking of sign and digits is desired, or (3) to set
the CC to reflect the sign of the operand.

29.2.3.

(1) C(X) = X'123D', CC = 1;
(2) C(X) = X'405C', CC = 2;
(3) C(X) = X'000C', CC = 0;
(4) C(X) = X'753C', CC = 2;
(5) data exception, caused by invalid digit;
(6) data exception, caused by invalid sign.

29.2.4. It might be tempting to try

XI PackVal+L'PackVal-1,1
However, this won't work if the sign code is E or F, both of which indicate + .) One way is to construct a translate table
which leaves the left half of the byte unchanged, and which changes the right half to a preferred sign code of the
opposite sense. One way is this:

ZAP Temp,PackVal Copy to a temporary
ZAP PackVal,=P'0' Clear the original field
SP PackVal,Temp Copy back with opposite sign
- - -

Temp DS PL(L'PackVal) Temporary, same size as PackVal
An even simpler way to do this (courtesy of John Ganci) is:

ZAP PackVal,PackVal Make a preferred sign (C or D)
XI PackVal+L'PackVal-1,1 Invert the sign

29.2.5. These are two possible disadvantages; there may be others!

• You must remember to check for operand fields of equal length. Because MVC has only a single length field, it
might be easy to change the length of one of the operands and forget that the MVC statement will not be correct
after the program is re-assembled.

• MVC doesn't set the Condition Code, and does not check for invalid results.

Suggested Solutions to Selected Exercises and Programming Problems 1189

29.2.6. The maximum value of the Length Expression in the MVC instruction is 256, so we must have

NDec-1 = 256/L'Dec
which (with L'Dec equal to 3) gives NDec=86. (Why is there a − 1 in the above expression?)*

29.2.7. These two instructions will do the job:

ZAP SomeVal,SomeVal Force preferred sign code
NI SomeVal+L'SomeVal-1,X'FE' Set low-order bit to zero

The ZAP instruction will not change the value of the operand, but will ensure that the sign code is one of the preferred
values, X'C' or X'D'. The NI instruction sets the low-order bit of the sign code to zero, making the sign code + . Note
that

OI SomeVal+L'SomeVal-1,X'0F'
sets the sign to + , but X'F' isn't the preferred plus sign. (This can be important if you're using CLC to compare lots of
packed decimal data: two equal values like X'1C' and X'1F' could compare as unequal.)

You might be able to simplify the instructions, as well as create the preferred X'C' preferred sign code, starting with the
OI instruction, by writing

OI SomeVal+L'SomeVal-1,X'0F' Force + sign code
NI SomeVal+L'SomeVal-1,X'FC' Make preferred + code

Section 29.3

29.3.1. The results will be

 at A: X'005C' After adding X'3F' to X'002F'
 at B: X'3F' The operation code for UNPK
 at C: X'F0F5FCF3' The unpacked value (?!)
Revising the code is left as another exercise for you.

29.3.2. The overflow will occur on the 127th addition.

This result is not obvious. Consider the first several additions: the results will be 368 + , 376 + , 382 + , 384 + , 388 + , etc.
You can see that the low-order digit takes values 4, 8, 6, and 2 in cycles that increase the original value by 20. When
the value arrives at 984 + , we will have performed (984-364)/20×4=124 additions; the next two additions give 988 +
and 996 + , and the next addition will overflow, leaving 002 + as the result. Thus, there are 124 additions to get to 984 + ,
and 3 more additions cause the overflow.

Don't just calculate (1000-364)/4=159, assuming an increment of 4 each time!

29.3.3. XC may be useless if a valid sign is required.

29.3.4. The only change occurs after the first addition, which produces 370+ and a CC setting of 2. Further additions
cause no changes, because the rightmost byte at XX contains 0 + . (Don't try this in a program; it might loop indefi-
nitely!)

29.3.5. Yes. Consider (9 −) − (999 −): the result is 0 + , the Condition Code is 3, and a decimal overflow has occurred.

29.3.6. Suppose the length of the first operand XX is N bytes, and that we want to zero the rightmost D digits, where D
is an odd number. (Why an odd number?) Then the SP instruction of Figure 293 on page 502 can be written

SP XX(N),XX+(N-1)-D/2((D+1)/2)
To do this with an NC instruction, we might write

NC XX+(N-1)-D/2((D+1)/2),Mask
- - -

Mask DC (D/2)X'00',X'0F' Leaves sign intact
N Equ (an odd number satisfying 0 < D < 2*N)

29.3.7. The results are:

Case 1: Decimal Overflow, CC=3, c(A)=X'5C'.
Case 2: CC=2, c(B)=X'075C'

Note that the result in both cases has the preferred plus sign code.

* Because the first element is already initialized before the MVC is executed.

1190 Assembler Language Programming for IBM System z™ Servers Version 2.00

29.3.8. A decimal overflow can only be caused by packed decimal instructions, all of which are 6 bytes long. Thus, the
Instruction Length code cannot be 1.

29.3.9. A 4-byte packed decimal number can hold 7 digits, while each element of the Dec array is at most 5 digits long.
Thus, adding 50 elements can't overflow.

Section 29.4

29.4.1. To test for valid signs and digits, or to set the CC to zero.

29.4.2. The last. (Why?)

29.4.3. With the CP instruction, the CC setting will be 0, because positive and negative zeros are equal. With the CLC
instruction, the CC will be 1 because X'000C' < X'000D'. A different choice of sign codes can change the results!

29.4.4. These instructions don't use a temporary variable; the address in GR2 points to the current maximum value.

NDec Equ 50 Number of table entries
LA 0,NDec-1 Initialize count to (#entries-1)
LA 2,Dec Current largest
LA 1,Dec+L'Dec Start compare with second entry

Compare CP 0(L'Dec,2),0(L'Dec,1) Compare current max to element
JH Next Branch if max is bigger
LR 2,1 Save address of new max value

Next LA 1,L'Dec(,1) Step pointer to next element
JCT 0,Compare Count and loop
ST 2,BigItemA Save address of max value
- - -

BigItemA DS A Address of largest element
Dec DS (NDec)PL3 Table of elements
How would you modify these instructions to set GR3 to the index of the largest element (for example, to 1 for the first
element, 2 for the second, etc.)?

29.4.5. Remember that the hex representation of the two literals: =P'+10' is X'010C', and =P'-20' is X'020D'. The CP
instruction will set the CC to 2 (the first operand is greater), but the CLC instruction will set the CC to 1 (the first
operand is lower). This shows why you must know the data types when choosing instructions to compare operands.

29.4.6. No. You might believe that the ZAP instruction would validate the new value, but that would have happened
already during execution of the CP instruction. (But MVC might be more efficient.)

29.4.7. The operands are X'12' and X'70'; neither is signed.

Section 29.5

29.5.1. 2 ≤ N1 ≤ 16, 1 ≤ N2 ≤ 8, N1 > N 2. (That was easy, wasn't it!)

29.5.2. Eight, because it is used as the length of the multiplier in the MP instruction, and because 2*LD is used in the
length expression for several other operands.

29.5.4. An MP instruction with identical operands will create a specification exception, because L1 is equal to instead
of greater than L2.

29.5.5. If the multiplier is a single digit, as in

007+ × 7+
and we assume that the multiplier digit 7 + is fetched once, then the result should be the expected 049 + . However, if the
multiplier is longer than one byte, as in

0000777+ × 077+
the result would be unpredictable, depending on the order in which multiplicand and multiplier bytes are fetched. In
general, it's best to avoid overlapping operands in decimal multiplication.

29.5.6. X'049C'.

29.5.7. X'0003969C'.

29.5.8. X'07151577489C'.

Suggested Solutions to Selected Exercises and Programming Problems 1191

29.5.9. The contents of A will be unchanged; the Assembler will complain that the first operand of the MP instruction
is not longer than the second.

Section 29.6

29.6.1.If we assume that the preferred sign codes (X'C' and X'D') are used, then the test for a zero element could be
written

Test CP 0(ELen,1),=P'0' Check for zero magnitude
JNE AddUp Okay to add
TM ELen-1(1),X'01' Test rightmost sign bit
JO Divide Finished (almost) if it's 1

If the other four sign codes are used, we must modify the tests to also check for a sign code of X'F':

Test CP 0(ELen,1),=P'0' Check for zero magnitude
JNE AddUp Okay to add
TM ELen-1(1),X'01' Test rightmost sign bit
JZ Addup Not negative; OK to add
TM ELen-1(1),X'0F' Check for + sign with X'F'
JNO Divide Branch if not +0 to divide

29.6.2. 2 ≤ N1 ≤ 16, 1 ≤ N2 ≤ 8, and N1 > N2.

29.6.3. A DP instruction with identical operands will cause a specification error, because L1 is equal to L2 instead of
being greater.

29.6.4. You could do a decimal divide by 2 and test the remainder; or, you could use a TM instruction like this:

TM PData+L'PData-1,X'10' Test rightmost decimal digit
JZ Even Branch if it's even
- - -

PData DC P'1234567' Sample data

29.6.5. The condition code setting for a +0 and a − 0 is always zero, so you can't know what the sign is.

29.6.6. This is guaranteed to produce a specification exception, because L1 will necessarily be less than or equal to L2.

29.6.7. If the divisor is one digit long, as in

00000067+ ÷ 7+
then the result might be the expected 00009 + 4 + . However, if the divisor is longer than a single digit, it is difficult to
predict the result. In general, it's best not to use overlapping operands in decimal division.

29.6.8. X'00009C4C' (quotient 9, remainder 4).

29.6.9. X'00001C000C'. (quotient 1, remainder 0)

29.6.10. X'00016C495C'. (quotient 16, remainder 495)

29.6.11. There is no obvious reason why this should be the case; you can easily visualize dividing a 31-digit dividend by
a 25-digit divisor to give a 25-digit remainder and a 5-digit quotient. The answer may be that (a) limited CPU internal
space for long operands, since division by a 25-digit divisor could involve many repeated subtractions. By limiting the
divisor to 15 digits and sign, the internal circuits would not have to carry more than 8 bytes at a time.

29.6.12. Review the discussion at the end of Section 28.5.

29.6.14. The result is X'82479C030C047C', with quotient 82479 and remainder 30. (The fact that the divisor is adjacent
to the dividend and divisor is only meant to make the problem a little more confusing.)

29.6.15. Number of quotient digits = 2× (dividend_length − divisor_length) − 1

Section 29.7

29.7.1. Both expressions result in an unsigned displacement X'FFFFFFFE'. This is then larger than 4095, the largest
possible value for the displacement D2. The statement should be written

SRP A,64-2,0 Shift 2 digits to the right
She could also specify a USING statement like

USING 5,-2

1192 Assembler Language Programming for IBM System z™ Servers Version 2.00

but (as with all similar promises to the Assembler) would have to be sure that GR5 contains − 2 when the SRP instruc-
tion is executed. (Try it, and see what the assembled instruction looks like!)

29.7.2. Because at least one high-order zero digit must have been introduced, any carry generated by the rounding
process cannot propagate past the end of the shifted operand.

29.7.3. If the rounding digit is added in binary, a carry might not propagate into the next higher-order decimal digit of
the first operand, or an invalid digit might be generated.

29.7.4. Both instructions will cause decimal data exceptions.

29.7.5. The results are

1. 998+ (no shift!)
2. 950+
3. 010+

29.7.6. The shift amount is − 1, a one-digit right shift, and the resulting data will be X'00457D' = PL3'-457'.

29.7.7. The shift operand (63) is the same as − 1, so a single right shift with rounding will be done. The result will be
X'00457D', not X'00456D', because the rounding digit is given the same sign as the shifted operand.

29.7.9. Feel free to stop when you've written 100 statements in your attempted solution. Congratulate yourself if you
can find a solution (including CC settings) less than 100 statements long. Now you know why SRP was invented!

29.7.10. Using a signed shift amount meant that only one shift instruction was needed, rather than two, one for left
shifts and one for right shifts. Also, the maximum length of a packed decimal operand is 31 digits (16 bytes), while
binary shifts can handle up to 63 bits (8 bytes).

29.7.12. Our programmer friend forgot that the rounding digit is (internally) given the same sign as the decimal
operand. The Assembler will complain that the rounding operand digit I3 is not between 0 and 9.

29.7.13. The result is c(E)=X'500C' with decimal overflow causing CC3. Note the preferred plus sign.

29.7.16.

1. If the left shift causes no decimal overflow, and
2. shifting the operand left does not cause a decimal overflow exception, then
3. the method will give a rounded quotient (with the usual slight bias).

29.7.17. Consider these: (1) add 5- to 5-; the (overflowed) result will be 0-. (2) multiply 0+ by 0-. (3) divide 000+ by
1-. (4) use SRP to shift all significant digits of (say) -5 off the right end of the field.

Section 29.8

29.8.2. The results are

1. X'00000123456C'
2. X'000C1C2C3C4C'
3. X'0000001E240C'
4. X'23456789ABCC'

29.8.3. The number of numeric digits moved is always even; the number of hex digits moved (including the sign) is
always odd.

29.8.4. The number of numeric digits truncated is always odd.

29.8.6. The possible movements for the digits, and an instruction that does the movement, are shown below:

1L ─ 2L MVZ Byte2,Byte1
1R ─ 2R MVN Byte2,Byte1
1R ─ 2L MVO Byte2,Byte1
1L ─ 2L, 1R ─ 2R MVC Byte2,Byte1
1L ─ 2R, 1R ─ 2L PACK Byte2,Byte1 (OR UNPK)
1L ─ 2R Let me know how you did it.

29.8.7. First, the operation of the instructions:

• The two MVC instructions create an 8-byte field at Out with copies of the byte.

Suggested Solutions to Selected Exercises and Programming Problems 1193

• The NC instruction masks off all but the single bit at each of the bit offsets from zero to seven. For example, the
first four bytes will contain X'80 40 00 10'.

• The MVO instruction moves the first four bytes to the Work field, offset to the right by 4 bits (effectively right-
shifting).

• The following MVC moves the four right-shifted bytes back to their original positions at Out.
• The TR instruction converts each bit value to an EBDCIC 0 or 1 character.

The literal must be nine characters long, because the possible offsets into the string (from the bit values at Out) can take
values from 0 to 8.

29.8.8. (a) (N2− N1)× 2 +1. (b) (N1− N2)× 2 − 1.

Section 29.9

29.9.1. The operand 0001234 + has only one byte of high-order zeros, but the operand 100 + is two bytes long.

29.9.2. The most important restriction is that the result operand must be 16 or fewer bytes long; this can be written

L + N/2 < 16 .
Similarly, the original operand must be 15 or fewer bytes long, so L < 16 and N > 0. The required instruction
sequence then takes the form

MVN A+L+N/2(1),A+L-1
MVO A(L+1),A(L)
NC A+L(N/2+1),=XL(N/2+1)'F'

29.9.3. We require L < 16, N > 1, and N < 2L-1. Then we can use the code sequence

MVN B+L-1(1),A+L-1 Move sign
MVO B(L-N/2),A Move digits
NC B+L-N/2-1(N/2+1),=XL(N/2+1)'F'
- - -

A DC PL(L)'initial value'
B DS PL(L) Shifted result goes here

29.9.4. We require L ≤ 16 and 0 < N < 2L. The MVN instruction can then be written

MVN A+L-N/2-1(1),A+L-1
- - -

B DS 0PL(L-N/2) Define length attribute of result
A DS PL(L) Original L-byte operand

29.9.5. Suppose N = 2L − 1, which means that all the digits of the operand are to be “shifted off”. Then the MVO
instruction

MVO A,A(0)
might appear to do the job. However, as you remember from the discussion of the length digits in two-length SS-type
instructions, a zero in the Length Expression is assembled as a zero length digit in the instruction. This is equivalent to

MVO A,A(1)
which performs a shift of N − 2, or 2L − 3, digits, rather than N as required.

29.9.6. These instructions illustrate a possible solution.

LA 1,Over Set address of overflow branch
CLI A,X'09' Check for high-order zero digit
JNH Okay Skip if digit is zero
SR 1,1 Reset branch address

Okay MVO A(L),A(L) Perform the single shift
NI A+L-1,X'F' Reset the low-order digit to zero
LTR 1,1 Now test the overflow switch
BNZR 1 Branch to Over if an overflow

29.9.7. We require L ≤ 16 and 0 < N < 2L. The following instructions perform the required shift.

MVC A(L-N/2),A+N/2 Shift left N digits
NC A+L-N/2-1(N/2+1),Mask Mask out vacated digits
- - -

Mask DC X'F0',(N/2-1)X'0',X'0F'

29.9.8. The test for lost significant digits might be written

1194 Assembler Language Programming for IBM System z™ Servers Version 2.00

LA 1,Over Set branch address
OC A(N/2),A Check n high-order digits
JNZ Over Branch if not all zeros, overflows
SR 1,1 Set branch flag for no overflow

BadNews DC 0H
- - - Shift as in previous solution
LTR 1,1 Check overflow flag
BNZR 1 Branch if something was lost

29.9.9. Because the result must be 16 or fewer bytes long, we must have L+N/2 ≤ 16; in addition, N > 0 and
0 < L ≤ 15. The instructions can then be written

MVC A+L+N/2-1(1),A+L-1 Move sign
NC A+L-1(N/2+1),Mask Zero intervening digits
- - -

Mask DC X'F0',(N/2-1)X'0',X'0F'

29.9.10. Consider the following instructions:

MVC A+L'A-1+N/2(1),A+L'A-1
NC A+L'A-1(N/2+1),Mask
- - -

Mask DC X'F0',(N/2-1)X'0',X'0F'
A DC PL(length)'value'

DS PL(N/2)
The length of A, plus N/2, should be less than or equal to 16; otherwise the result will be too long to be used as a valid
packed decimal operand. The value of N must be even and greater than zero.

29.9.12. We require L ≤ 16 and N ≤ 2× (L − 1).

Section 29.10

29.10.1. The values are:

• A (3,0)
• B (3,3)
• Sum (7,0)

Section 29.11

29.11.1. The values are:

1. P'1024.2048' I'=5, S'=4
2. P'-0.98765' I'=2, S'=5
3. P'+2235058.4' I'=8, S'=1
4. P'72.3456' I'=3, S'=4

Programming Problem 29.2.

This little program shows the result. The first two executable instructions set the decimal overflow bit in the Program
Mask to zero, to disable the interruption for decimal overflow.

P29_2 CSect ,
Using *,15 Establish addressability
Print NoGen Don't generate the macro expansions
XR 1,1 Set GR1 to zero
SPM 1 Set decimal overflow interrupt off
AP M5,M5 Add (5-) and (5-)
Printout M5,*,Header=No Print the result and stop

M5 DC P'-5' Single-byte 5-
End P29_2

Note that CC=3 is displayed on the Printout message, as expected.

Programming Problem 29.3.

This little program shows the result.

Suggested Solutions to Selected Exercises and Programming Problems 1195

P29_3 CSect ,
Using *,15 Establish addressability
Print NoGen Don't generate the macro expansions
MP P2,M0 Multiply (2+) and (0-)
Printout P2,*,Header=NO Print the result and stop

M0 DC P'-0' Single-byte 0-
P2 DC PL2'2' Two-byte 002+

End P28_3

1196 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 30 Solutions
Section 30.1

30.1.1. Twelve. The largest 64-bit signed magnitude is 263 = 9,223,372,036,854,775,808 (19 digits), and the 16-byte
receiving field can handle 31 digits.

30.1.2. An 8-byte field holding a packed decimal number has room for 16 hex digits, of which 15 are numeric decimal
digits and the last is a sign code.

30.1.3. c(X) = X'000002147483648D'. (That should have been easy!)

30.1.4. The first character string printed would be Page 0002I, with a letter I where the “9” should be. This is caused
by the UNPK instruction leaving the sign code digit “C” as the zone of the low-order byte of the page number. When
the page number is 30, the field will print as “Page 0003?”, where the rightmost character position indicated by ? is an
unprintable character having representation X'C0'. (What will actually appear on the printed page depends on the
behavior of your printers and your Operating System.) When the page number is 31, Page 0003A will be printed.

30.1.5. Here's one way to do it:

- - -
OI ZonePgn+NDigits-1,C'0' Set zone of final digit
LA 0,NDigits-1 Set digit count less 1
LTR 0,0 Test if only 1 digit wanted
JNP Finish Exit if so
LA 1,PageNo+L'PageNo-NDigits Address of first digit

Blot CLI 0(1),C'0' Check for leading zero
JNE Finish Exit loop if nonzero
MVI 0(1),C' ' Set to blank
LA 1,1(,1) Step to next digit position
JCT 0,Blot Count down and loop

Finish - - -
If we knew that the digit count specified by NDigits would always be greater than 1, we could omit the test for a single
digit. Note that we always leave one visible digit, even if the page number is zero.

30.1.6. The values are

1. X'000000000000001D'
2. X'000002147483321C'
3. X'000002004318083C'
4. X'000001077952604C'

30.1.7. The values are

1. X'0000000000000000000000000000001D'
2. X'0000000000009223372036854775807C'
3. X'0000000000000826260414904981820C'

(Be careful! the argument value has 17 hex digits, so the high-order digit was lost.)
4. X'0000000000006717250228839017560D'

Section 30.2

30.2.1. A fixed-point divide exception will occur, because the packed decimal operand is +231. The result in the first
operand register will be X'80000000'.

30.2.2. The instructions will execute correctly. GR0 will contain X'0000007B', and the contents of DWork will be
X'000000000000123C'.

30.2.3. The Assembler will issue an error message for the PACK instruction, because the (implied) length of the second
operand exceeds 16 bytes!

30.2.4. Converting a blank data field is a common error in using CVB. After the PACK instruction is executed, the
contents of WorkArea will be X'0000000000000004', which has an invalid sign code. Thus, the CVB instruction will
cause a program interruption for a data exception, and the IC will be set to 7.

30.2.5. Because log2(1015) = 49.83, at least 50 binary digits would be needed to compute the magnitude correctly.
Since the high-order bits will be lost even if the result is complemented, 50 bits would be sufficient.

Suggested Solutions to Selected Exercises and Programming Problems 1197

One way to do the conversion is by successive multiplications and additions; no divisions need be done! If the partial
terms of the intermediate value are multiplied by 10 and the new low-order digit is added, only 32 bits need to be
carried, but overflows must be detected so that an invalid result can be indicated.335 It would be inadvisable to indicate
a fixed-point overflow condition, since the program mask can be set to ignore them, and the program would have to
check the CC for an overflow indication; but CVB doesn't set the CC!

30.2.7. The low-order 32 bits of the result might be useful if the remainder (mod 232) has some significance to the
program. But to use the result, the program would first have to handle the program interruption.

30.2.8. The resulting values are:

1. X'0098967F'
2. X'D3A8C00E'
3. X'FFFFFFFF'

(Note that the high-order digit of the DC statement operand was truncated!)
4. X'000003E7'

Section 30.3

30.3.1. The patterns are:

1. FC is a blank; the pattern is C'•dddddsd'.
2. F C = C'*'; the pattern is C'*dddsd.ss'. The only Message Character is the period before the last two Digit

Selectors.
3. F C = C'*'; the pattern is C'*•dddsdf•Total=dddsd.dd'. The Message Characters are the blanks before and after

the first set of selectors, the characters C'•Total=', and the period before the last two Digit Selectors.
4. FC is a blank; all other bytes are Message Characters.

30.3.2. The pattern is represented by C' '''('CR)'(''. One problem with reading this pattern is that each interior
apostrophe represents a single byte, and they aren't paired; however, if they're paired, then it's even harder to tell what
the pattern is!

Section 30.4

30.4.1. The result at LineX will be C'••123456789•', because the final digit of the decimal number will not be accessed.

30.4.2. The Fill Character can be a digit selector; thus L − 1 digits, and therefore as many as (L − 1)/2 +1 bytes, might be
taken from the second operand. If there are no digit selectors in the pattern, no bytes would be taken from the second
operand.

30.4.3. The results will be

1. C'••••••729413', where • represents a blank space.
2. C'**0000729413'
3. C'*****0729413'

30.4.4. The results will be

1. C'••••••••7294', where • represents a blank space.
2. C'**0000007294'
3. C'*****0007294'

30.4.5. Because the SS character in the pattern immediately precedes the last DS of the pattern, eleven blanks followed
by a single zero digit will replace the pattern. The DS marks the position of the last leading zero to be suppressed.

30.4.6. Because there are at most 10 significant digits in the decimal representation of the value contained in a fullword,
the first digit of the 6-byte (11-digit) packed decimal number is always zero. Thus the first DS is always replaced by the
Fill Character.

30.4.7. Since no decimal digits will be sought at the second operand address, no exception condition due to the invalid
address will be recognized.

335 It is strange that an error in a multiplicative process can be indicated by a divide exception!

1198 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 30.5

30.5.1. Be careful! Pattern characters may affect the Significance Indicator, but no Message Character affects the SI.

30.5.2. The SS character must appear one byte earlier, so the pattern becomes C' dd,dsd.dd•CREDIT':

Pat2 DC C' ',X'20206B2021204B2020',C' CREDIT' Pattern
If the amount was 0000002+, the edited result would be “••••••0.02•CREDIT”.

30.5.3. There should be 2× P − 1 d and s selectors.

30.5.4. A packed decimal operand P bytes long contains 2× P − 1 digits. Also, to produce any useful results at all, we
must have D < P. For example, if D=P − 1, only a single digit can be formatted.

1. Even if the desired number of digits N is even, there must be an odd number of selectors: 2× (P − D) − 1. The
leftmost digit of the packed decimal operand must be zero if an even number of digits is to be displayed correctly.

2. To display N digits requires B= [(N +2)/2] bytes, where the square brackets mean that the quotient should be
rounded down to the next lower integer. Thus, the offset D is P − B. (In mathematical notation, we should write
B=floor((N +2)/2), where floor(X) is the largest integer less than or equal to X.)

30.5.5. If c(Num) = 0, only a single zero digit will be printed; all the preceding Message Characters are insignificant.
If c(Num) = 512, no commas will appear in the result because the SI is turned on by the first significant digit (“5”),
which follows the last comma.

30.5.6. The number to be edited has 10 significant digits, and the Fill Character in the pattern is a blank. Remember
that a packed decimal number must have an odd number of digits, so the second operand of the ED instruction has a
leading zero that is suppressed by the pattern.

30.5.7. The result would be C'•••••••.00•'.

30.5.8. The result would be C'•••••••.00•CREDIT'.

Section 30.6

30.6.1. This code fragment shows one way this can be done:

MVC Display,Pattern Move pattern to print line
LA 1,Display+L'Display-1 Point to possibly forced digit
EDMK Display,PackVal Edit and mark up to 7 digits
JNZ DoSign If not zero, set sign
XR 2,2 Clear GR2
IC 2,PackVal+L'PackVal-1 Insert rightmost byte
NILL 2,X'000F' Clear all but sign digit
IC 2,SignBits-X'A'(2) Get sign indicator
LTR 2,2 Set CC (0 means -, 1 means +)

DoSign BCTR 1,0 Adjust to preceding byte
DoPlus MVI 0(1),C'+' Assume result was +

JP Print Branch if the guess was right
DoMinus MVI 0(1),C'-' Negative result, set - sign
Print PrintLin Display,L'Display Print result

- - -
SignBits DC AL1(1,0,1,0,1,1) Sign indicators +,-,+,-,+,+
PackVal DC PL4'0' Packed decimal operand
Pattern DC C' ',5X'20',X'2120' Pattern
Display DS CL8
Note that the instruction sequence

XR 2,2 Clear GR2
IC 2,PackVal+L'PackVal-1 Insert rightmost byte
NILL 2,X'000F' Clear all but sign digit

could be replaced by

IC 2,PackVal+L'PackVal-1 Insert rightmost byte
NILF 2,X'0000000F' Clear all but sign digit

30.6.2. The CC setting will be zero, because all the digits of the result are zero. It is possibly misleading that the SI will
still be ON at the end of the operation, due to the − sign code in the right half of the last source byte. The result of the
edit is C'AA00'.

Suggested Solutions to Selected Exercises and Programming Problems 1199

30.6.7.

(1) For argument P'7',P'2468', the result is C'•7•2••468'
(2) For argument X'67891234', the result is C'•678••912'

30.6.8. The result is C'••12••34••56789'

Section 30.7

30.7.1. If each of the second operand bytes contains a sign code in the right digit, N bytes will be taken from the
second operand. If none of the first N digits of the second operand is a sign code, as few as (N+1)/2 bytes might be
taken from the second operand. (Remember, the Field Selector FS doesn't cause any second operand access.)

30.7.2. The CPU retains the digit it has, and doesn't reset the second-operand “digit fetcher” to get a new left-hand
digit.

30.7.3. GR1 will point to a character in the last source field only if there are significant nonzero digits stored into that
field, and significance was not forced by a SS character in the pattern.

Section 30.8

30.8.1. The Significance Indicator is set OFF as follows:

• at the start of the operation,
• after a Field Separator (FS) pattern character, and
• after a source byte containing a + sign code in the right-hand digit.

The Significance Indicator is set ON as follows:

• pattern = SS, source = any nonterminal digit;
• pattern = DS, source = nonzero terminal digit;
• pattern = SS, source = terminal digit with − sign code;
• pattern = DS, source = nonzero terminal digit with − sign code.

Programming Problem 30.3.

This program scans for multiple data values on each input record.

P30_3 CSect , Problem 30.3
Print NoGen Don't show macro expansions
Using *,15 Establish addressability
PrintLin Title,L'Title Print a title line
LA 10,10 Initialize multiplier

*
GetRec ReadCard InBuff,EndFile

MVI OutLine,C' '
MVC OutLine+1(L'Outline-1),OutLine Initialize output line
LA 2,InBuff Point to start of record
LA 3,L'InBuff-1 Set effective length of record

Scan EX 3,ScanTRT Scan over leading blanks
JZ GetRec No more data on this record
LR 7,1 Save pointer to initial digit
XR 5,5 Initialize accumulated value

GetDigit CLI 0(1),C' ' Check for terminating blank
JE Display Go display this result
IC 6,0(,1) Insert a numeric character
N 6,=XL4'F' Mask all but numeric digit
MR 4,10 Multiply partial value by 10
ALR 5,6 Add new digit
BC 3,TooBig Carry out means overflow
LR 8,4 Copy accumulated value
LR 9,5 ...both halves
SLDA 8,32 Check for overflow
JO TooBig Value is too large
LA 1,1(,1) Step to next character
J GetDigit And get additional digits

*
Display CVD 5,Work8 Convert value to packed decimal

1200 Assembler Language Programming for IBM System z™ Servers Version 2.00

MVC OutVal,ValPatt Move pattern to output area
ED OutVal,Work8+2 Convert to edited characters
J MovChars Go move the input characters

*
TooBig MVC OutVal,=CL12'**OverFlow**' Insert overflow message
StepOver CLI 0(1),C' ' Check for end of digits

JE MovChars Reached the end, go move them
LA 1,1(,1) Step to next character
J StepOver Continue looking

*
MovChars LR 8,1 Copy pointer to ending blank

SR 8,7 Subtract string start address
BCTR 8,0 Make an effective length
EX 8,OutMVC Move the character string
PrintLin OutLine,L'OutLine Display the results
MVC OutLine+1(L'OutLine-1),OutLine Clear the print line

*
LR 2,1 Point where rescan starts
LA 3,InBuff+L'InBuff-1 Point to end of record
SR 3,2 Remaining length to scan
BCTR 3,0 Make it an effective length
J Scan Look for another digit string

EndFile PrintOut *,Header=NO End the program
*
ScanTRT TRT 0(*-*,2),SkipBlnk Skip blanks
OutMVC MVC OutChars(*-*),0(7) Move character string
ValPatt DC C' ',9X'20',X'2120' Edit pattern
Title DC C' Converted Value Input characters'
OutLine DC CL100' ' Output line
OutVal Equ OutLine+4,12 Position/length of value
OutChars Equ Outline+20 Position of input characters
SkipBlnk DC (C' ')X'1',X'0',(255-C' ')X'1' Translate table
InBuff DS CL80 Buffer for input records
Work8 DS CL8 CVD work area

End P31_3
The sample data was in these records:

1
0002 0003
1234567890 2147483647
9999999999 000000000000000000000042

and the output was these records:

 Converted Value Input characters
1 1
2 0002
3 0003

1234567890 1234567890
2147483647 2147483647

 OverFlow 9999999999
42 000000000000000000000042

Programming Problem 30.7. This solution uses a loop to eliminate leading zeros from the unpacked value.
(Compare it to your solution for Problem 17.4.)

Suggested Solutions to Selected Exercises and Programming Problems 1201

P30_7 CSect ,
Using P30_7,15 Provide addressability.

* Set up initial values.
LA 2,0 Previous value F(0).
LA 3,1 Current value F(1).
PrintLin Title,L'Title
PrintLin OutRec,1

*
Loop CVD 3,WrkArea Convert to packed decimal

UNPK Number,Wrkarea+2(6) Unpack to EBCDIC
OI Number+L'Number-1,X'F0' Set correct zone on last digit
LA 5,Number Start of output value

Check CLI 0(5),C'0' Is it a leading zero?
BNE PrintNum If not, print the result
MVI 0(5),C' ' If yes, replace it with a blank
LA 5,1(5) Step to next character
B Check And try the next digit

PrintNum PrintLin OutRec,OutLeng Print the result
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value.
BO Done Overflow means we're done.
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Play it again, Sam.

*
DONE PrintLin EndRec,L'EndRec Print an ending line.

BR 14 Return to caller.
*
WrkArea DS D
OutRec DC C' ' Carriage control for output.
Number DS CL12 Output from conversion
OutLeng EQU *-OUTREC Length of record.
*
Title DC C'1Fibonacci Sequence to Maximum Positive Fullword Value'
EndRec DC C'0Program ends.'

END P30_7

The printed output looks like this:

1Fibonacci Sequence to Maximum Positive Fullword Value

1
1
2
3

..........
701408733
1134903170
1836311903

0Program ends.

Programming Problem 30.8. This solution uses the ED instruction to format the result with commas separating
each group of three digits. (Compare it to your solution for Problem 30.7.)

1202 Assembler Language Programming for IBM System z™ Servers Version 2.00

* Print a Fibonacci Sequence up to Maximum Fullword Value.
P30_8 CSect ,

Using P30_8,15 Provide addressability
*
* Set up initial values.
*

LA 2,0 Previous value F(0).
LA 3,1 Current value F(1).
PrintLin Title,L'Title
PrintLin OutRec,1

*
Loop CVD 3,WorkArea Convert to packed decimal

UNPK Number,Workarea+2(6) Unpack to EBCDIC
MVC OutRec(OutLeng),EdPat Move edit pattern to output area
ED OutRec(OutLeng),WorkArea+2 Format the result
PrintLin OutRec,OutLeng Print the result
LR 4,2 Get a copy of the previous value.
AR 4,3 Compute the next value.
BO Done Overflow means we're done.
LR 2,3 Copy current value to previous.
LR 3,4 Copy next value to current.
B Loop Play it again, Sam.

*
Done PrintLin EndRec,L'EndRec Print an ending line.

BR 14 Return to caller.
*
WorkArea DS D
EdPat DC C' ' Fill character

DC X'20206B2020206B2020206B202120' dd,ddd,ddd,dsd
OutRec DC C' ' Carriage control for output.
Number DS CL15 Output from ED
OutLeng EQU *-OutRec Length of record.
*
Title DC C'1Fibonacci Sequence to Maximum Positive Fullword Value'
EndRec DC C'0Program ends.'

END P30_8

The printed output looks like this:

1Fibonacci Sequence to Maximum Positive Fullword Value

1
1
2

.............
987

1,597
.............

3,524,578
.............
701,408,733

.............
1,134,903,170
1,836,311,903

0Program ends.

Suggested Solutions to Selected Exercises and Programming Problems 1203

Section 31 Solutions
Section 31.2

31.2.1.

1. 0.1 (base 10) = .00011001 (base 2), X'19' (base 16).
2. 0.3142 (base 10) = 0.0221110011 (base 3) = 0.458244 (base 14).
3. X'BBBBB...' = 0.733333333... (base 10) = 0.AEEEEE... (base 15).
4. 3.6 (base 8) = 3.75 (base 10) = X'3C'.

31.2.2.

1. X'0.DEFACE' = 0.87101448
2. X'0.5' = 0.3125
3. X'0.C2854' = 0.75984573
4. X'0.333333' = 0.19999999
5. X'0.BEEF' = 0.74583435

31.2.3. These are the four hexadecimal fractions:

1. X'0.10504816F...'
2. X'0.00068DB8BAC7...'
3. X'0.FCD38CDA...'
4. X'0.00003C53E2D6...'

31.2.4. (1/3) base 2 = .0101010101...

31.2.5. The values are shown, where underscored groups of digits are repeated indefinitely.

 0.110 = 0.06314
 0.210 = 0.1463
 0.310 = 0.23146
 0.410 = 0.3146
 0.510 = 0.4
 0.610 = 0.4631
 0.710 = 0.54631
 0.810 = 0.6314
 0.910 = 0.71463

Section 31.3

31.3.1. The values could be defined as follows:

Amount DC F'1174949' Amount in cents (scaled by 10**2)
Percent DC F'5147' Percentage rate (scaled by 10**3)
Round DC F'0.5E5' Rounding factor
Correct DC F'1E5' Correction factor

31.3.2. The generated constant is X'0E8D4A51'.

31.3.3. The two constants will generate X'1174949C' (4 bytes) and X'05147C' (3 bytes) respectively. The product work
area must therefore be at least 7 bytes long.

31.3.4. The hexadecimal values are:

1. X'6.5F5C28F5...'
2. X'3DB.9A5E353...'
3. X'13A.28C59E0...'

31.3.5. With signed 32-bit words, you can create 32 different representations, and with unsigned words, 33. This may
seem surprising, but remember that the radix point can be placed to the left of the leftmost significant digit as well as to
the right of the rightmost digit.

31.3.6. You need 10 bits for the integer part (29 <604 < 210). The fraction part isn't finite (or at least, appears not to be!).

31.3.7. The hexadecimal constant is X'3243F6A9'.

1204 Assembler Language Programming for IBM System z™ Servers Version 2.00

DC FS(-11)'10E11' = 10**12 = X'1D1A94A2'
DC FS(-12)'U10E12' = 10**13 = X'9184E72A'

DC FDS(-25)'U10E25' = 10**26 = X'295BE96E64066972'
DC FDS(-26)'U10E26' = 10**27 = X'CECB8F27F4200F3A'

31.3.9. This way of writing the constant seems natural, as it looks like “Ten to the 12th power”. But it's actually 10
followed by 12 zeros, which is too large for a signed constant.

31.3.10. This solution is partially parameterized using the symbols SF and SD:

X31_3_10 CSect ,
Using *,15

SF Equ 24 Binary Scale Factor
SD Equ 5 Significant fraction digits

L 1,A Get value to convert
LR 0,1 Copy to GR0
SRL 1,SF Discard fraction digits
CVD 1,D Convert integer portion
UNPK Int,D Unpack to EBCDIC
OI Int+L'Int-1,X'F0' Correct low-order zone digit
CLI Int,C'0' Is hign-order digit zero?
JNE DoFrac If not, continue
MVI Int,C' ' Set the zero to space

DoFrac DC 0H Now do the fraction part
L 1,A Get value to convert
SLL 1,32-SF Eliminate integer portion
SRL 1,32-SF Reposition fraction digits
M 0,=FE(SD)'1' Multiply to 10**SD (significance)
SRDL 0,SF-1 Drop all but rounding bit
AHI 1,1 Add 1 to round
SRL 1,1 Drop off rounding bit
CVD 1,D Convert to packed decimal
UNPK Frac,D Unpack fraction digits
OI Frac+L'Frac-1,X'F0' Set correct zone digit
Printout Result,*,Header=No Print result

A DC FS(SF)'98.234567' Value to convert
D DS D CVD conversion area
Result DS 0CL(3+1+SD)
Int DC CL3' ' Integer portion

DC C'.' Decimal point
Frac DC CL(SD)' ' Fraction digits

End X31_3_10

Section 31.4

31.4.1. Avogadro's Number is 6.022×10 +23, and Planck's constant is 6.626×10 −34.

31.4.2. Avogadro's Number is slightly less than 1024, and Planck's constant is slightly greater than 10 −35, so you would
need enough bits to represent 1059, or about 200 bits. (Now you can see why floating-point is useful for some types of
applications!)

Section 31.5

31.5.1. Zero will have representations with a zero fraction, and 19 possible exponent values from − 9 to +9, including
zero. Usually the preferred representation of zero will use a zero exponent, so that the other 18 are redundant.

31.5.2. There are six possible representations, three with the significant digits represented as fractions and three with the
significant digits represented as integers.

Fractions: .0047 e=+3 .0470 e=+2 .4700 e=+1
Integers: 0047. e=-1 0470. e=-2 4700. e=-3

Section 31.7

31.7.1. The original implementation of floating-point registers on System/360 provided only registers 0, 2, 4, and 6, so it
was natural to pair them as (0,2) and (4,6). When the remaining 12 registers were added, it was important to retain the
original pairings (so that existing programs would continue to execute correctly); the other pairings were made to follow
the same pairing style.

Suggested Solutions to Selected Exercises and Programming Problems 1205

31.7.2. The CPU need only OR the given register digit with B'0010'.

Section 31.8

31.8.1. DD, EB, L or LH, LD.

Section 31.9

31.9.1. Here are three possibilities: the first requires two storage references and a doubleword in memory; the second
uses FPR6 as a temporary, and the third uses GGR1 as a temporary.

STD 0,DTemp LDR 6,0 LGDR 1,0
LDR 0,4 LDR 0,4 LDR 0,4
LD 4,DTemp LDR 4,6 LDGR 4,1
- - -

DTemp DS D
You can create other (more elaborate) ways to do this, such as

LDGR 1,0 Copy FPR0 to GG1
LDGR 2,4 Copy FPR4 to GG2
XGR 1,2 Do the
XGR 2,1 .. XOR
XGR 1,2 .. swap
LGDR 0,2 Copy original contents of FPR4 to FPR0
LGDR 4,1 Copy original contents of FPR0 to FPR4

but no reasonable programmer would do it this way.*

31.9.2. Use the floating-point registers as intermediate “storage”.

31.9.3. LXY and STXY for single load and store, and perhaps LMF and STMF (or LMFP and STMFP) for
muultiple load and store. The most important exception condition would be to check that the register operand is a
valid reference to an extended register pair.

Programming Problem 31.1.

This solution uses packed decimal arithmetic:

P31_1 CSect ,
Using *,15
Print NoGen
ZAP PDProd,PDAmt Copy amount to work area
MP PDProd,PDTax Multiply by tax rate
SRP PDProd,64-5,5 Convert to cents and round
MVC PDAns,PDPat Move pattern to output area
LA 1,PBAns+7 Point just past possible $ sign
EDMK PDAns,PDProd+3 Edit the result
BCTR 1,0 Move pointer left 1 byte
MVI 0(1),C'$' Insert dollar sign
PrintOut PDAns,*,Header=NO Print result

PDAmt DC P'11749.49' Amount to be taxed
PDTax DC P'.05147' Tax rate
PDProd DS PL8 Work area for product
PDPat DC C' ',X'40202020202021204B2020' Formatting pattern
PDAns DC CL12' ' Output area for result

End P31_1

The printed result will look like this:

PDAns = ' $604.75'

* Some people think Assembler Language programmers are inherently unreasonable.

1206 Assembler Language Programming for IBM System z™ Servers Version 2.00

Programming Problem 31.2.

This solution uses scaled fixed-point binary arithmetic:

P31_2 CSect ,
Using *,15
Print NoGen
L 1,FBAmt Put argument in GR1
M 0,FBTax Multiply by tax rate
AL 1,FBRnd Add rounding factor
JC 12,FBNoC Skip if no carry
AHI 1,1 Propagate carry

FBNoC D 0,FBConv Correct to get result in cents
CVD 1,FBWork Convert to decimal
MVC FBAns,FBPat Move pattern to output area
LA 1,FBAns+7 Point just past possible $ sign
EDMK FBAns,FBWork+3 Edit, mark first significant digit
BCTR 1,0 Move pointer left 1 byte
MVI 0(1),C'$' Insert dollar sign
PrintOut FBAns,*,Header=NO Print result

FBAmt DC F'1174949' Rate in cents
FBTax DC F'5147' Tax rate per 100,000 cents
FBRnd DC F'0.5E5' Round to nearest cent
FBConv DC F'1E5' Convert result to cents
FBWork DC D'0' Integer part in packed decimal
FBPat DC C' ',X'40202020202021204B2020' Formatting pattern
FBAns DC CL12' ' Output area for result

End P31_2

The printed result will look like this:

FBAns = ' $604.75'

Programming Problem 31.3.

This isn't an easy problem, but it shows the efforts that programmers made when only fixed-point binary arithmetic was
available.

P31_3 CSect ,
Using *,15
Print NoGen

SF Equ 28 Scale factor
FBLoop L 0,FBA Put argument in GR0

SRDA 0,32-SF Shift right, now scaled by 2**28
D 0,FBX Divide by current scaled estimate
S 1,FBX Subtract it to get the correction
SRA 1,1 Divide by 2
LPR 2,1 Copy magnitude for tolerance test
A 1,FBX Add original estimate
ST 1,FBX Store new value
LPR 2,2 Take magnitude of correction
CHI 2,3 Check correction smaller than 3
JH FBLoop Repeat if not converged yet
LR 4,1 Copy for formatting
SRDA 4,SF Split integer and fraction parts
CVD 4,DFBW Convert integer part to decimal
UNPK FBAns(1),DFBW+7(1) Move to answer string
OI FBAns,X'F0' Put correct zone
MVI FBAns+1,C'.' Place the decimal point
SRL 5,32-SF Reposition fraction part
M 4,FBConv Convert 9 fraction digits
SRDL 4,SF-1 Position as integer value
AHI 5,1 Add 1 for rounding
SRDL 4,1 Final shift
CVD 5,DFBW Convert to integer

Suggested Solutions to Selected Exercises and Programming Problems 1207

OI DFBW+7,X'0F' Set correct zone
UNPK FBAns+2(9),DFBW+3(5) Move fraction part to output area
PrintOut FBAns,*,Header=NO

FBA DC FS(SF)'2' Value whose root is to be found
FBX DC FS(SF)'1' Initial estimate
FBConv DC F'1E9' For converting fraction part
DFBW DC D'0' Work area for CVD results
FBAns DC CL12' ' Output area for result

End P31_3

The printed result will look like this:

 FBAns = '1.414213563 '

1208 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 32 Solutions
Section 32.1

32.1.1. The three values are:

1. 0.9450×103 (0.7654×0.1235=0.09452690)
2. 0.5859×104 (0.7655×0.7655=0.58599025)
3. 0.1000×101 (0.0333×0.0321=0.00106893)

Section 32.2

32.2.1. A nonzero operand can have at most p − 1 leading zero digits, so at most p − 1 shifts are required.

32.2.2. The two products are:

Section 32.3

32.3.1. The (possibly unexpected) results are the following:

(1) .9995 for each iteration
(2) 1.001, 1.002, 1.003, 1.004
(3) 1.000 for each iteration

Section 32.4

32.4.1. Any operand of the form .xxxD with digit D≠ 0. Its exponent doesn't matter.

32.4.2. The values are shown in this table:

32.4.3. The values are shown in this table:

32.4.4. With only a guard digit, the results are these:

1. 0.9452×103

2. 0.5859×104

3. 0.1068×101

With both guard and rounding digits, the results are these:

1. 0.9453×103

2. 0.5860×104

3. 0.1069×101

32.4.6. (a) The product without a guard digit will be 0.0560 so the test will indicate that it is less than 0.0562. (b) With
a guard digit, the product will be 0.0565, which is greater than 0.0562.

Not pre-normalized Pre-normalized

0.1000×102 0.1029×102

Zero! 0.5183×101

Product No guard, no round Guard, no round Guard and round

155×165 .2550×105 .2557×105 .2558×105

45×2469 .1111×106 .1111×106 .1111×106

21×1117 .2340×105 .2345×105 .2346×105

127×137 .1730×105 .1739×105 .1740×105

Product No guard, no round Guard, no round Guard and round

509×101 .5140×105 .5140×105 .5141×105

509×555 .2824×106 .2824×106 .2825×106

509×150 .2790×106 .2799×106 .2800×106

407×515 .2090×106 .2096×106 .2096×106

Suggested Solutions to Selected Exercises and Programming Problems 1209

Section 32.5

32.5.1. One advantage is that steps of the multiplication process can stop when the remaining multiplier or multiplicand
digits are known to be zero; it can also avoid the necessity of right-shifting the product digits if the product would be
longer with rightmost zeros.

For example, (1230.×100)× (4500.×100) or 1230×4500 = 5535000 has 3 low-order zeros; in FPI(10,4) three corrective
right shifts would be needed. If internal arithmetic used only 4 digits, it's possible some high-order digits could be lost,
or an error condition might be indicated.

Section 32.6

32.6.1. The shift requirements are shown in this table:

If the dividend (“numerator”) fraction is greater than or equal to the divisor (“denominator”) fraction, the quotient will
be greater than 1, requiring a shift.

Section 32.7

32.7.1. The calculated results are shown in this table:

32.7.2. If you subtract zero, the magnitude of the other operand doesn't decrease.

Section 32.8

32.8.1. The relative sizes of the largest ulps are these:

Section 32.9

32.9.1. Consider these three pairs:336

1. [+ 9║+ .2000] ÷ [− 9║+ .4000] generates [+18║+ .5000]
2. [− 9║+ .2000] ÷ [+ 9║+ .4000] generates [− 18║+ .5000]
3. [− 9║+ .2000] ÷ [+ 2║+ .4000] generates [− 11║+ .5000],

which if denormalized becomes [− 9║+ .0050],

32.9.2. These are the results:

1. [+ 9║+ .1038] (Normal)

2. [+ 7║− .4830] (Normal)

Operation Quotient Shifts Rounded quotient

.1428 ÷ .7142 .2000 0 .2000

.6667 ÷ .6666 1.00015 1 .1000

.1277 ÷ .3456 .3695 0 .3695

.3456 ÷ .1275 2.71059 1 .2711

.9999 ÷ .9999 1.0000 1 .1000

Operation No guard, no
round

Guard, no
round

Guard and
round

(.7435×103)− (.9621×101) .7338×103 .7338×103 .7339×103

(.7435×101)− (.6994×101) .4410×100 .4410×100 .4410×100

(.1043×105)− (.9527×104) .9000×103 .9030×103 .9030×103

(.1000×100)− (.9992×10 −2) .9000×10 −1 .9000×10 −1 .9001×10 −1

Representation Max relative ulp

FPF(16,14) ≈ 16 −13

FPF(2,24) ≈ 2−23

FPF(10,34) ≈ 10 −33

336 You could just provide the examples shown in Section 32.9 (with keys �1�, �2�, and �5�) but that would be less interesting.

1210 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 32.10

32.10.1. Max= [+63║X'FFFFFF'], which with bias=X'7FFFFFFF'; and Min= [− 64║X'100000'] which with
b i a s=X'00100000'.

32.10.2. Because Min is approximately 16 −65, its reciprocal is about 16 +65. Since Max is approximately 16 +63, the
range asymmetry means that there are about p×162 more small values than large, where “p” is the precision of the
fraction.

Suggested Solutions to Selected Exercises and Programming Problems 1211

Section 33 Solutions
Section 33.1

33.1.1. Five possible interpretations, and their assembler language defining statements, are shown in these statements:

DC F'1077952604' Fullword binary integer
DC C'•••*' Characters (three blanks and an asterisk)
STH 4,X'05C'(0,4) Store halfword
DC P'+4040405' Packed decimal
DC E'.250982046' Hexadecimal floating-point

Other interpretations are possible.

33.1.2. For short hexadecimal floating-point numbers, (a) 5, (b) 6, (c) 6, (d) 256. For long numbers, (a) 13, (b) 14, (c)
14, (d) 256. (The reason there are 256 redundant values for zero is that pseudo-zeros of either sign are included.)

33.1.3. The values are (1) Normalized, (2) Normalized, (3) Unnormalized, (4) Zero, (5) Normalized, (6) Pseudo-zero,
(7) Normalized.

33.1.4. The 14-bit characteristic would have a range from − 213 to + 213 − 1, or approximately (− 8192, +8191),
assuming the bias is chosen to provide range symmetry.

Section 33.2

33.2.1. The easiest way to tell is to assemble a long constant also:

DC E'1E13' generates X'4B9184E7'
DC D'1E13' generates X'4B9184E72A000000'

So the short constant does not contain all the significant bits. (You could also check the table of the hexadecimal
representation of powers of ten in the Appendix.)

33.2.2. This is one of many possibilities:

DC E'1,1e1,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10'

33.2.3. The tables in the Appendix showing the hexadecimal representations of powers of 10 are helpful!

 1. Short: 109 = X'3B9ACA00' (or X'483B9AC' in short H F P format) has six nonzero significant digits.
 2. Long: 1022 = X'21E19E0C9BAB2400000' (or X'5321E19E0C9BAB24' in long H F P format) has fourteen nonzero sig-

nificant digits.
 3. Extended: 1046 = X'1C06A5EC5433C60DDAA16406f5A400000000000' (or X'671C06A5EC5433C6 590DDAA16406F5A4' in

extended HFP format), has 28 nonzero significant digits.

33.2.4. The nine values are:

401999999999999A DC D'0.1'
4033333333333333 DC D'0.2'
404CCCCCCCCCCCCD DC D'0.3'
4066666666666666 DC D'0.4'
4080000000000000 DC D'0.5'
409999999999999A DC D'0.6'
40B3333333333333 DC D'0.7'
40CCCCCCCCCCCCCD DC D'0.8'
40E6666666666666 DC D'0.9'

Section 33.3

33.3.1. For the constants named A and D, only a single byte is available to hold the sign and characteristic, leaving no
room for the fraction! So, the Assembler will complain about lost precision. For the other constants, the generated
data is

B X'401A' The fraction is rounded to 8 bits
C X'433E' 999=X'3E7', and the 7 is truncated
E X'433F' 1000=X'3E8', and the 8 causes rounding up

33.3.2. These are the values and their generated constants:

1212 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 33.4

33.4.2. With half-even rounding, the L-type constant generates X'1E177FF880000000 1000000000000000' so you can't
tell whether the rounding digit (the last 8) should be rounded up (if there are any nonzero bits in the distance) or not
(that is, to the even final digit 8). So, the Assembler must calculate the value of the constant to more than 112 bits.
(Some nonzero bits do appear with additional precision, so the Assembler knows the value should be rounded up, as
shown.)

33.4.3. The rounding modifiers and the generated values are:

R1 X'3E4189374BC6A7F0'
R4 X'3E4189374BC6A7F0'
R5 X'3E4189374BC6A7EF'

33.4.4.Here's an example using the last of the values in the table: when the constant's value is evaluated to a precision
of 30 hexadecimal digits, the result is
584F341F 25338E9D 527E3486 4A16 | 7C
where the final digit of the generated constant (6) will not be rounded up because the next 8 bits are B'01111100'.

When the precision is increased to 38 hexadecimal digits, the result is
584F341F 25338E9D 527E3486 4A16 | 80000000 03
where the final rounding bits indicate that the generated constant should be rounded up.

Section 33.6

33.6.1. The result in FPR(0,2) will be

FPR0: X'50123456789ABCDE' (unchanged)
FPR2: X'42DCBA9876543210' (corrected characteristic and sign)

and the CC will be 2 indicating a positive result.

33.6.2. These are the CC settings and register contents:

(1) CC=2, c(FPR4) = X'4C428571'
(2) CC=1, c(FPR2) = X'CC42857196DBB933'
(3) CC=1, c(FPR4,6) = X'8A123456789ABCDE FC42857196DBB933'
(4) CC=2, c(FPR4) = X'4C42857196DBB933'

Section 33.7

33.7.1. The primary change is to use MER rather than MEER.

XR 5,5 GR5 contains index for XX and YY
XR 6,6 GR6 contains index for ZZ
LZDR 4,4 Set long FPR4 to zero
LH 2,Count Counter in GR2

Loop LE 0,XX(5) Load X(i) in FPR0 (short)
LE 4,YY(5) Load Y(i) in FPR4 (now, long)
MER 0,0 Long X(i)*X(i) in FPR0
MDR 0,4 Multiply by Y(i)
STD 0,ZZ(6) Store long result Z(i)
LA 5,L'XX(,5) Increment XX, YY index by 4
LA 6,L'ZZ(,6) Increment XX index by 8
JCT 2,Loop Count down and loop
- - -

XX DC E'1,2,3,4,5,6,7,8,9,10' Values of X(i)
Count DC Y((*-XX)/L'XX) Count of X(i) entries
YY DC 5E'3.14159,2.71828' Values of Y(i)
ZZ DS 10D Long results Z(i)

33.7.2. The resulting fraction has only 12 significant digits, and the two low-order fraction digits are always zero.

33.7.3. They could be different. ME generates an 8-byte product that needs no rounding, because the low-order byte of
the product is X'00'. MEE generates only a 4-byte product, for which a rounded result would depend on the leftmost
bit of the right half of the long product.

W 3.7×103 X'43E7400000000000'
X 1.0×1055 X'6E6867A6'
Y 8.8×100 X'418CCCCCCCCCCCCC 33CCCCCCCCCCCCCD'
Z 1.0×1018 X'503782DB'

Suggested Solutions to Selected Exercises and Programming Problems 1213

33.7.4. Here's one way to calculate the table of cubes:

LA 0,100 Set count of results wanted
LE 2,=E'1' Constant 1 in FPR2
LER 6,2 Initialize N
LA 1,Cubes Set GR1 to start of table

CubeIt LER 4,6 Copy N to FPR4
MER 4,4 Form N**2
MER 4,6 Form N**3
STE 4,0(,1) Store in the table of cubes
LA 1,L'Cubes(,1) Increment table address
AER 6,2 Increment N by 1
JCT 0,CubeIt Repeat for 100 values
- - -

Cubes DS 100E

33.7.5. c(FPR0)=X'4112345699999999'; the right half of FPR0 is unchanged.

33.7.6. This leads to the peculiar (and possibly disturbing) circumstance that for a large class of hexadecimal floating-
point numbers (those with a nonzero low-order digit), multiplication by 1 would not yield the original operand!

33.7.7. Simply XOR X'40 to the sum.

Section 33.8

33.8.1. The Assembler generates the rounded constant E'0.6' = X'4099999A'.

33.8.2. The results are X'3F9ABCD8' and X'3E9ABC80' respectively.

33.8.3.

1. c (FPR0)=X'427D93482D335B9E'.
2. c (FPR0)=X'C53BA1816A7D80C7'.

33.8.4. An exponent underflow interruption will occur if the Program Mask bit is one, and c(FPR4)=x'7F100000'. If
the Program Mask bit is zero, c(FPR4)=0, and no interruption occurs.

33.8.5. HER and HDR can be thought of as analogs of

SRA x,1
and

SRDA x,1

Section 33.9

33.9.1. The result is X'5812345698765400'.

33.9.2. The instruction will generate a specification exception, because both operands don't refer to the lower-numbered
register of a floating-point register pair. FPR2 will be unchanged.

33.9.3. The mnemonic for “Add Unnormalized” is AU, and the mnemonic for “Add Double Unnormalized” is AW,
or “A Double U”.*

33.9.4. The results are:

1. c(FPR0)=X'40130000', CC=2
2. c(FPR0)=X'15400000', with an exponent overflow interruption
3. c(FPR0)=X'45000000', CC=0
4. c(FPR0)=X'C2831693', CC unchanged

33.9.5. The results are:

* Engineers find humor wherever they can.

1214 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. c(FPR0)=X'42FE00F0', CC=2
2. c(FPR0)=X'41104F3D', CC=2
3. c(FPR0)=X'42800078', CC unchanged
4. c(FPR0)=X'00222242', with an exponent overflow interruption
5. c(FPR0)=X'46384000', with an exponent underflow interruption
6. c(FPR0)=X'C117D861', CC=1

33.9.6. The results are:

1. c(FPR0)=X'C1200000', CC=1
2. c(FPR0)=X'44002000', CC=2
3. c(FPR0)=X'44000000', with an HFP lost-significance interruption
4. c(FPR0)=X'04000000', with an HFP lost-significance interruption
5. c(FPR0)=X'0B012335', CC=2
6. c(FPR0)=X'4601579A', CC=2

33.9.7. The AER instruction will cause an interruption for exponent overflow, and the result in FPR0 is X'801FFFFF'.

33.9.8. Consider this addition:

LE 2,=X'7FFFFFFF'
AE 2,=X'7E0FFFFF'

Because the characteristic difference is one, the second operand must be right-shifted one digit, so that the CPU adds
the fractions X'FFFFFF' and X'00FFFF', giving the sum X'1.00FFFFE', which after a normalizing right shift gives the
result characteristic X'100', indicating an exponent overflow and a final characteristic of zero. Any smaller second
operand would produce a smaller sum.

33.9.9. This operation subtracts (1 − 16 −6) from 1, so the expected result is +16 −6.

1. SE produces c(FPR0) = X'3B100000', or 16 −6 as expected.

The result of the unnormalized subtraction may be surprising:

2. SU produces c(FPR0) = X'41000000', with a significance exception. To see how this happens:

41100000(0) becomes 41000000(0)
-40FFFFFF(0) -410FFFFF(F)
3B100000(0) 40000000(1)

Remember, the guard digit does not participate in the test for a zero intermediate fraction.

33.9.10. None.

33.9.12. Because the first operand is 106 and the second is 10 −6, their sum must be able to represent at least 12
decimal digits. This means that either long or extended hexadecimal floating-point operands and arithmetic must be
used.

33.9.13. The result is X'57234569'; the guard digit (the high-order digit “9” of the smaller operand) appears in the
result.

33.9.14. The results are:

(1) X'41110005'
(2) X'4080004B'
(3) X'40FFFFFF'
(4) X'41100000'
(5) X'40223456'

Section 33.11

33.11.1. The result would have been X'3FDCF140', showing that an additional digit of precision is generated.

33.11.3. X'BB100000'

33.11.4. The cases where unequal operands may compare equal include:

1. normalized compared to unnormalized
2. unnormalized compared to unnormalized
3. pseudo-zero compared to pseudo-zero

Here are some examples:

Suggested Solutions to Selected Exercises and Programming Problems 1215

 000000 7800 F0B0 000B0 5 LE 0,=x'42123000' Normalized
 000004 7820 F0B4 000B4 6 le 2,=x'44001230' Normalized
 000008 3902 7 cer 0,2
 000044 7920 F0B8 000B8 758 ce 2,=x'43012300' Unnormalized
 000078 7840 F0BC 000BC 774 le 4,=x'75000000' Pseudo-zero
 00007C 7940 F0C0 000C0 775 ce 4,=x'05000000' Pseudo-zero
In all cases, the comparison Condition Code is zero.

Section 33.12

33.12.1. The fraction of the X'3B10wxyz' operand must be shifted right five digits for operand alignment, giving the
internal subtraction

40000001(0)
-40000001(0)
40000000(0)

Because the guard digit is included for comparisons, the two operands appear to be equal, and the Condition Code is
set to zero. (Try it!)

33.12.2. These are the resulting Condition Code settings:

1. (1) CC = 1
2. (2) CC = 2
3. (3) CC = 0
4. (4) CC = 2

33.12.5. Only if one or both operands is unnormalized, or both are zero or pseudo-zero. Try comparing these oper-
ands:

(1) X'42123000' to X'44001230' norm to unnorm
 (2) X'44001230' to X'43012300' both unnorms
 (3) X'75000000' to X'03000000' both pseudo-zero

 Section 33.13

33.13.1. Since the carry that caused the overflow was the result of adding a low-order 1-bit, the result fraction must be
X'.1000...'. Because the characteristic “wraps around” from 127 to 0, the result must be either X'00100...' or
X'80100...'.

33.13.2. The three results are:

1. c (FPR0)=X'0010000087654321', rounded, with an interruption for exponent overflow.
2. c (FPR0)=X'4000000187654321' (rounded).
3. c (FPR0)=X'4000000012345678' (not rounded).

33.13.3. The sequence works. For example, if FPR2 is initialized to X'4200000080000000', the rounded result stored at
Round3 is X'42100001'.

33.13.4. There will be no difference. The LDER instruction extends the short number from Variable with zero, so the
LEDR instruction cannot round the result in FPR0.

Section 33.14

33.14.2. The largest positive integer is X'7FFFFFFFFFFFFF00' = +9223372036854775552, and the result is
X'50FFFFFFFFFFFFF'. The largest negative value is X'8000000000000000' = − 9223372036854775808, and its result is
X'D080000000000000'.

The magnitude of the negative number is 256 larger than the magnitude of the positive number because not all 63 bits
of the positive number can be held in the 14 hex digits of the long hexadecimal floating-point result.

33.14.3. No, because the largest 64-bit integer is less than 1019, well within the range of all three hexadecimal floating-
point formats.

33.14.4. The first instruction changes the sign bit of the integer operand. Remember that the two's complement repre-
sentation of a 32-bit binary integer X is (232 +X) (modulo 232). Thus, if the integer was originally positive,

(232 - X) - 231 = 231 - X
is stored. This quantity is placed in FPR0 and 231 is subtracted from it. The result is the normalized value of X.

1216 Assembler Language Programming for IBM System z™ Servers Version 2.00

33.14.8. All three can be generated as hexadecimal floating-point D-type constants, but the first causes an Assembler
error:

000008 4E00000000000000 DCon1 DC DS(14)'0.1' Error, lost significance
** ASMA073E Precision lost
000018 CE00000080000000 DCon2 DC DS(6)'-2147483648' -2**31, unnormalized
000028 4F08000000000000 DCon3 DC DS(1)'36028797018963968' +2**55, unnormalized
The obscurity of these constants shows why a hexadecimal constant can be simplest.

33.14.12. The statement is

Float DC DS6'2147483648'

33.14.13. This is one way to do it:

L 0,IntVal Get the integer
ST 0,T+4 Store in pseudo-zero
LZDR 6 Set FPR6 to zero
AD 6,T Create the normalized HFP value
STD 6,W Store the result for testing
TM W+4,X'80' Is the 'lost' bit 1?
JZ OK If not, no rounding needed
XC W+1(3),W+1 Clear high-order 6 digits of result
AD 6,W Add the rounding bit

OK STE 6,Result Store the rounded
- - -

T DC 0D,X'4E',7X'0' Doubleword aligned pseudo-zero
W DC D'0' Doubleword temporary

33.14.14. This is one way to do it:

L 0,IntVal Get the integer
ST 0,T+4 Store in pseudo-zero
LZDR 6 Set FPR6 to zero
AD 6,T Create the normalized HFP value
STD 6,W Store the result for testing
CLC W+4(4),=X'80000000' Is it exactly halfway between?
JNE Round If not, do normal round up
TM W+3,X'1' Is the low-order bit zero?
JZ OK If so, result is even, don't round

Round TM W+4,X'80' Is the 'lost' bit 1?
JZ OK If not, no rounding needed
XC W+1(3),W+1 Clear high-order 6 digits of result
AD 6,W Add the rounding bit

OK STE 6,Result Store the rounded
- - -

T DC 0D,X'4E',7X'0' Doubleword aligned pseudo-zero
W DC D'0' Doubleword temporary

33.14.15. The results are shown in this table:

33.14.16. The converted 32-bit value is X'00010001'. Unfortunately, the halfword value is then X'0001'!

33.14.17. Using the value at DFloat, the result stored at DTemp will be X'4E00000001000003', and the number at NF
will be X'01000003'.

HFP_Number c(GR3) CC c(GG3) CC

X'46000000' X'00000000' 0 X'0000000000000000' 0
X'C7654321' X'F9ABCDF0' 1 X'FFFFFFFFF9ABCDF0' 1
X'7FEDCB49' X'7FFFFFFF' 3 X'7FFFFFFFFFFFFFFF' 3
X'ABCDEF74' X'00000000' 1 X'0000000000000000' 1
X'4974662B' X'7FFFFFFF' 3 X'000000074662B000' 2

Suggested Solutions to Selected Exercises and Programming Problems 1217

Section 33.15

33.15.1. The results in FPR0 after each step are:

• After DE: X'41140000' (1.25)
• After FIER: X'41100000' (1.0)
• After ME: X'42100000' (16.0)
• After AE: X'41400000' (4.0)

33.15.2. The AU instruction causes the fraction part of c(FPR0) to be shifted off; the ME instruction will pre-normalize
the integer part in FPR0, so the results will be the same.

33.15.3. In this case, the addition could cause the guard digit to be part of the normalized result. In Exercise 33.15.2,
the guard digit is not shifted left because there is no post-normalization.

If the quotient of the DE instruction is greater than or equal to X'46100000', no “fraction” digits will be shifted off.

33.15.4. This is one way to do it:

LD 0,A Load A into FPR0
DD 0,B Divide by B
FIDR 0,0 Drop off the fraction part
MD 0,B Form product with integer part
LCDR 0,0 Form -B*IntPart(A/B)
AD 0,A Add A to form remainder
STD 0,AModB Store result
- - -

AModB DS D Remainder
A DC D'20' A value for A
B DC D'16' And for B

33.15.5. The results in FPR0 are:

(1) X'42120000'
(2) X'C7FEDCA9 80000000'
(3) X'00000000 00000000'
(4) X'77654321
(5) X'C7FEDCA9'

Section 33.16

33.16.1. Using short HFP arguments (the results would not change for long or extended arguments):

• Sqrt(Max) = X'60400000'
• Sqrt(Min) = X'20400000'
• Sqrt(DMin) = X'1E100000'

33.16.2. If a carry occurred, the result fraction would have to be all one-bits, or (1 − ulp). But this would mean that the
source operand would have to be (1 − (ulp/2)), which can't happen.

33.16.3. First, remember that the argument and the result have the same length. Now, if the result were to lie exactly
half way between two representable target values, it would have to be finite in length. But that would mean that for
some exponent, it's an integral value, and hence its square (the source operand) would also be integral. (A number
whose square root is an integer is itself an integer.) But square roots have about half as many digits as the source value;
and since source and target have the same number of digits, the square root must be shorter than the source, so it can't
lie exactly halfway between two representable values.

Section 33.19

33.19.1. This operation subtracts (1 − 16 −6) from 16, so the expected result is 15 +16 −6. The actual results are:

(1) SE produces c(FPR0) = X'41F00001' or 15 +16 −5 with an error of 15/16 ulp.

(2) SU produces c(FPR0) = X'420F0000', an unnormalized value of 15 with error 16 −6 or 1/16 ulp.

So the unnormalized result is more accurate! This peculiarity is caused by unrounded hexadecimal floating-point arith-
metic.

33.19.2. This table shows the approximate values:

1218 Assembler Language Programming for IBM System z™ Servers Version 2.00

These choices also depend on the expected uses of the representation: if customer data needs only a limited exponent
range, a 4-bit characteristic might give more fraction accuracy.*

33.19.3.

XGR 0,0 Clear 64-bit general register
ICMH 0,8,X Get sign/characteristic of X
OIHL 0,1 Set bit 31 to 1
LFGR 0,0 Copy X'cc000001 00000000' to FR0
DE 0,X Divide by X
STE 0,ULPX Store short precision ulp(X)

33.19.5.

XGR 0,0 Clear 64-bit general register
ICMH 0,8,X Get sign/characteristic of X
OILL 0,1 Set bit 63 to 1
LFGR 0,0 Copy X'cc000000 00000001' to FR0
DD 0,X Divide by X
STD 0,ULPX Store long precision ulp(X)

33.19.7.

LD 4,X Put high half of X in FR4
LD 6,X+8 Put low half of X in FR6
XGR 0,0 Clear 64-bit general register
ICMH 0,8,X Get sign/characteristic of X
LFGR 0,0 Copy X'cc000000 00000000' to FR0
LGHI 0,1 Put 1 in GG0
LFGR 2,0 Copy X'00000000 00000001' to FR2
DXR 0,4 Divide by X
STD 0,ULPX Store high half of ulp(X)
STD 2,ULPX+8 Store low half of ulp(X)

Programming Problem 33.1.
P33_1 START 0

BASR 15,0 Set base register
USING *,15 And inform the assembler
LE 4,=E'1' Carry 1.0 in FPR4
LE 6,=E'-5' And X in FPR6

Loop STE 6,X Store X value for printing
LER 2,6 Set up denominator
MER 2,2 Form X squared
SE 2,=E'3' Subtract 3.0
MER 2,6 (X*X-3.0)*X
SE 2,=E'2' -2.0; now have denominator
JNZ Calc Branch if nonzero to compute
LE 0,Max Otherwise set max value
J StoreF And go store result

Calc LER 0,4 Numerator = 1.0
DER 0,2 Form F(X)

StoreF STE 0,FX Store value of function
PrintOut X,FX Print values

Exponent
width

Fraction
digits Exponent range Fraction

accuracy

7 bits 8 −64 to +63
≈ 1.6*10 −58 to ≈ 7.8*1056 ≈ 5*10 −7

4 bits 9 −16 to +15
≈ 3.6*10 −15 to ≈ 3.5*1013 ≈ 6*10 −8

* If you are interested in the reasons the designers of System/360 chose hexadecimal instead of base-8 floating-point, you might
consult this article: “An Analysis of Floating-Point Addition”, by D. W. Sweeney, IBM Systems Journal, Volume 4, Number 1,
1965.

Suggested Solutions to Selected Exercises and Programming Problems 1219

AER 6,4 Increase X by 1.0
CE 6,=E'+5' Compare to last value
JNH Loop Branch if not bigger to do next X
PrintOut *,Header=NO Terminate program

FX DS E Value of F(X)
X DS E Value of X
Max DC EH'(Max)' Maximum hexadecimal floating-point value

END P33_1
The maximum hexadecimal floating-point value will be printed when X = − 1 and X = +2.

Programming Problem 33.2. This program displays the long hexadecimal floating-point values.

P33_2 CSect ,
Print NoGen
Using *,15
LA 0,55 Set count of largest factorial
LD 0,=D'1' Initialize factorial value in FPR0
LDR 2,0 Initialize N in FPR2
LDR 4,0 Set increment in FPR4
STD 0,Facts Store 0 factorial
LA 9,Facts+L'Facts Set GR9 to next entry in table

FactIt MDR 0,2 Form F*N to form N!
STD 0,0(,9) Store in table
PrintOut 32,Header=NO Print contents of FPR0
ADR 2,4 Increment F
LA 9,L'Facts(,9) Increment table address
JCT 0,FactIt Repeat for remaining values
PrintOut *,Header=NO Terminate

Facts DS 56D Storage for the factorial values
End P33_2

The largest precisely representable short hexadecimal floating-point value is easy to find by examining the long results to
see which has nonzero digits extending past the sixth fraction digit; the last precise value is 12 factorial (12!). Finding the
equivalent long value is more difficult, because the last nonzero digit of 22! (X'3CEEA4C2B3E0D80000') is X'8' and the last
significant digit of 23! (X'57970CD7E2933680000') is X'6', so it's not easy to know whether the three low-order zero bits of
22! might be enough to hold the low bits of 23!, without going to higher precision.

By evaluating those two numbers in extended precision (as the hex values show), we find that 23! has a single one-bit in
the 15th hex digit, so that 22! is the largest that can be stored without loss of precision in long hexadecimal floating-point
format.

Programming Problem 33.3.

This solution first checks the input value for zero; otherwise, it multiplies or divides by powers of ten until the result is a
fraction less than 1 but greater than 0.1, keeping track of the decimal exponent. This fraction is multiplied by 106, con-
verted to integer form, and formatted for printing.

P33_3 CSect ,
Print NoGen

F0 Equ 0 Floating-point work register
BASR 12,0 Set base register
USING *,12 Provide addressability

Read ReadCard InRec,Exit Read a record
OC InRec(8),=8C' ' Make upper-case characters
MVC PHex,InRec Move to output line for display
TR Inrec(8),HexCh Translate digits to 0-F
PACK DWord(5),Inrec(9) Pack into a 4-byte word
LDE 0,DWord Load and extend to long format
XR 1,1 Clear GR1 for decimal exponent
MVI ESign,C'+' Assume positive result
TM DWord,X'80' Check sign of input value
JZ PlusSign Skip setting - sign, + is correct
MVI ESign,C'-' Result is negative.

PlusSign LPER F0,F0 Force argument sign + in register
JZ Zero Fraction is zero, finish up easily

1220 Assembler Language Programming for IBM System z™ Servers Version 2.00

CD F0,=D'1' See if argument has +/- exponent
JE FractOne All done if exactly 1.0
JH PosExp Branch if positive exponent

NegExp MD F0,=D'1.E10' Negative exponent; increase by tens
AHI 1,-10 And count decimal exponent down
CD F0,=D'1' Where did that take us?
JL NegExp If it's still too small, go again
JE FractOne If exactly equal, that's nice.

PosExp CD F0,=D'1.E10' Positive exponent; check size
JL Reduce If in range, reduce slowly
MD F0,=D'1.E-10' Multiply gives more accuracy.
AHI 1,10 Bump decimal exponent accordingly
J PosExp And do another reduction cycle

Reduce CD F0,=D'1' Exponent in (+10,0); check for 10**0
JE FractOne Fraction now is 1
JL Convert Ready to convert if now a fraction
MD F0,=D'.1' Reduce by 10**1
AHI 1,1 Increment exponent accordingly
J Reduce And go around again

Convert MD F0,=D'1.E6' Convert to integer in (1,10**6)
AD F0,=D'.5' Round it properly
CD F0,=D'1.E6' Did it round up to 1000000?
JNL FractOne It did, use fraction .100000
CFER 0,5,F0 Convert to binary integer in GR0
CVD 0,DWord Convert to packed decimal
OI DWord+7,X'0F' Set correct zone
UNPK EDigits,DWord Place digits into string

DoExpon DS 0H Convert exponent
MVI ExpSign,C'+' Assume positive exponent
LTR 1,1 Check for correct assumption
JNM DoExpon2 Skip if it was right
MVI ExpSign,C'-' Set exponent sign -

DoExpon2 CVD 1,DWord Convert to decimal
OI DWord+7,X'0F' Set correct (positive) zone
UNPK Exponent,DWord Unpack to zoned decimal
PrintLin PLine,Exponent-PLine+2 Print result
J Read Repeat for more values

Zero MVC EDigits,=6C'0' Set fraction to zeros
J DoExpon And go do exponent

FractOne MVC EDigits,=C'100000' Set fraction digits to .100000
AHI 1,1 Compensate by upping exponent
J DoExpon And go do exponent

Exit PrintOut *,Header=NO Terminate
LtOrg , Insert literals

DWord DC D'0' Work area
PLine DC C' X''' Start of print line
PHex DS CL8 Input value

DC C''' = '
ESign DS C Sign of fraction
DecPt DC C'.' Decimal point
EDigits DS CL6 Fraction digits
ExponE DC C'E' Exponent indicator 'E'
ExpSign DS C Exponent sign
Exponent DS CL2 Decimal exponent
HexCh DC 256AL1(*-HexCh) Define no-effect table

Org HexCh+C'A' Set origin to offset of 'A'
DC X'FAFBFCFDFEFF' Translate numeric digit to hex
Org , Reset location counter

InRec DS CL80 Input area for records
END P33_3

Programming Problem 33.6.

Suggested Solutions to Selected Exercises and Programming Problems 1221

P33_6 Csect ,
Using *,15

HFPLoop LD 0,HFPA Put argument in FPR0
DD 0,HFPX Divide by current estimate
SD 0,HFPX Subtract current estimate
HDR 0,0 Divide by 2
LPDR 2,0 Copy for convergence test
AD 0,HFPX Add original estimate
STD 0,HFPX Store updated estimate
CD 2,=D'1E-10' See if correction is small enough
JH HFPLoop If not, iterate again
LDR 2,0 Save final result in FPR2
SDR 4,4 Set FPR4 to zero for renormalization
AW 0,HFPUnn Unnormalize to extract integer part
STD 0,HFPDW Store temporarily
ADR 0,4 Renormalize the integer part
SDR 2,0 Remove integer part in FPR2
L 0,HFPDW+4 Get low-order word
CVD 0,HFPDW Convert integer part to decimal
OI HFPDW+7,X'0F' Set proper zone
UNPK HFPAns(1),HFPDW+7(1) Unpack the integer part
MVI HFPAns+1,C'.' Place the decimal point
MD 2,HFPCon Convert fraction digits to integer
AD 2,HFPRnd Add rounding factor
AW 2,HFPUnn Unnormalize to form fullword integer
STD 2,HFPDW Store temporarily
L 0,HFPDW+4 Get low-order word
CVD 0,HFPDW Convert integer part to decimal
OI HFPDW+7,X'0F' Set proper zone
UNPK HFPAns+2(9),HFPDW+3(5) Move fraction part to output
Printout HFPAns,*,Header=NO

HFPA DC D'2' Argument
HFPX DC D'1' Initial estimate
HFPCon DC D'1E9' Conversion constant for fraction
HFPRnd DC D'0.5' Constant for rounding
HFPUnn DC X'4E',7X'0' Unnormalizing constant
HFPDW DC D'0' Work Area
HFPAns DC CL12' ' Output area for result

End P33_6

The printed result is

 HFPAns = C'1.414213562 '

1222 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 34 Solutions
Section 34.1

34.1.1. The three values are:

• Min = 2 −126

• DMax = 2 −126 − 2−149

• DMin = 2 −149

34.1.2. There are 23 fraction bits in a short binary floating-point number, of which we must exclude the case of all zero
bits. So there are 223 − 1 possible bit combinations. Allowing for either sign, there are 2× (223 − 1) or 16,777,214 denor-
malized numbers.

34.1.3. The three values are:

• Short format: X'7F800000'
• Long format: X'7FF0000000000000'
• Extended format: X'7FFF000000000000 0000000000000000'

Section 34.2

34.2.1. The constants are shown in this table:

In the 2-byte extended format, there is no fraction, only the implied 1-bit!

34.2.2. Six possible interpretations and the corresponding assembler language defining statements can be written this
way:

DC F'1077952604' Fullword binary integer
DC C'•••*' Characters (three blanks and an asterisk)
STH 4,X'05C'(0,4) Store halfword
DC P'+4040405' Packed decimal
DC E'.250982046' Hexadecimal floating-point
DC EB'3.0039281845' Binary floating-point

Other interpretations are possible, as we'll see later.

34.2.3. The types of the six values are:

1. X'7FFFFFFF' − QNaN
2. X'007FFFFF' − Denormalized
3. X'80000000' − − 0
4. X'00FFFFFF' − Normal
5. X'FF8000AB' − QNaN
6. X'FF800000' − − infinity

34.2.4. You won't be happy with the results, because

• Short generates X'3FB9999A', which has value +1.4500000 as a short operand, not 0.1!
• ShortOne generates X'3FF00000', which has value +1.875 as a short operand, not 1!

• Long generates X'3DCCCCCCCCCCCCCCD', which has value +5.238689482212067E-11 as a long operand, not even
close to 0.1!

• LongOne generates X'3F800000000000000' as a long operand, which has value +7.8125E-3, not 1!

This shows why you should be very careful when using BFP constants defined with length modifiers.

Format 2 Bytes 3 Bytes 4 Bytes

Short 3DCD 3DCCCD 3DCCCCCD
Long 3FBA 3FB99A 3FB9999A

Extended 3FFC 3FFB9A 3FFB999A

Suggested Solutions to Selected Exercises and Programming Problems 1223

Section 34.3

34.3.1. The resulting value is X'007FFFFF', one ulp smaller than EB'(Min)'.

Section 34.4

34.4.1. The exception conditions are “o” and “u” (overflow and underflow), and the rounding mode is set to “Down”
(round toward − infinity).

34.4.2. The instructions will (a) set the invalid-operation mask bit to zero, and (b) reset all the status flags to zero.

34.4.3. You would get a program interruption with IC=X'01', meaning the instruction is invalid.

Section 34.5

34.5.1. The tested data classes are:

(a) − infinity, any QNaN, and − SNaN.
(b) Any and all data classes, so it tells you nothing useful!
(c) Any NaN operand with any sign.
(d) A zero operand.

34.5.2. In each case, the type of the operand is inconsistent with the type of the instruction. You should analyze the
operands carefully to see what each instruction “thinks” it is testing.

34.5.3. The redundant instruction is at (b): it tests for all data classes, so it will always set CC=1.

Section 34.6

34.6.1. The result in FPR(0,2) will be

FPR0: X'50123456789ABCDE' (unchanged)
FPR2: X'FEDCBA9876543210' (unchanged)

and the CC will be 2 indicating a positive result. (Compare this to the result of Exercise 33.6.1!)

34.6.2. The four results and the CC settings are:

(1) LPEBR 4,2 CC=2, c(FPR4)=X'4285719600000000'
(2) LTDBR 2,2 CC=2, c(FPR2) is unchanged
(3) LCXBR 4,0 CC=1, c(FPR4,6)=X'8A123456789ABCDE 42857196DBB93310'
(4) LCDBR 4,2 CC=1, c(FPR4)=X'C2857196DBB93310'

34.6.3. The resulting settings are (a) CC=2, (b) CC=3.

34.6.4. The TCDB instruction at (d) tests for a zero operand, so it could be replaced by

LTDBR 0,0 Test c(FPR0) for zero

Section 34.7

34.7.2. Here's one way to calculate the table of cubes:

LA 0,100 Set count of results wanted
LE 2,=EB'1' Constant 1 in FPR2
LER 6,2 Initialize N
LA 1,BCubes Set GR1 to start of table

CubeIt LER 4,6 Copy N to FPR4
MEEBR 4,4 Form N**2
MEEBR 4,6 Form N**3
STE 4,0(,1) Store in the table of cubes
LA 1,L'BCubes(,1) Increment table address
AEBR 6,2 Increment N by 1
JCT 0,CubeIt Repeat for 100 values
- - -

BCubes DS 100EB Table of cube values

34.7.3. This solution relies on setting the mask bits and the rounding mode in the FPCR:

1224 Assembler Language Programming for IBM System z™ Servers Version 2.00

LFPC =X'D0000003' No underflow or inexact,
* round to -infinity

LE 0,=EB'(Max)' Maximum value
MEEBR 0,0 c(FPR0)=X'7F7FFFFF', rounded down to (Max)

Section 34.8

34.8.1. As in the solution to Exercise 34.7.3, this solution relies on setting the mask bits and the rounding mode in the
FPCR:

LFPC =X'D0000003' No underflow or inexact,
* round to -infinity

LE 0,=EB'1' c(FPR0)=X'3F800000'
DEB 0,=EB'(DMin)' Result rounds down to (Max)

34.8.2. The results are:

1. X'3F800000' = − 1
2. X'80000000' = − 0
3. X'FF800000' = − ∞

34.8.3. The three values are

1. − 0
2. + 0
3. − 1.0

34.8.4. Divide the signed zero into +1, and check the sign of the resulting ± ∞ , using a Load and Test of the appro-
priate operand length.

Section 34.9

34.9.1. The representation of each (DMin) is X'000...001'. When added to itself, the result is X'000...002'. The need
to mask off all exception conditions is explained in the z/Architecture Principles of Operation; if the underflow excep-
tion is enabled, an interruption occurs and the final exponent is scaled to be in a valid range.

34.9.2. Because the value of (Min) is a power of two, adding (Min) to itself in each representation will simply double its
value, by increasing the exponent by one. Thus, the results are

• X'01000000' (short precision)
• X'0020000000000000' (long precision)
• X'0002000000000000 0000000000000000' (extended precision)

34.9.3. (1) + ∞ , (2) invalid operation.

Section 34.10

34.10.1. The CC values resulting from the comparisons are shown in this table:

Table 451. Comparing five binary floating-point oper-
ands

34.10.2. No.

Section 34.11

34.11.1. Yes, but be careful. You could “shorten” a binary floating-point operand by truncating the low-order portion,
but then you can't use the truncated operand as a shorter-format operand, because the exponent field will be too long.
They can be considered “truncating” only if the rounding mode is B'01' (toward zero), which chops off the low-order
digits.

Operand 1
Operand 2

A B C D E

A − 2 1 2 2

B 1 − 1 2 2

C 2 2 − 2 2

D 1 1 1 − 2

E 1 1 1 1 −

Suggested Solutions to Selected Exercises and Programming Problems 1225

34.11.2. The short format has 23 significand bits; when lengthened to long format only its leading 22 or 23 bits will
match those of the original long format. Thus the difference between the original and final values will be approximately
X*(2 −22).

34.11.3. The long precision values will be:

1. X'3F800000 00000000' ≈ +7.8125E-3
2. X'00800000 00000000' ≈ +2.848E-306
3. X'00000001 00000000' ≈ +2.121E-314
4. X'7FE00000 00000000' ≈ +8 .988E+307
5. X'7FA00000 00000000' ≈ +5 .618E+306
6. X'7F800000 00000000' ≈ +1 .404E+306

You must be careful to know the true length of each binary floating-point operand!

Section 34.12

34.12.2. No, because the largest 64-bit integer is less than 1019, well within the range of all three binary floating-point
formats.

Section 34.13

34.13.1. The results are:

1. X'40800000' = 4
2. X'40800000' = 4
3. X'40400000' = 3
4. X'40800000' = 4
5. X'40400000' = 3

34.13.2. The long precision value loaded into FPR0 is X'40230000 00000000'. But the FIEBR instruction treats it as a
short precision operand, which has value 2.54685, so the rounded value in FPR2 is X'40400000', with value +3.

The fact that the original operand +9.5 didn't round to +10 shows why you must be careful to match operand lengths
expected by the instructions to the length of the data items.

Section 34.14

34.14.1. From Table 271 on page 638 we can see that

(Max) ≈ 3.4×10+ 3 8 so its square root is ≈ 1.84×10+ 1 9 .
(Min) ≈ 1.2×10-38 so its square root is ≈ 1.08×10-19.
(DMin) ≈ 1.4×10+ 4 5 so its square root is ≈ 3.74×10-23.

34.14.2. Because the operand is long precision but the instruction extracts the square root of a short precision operand,
the result is not +4.0, but +1.6583 instead.

Programming Problem 34.2. This solution illustrates a way to derive useful results with low overhead.

P34_2 CSect ,
Print NoGen

F0 Equ 0 Floating-point work register
BASR 12,0 Set base register
USING *,12 Provide addressability

Read ReadCard InRec,Exit Read a record
OC InRec(8),=8C' ' Make upper-case characters
MVC PHex,InRec Move to output line for display
TR Inrec(8),HexCh Translate digits to 0-F
PACK DWord(5),Inrec(9) Pack into a 4-byte word
LE F0,DWord Load to FPR0
XR 1,1 Clear GR1 for decimal exponent
MVI ESign,C'+' Assume positive result
TM DWord,X'80' Check sign of input value
JZ PlusSign Skip setting - sign, + is correct
MVI ESign,C'-' Result is negative.
NI DWord,X'7F' Set original sign to 0

PlusSign LPEBR F0,F0 Force argument sign + in register
JZ Zero Fraction is zero, finish up easily

1226 Assembler Language Programming for IBM System z™ Servers Version 2.00

CLI DWord,X'7F' Check possible Infinity or NaN
JL Finite Skip if value is finite
TM DWord+1,X'80' Check next bit
JO Special If 1, it's a special value

Finite CEB F0,=EB'1' See if argument has +/- exponent
JE FractOne All done if exactly 1.0
JH PosExp Branch if positive exponent

NegExp MEEB F0,=EB'1.E8' Negative exponent; increase by 8
AHI 1,-8 And count decimal exponent down
CEB F0,=EB'1' Where did that take us?
JL NegExp If it's still too small, go again
JE FractOne If exactly equal, that's nice.

PosExp CEB F0,=EB'1.E8' Positive exponent; check size
JL Reduce If in range, reduce slowly
MEEB F0,=EB'1.E-8' Multiply gives more accuracy.
AHI 1,8 Bump decimal exponent accordingly
J PosExp And do another reduction cycle

Reduce CEB F0,=EB'1' Exponent in (+10,0); check for 10**0
JE FractOne Fraction now is 1
JL Convert Ready to convert if now a fraction
MEEB F0,=EB'.1' Reduce by 10**1
AHI 1,1 Increment exponent accordingly
J Reduce And go around again

Convert MEEB F0,=EB'1.E5' Convert to integer in (1,10**5)
AEB F0,=EB'.5' Round it properly
CEB F0,=EB'1.E5' Did it round up to 100000?
JNL FractOne It did, use fraction .10000
CFEBR 0,5,F0 Convert to binary integer in GR0
CVD 0,DWord Convert to packed decimal
OI DWord+7,X'0F' Set correct zone
UNPK EDigits,DWord Place digits into string

DoExpon DS 0H Convert exponent
MVI ExpSign,C'+' Assume positive exponent
LTR 1,1 Check for correct assumption
JNM DoExpon2 Skip if it was right
MVI ExpSign,C'-' Set exponent sign -

DoExpon2 CVD 1,DWord Convert to decimal
OI DWord+7,X'0F' Set correct (positive) zone
UNPK Exponent,DWord Unpack to zoned decimal
MVI DecPt,C'.' Place the decimal point
MVI ExponE,C'E' And the exponent indicator

PrintIt PrintLin PLine,Exponent-PLine+2 Print result
J Read Repeat for more values

Zero MVC EDigits,=5C'0' Set fraction to zeros
J DoExpon And go do exponent

FractOne MVC EDigits,=C'10000' Set fraction digits to .100000
AHI 1,1 Compensate by upping exponent
J DoExpon And go do exponent

Special CLC DWord(2),=X'7F80' Check for infinity
JNE ItsaNaN Skip if not infinity
MVC DecPt(10),=CL10'(Infinity)' Indicate special value
J Printit Print the result

ItsaNaN MVC DecPt(10),=CL10'(NaN)' Indicate special value
J Printit Print the result

Exit PrintOut *,Header=NO Terminate
LtOrg , Insert literals

DWord DC D'0' Work area
PLine DC C' X''' Start of print line
PHex DS CL8 Input value

DC C''' = '
ESign DS C Sign of fraction
DecPt DC C'.' Decimal point
EDigits DS CL5 Fraction digits
ExponE DC C'E' Exponent indicator 'E'
ExpSign DS C Exponent sign

Suggested Solutions to Selected Exercises and Programming Problems 1227

Exponent DS CL2 Decimal exponent
HexCh DC 256AL1(*-HexCh) Define no-effect table

Org HexCh+C'A' Set origin to offset of 'A'
DC X'FAFBFCFDFEFF' Translate numeric digit to hex
Org , Reset location counter

InRec DS CL80 Input area for records
END P34_2

Programming Problem 34.3. This solution displays the values in hexadecimal. You will see that many of the
squared square roots match the original integer value.

P34_3 CSect ,
Print NoGen
USING *,15 Provide addressability
LFPC =F'0' Mask off exceptions
LA 0,20 Count number of values
LE 0,=EB'1' Constant 1 in FPR0
LER 2,0 Integer value to be incremented

Loop STE 2,FPInt Store for display
SQEBR 4,2 Calculate the square root
STE 4,FPRoot Store for display
LER 6,4 Copy it to FPR6
MEEBR 6,6 Squared square root
SEBR 6,2 Calculate (squared root)-(integer)
STE 6,FPDiff Store for display
PrintOut FPInt,FPRoot,FPDiff Display the results
AEBR 2,0 Increment the integer value
JCT 0,Loop Repeat for next value
PrintOut *,Header=NO Terminate
DS 0F Align to fullword boundary

FPInt DS XL4
FPRoot DS XL4
FPDiff DS XL4

END P34_3

The only reason to mask off the exceptions is that the square roots of non-square integers are necessarily inexact.

Programming Problem 34.4. You will find the claim to be true for these values:

• Short binary floating-point: 41, 47, 55, 61, 82, 83, 94, 97
• Long binary floating-point: 49, 98
• Extended binary floating-point: 43, 86, 87, 97

Mathematically inclined readers may find it interesting to explain the discrepancies detected above, and determine why
only the value 99 is shared between representations.

Programming Problem 34.5.
P34_5 Csect ,

Using *,15
BFPLoop LD 0,BFPA Put argument in FPR0

DDB 0,BFPX Divide by current estimate
SDB 0,BFPX Subtract current estimate
DDB 0,=DB'2' Divide by 2
LPDR 2,0 Copy for convergence test
ADB 0,BFPX Add original estimate
STD 0,BFPX Store updated estimate
CDB 2,=DB'1E-10' See if correction is small enough
JH BFPLoop If not, iterate again
ADB 0,BFPRnd Round to 9 siginificant digits
LDR 2,0 Copy answer to FPR2
CFDBR 0,0,0 Convert integer part to fixed
CVD 0,BFPDW Convert that to packed decimal
OI BFPDW+7,X'0F' Set proper zone
UNPK BFPAns(1),BFPDW+7(1) Unpack the integer part

1228 Assembler Language Programming for IBM System z™ Servers Version 2.00

MVI BFPAns+1,C'.' Place the decimal point
CDFBR 0,0 Convert integer part back to float
SDBR 2,0 Subtract integer part
MDB 2,BFPCon Convert fraction digits to integer
CFDBR 0,0,2 Convert fraction part to fixed
CVD 0,BFPDW Convert that to packed decimal
OI BFPDW+7,X'0F' Set proper zone
UNPK BFPAns+2(9),BFPDW+3(5) Move fraction part to output
Printout BFPAns,*,Header=NO

BFPA DC DB'2' Argument
BFPX DC DB'1' Initial estimate
BFPCon DC DB'1E9' Conversion constant for fraction
BFPRnd DC DB'0.5E-9' Constant for rounding
BFPDW DC D'0' Work Area
BFPAns DC CL12' ' Output area for result

End P34_5

The printed result is

 BFPAns = C'1.414213563 '

Suggested Solutions to Selected Exercises and Programming Problems 1229

Section 35 Solutions
Section 35.0

35.0.1. I sometimes explain what I call “Cartoon” (four-finger) arithmetic by holding my hands against the edge of a
table, with the thumb and first three fingers (or the four fingers) on the surface and the little fingers (or the thumbs)
hidden below the edge. Then, I ask a child to count from one to “ten”, where “ten” is the last finger counted: 1, 2, 3, 4,
5, 6, 7, 10. Then, I ask them to add 5 and 5.

35.0.2. Clocks use base 12 or base 24 arithmetic for hours, and base 60 for minutes and seconds; circular measure uses
base 360; weekly calendars use base 7. You will enjoy browsing for others.

Section 35.1

35.1.1. Your representation could look like this:

1 7 24
┌─┬────────┬────┬────┬────┬────┬────┬────┐

 │s│ char │ 6 BCD─digit fraction │
 └─┴────────┴────┴────┴────┴────┴────┴────┘

Because the characteristic is 7 bits wide, it can accommodate characteristic values from 0 to 127. To avoid the range
asymmetry of hexadecimal floating-point data, EMax should be +64 and EMin should be − 63. Then, the characteristic
bias is +63. (See the footnote on page 681.)

35.1.2. The three quanta are 1×107, 1×106, and 1×103 respectively.

35.1.3. Yes. The quantum in each case is 10exponent.

35.1.4. The number of significant digits is 5, 6, and 9 respectively.

35.1.5. The pictured representation has precision of 19 digits, and the given value has five nonzero digits between its
leftmost and rightmost nonzero digits, so the cohort has 15 members in each case.

35.1.6. p − n +1.

Section 35.2

35.2.1. The cohort members and their quanta are

1. [− 2║0743] and [− 3║7430], with quanta 1×10 −2 and 1×10 −3 respectively.
2. [+ 1║0009], [0║0090], [− 1║0900], and [− 2║9000], with quanta 1×101, 1×100, 1×10 −1, and 1×10 −2 respectively.
3. [− 3║3400], [− 2║0340], and [− 1║0034], with quanta 1×10 −3, 1×10 −2, and 1×10 −1 respectively.

35.2.2. 2, 5, and 11. (That wasn't too hard, was it!)

35.2.3. Nine. A long-precision number supports 16 digits, so we can have from 0 to 8 high-order (or low-order) zeros.

35.2.4. Assuming all exponents are valid, you can't tell unless you know how many low-order zero digits are in the
significand. For example, if the significand is 10000000, its cohort has 16 members. Similarly, if the significand is
12345678, its cohort has 9 members.

35.2.5. The encoding is X'38F'.

35.2.6. The BCD digits are 945.

35.2.7. The values are:

1. X'827C000000000000' = − 0: first 5 CF bits = 00000, TSF=0 bits = 11111 1
2. X'7EF00049826BA3B0' = +SNaN: first 5 CF bits = 11111, next bit = 1 bits = 11111 0
3. X'FB7388215142D357' = − QNaN: first 5 CF bits = 11111, next bit = 0

35.2.9. The two values are

Short DFP: X'2DF306BB'
 Long DFP: X'22200000003306BB'

1230 Assembler Language Programming for IBM System z™ Servers Version 2.00

35.2.10. Examine Table 320 on page 685: for decimal digits 0-7, the bit patterns in the rightmost encoded hexadecimal
digit are the same as those of the “source” digit. Decimal digits 8 and 9 may sometimes be encoded to X'E' and X'F'
respectively.

Section 35.3

35.3.1. Seven possible interpretations, and their Assembler Language defining statements, are:

DC F'1077952604' Word binary integers
DC C'•••*' Characters (three blanks and an asterisk)
STH 4,X'05C'(0,4) Store Halfword
DC P'+4040405' Packed decimal
DC E'.250982046' Hexadecimal floating-point
DC EB'3.0039282' Binary floating-point
DC ED'1.0850E+35' Decimal floating-point

The decimal floating-point value is a member of a cohort: members with the same value can have different representa-
tions:

DC ED'10850E31' Representation X'4040405C'
DC ED'1085E32' Representation X'4050044B'
DC ED'1.085E35' Representation X'4050044B'

The last two of these show that the presence of the low-order zero digit in the nominal value changes the generated
constant.

35.3.2. The three constants are

Short DC ED'.9999998E97' Generates X'77F3FCFE'
Long DC DD'.999999999999998E385'
Extend DC LD'.9999999999999999999999999999999998E6145'
It's instructive to assemble these three constants together with the following three (specify the PRINT DATA state-
ment!). You'll see that the results for the first three constants are identical to the Max values except that the low-order
bit is one less.

DC ED'(Max)' Generates X'77F3FCFF'
DC DD'(Max)'
DC LD'(Max)'

35.3.3. The three constants are

Short DC ED'.9999999E97'
Long DC DD'.9999999999999999E385'
Extend DC LD'.99999999999999999999999999999999999E6145'
If you don't like writing it as a fraction, you could also write (for example)

Long DC DD'9999999999999999E369'

35.3.4. The sketches of the hexadecimal and binary floating-point representations in Figure 437 on page 681 imply
that those representations can safely be lengthened or shortened. However, decimal floating-point values depend on
maintaining the precise structure of the Combination Field and of the declets in the Trailing Significand Field. Trun-
cating or padding a constant could produce a bit string unrecognizable as a decimal floating-point value.

35.3.5. Because short decimal floating-point exponents range from − 95 to +95, the cohort of +0 has 192 members, not
191: remember that +0 and − 0 are different members of the cohort.

35.3.7. NMin = 1.E-95, and DMin = .000001E-95.

Section 35.4

35.4.1. The tested data classes are:

(1) − infinity, any QNaN, and − SNaN (The Effective Address bit pattern is B'11101')
(2) Any and all data classes, so it tells you nothing useful!
(3) Any NaN operand with any sign.
(4) A zero operand.

Suggested Solutions to Selected Exercises and Programming Problems 1231

Section 35.5

35.5.1. Yes: if the result has fewer significant digits than the representation provides, the cohort member with smallest
quantum will have a nonzero leftmost digit.

35.5.2. A program interruption with IC=1 (operation exception) will occur.

Section 35.6

35.6.1. Both instruction sequences do the same, and both sequences require four bytes. Depending on the System z
model, the single instruction could be slightly faster than the two LDRs.

Section 35.7

35.7.1. The results are

(1) X'0000000000000000' = +0
(2) X'7800000000000000' = +infinity
(3) X'7800000000000000' = +infinity
(4) X'F800000000000000' = -infinity

Section 35.8

35.8.1. The CC settings are shown in this table:

Section 35.9

35.9.1. To avoid an invalid operation exception, the rounding masks must round the decimal floating-point value
toward zero.

• For Mp, the mask values are 9, 11, 13, and 15 (and 0 if the Decimal Rounding Mask in the FPCR has values 1, 3,
5, or 7).

• For Mn, the mask values are 8, 9, 10, 13, and 15 (and 0 if the Decimal Rounding Mask in the FPCR has values 1,
2, 5, or 7).

There is one more mask value for Mn because − 263 is even, while + 263 − 1 is odd, and can round (up) to an even final
digit, making the result larger than the maximum positive integer.

Section 35.10

35.10.1. You could compare the decimal floating-point operand to a constant. Suppose a nonnegative long operand is
in FPR2:

LD 0,=DD'1E16' 10**16 (16 significant digits)
CDTR 2,0 Compare operand to constant
JNL LostDigit Branch if a digit will be lost

and similarly for extended precision, where the constant would be =DD'1E32'.

Alternatively, you could use the “Extract Significance” instructions to determine the actual number of significant digits.

35.10.2. Because the result is unsigned, there is no need to choose a sign code.

35.10.3. Because the source operand in (GG8,GG9) has at most 31 packed decimal digits, but the extended decimal
floating-point operand supports 34 digits, the LMD must necessarily be zero.

35.10.5. Let ZD represent the numeric value of the zoned decimal digits of the result.

Operand 1
Operand 2

Finite Infinity NaN

Finite 1 or 2 3 3

Infinity 3 0 3

NaN 3 3 0

1232 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 35.11

35.11.2. The value of 24÷ 7 is 3.428571, where the underlined group of digits is repeated indefinitely.

35.11.3. Use these two instructions to load the complement of the extended operand in (FPR0,FPR2) to (FPR4,FPR6):

LCDR 4,0 Complement high-order half
LDR 6,2 Copy low-order half

35.11.4. If the operand is a SNaN, Load and Test will cause an invalid operation exception, but Test Data Class will
not.

Section 35.12

35.12.1. The results are:

(1) SLDT 2,2,0 Significance = 8
(2) SLDT 2,2,3 Significance = 11
(3) SRDT 2,2,6 Significance = 2
(4) SLDT 2,2,10 Significance = 16
(5) SRDT 2,2,8 Significance = 0

35.12.2. Remember that the significand of a DFP number is encoded in declets. Thus, the low-order 24 bits of the DFP
number are X'2500000', representing a declet X'025' followed by two X'000' declets. Referring to Figure 470 on
page 735, their values are 025, 000, and 000, so there are 8 significant digits.

35.12.3. An advantage of using shifts might include simplicity. Some disadvantages include (a) lack of rounding choices
on right shifts and (b) lack of overflow detection on left shifts.

35.12.4. Consider

LD 0,=DD'12789' Source operand = X'2238000000004BCF'
LD 2,=DD'12789E+07' Second operand = X'2254000000004BCF'
QADTR 4,0,2,8 c(FPR4) = X'2254000000000000'

The result has zero significand and nonzero exponent.

35.12.5. The Assembler limits the length of P-type constants to 16 bytes.

Section 35.14

35.14.1. Consider the value X'77FFFFFF' Following the zero sign bit, the first two 'ab' bits are 11, so the biased expo-
nent is formed from all but the last CF bit (cdefghij), giving B'10111111' = X'BF'=191 . Subtracting the exponent bias
(101) means that the exponent is 90. The significand's high-order bits are B'1001' (8+k) so the significand is
X'9FFFFF'=10485760. But the largest valid significand is 107 − 1 = X'96967F'=9999999, so the significand is too large.
The value is non-canonical, and will be treated as zero.

35.14.2. Using the values calculated in Exercise 35.14.1, we can easily construct the Max value: X'7796967F'.

35.14.3. X'00000001'. The biased exponent is zero, so the true exponent is − 101, and the significand is 1. Thus its
value is 1×10 −101.

35.14.4. Starting with X'5FFFFFFF', the 'ab' bits are 10, so the biased exponent is formed from bits abcdefgh, giving
B'10111111', or X'BF'=191 for the biased exponent. Subtracting the bias (101) means the exponent is 90. The first 3
bits (ijk) of the significand are 111, so the significand is X'7FFFFF' = 223 − 1=8388607, which is less than 9999999, so
this is a valid representation of 8388607×1090.

S Z P F Resulting behavior

0 0 — — All zones are X'F'

0 1 — — All zones are X'3'

1 0 0 0 All zones are X'F', sign code is F or D
1 0 1 0 All zones are X'F', sign code is C or D
1 — 0 1 Zones are F'3' or X'F', and if |ZD |=0, sign code is F

1 — 1 1 Zones are F'3' or X'F', and if |ZD |=0, sign code is C

1 1 0 0 Zones are F'3' and sign code is C
1 1 1 0 Zones are F'3' and sign code is F

Suggested Solutions to Selected Exercises and Programming Problems 1233

Section 35.15

35.15.1. The M4 mask is used in four different ways:

Programming Problem 35.2. The values of N that fail for both long and extended precision decimal floating-
point arithmetic are 3, 9, 22, 28, 33, 34, 45, 48, 49, 55, 63, 65, 66, 74, 75, 84, 88, 90, 95, and 99.

The values of N that fail only for long precision decimal floating-point arithmetic are 31, 41, 43, 51, 59, 71, 73, 82, 85,
92, 93, and 98.

The values of N that fail only for extended precision decimal floating-point arithmetic are 47, 67, 83, 86, and 89.

The failing values share the property that they are divisible by a prime number other than 2 or 5.

Programming Problem 35.3. This solution uses a specialized interface between DPD2BCD and its caller: the
input and returned values are in the left and right halves of a word argument.

Title 'DPD2BCD: Convert a 10-bit declet to 3 BCD digits'
* Entry via R15, return via R14; R1=A(A(fullword)), where the
* first 2 bytes of the fullword are the (right-justified)
* declet, and the last 2 bytes are the 3 converted BCD digits,
* also right-justified.
* Declet format: PQ RSTU VWXY
* BCD digits: ABCD EFGH IJKM

DPD2BCD CSect ,
DPD2BCD RMode Any
DPD2BCD AMode 31

Using *,15
STM 14,4,12(13) Save some regs
L 3,0(0,1) A(fullword)
Using Fullword,3
LH 0,Declet Get the declet
LR 4,0 Carry declet in R4
XR 1,1 Clear R1
SRDL 0,1 Isolate Y bit (=M)
SRL 0,3 Drop VWX bits
SRDL 0,1 Isolate U bit (=H)
SRL 0,2 Drop ST bits
SRDL 0,1 Isolate R bit (=D)
SRL 1,28 Now have 2*DHM bits
LH 2,DHMBCD(1) Carry BCD digits in R2

* RUY=DHM bits now completed
SLL 0,9 PQ bits positioned 0PQ0 0000 0000

* 0PQ(R) bits for BCD1: ABC(D)
TML 4,VBit V = 0? (VWXST bits 0----)
JZ Case_A Jump if yes

* Know V=1
LA 1,B'1100000' Prepare for cases B and D
TML 4,WBit+XBit WX=00? (100--)

M4 Use and Meaning

1 Used by CSDTR, CSXTR to select the sign code of the packed decimal result.

4

For FIDTR and FIXTR; and for FIEBRA, FIDBRA, and FIXBRA; and for CEFBRA, CDFBRA, CXFBRA,
CEGBRA, CDGBRA, and CXGBRA; and for CFEBRA, CFDBRA, CFXBRA, CGEBRA, CGDBRA, and
CGXBRA; and for CELFBR, CDLFBR, CXLFBR, CELGBR, CDGBRA, and CXLGBR; and for CDLGTR,
CXLGTR, CDLFTR, and CXLFTR; and for CGDTRA, CGXTRA, CFDTR, and CXFTR; suppresses the inexact
exception.

8 For LDETR and LXDTR, to indicate an invalid operation exception; for LEDTR and LDXTR, to truncate the
payload.

any
Used by Add (ADTRA, AXTRA), Divide (DDTRA, DXTRA), Divide to Integer (DIEBR, DIDBR), Multiply
(MDTRA, MXTRA), Quantize (QADTR, QAXTR), Reround (RRDTR, RRXTR), and Subtract SDTRA,
SXTRA), instructions as a 4-bit rounding mask.

1234 Assembler Language Programming for IBM System z™ Servers Version 2.00

JZ Case_B Jump if yes
* Know V=1,XW not 00

TML 4,WBit W=0? (10---)
JZ Case_C Jump if yes

* Know V=1, W=0
TML 4,XBit X=0? (110--)
JZ Case_D Jump if yes

* Know V=1, X=1, W=1
TML 4,SBit+Tbit ST=00 or 11?
JZ Case_E Jump if ST=00 (11100)
JO Case_H Jump if ST=11 (11111)

* Know VXW=111, and ST mixed
TML 4,SBit S=0?
JZ Case_F Know XVW=11, S=0, T=1

Case_G DC 0H Do 0PQ(R), 100(U), 100(Y)
OR 2,0 Complete the 0PQ(R) bits
STH 2,BCD
OI BCD+1,X'80'+X'08' Do 100U = 100H, 100Y = 100M
J Finis Return

Case_A DC 0H Do 0PQ(R), 0ST(U), 0WX(Y)
OR 2,0 Complete the 0PQ(R) bits
LA 1,B'1100110' Extract ST and WX bits
NR 4,1 Isolate ST and WX bits
OR 2,4 Insert the ST and WX digits
STH 2,BCD
J Finis Return

Case_B DC 0H Do 0PQ(R), 0ST(U), 100(Y)
OR 2,0 Complete the 0PQ(R) bits
NR 4,1 Extract ST bits
OR 2,4 Insert
STH 2,BCD
OI BCD+1,X'08' Do 100Y = 100M
J Finis Return

Case_C DC 0H Do 0PQ(R), 100(U), 0ST(Y)
OR 2,0 Complete the 0PQ(R) bits

* Do 0ST(Y) inline
SRL 4,4 Position for 3rd digit
LA 1,B'110' Extraction bits for ST
NR 4,1
OR 2,4 Insert the ST digits
STH 2,BCD
OI BCD+1,X'80' Do 100U = 100H
J Finis Return

Case_D DC 0H Do 100(R), 0ST(U), 0PQ(Y)
SRL 0,8 Reposition PQ bits
OR 2,0 Done with 0PQ(Y)
NR 4,1 Extract ST bits
OR 2,4 Insert
STH 2,BCD
OI BCD,X'08' Do 100R = 100D
J Finis Return

Case_E DC 0H Do 100(R), 100(U), 0PQ(Y)
SRL 0,8 Reposition PQ bits
OR 2,0 Insert the bits
STH 2,BCD
OI BCD+1,X'80' Do 100U = 100H
OI BCD,X'08' Do 100R = 100D
J Finis Return

Case_F DC 0H Do 100(R), 0PQ(U), 100(Y)
* Do 0PQ(U) inline

SRL 0,4 Position PQ bits for 2nd digit
OR 2,0 Insert the PQ digits
STH 2,BCD
J Case_H_1 Complete the rest

Case_H DC 0H Do 100(R), 100(U), 100(Y)
STH 2,BCD Store DHM bits

Suggested Solutions to Selected Exercises and Programming Problems 1235

OI BCD+1,X'80' Do 100U = 100H
Case_H_1 DC 0H

OI BCD,X'08' Do 100R = 100D
OI BCD+1,X'08' Do 100Y = 100M
J Finis Return

Finis DC 0H
LM 14,4,12(13)
BR 14
Drop 15

DHMBCD DC XL2'000,001,010,011,100,101,110,111'

Fullword DSect ,
Declet DS 0H

DS X 0000 00PQ
DS X RSTU VWXY

SBit Equ X'40'
TBit Equ X'20'
VBit Equ X'08'
WBit Equ X'04'
XBit Equ X'02'
BCD DS H Digits: 0, BCD1, BCD2, BCD3

End

A sample program to print the table of all possible declet values and their converted results:

P35_3 CSect ,
P35_3 RMode 24 Only needed to use Printlin and...
P35_3 AMode 24 Printout macros.

Using *,15
STM 14,12,12(13) Save registers
LA 12,Savearea Point to save area
ST 13,4(,12) Chain caller's area to ours
ST 12,8(,13) Chain ours to caller's
LR 13,12 R13 now points to ours
LR 12,15 Set new base address
Drop 15
Using D2B,12

NTry Equ 1023 Do declet values from 0 to 1023
LHI 10,NTry Set loop counter
LHI 9,8 Number of values per line
LA 8,Line Point to the print line
MVC Line,Line-1 Propagate blanks

Loop DC 0H
LHI 3,NTry Load maximum number to convert
SR 3,10 Subtract current loop count
STH 3,Input Store declet value in argument
LA 1,ArgAddr Point to it
L 15,SubAddr Get address of DPD2BCD
BASR 14,15 Call the subroutine

*
CVD 3,DW Convert declet value to packed
Using Out,8 Map output group onto print line
UNPK N,DW+5(3) Unpack the decimal value
OI N+L'N-1,X'F0' Set correct zone on last digit
CLI N,C'0' Blank leading zeros
JNE DoD Jump if none
MVI N,C' ' Blank leading zero
CLI N+1,C'0' Check next digit
JNE DoD Jump if not zero
MVI N+1,C' ' Blank it
CLI N+2,C'0' Check next digit
JNE DoD Jump if not zero
MVI N+2,C' ' Blank it otherwise

DoD UNPK DU,Input(3) Unpack the declet's three digits
TR D,HEX-C'0' Translate to hex
MVI D+L'D,C' ' Blank the trailing 'swap' byte

1236 Assembler Language Programming for IBM System z™ Servers Version 2.00

UNPK BU,Output(3) Unpack the declet's decimal value
TR B,HEX-C'0' Translate to hex
MVI B+L'B,C' ' Blank the trailing 'swap' byte
LA 8,OutL(,8) Step to next output-line field
JCT 9,Next Loop back for more if line not full
Printlin Line Output the print line
MVC Line,Line-1 Clear the print line
LHI 9,8 Reset the number of values per line
LA 8,Line Point to start of print line

*
Next AHI 10,-1 Count number of conversions

JNM Loop If not negative yet, repeat
CHI 9,8 Did the last line yet?
JE Done If yes, we're done.
Printlin Line Otherwise, output the last line

Done Printout *,Header=NO Terminate
SubAddr DC V(DPD2BCD)
ArgAddr DC A(Input) Address of the argument to DPD2BCD
Input DS H Input value in left halfword
Output DS XL2 Output value in right halfword
Savearea DS 18F
DW DS D Work area for CVD

DC C' '
Line DC CL121' '
HEX DC C'0123456789ABCDEF'
Out DSect , Mapping of an output group

DS C
N DS CL4,C
DU DS 0CL4
D DS CL3,C
BU DS 0CL4
B DS CL3,C
OutL Equ *-Out

End P35_3

The last line of printed output looks like this:

1016 3F8 778 1017 3F9 779 1018 3FA 796 1019 3FB 797 1020 3FC 976 1021 3FD 977 1022 3FE 998 1023 3FF 999

Suggested Solutions to Selected Exercises and Programming Problems 1237

Section 36 Solutions
Section 36.1

36.1.1. When converting short-precision data from hex to binary, some magnitudes may be unrepresentable; when con-
verting from binary to hex, from 1 to 3 bits of precision may be lost, and special values cannot be converted.

36.1.2. When converting long-precision data from hex to binary, 1 to 3 bits of precision may be lost; when converting
from binary to hex, some magnitudes may be unrepresentable, and special values cannot be converted.

36.1.3. When converting extended-precision data from hex to binary there are no problems, but when converting from
binary to hex there may be unrepresentable magnitudes, loss of 1 to 4 bits of precision, and unrepresentable special
values.

Section 36.2

36.2.1. The result is 3.00001 in both cases.

36.2.2. The result is 3.00000 in both cases.

Section 36.4

36.4.1. A usable hexadecimal floating-point value requires at least one hex digit in the fraction. Consider two other
constants:

E1 DC EL.9'1'
E15 DC EL.9'15'
The nominal value of each is one hexadecimal digit; but the only significant bit (B'0001') in the fraction of the constant
named E1 is lost, so the assembler will flag this statement. Similarly, the constant named E15 is rounded up to appear
to have nominal value 16, which then has the same fraction digit as the first constant.

36.4.2. The binary constant interpreted as a hexadecimal constant would appear to have value +1.953125E − 4, and the
decimal constant would appear to have value +1.880791E − 37! This shows why you must be careful not to mix
floating-point data types.

36.4.3. The BFP value is +2.4, and the DFP value is +4613008E +20.

36.4.4. The HFP value is +2.2350989E − 37, and the BFP value is +2.818926E − 18. (Neither seems very close to 1.)

36.4.5. The values of the four constants are:

Be very careful when mixing data types; remember that most bit patterns are valid in FP instructions.

Section 36.5

36.5.1. All the constants are represented by X'40100001'.

36.5.2. The result is 0.625000596...E − 1.

Section 36.6

36.6.1. Any finite unnormalized value A such as X'00010000' with characteristic zero will fail. If exponent underflow
is masked off the result is X'00000000', and if exponent underflow occurs the result is X'7F100000'. Neither result
equals the original value of A.

36.6.2. If A is a QNaN or SNaN, the result will be “Not any Number”. (You might want to claim that the result is the
value you started with; but remember that the “law” stated in Table 396 applies only to numbers!)

36.6.3. Several unnormalized values of A show this behavior:

Bit Pattern HFP Value BFP Value DFP Value

(1) X'3F800000' 0.03125 1.0 7.000000E25

(2) X'41100000' 1.0 9.0 0

(3) X'42640000' 100.0 57.0 2.000000E70

(4) X'7FFFFFFF' MaxReal QNaN SNaN

1238 Assembler Language Programming for IBM System z™ Servers Version 2.00

36.6.4. HexMax = 16 +63 − ulp, and HexMin = 16 −65, so their product is approximately 16 −2, or 1/64.

Section 36.7

36.7.1. There are 127 nonzero characteristic values and two sign values, so you can create 254 pseudo-zeros in each
representation.

36.7.2. Because the characteristics differ by 1, the first operand fraction will be shifted right by one digit position. That
digit will be shifted left from the guard digit position, so the result will be the same as the first operand.

Section 36.8

36.8.1. The formats would look like this:

 1 �────────── 23 ───────── �─ 8 ─
┌─┬─────────────────────────┬───────┐
│s│ 2's complement fraction │ expon.│ Pr1me 550
└─┴─────────────────────────┴───────┘

 1 �── 11 ── �────────────────────── 48 ───────────────────────
┌─┬─────────┬──┐
│s│ exponent│ unsigned integer │ CDC 6600
└─┴─────────┴──┘

 1 �─── 15 ─── �─────────────────────── 48 ───────────────────────
┌─┬────────────┬──┐

 │s│ exponent │ unsigned fraction │ Cray─2
 └─┴────────────┴──┘

36.8.2. Consider adding a tiny unnormalized value to zero:

LZER 0 Set FPR0 to zero
AE 0,=X'00000003' Add a tiny unnormalized value

If program interruptions are enabled the result is an exponent underflow, and the result in FPR0 is X'7B300000' (not
exactly equal to X'00000003'!). If disabled, the result is zero.

36.8.3. Consider z=X'44200000' and y=X'47000200'. These two values compare equal, so z = y. Now, if If
t = X'42000010', we find that z − t = X'441FFFFF' and y − t = X'47000200', so z − t =/y − t.

36.8.4. The Burroughs 6700 used a 48-bit word;* its short floating-point representation had one unused high-order bit
followed by the significand sign bit S and the exponent sign bit s:

 1 1 1 �─ 6 ─ �─────────────────── 39 ───────────────────
┌─┬─┬─┬───────┬──┐
│ │S│s│ expon.│ unsigned integer │ Burroughs 6700
└─┴─┴─┴───────┴──┘

36.8.5. The values are shown in this table:

A A× (1/A) ulp difference

X'4100000F' X'40FFFFFF' 16

X'4100000C' X'40FFFFFC' 16

X'4100000A' X'40FFFFFA' 16

Hex Char Integer BFP HFP DFP

X'81818181' C'aaaa' -2122219135 -4.7572945E-38 -6.9902216E-77 -6.0301E-73
X'A3A3A3A3' C'tttt' -1549556829 -1.774180E-17 -7.694278E-36 -1.68723E+26
X'F5F5F5F5' C'5555' -168430091 -6.235846E+32 -6.323899E+63 -9.873375E+64
X'FEFEFEFE' C'ÚÚÚÚ' -16843010 -1.694740E+38 -4.505390E+74 -SNan

* Words were actually 52 bits long: the four high-order bits were a parity bit and three reserved “tag” bits. Application programmers
saw only the 48 bits.

Suggested Solutions to Selected Exercises and Programming Problems 1239

Programming Problem 36.3.

Long BFP values have greater exponent range than long HFP values, and also support special values; these cases must
be detected. Because long BFP operands are 53 bits long while HFP operands are 56 bits long, no rounding is required.

1240 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 37 Solutions
Section 37.1

37.1.1.

ShftRt SRL 0,2 Preliminary shift by 2
L 1,NN Shift amount in GR1
LTR 1,1 Check sign of n
BNPR 14 Return immediately if not +
SRL 0,0(1) Perform remaining shifts
BR 14 And return

37.1.2.

L 0,Logic Get shift-able argument
L 1,NN And shift amount
SRL 0,2 Do fixed part of shift
LTR 1,1 Test variable part
BNP Store Skip shift if not +
SRL 0,0(1) Shift by variable amount

Store ST 0,Result Store the answer
BR 14 And return to caller

37.1.3. You will remember from Section 24.11 that when a Branch and Save instruction is decoded, the IA still con-
tains the address of the instruction following the EX. Thus, the IA from the PSW placed in R1 will contain that
address, not the address of the instruction following the Branch and Save. The next instruction fetched will be at the
branch address, unless the executed instruction was BASR r,0.

37.1.4. You probably found the error immediately: “BASR 2,0” doesn't branch, but “BASR 2,2” branches to whatever
address was in GR2 before the instruction was executed. The error is caused by not understanding the selection of the
branch address before the Instruction Address is placed into GR2.

37.1.5. This is a cute way to execute blocks of code exactly twice, without looping. The first “BASR 3,0” sets GR3 to
the address of the following instruction, and then the first block of code is executed. When the “BASR 3,3” is executed,
control returns to the start of the first block of code, but GR3 now contains the address of the first instruction of the
second block of code. When control again reaches the first “BASR 3,3”, the branch address in GR3 is the address of
the next instruction, so the “BASR 3,3” now acts like it was a “BASR 3,0”. The second block of code is executed
twice, in the same way.

37.1.6. If the Location Counter was on an odd halfword boundary when the BAS instruction is assembled, two empty
bytes will be skipped by the Assembler so that the address constants will be properly aligned on a word boundary. A
branch to 8(,14) will then arrive in the middle of the second address constant.

37.1.7. This exercise illustrates an extreme antisocial tendency on someone's part. The calling program can re-establish
its own registers only if (1) it had saved all of them within an addressable distance from the return point, and (2) the
instruction at the return address is a BASR x,0 that establishes a temporary base register that can be used to reload the
registers. For example:

BASR 14,0 Local temporary base register
Using *,14 Establish addressability
LAY 14,MySave Hope our save area is addressable!
Drop 14 No local base register now
LM 0,15,0(14) Restore the registers

Now you see why the callee should save and restore registers!

37.1.8. instructions BASR R1,R2 and BAS R1,0(0,R2) are identical only if R2 is not zero; the BAS instruction would
then branch to memory location zero. Otherwise, they are identical.

When we consider that BCR R1,0 and BCTR R1,0 behave similarly in not branching, we might say that the RR forms
of the three instructions aren't needed unless we need an instruction to place the IA in a register, or a two-byte no-
operation, or an instruction to reduce a register's contents by one. At the cost of destroying some of the symmetry of
the System/360 instruction set, BASR, BCTR, and BCR could be removed and replaced by a single RR-type instruc-
tion in which the R2 digit specified which of the three non-branching activities was intended.

37.1.9. The third instruction will be executed indefinitely. The first BASR instruction puts the address of the second
BASR in GR5, and then the second BASR will branch to its own address. GR4 will contain the address of whatever
follows the second BASR.

Suggested Solutions to Selected Exercises and Programming Problems 1241

37.1.10. Consider these instructions:

ShftRt4A STM 1,2,ShftJG1 Save GR1 through GR2
LM 1,2,0(1) Get argument addresses
L 0,0(0,1) Get first argument in GR0
L 1,0(0,2) Get second argument in GR1
LTR 1,1 Test sign of shift amount
JNM ShftOK Branch if non-negative
SR 1,1 Set shift amount to zero

ShftOK SRL 0,2(1) Shift by required amount
LM 1,2,ShftJG1 Restore GR1-GR2
BR 14 Return to caller

ShftJG1 DS 2F Save area for 2 registers

37.1.11.

ShftRt4B ST 1,ShftJG2 Save GR1
L 1,0(0,1) Get first argument address
L 0,0(0,1) Get first argument in GR0
L 1,ShftJG2 Restore GR1
L 1,4(0,1) Get second argument address
L 1,0(0,1) Get second argument in GR1
LTR 1,1 Test sign of shift amount
JNM ShftOK Branch if nonnegative
SR 1,1 Set shift amount to zero

ShftOK SRL 0,2(1) Shift by required amount
L 1,ShftJG2 Restore GR1
BR 14 Return to caller

ShftJG2 DS F Save area for 1 register
This solution is probably less efficient than that in Exercise 37.1.10 because (a) it has more instructions, and (b) it must
load GR1 from the save area twice.

Section 37.3

37.3.1.

ShftRt STM 1,3,SaveRegs Save working registers
LM 1,3,0(1) Get all argument addresses
L 1,0(,1) Get word to be shifted
L 2,0(,2) Get shift count N
LTR 2,2 Check sign of shift count
JNM ShftOK Skip next instruction if nonnegative
SR 2,2 Set count to zero if negative

ShftOK SRL 1,2(2) Shift 2+max(N,0) places
ST 1,0(,3) Store result at specified place
LM 1,3,SaveRegs Restore caller's registers
BR 14 And return

SaveRegs DS 3F Save area for registers GR1-GR3

37.3.2. If more than one element has the same maximum value, which will appear in GR0 on return?

AMax STM 1,2,Saver Save GR1, GR2
LM 1,2,0(1) Get array and length addresses
L 0,0(,1) Load 1st element of array
L 2,0(,2) Load length of array
CHI 2,1 See if array is short (1 element)
JNH Exit Return if 1 (or fewer) items

Comp C 0,0(,1) Compare current max to an element
JNL Skip Skip if max is still a max
L 0,0(,1) Else element is the new max

Skip LA 1,4(,1) Step to next element of array
JCT 2,Comp And try again

Exit LM 1,2,Saver Restore registers
BR 14 And return

Saver DS 2F Save area for GR1, GR2

37.3.4. This solution counts the bits using logical addition.

1242 Assembler Language Programming for IBM System z™ Servers Version 2.00

NBits CSect , Count 1-bits in a byte string
Using *,15 Local base register
STM 0,4,LocalSav Save GR0-GR4 locally
LM 1,3,0(1) Get argument addresses
XR 4,4 Initialize bit count
L 2,0(,2) Get string length
LTR 2,2 Check length
JNP Store If not positive, return zero
LR 0,4 Clear GR0 for byte insertion

Loop ICM 0,B'1000',0(1) Get a byte from the string
Test ALR 0,0 Add GR0 to itself, check for carry

JZ Next If c(GR0)=0, no 1-bits in the byte
JM Test CC=1 means no carry, bit was zero
LA 4,1(,4) Increment the count
JO Test Repeat for next 1-bit

Next LA 1,1(,1) Step to next byte
JCT 2,Loop Count down, get another byte if any

Store ST 4,0(,3) Store bit count
LM 0,4,LocalSav Restore registers
BR 14 Return to caller

LocalSav DS 5F Save area for GR0-GR4
End

37.3.5. Suppose you wrote

ORG *,8,-2
If the LC is already aligned on a doubleword boundary, it would remain at the same location; the “offset” operand -2
would then subtract 2 from the LC, meaning that the Y-con might overlay the last 2 bytes of whatever preceded the
doubleword boundary.

37.3.8. Assuming this is the calling sequence:

LA 1,ArgList Point to argument addresses
BRAS 14,ShftRt64 Call the subroutine
- - -

ArgList DC AD(W,N) A(data, shift amount)
DC FD'-1' 'Fence' of all 1-bits

W DC X'ABCDEF95' Data to be shifted
N DC F'3' Shift amount
then this is a possible solution:

ShftRt64 STMG 1,2,ShftSave Save GG1, GG2
LMG 1,2,0(1) Get argument addresses
L 0,0(,1) Load data item in GR0
LT 1,0(,1) Load shift amount in GR1
JNM ShftOK If nonnegative, go to shift
SR 1,1 If -, set shift amount to zero

ShftOK SRL 0,2(1) Shift by required amount
LMG 1,2,ShftSave Restore caller's registers
BR 14 Return to caller

ShftSave DS 2D Save area for GG1, GG2

Section 37.4

37.4.1. The low-order bit of the character A is 1; but the back chain address of a standard save area points to a word
address, so its two low-order bits would be zeros.

37.4.2. If the caller had entered your routine in 64-bit addressing mode, he would have provided a Format-4 save area.
Because your routine was called in 24- or 31-bit addressing mode, the return address doesn't depend on the high half
of GG14.

37.4.3. The lengths are X'48', X'90', and X'D0' bytes respectively.

Suggested Solutions to Selected Exercises and Programming Problems 1243

Section 37.5

37.5.1. In the early days, only BALR and BAL were available; BASR and BAS were introduced later. The BALR
and BAL instructions put the right half of the PSW into the R1 register. In 24-bit addressing mode, the leftmost byte of
the register always contains the Instruction Length Code (2 bits), the Condition Code (2 bits) and the Program Mask
(and may therefore be slower than BASR and BAS). The rightmost 6 bits of that byte could be all 1-bits, but because
BALR and BAL are respectively 2-byte and 4-byte instructions, the ILC will never be B'11'.

When 31-bit addressing mode was introduced, executing

MVI 12(13),X'FF'
would have destroyed the high-order 7 bits of the return address in the save area (after GR14 had been loaded from
the save area!), making it difficult to know where the call came from. This was solved by setting the low-order bit of the
return address to 1.

Be careful, though: you should set a return flag only if the calling and called routines both execute in 24- or 31-bit
addressing mode.

37.5.2. It does conform to standard linkage conventions: GR13 contains the address of a save area; GR14 contains the
return address; GR15 contains the entry point address of the subroutine; and GR1 contains the address of the argu-
ment list. Also, the calling-point identifier is at the return address.

This isn't standard coding practice, though.

37.5.3. The instructions could be revised like this:

BASR 14,15 Link to subroutine as usual
LTR 15,15 Test sign of return code
JM Set12 If negative, set to 12
CHI 15,12 Compare to 12
JH Set12 If greater, set to 12
TMLL 15,X'3' Test two low-order bits of retcode
JZ Proceed If 0, multiple of 4; OK to proceed
AHI 15,X'3' Force carry to round to next value
NILF 15,X'FFFFFFFC' Set 2 low-order bits of GR15 to zero
J Proceed OK to branch to return code handler

Set12 LA 15,12 Return code forced to 12
 Proceed LARL 14,JList Address of branch list

AR 14,15 Add return code to list address
BR 14 One-hop branch to correct routine

JList J Ret000 Return code = 0
J Ret004 Return code = 4
J Ret008 Return code = 8
J Ret012 Return code = 12
- - - etc...

All these instructions need no base register.

37.5.7. Assuming the identifier isn't a negative number, and you write the statement in the form

DC X'4700nnnn' Max value is X'7FFF'
then its maximum value is 215 − 1 = 32767. But if you write it in the form

NOP X'nnn' Max value is X'FFF'
then its maximum value is 212 − 1 = 4095.

37.5.8. It works correctly. The MVC instruction puts the return code in the caller's save area where GR15 was ori-
ginally saved.

37.5.9. Consider these instructions: they use a based branch B, but make no reference to an implicit base-displacement
addressing halfword that was assigned by the Assembler.

BASR 14,15 Link to subroutine as usual
LARL 14,JList Address of branch list
B 0(15,14) Retcode added to list address

JList J Ret000 Return code = 0
J Ret004 Return code = 4
J Ret008 Return code = 8
J Ret012 Return code = 12
- - -

1244 Assembler Language Programming for IBM System z™ Servers Version 2.00

37.5.10.

LA 0,3 Put B'11' in GR0
NR 0,15 And with 2 low-order bits of RC
JNZ BadRC If nonzero, RC not a multiple of 4

37.5.11. The claim is true. Suppose the value in GR15 has nonzero bits a and b in the rightmost two bit positions.
Then the ORed expression in the internal register (when the target instruction is built by the CPU) will be

CLI *+1,B'111111ab'
where *+1 is the address of the unmodified instruction. Any nonzero value of bits a or b will cause an inequality.

While an ingenious use of CLI and EX, this technique should not be used because it makes a data reference to the
instruction stream. It's better to use

TML 15,B'11'
JNZ Error

Section 37.6

37.6.1. Once the true entry address of the called program is in GR15, we can use it to reference its entry-point ID.
This shows possible modifications to Figure 521 on page 784:

Caller STM 14,2,12(13) Save GR14-GR2 in caller's area
- - -
L 15,0(,14) Load true entry point address
XR 2,2 Clear GR2 for EPID length
IC 2,5(,15) Get EPID length
LA 1,6(,15) Address of EPID string

* - - - Process the EPID somehow
LM 0,2,20(13) Restore GR0-GR2
- - - Construct subroutine entry address
L 14,12(,13) Restore caller's return address
BR 15 Branch to chosen subroutine

37.6.2. In this case, we must work back up the save area chain to the caller of this caller's routine, retrieve its entry
point address, and use that to find this routine's entry-point ID. This shows possible modifications to Figure 521 on
page 784:

STM 14,2,12(13) Save GR14-GR2
L 14,4(,13) Back link to our caller's save area
L 14,16(,14) Entry address to this routine
XR 2,2 Clear GR2 for EPID length
IC 2,5(,14) Get EPID length
LA 1,6(,14) Address of EPID string

* - - - Process the EPID somehow
LM 0,2,20(13) Restore GR0-GR2
- - - Construct subroutine entry address
L 14,12(,13) Restore caller's return address
BR 15 Branch to chosen subroutine

37.6.3. It won't matter, because the c(GR13) are unchanged; but it will waste a few CPU cycles.

37.6.4. You might modify the interface this way:

BAS 14,Caller Link to caller routine
NOP ShftRt# Pass # of subroutine to be called
- - -

Caller AH 15,2(0,14) Add subroutine number to GR15
L 15,AdrTbl Address in GR15 was modified!
BR 15 Enter the called routine

AdrTbl DC A(ShftRt) Actual address of 'ShftRt'
DC A(Print) Actual address of 'Print'
- - - Etc., for other assisted routines

When control is returned to the instruction addressed by GR14, the NOP will pass control to the following instruction.

You would normally write the linkage routine to provide much more in the way of optional tracing and diagnostic
information. The examples given here simply pass control directly to the (indirectly) called program.

37.6.5. The program using assisted linkage to call the ShftRt subroutine could use instructions like these:

Suggested Solutions to Selected Exercises and Programming Problems 1245

LHI 0,Print# Put subroutine number in GR0
BAS 14,Caller Link to 'Caller' routine
- - - Return here from called routine

The Caller routine could be revised like this:

Caller LARL 15,AdrTbl Address of zero-th target routine
ALR 15,0 Add subroutine number to GR15
L 15,0(0,15) Load correct entry point address
BR 15 Enter called routine

AdrTbl DC A(ShftRt) Address of ShftRt
DC A(Print) Address of Print
- - - ...etc...

Section 37.7

37.7.1. Because GR14 and GR15 were not modified, and the the result is returned in GR0, we need to restore only
GR1-GR3:

ShftRt5 STM 14,3,12(13) Save registers in caller's save area
LM 2,3,0(1) Get argument addresses in GR2, GR3
L 0,0(0,2) Get 1st (logical) argument in GR0
L 1,0(0,3) Get 2nd (integer) argument in GR1
SRL 0,2 Shift 2 places
LTR 1,1 Test second argument
JNP Ret Return if it's not positive
SRL 0,0(1) Otherwise shift N places

Ret LM 1,3,24(13) Restore modified registers
BR 14 And return

37.7.2. This solution needs to save and restore only GR1; the initial value passed by the caller in GR0 is sometimes
called the seed of the random number sequence.

RanInt CSect ,
Using *,15 Establish addressability
ST 1,SaveR1 Save GR1
LR 1,0 Move XOld to GR1
M 0,A Multiply by A
D 0,P Divide Xold*16807 by P
L 1,SaveR1 Restore GR1
BR 14 Return with XNew in GR0

A DC F'16807' Multiplier
P DC F'2147483647' Prime P = 2**31-1
SaveR1 DS F Save area for GR1

End , It's a complete program
This is a simple example of a very large class of “multiplicative congruential” generators. It has some weaknesses and
shouldn't be used for serious simulations.

Programming Problem 37.1.

The internal subroutine is named Print. This (inefficient) solution first prints the even prime 2, and then tests each succes-
sive odd number by dividing it by increasing odd values and rejecting the test value if the remainder is zero. Otherwise,
the test divisor is squared and compared to the test number; if the square is larger, the test number is prime.

P37_1 Start 0
BASR 15,0 Establish a base register
Using *,15 Provide addressability
LA 1,2 Starting even prime
JAS 14,Print Print the only even prime
LA 11,999 Last value to test
LA 10,2 Increment 2 for next odd number
LA 1,3 Starting odd-number test value

Outer LA 2,3 Trial divisor starts at 3
Inner LR 5,2 Set up multiply

MR 4,5 Square divisor
CR 5,1 Compare to test number
JH Prime Branch if the test number is a prime
LR 5,1 Copy test number

1246 Assembler Language Programming for IBM System z™ Servers Version 2.00

SR 4,4 Clear high order register GR4
DR 4,2 Divide
LTR 4,4 Test remainder
JZ NotPrime Branch if zero
AR 2,10 Increment trial divisor by 2
J Inner And try another test value

Prime JAS 14,Print Print the prime value
*
NotPrime JXLE 1,10,Outer Increment by 2, test, and loop

PrintOut *,Header=NO Stop
*
Print CVD 1,Space Convert to packed decimal

MVC Line,Pattern
ED Line,Space+6 Maximum of 3 digits in result
PrintLin Line,L'Line Print the line
BR 14 Return to caller

Line DC CL5' ' Output line
Pattern DC X'4040202120' Formatting pattern bbdsd
Space DS D CVD result work area

End P37_1

The initial and final output lines look like this:

2
3
5
7

 - - -
983
991
997

Programming Problem 37.2.

This little subroutine will do the job very simply:

PD2CH CSect ,
**
* Convert 6-byte packed decimal numbers to numeric characters.
* Calling sequence:
* CALL PD2CH(packed,character)
* where
* packed is a 6-byte packed decimal value
* character is a 12-byte area to hold the result characters
**

USING *,15 Local base register
STM 14,2,12(13) Save R14-R2
LM 1,2,0(1) Get argument addresses
MVC 0(12,2),Pattern Move pattern to output area
ED 0(12,2),0(1) Edit the input value
LM 1,2,24(13) Restore R1,R2
BR 14

Pattern DC X'40',9X'20',X'2120' bdddddddddsd for 11 digits
END

Programming Problem 37.4.

This subroutine uses registers 0-4, and restores only registers 2-4.

Suggested Solutions to Selected Exercises and Programming Problems 1247

GCD CSect ,

* GCD, Greatest-Common-Divisor routine: returns the GCD of two 32-bit *
* positive integers in GR0 or in memory. Calling sequence, using *
* standard linkage conventions: *
* Call GCD(I,J) returns the result in GR0. *
* Call GCD(I,J,K) returns the result at K. *

STM 2,4,28(13) Save working registers
LM 2,4,0(1) Addresses of I, J, and K
L 0,0(,3) Argument J in GR0
L 2,0(,2) Argument I in GR2

GCDA LR 1,2 Copy I to GR1 as first dividend
LR 2,0 Copy J to GR2 as first divisor
SR 0,0 Clear high-order register
DR 0,2 Divide I by J
CHI 0,1 Is remainder 1?
JH GCDA If greater than 1, try again
JE GCDB Branch if exactly 1
LR 0,2 If zero, last divisor is the GCD

GCDB LTR 3,3 Check if J was the last argument
JM GCDRet If so, return with GCD in GR0
ST 0,0(,4) Store GCD at K

GCDRet LM 2,4,28(13) Restore registers
BR 14 Return
End ,

1248 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 38 Solutions
Section 38.1

38.1.1. At the point where the Assembler encounters the USING statements, the value of * is 12 larger than the value
of BaseLoc. (Each LAY instruction is 6 bytes long.)

38.1.2. Because no instructions containing implied addresses appear between the BASR and the USINGs.

38.1.3. This might work if all instructions in the range of the USING statement use 20-bit signed displacements, for
which addressability would be available over most of the program. But if statements like

MVC A,B
A DS CL5
B DC C'Bytes'
appeared anywhere in the first 500K bytes of the program, neither operand of the MVC instruction would be address-
able.

38.1.4. The Assembler often places literals at the far end of the program, so they might not be addressable. But even if
the literal is addressable with a valid base register, there's still an error: the wrong base address is assumed. (See the
solution to Exercise 38.1.5.)

38.1.5. Now, at least, the literal is correctly addressable. Registers 3, 4, and 5 will therefore contain the addresses
BEGIN+2, BEGIN+4096, and BEGIN+8192. However, the USING promises that they contain BEGIN+2,
BEGIN+4098, and BEGIN+8194. Thus, parts of the program will work (those using GR3 as a base register), and
other parts mysteriously won't.

38.1.6. This has the same difficulty as in Exercise 38.1.5. The programmer thought he'd get rid of the problems in
Exercises 38.1.4 and 38.1.5 by getting rid of the literal.

38.1.7. For the LA 2,Origin statement to work correctly, the location named Origin must be addressable by some
other register. (And if it is, why did we need to use R2 as a base register in the first place?)

38.1.8. There would be no base register available to resolve the implied address Addrs in the LM instruction into
base-displacement form. The Assembler would indicate an addressability error for that statement. Even if Addrs is
addressable, all the values promised in the USING statement would then be incorrect.

38.1.9. The Location Counter may not be on an even boundary before the entry point:

BigProg Start 0
Entry SubRtn
- - -
DC F'9,33' Two aligned constants
DC C'Trouble' Odd-length constant
Using *,15 Value of * is now odd!

SubRtn ST 2,SaveR2 An alignment byte precedes this!
- - -

The USING base address will be too small by 1.

38.1.10. The second USING specifies base addresses that are too large by 4, the length of the LM instruction.

38.1.11.

• The second instruction is BAS, not BASR; it will branch to memory address zero!
• The address promised by the USING statement for the contents of GR10 is Prog+4 (the BAS is four bytes long) so

that even if the first error is corrected, the wrong address will be placed in GR11. The generated LA instruction is
41B0AFFC.

38.1.12. If the literal pool containing =H'4096' lies at the end of the assembly (as is often the case), the literal may not
be addressable. Even if it is addressable, the Assembler will assume GR12 can be used as a base register for the AH
instruction, before GR12 (at execution time) contains the correct value. Judicious use of LTORG and USING will
avoid the difficulty.

38.1.13.

• The USING statement makes no reference to GR10;
• as written, the USING specifies an incorrect value for R11. Even if the USING statement is corrected to read

USING *,10,11 we have another error, because

Suggested Solutions to Selected Exercises and Programming Problems 1249

• The USING statement promises that Prog+4098 will be in GR11, not Prog+4096.

38.1.14 Both LA instructions refer to the START statement; they would be assembled as LA 11,4094(,10) and LA
12,4094(,11) which could generate entertaining (or horrifying) results as the program was executed.

38.1.15. You can't define a relocatable symbol on a USING statement! The name-field symbol would be treated as a
qualifier on a Labeled USING statement. (There are several other errors that you might want to find, but this one is
enough to start with.)

38.1.16. The LA instruction would be assembled as LA 11,0(,11) because the USING statement promises that the
address of *+4096 is already in GR11 when the LA is encountered.

38.1.17. The address placed in GR10 by the BASR is Here+2, not Here. Thus all implied addresses will be incorrect
when the program is executed. Even if the USING statement is corrected to read USING Here+2,10,11 then the LA
instruction cannot be correct.

38.1.18. This is essentially the same as in Exercise 38.1.16, but with * changed to Here. GR10 will still contain an
undefined value.

38.1.19. By the time the Assembler arrives at the second USING, the LC has increased by 8, so we must write
USING *+4088,11 instead.

38.1.20. There's nothing wrong. Base-displacement addresses with GR11 as base may look peculiar, having many odd
displacements.*

38.1.21. Yes, so long as HW4096 is (1) on a halfword boundary, as assumed, and (2) is less than 4094 bytes distant
from BaseLoc.

38.1.22. If the DC operand was H'4000', the USING statement would have to be replaced by the three statements

Using *,10
Using *+4000,11
Using *+8000,12

If the operand was H'5000', a similar set of statements would be needed. However, there would be 904-byte portions of
the program that could not be addressed, since the end of the range of GR10's USING statement does not overlap the
start of GR11's, and similarly for GR11 and GR12.

38.1.23. First, “AH 11,HW4096” is assembled to X'4AB0B232', and “AH 12,HW4096” is assembled to
X'4AC0B232'. Second, GR10 would contain X'00020002', and GR11 and GR12 would contain whatever they con-
tained on entry to PROG plus some unknown halfword retrieved from an offset X'232' beyond whatever address was
in GR11 (which might even have been odd).

When the constant at HW4096 has value X'2234', the two AH instructions are assembled as X'4AB0C232' and
X'4AC0C232'. When executed, GR12 will be used as a base register to find the mystery halfword to be added to GR11
and GR12. If the symbol HW4096 has value X'3234', it is not addressable at all! Thus, if the code in Figure 528 on
page 792 is to work, the value of symbol HW4096 must be X'1000' or less. (Why not “X'FFE' or less”?)

38.1.24. Replace the two AH reg,HW4096 instructions with AHI reg,4096 instructions.

38.1.28. Yes, they will work correctly. The only disadvantage is that they will require an additional four bytes.

Section 38.2

38.2.1. The address in GR15 is the address of the entry point ShftRt, not the address of the instruction following it.
Remember that BASR sets the first operand register to contain the address of the instruction following the BASR!

38.2.2. Remember that the branch address is formed before the branch instruction is executed. Then, the address of the
instruction following the BASR (the ST 0,Result) is put in the IA portion of the PSW, so the next instruction is fetched
from the branch address. The address of the target instruction (at ShftRt) will initially be in GR14; after executing the
BASR, the next instruction fetched is at ShftRt; GR14 contains the return address of the ST instruction.

38.2.3. Because the value of * will be wrong: it will be the address of the instruction following the BASR, not the address
of the entry point! If the ShftRt subroutine in Figure 532 on page 798 contained any instructions with implied
addresses, they would not be resolved relative to the start of the subroutine!

The technique in Figure 532 applies only to subroutines without implied addresses, or that establish their own (local)
base registers.

* To be fair, machine language looks peculiar anyway.

1250 Assembler Language Programming for IBM System z™ Servers Version 2.00

38.2.4. LGFI will set all 64 bits of GG5, whereas L leaves the high-order 32 bits unchanged. Also, LGFI will be be
faster.

Section 38.4

38.4.1. Two instances of the literal =F'1' will be generated, both at the end of section AAA, the first control section. The
reference to the literal in section BBB will fail with an addressability error.

38.4.2. Two instances of the literal =F'1' will be generated, each following the LTORG instruction at the end of each
section.

38.4.3. The END statement ends the assembly, so a DROP isn't needed. But it's always a good practice to insert the
DROP, because someone else may add more instructions or data to your program.

38.4.4. For this simple little ShftRt subroutine, no implied addresses are used (the JNM instruction is a relative
branch instruction), so no problems will (or should!) occur. But this technique isn't recommended in general.

38.4.5. Suppose someone decides to reorganize the program, and add some more instructions to the ShftRt subroutine
that require based addresses. It's worth retaining the USING statement in case someone later adds instructions to the
routine that will require base-displacement addressing.

38.4.6. The values of the symbols are

A X'001240'
B X'001248'
C X'00124C'
D X'00125C'
N X'000005'

38.4.7. After the 5 (N) bytes at A are reserved, the LC value is X'00004B' Because the next statement defines a fullword
area of memory, the LC is rounded up to the next fullword boundary, or X'00004C'.

38.4.9. The values of the four symbols are:

A X'002000'
B X'002008'
C X'002004'
D X'00200C'

38.4.10. Consider the terms in the duplication factor expression:

• (*-Prog) is the length of the current section.
• ((*-Prog)+4095): if the section length is not an exact multiple of 4096, this term will have a value exceeding a

multiple of 4096.
• (((*-Prog)+4095)/4096*4096): gives the smallest number of 4096-byte “blocks” into which the current section will

fit.
• -(*-Prog) subtracts the number of bytes already allocated in the section, leaving the number of bytes in the section

needed to extend the section to the next 4096-byte boundary.
• The resulting duplication factor generates the desired number of X'00' bytes (any other constant value could be

used).

You should do the above arithmetic steps with LC values like Prog+1, Prog+4095, Prog+4096, and Prog+4097.

38.4.11. The constants will be at these locations:

• CSect A: X'01' at location 0, X'06' at location 1.
• CSect B: X'02,04' at locations X'8-9'.
• CSect C: X'03,05,07' at locations X'10-12'.

38.4.12. The values of the symbols are:

A X'000003'
B X'000005'
C X'000001'
D X'000004'
E X'000006'
F X'000002'
H X'000000'

38.4.13. The values of the symbols are given in the Loc column.

Suggested Solutions to Selected Exercises and Programming Problems 1251

Loc Source Statement
000000 SectA CSect , Initiate CSECT 'SectA'
000000 H DS X At location 000000
000001 ALoc LOCTR , Start LOCTR group 'ALoc' in 'SectA'
000001 B DS X At location 000001 in 'SectA'
000008 SectB CSect , Initiate CSECT 'SectB'
000008 A DS X At location 000008 in 'SectB'
00000C BLoc LOCTR , Start LOCTR group 'BLoc' in 'SectB'
00000C C DS X At location 00000C
000002 ALoc LOCTR , Switch to LOCTR group 'ALoc' in 'SectA'
000002 D DS X At location 000002
00000D BLoc LOCTR , Switch to LOCTR group 'BLoc' in 'SectB'
00000D E DS X At location 00000D
000003 SectA CSect , Resume LOCTR group 'ALoc' in CSECT 'SectA'
000003 F DS X At location 000003
00000E BLoc LOCTR , Switch to LOCTR group 'BLoc' in 'SectB'
00000E G DS X At location 00000E
000009 SectB LOCTR , Resume LOCTR group 'BLoc' in CSECT 'SectB'
00000A N DS H At location 00000A

38.4.14. When the Assembler processes your END statement, it inserts two invisible statements:

<first> CSECT ,
LTORG

where <first> is the name of the first executable control statement.

Section 38.5

38.5.1. The program in Figure 572 on page 825 assembled with the NOTHREAD Assembler option produces this External
Symbol Dictionary listing. The only changes from Figure 573 on page 825 are that each control section after the first
has starting location zero, and the address of the ENTRY symbol ASECENT has been adjusted relative to its owning
section's zero start address.

External Symbol Dictionary

Symbol Type Id Address Length Owner Id Flags Alias-of

MAIN SD 00000001 00002400 000000C0 00
SOMESYM ER 00000002
ASECTION SD 00000003 00000000 0000010C 00
ASECENT LD 00000089 00000003
RSECTION SD 00000004 00000000 00000095 08
COMSECT CM 00000005 00000000 00000320 00
ADUMMY XD 00000006 00000000 0000002C

38.5.2. START, CSECT, and RSECT define executable control sections, and COM and DSECT define reference
control sections. Only DSECT does not declare space in the object program.

38.5.3. As noted in the statement of the exercise, this type of coding is strongly discouraged!

Shifter CSect ,
ENTRY ShftRt,ShfLft Declare two entry points
Using *,15 Set by caller of ShrtRt

ShftRt MVI ShftOp,X'88' Set SRL opcode
B ShftAA Branch to entry code
Using *,15 Set by caller of ShfLft

ShfLft MVI ShftOp,X'89' Set SLL opcode
ShftAA LTR 1,1 Check shift amount

JNM ShftOp Skip if not minus
SR 1,1 Otherwise set to zero

ShftOp SLL 0,2(1) *** Opcode modified to be SLL or SRL
BR 14 Return
End ,

Note that the instructions starting with ShftAA do not need a base address, so it doesn't matter that the Shifter
program can be entered with two different addresses in GR15.

1252 Assembler Language Programming for IBM System z™ Servers Version 2.00

38.5.4. First, some specialized instructions require that their operands be quadword aligned. Second, some instruction
sequences will operate more efficiently if their operands are aligned on boundaries that lie within cache lines.

38.5.5. They can be useful for small test programs. Otherwise they mainly exist to let the Assembler generate usable
object code in case someone forgot to start a program with a named control section.

38.5.6. You'll generate two unnamed control sections. What your linker does with them should be interesting,
depending on how and whether blank section names are also distinguished by type.

38.5.7. You can reference the blank control section by adding an ENTRY statement for the first byte, as in

CSect , Unnamed control section
Entry BlankCS Entry name

BlankCS DS XL23
- - -

but you can't define an entry point in a common control section.

38.5.8. If we assume that the address of ShfLft is in GR15 on entry at ShfLft, the instruction named ShftRt is not
addressable. However, because there is only a single USING statement, the LA is equivalent to simply LA 15,0(,15).
Thus the program will attempt to execute with a value in GR15 that is 8 too large when called at ShfLft.

To correct the program, change LA 15,ShftRt to AHI 15,ShftRt-ShfLft.

38.5.9. Without the third USING statement, displacements will be calculated by the Assembler relative to the address of
ShfLft as a base, so calls to ShfLft will work correctly.

When ShftRt is called, only the first two instructions will be executed with the correct base register. Control will be
correctly transferred to ShftAA, and the LTR will be executed. Now, if the number in GR1 is not negative, the branch
condition will be met, and the BNM instruction will be executed. However, its addressing halfword is X'F00C'; because
GR15 contains the address of ShftRt, the branch address is actually the address of ShftAA! Thus if c(GR1)≥ 0, the
program loops on the two instructions at ShftAA.

If c(R1)<0, the BNM instruction is not executed, and control passes to ShftOK. The bit tested will actually be at
ShFlag-8, which is the first byte of the “BR 14” instruction! This byte contains X'07', so the tested bit will be one and
the branch condition for the following BZ will not be met. The operand will be shifted left instead of right!

This exercise shows why you must be careful in establishing correct USING statements in routines with multiple entry
points.

38.5.10.

BYTE Start 0 Conversion subroutine
Using *,15 Caller provides GR15 base register
STM 14,2,12(13) Save GR14-GR2
LM 1,2,0(1) Load pointers to the two arguments
ICM 1,B'1000',0(1) Insert the byte argument
LA 0,8 Initialize bit counter
MVC 0(8,2),ZChars Move zero-characters to argument 2

Loop LTR 1,1 Test sign bit of GR1
JNM Next Branch if it's zero
OI 0(2),X'01' Make the output character a '1'

Next LA 2,1(,2) Increment output-character address
ALR 1,1 Shift the byte left by 1 bit
JCT 0,Loop Repeat for all 8 bits
LM 0,2,20(13) Restore GR0-GR2
BR 14 Return to caller

ZChars DC 8C'0' Eight zero characters
End

38.5.11. Consider this subroutine: no implicit addresses are used, so there's no need for the normal Using *,15 state-
ment.

Suggested Solutions to Selected Exercises and Programming Problems 1253

SIGNUM Start 0 Start of SIGN control section
STM 14,1,12(13) Save registers
SR 0,0 Initialize result
L 1,0(,1) Get address of the argument
LT 1,0(,1) Get the integer argument, set CC
L 1,24(,13) Restore GR1 without changing CC
BZR 14 Return directly if argument = 0
BCTR 0,0 Make c(GR0) = -1 (no change to CC)
BMR 14 And return
LCR 0,0 Make c(GR0) = +1
BR 14 Return to caller
End

Note that the BCTR instruction can't be changed to AHI 0,-1 because AHI changes the condition code.

38.5.12. Because Data is an external symbol, and is not addressable.

38.5.13. This subroutine assumes that the MemDump subroutine uses a local register save area so that it won't modify the
contents of the caller's save area (which may be in an area to be dumped).

MemDump Start 0 Memory-dump subroutine
Using *,15 Establish addressability
STM 1,5,Save Save modified registers
LM 1,2,0(14) Load start and end addresses

MainLoop MVC Line,CC Set carriage control character
ST 1,Loc Store starting address for this line
MVC Loc+4(16),0(1) Move 16 bytes for unpacking/formatting
LA 5,Loc Initialize UNPK source address
LA 3,5 Format 5 words into printable hex
LA 4,Line Initialize output line position

LineLoop UNPK 0(9,4),0(5,5) Unpack a word
TR 0(8,4),TRTab Translate to EBCDIC
MVI 8(4),C' ' Blank out the swap byte
LA 5,4(,5) Increment input address by 4
LA 4,9(,4) Increment output address by 9 (space!)
JCT 3,LineLoop Finish one line of output
PrintLin CC,1+L'Line Print the line
LA 1,16(,1) Increment starting address by 16
CR 1,2 Compare to end address
JNH MainLoop Repeat for another line
LM 1,5,Save
B 8(,14) Return to caller

Save DS 5F Save area
Loc DS 5F Work area for address, dump words
CC DC C' ' Blank carriage control character
Line DS CL45 Output line

DS X Padding byte for UNPK byte swap
TRTab DC 240C' ',C'0123456789ABCDEF' Translate table

End

38.5.15. This can be done in many ways; first, we illustrate a technique used before z/Architecture instructions were
available.

I2D CSect , Word integer to long hex float
Using *,15 Assume standard entry-address reg
ST 0,Float+4 Store integer value
XI Float+4,X'80' Invert sign bit only
LD 0,Float Pick up integer and exponent
SD 0,Const Subtract magic constant
BR 14 Return

Const DC DS6'2147483648' Scaled 2**31
Float DC X'4E',7X'0' Temporary with hex exponent 14
This solution uses z/Architecture instructions:

1254 Assembler Language Programming for IBM System z™ Servers Version 2.00

I2D CSect , Word integer to long hex float
Using *,15 Assume standard entry-address reg
LGFR 0,0 Extend 32-bit operand to 64 bits
LDGR 0,0 Copy GG0 to FPR0
LNDR 0,0 Invert sign bit of FPR0
SD 0,Const Subtract magic constant
BR 14 Return

Const DC DS6'2147483648' Scaled 2**31

38.5.18. Here is an example of a calling sequence:

LA 1,ArgList Point o argument addresses
L 15,=V(ShftRt) Load subroutine address
BASR 14,15 Call it
- - -

ArgList DC A(Logic,NN,Result) Argument addresses
Logic DS F Bits to be shifted
NN DS F Shift amount
Result DS F Shifted quantity

Section 38.6

38.6.2. Both generate an ER entry for X in the ESD record, but the V-type constant generates a different RLD entry
that lets the Linker assign an indirect resolution to X.

Section 38.7.

38.7.1. An ENTRY name always has the same “owning” ESDID as its containing control section, but does not have
an ESDID of its own. (That's why the * is attached to the ESDID.)

38.7.2. This can be done by using the fact that the owner of a COM section can refer to its internal names as ordinary
symbols. Thus, the owner of the MyCom section can define an address constant pointing to the symbol YourData and
give the adcon a name like DataAddr declared in an ENTRY statement:

Owner CSect , Owner of the MyCom common section
- - -

DataAddr DC A(YourData) Address of the data area
ENTRY DataAddr Define its name externally
- - -

MyCom COM , The Owner's common section
- - - Parts of the MyCom section

YourData DS XL(23456) The data area you need to reference
- - - Other parts of the MyCom section

Then, in your program you can write

YourProg CSect . Program to reference YourData
EXTRN DataAddr Name of the YourData pointer
- - -
L 3,DataPtr Get the Owner's 'YourData' pointer
L 3,0(,3) Get the YourData pointer
- - - ... and work with the data

DataPtr DC A(DataAddr) Point to MyCom's YourData pointer

38.7.3. Use the contents of the Address as both an addend and as a mask to round up the current offset to the required
boundary. Suppose the current offset is in register ROff::

L 0,Addr Get the XD item's Address field
ALR ROff,0 Add to the current offset
NR ROff,0 Set low-order bits to zero

38.7.4. If there were more than 1024 PR items each having length 4, the offset in the QL2-con would have a nonzero
high-order digit. That digit would appear in the base-register digit position of the base-displacement field of the L
instruction.

Suggested Solutions to Selected Exercises and Programming Problems 1255

Section 38.10

38.10.5. Since the four instructions all set bit 32 of the R2 operand register (the “b” bit) to 0 in 24-bit mode and to 1 in
31-bit mode, these are the settings that BSM uses to set the AMODE before branching. It will set the PSW AMODE
bits to the same value they had at the time of the call.

38.10.6. BSM: yes; BASSM: no, because the first operand register is always changed in ways that depend on the
current addressing mode.

38.10.7. Remember that BAL is a 4-byte instruction that sets the ILC to B'10', which means the high-order bit of the
R1 register will be 1. If your program runs in 24-bit addressing mode and you try to return from the called routine with
BSM, it will set the addressing mode to 31, and any address with nonzero bits in positions 32-40 will try to address
something beyond the bounds of your program.

Note also that executing BAL or BALR with either EX or EXRL instructions will set the high-order bit of the R1
register.

Executing in AMODE 31 is safe for calling another AMODE 31 program, because both BAL and BALR set the
high-order bit of the 32-bit return address to 1; returning with BSM doesn't change the addressing mode.

38.10.8. It would work, but you'd have to set the appropriate bits in the R1 and R2 registers, which isn't necessary for
the “ordinary” linkage instructions that don't change addressing mode.

38.10.10. The routine D could have had any of three RMODE settings:

RMODE 24 D will be loaded below the 16MB “line”.

RMODE 31 D will be loaded above the 16MB “line” if C and D are in separate classes in a program object. If
they are both components of a load module, they both will be loaded below the 16MB “line”,
because load modules are given the lowest RMode of all its components.

RMODE ANY D could be loaded either below or above the 16MB “line”, probably above, again depending on the
type of executable created by the Linker.

Programming Problem 38.2.

The Zeller subroutine has three arguments, the year, month, and day of month. Note that this solution makes no local
storage references, and therefore has no USING statement!

Zeller CSect , No base register needed!
* Zeller's Congruence for the day of the week (0=Saturday, 6=Friday).
* D_W = (D_M+Y+Y/4+6*(Y/100)+Y/400+((M+1)*26)/10) (mod 7).
* All divisions truncate, and return floor(quotient)

STM 14,5,12(13) Save registers
LM 1,3,0(1) Addr(Year,Month,Day_of_Month)
L 5,0(,1) Get Y (year)
L 1,0(,3) Get D_M (day of month)
AR 1,5 D_M+Y
SRA 5,2 floor(Y/4)
AR 1,5 D_M+Y+floor(Y/4)
LA 3,25 Constant 25
XR 4,4 Clear high-order register
DR 4,3 floor(Y/100)
LR 4,5 Copy to GR4
SRA 4,2 floor(Y/400)
AR 1,4 D_M+Y+floor(Y/4)+floor(Y/400)
MHI 5,6 6*floor(Y/100)
AR 1,5 D_M+Y+fl(Y/4)+fl(Y/400)+6*fl(Y/100)
LA 3,5 Constant 5
L 5,0(,2) Get M (month)
AHI 5,1 M+1
MHI 5,13 (M+1)*13
XR 4,4 Clear high-order register
DR 4,3 ((M+1)*13)/5
AR 1,5 Add to sum
LA 4,7 Constant 7
XR 0,0 Clear high-order register
DR 0,4 Divide by 7, leave remainder in GR0
LM 1,5,24(13) Restore all but GR0

1256 Assembler Language Programming for IBM System z™ Servers Version 2.00

BR 14
End

The calling program could be written like this:

P38_2 CSect ,
Print NoGen
STM 14,12,12(13) Save registers
LR 2,13 Copy address of caller's area
CNOP 0,4 Align to 4-byte boundary
BRAS 13,EndSave Set GR13 to address of our save area
Using Save,13 Use GR13 as local base register

Save DC 18F'0' Local save area
EndSave ST 2,4(,13) Store back chain in our area

ST 13,8(,2) Put forward chain in caller's area
*
Read ReadCard Inrec,NoData Read an input record

MVC CYear,InRec+6 Move year characters for output
MVC CDay,InRec+28 Move day characters for output
PACK DWork,Inrec(10) Convert Year to packed decimal
CVB 0,DWork Convert to binary
ST 0,Year Save the binary year value
PACK DWork,Inrec+10(10) Convert Month to packed decimal
CVB 0,DWork Convert to binary
ST 0,Month Save the binary month value
PACK DWork,Inrec+20(10) Convert Day of month to packed dec
CVB 0,DWork Convert to binary
ST 0,DayofM Save the binary day of month value
MVI Line,C' ' Initialize output line to blanks
MVC Line+1(L'Line-1),Line Ripple move

*
LA 1,ArgList Point to argument address list
L 15,AZeller Get address of Zeller routine
BASR 14,15 Call Mr. Zeller for his congruence
ST 0,WeekDay Store the result

* Format the data
LR 1,0 Copy to GR1
AR 1,1 Double it for index
LA 3,Line+1 Point to initial character
XR 2,2 Clear GR2 for EX lengths
IC 2,Days+1(1) Get effective length of day name
IC 1,Days(1) Get offset of day name
LA 1,DCh(1) Point to day name
EX 2,MoveDay Move day name to output line
LA 3,2(3,2) Step output address over day
L 1,Month Get month value (starts at 1)
AR 1,1 Double for indexing
IC 2,Months-1(1) Get effective length of month name
IC 1,Months-2(1) Get offset of month name
LA 1,MCh(1) Point to month name
EX 2,MoveDay Move month name to line
LA 3,2(2,3) Step over month name
MVC 0(2,3),CDay Move character form of day
CLI 0(3),C' ' Was leading character a blank?
JNE DoYear Skip adjustment if yes
MVC 0(1,3),CDay+1 Move the single-digit day
BCTR 3,0 Back up by 1 character

DoYear MVI 2(3),C',' Insert comma
MVC 4(4,3),CYear Insert year characters
PrintLin Line,L'Line Print the result
J Read Read another input record

NoData PrintOut *,Header=NO
MoveDay MVC 0(*-*,3),0(1) Move day character name to line
*
AZeller DC V(Zeller) Address of Zeller subroutine
ArgList DC A(Year,Month,DayofM) Argument addresses

Suggested Solutions to Selected Exercises and Programming Problems 1257

WeekDay DS F
DayofM DS F
Month DS F
Year DS F
DWork DS D Doubleword work area
CYear DS CL4
CDay DS CL2
*
Days DC AL1(DSat-DCh,L'DSat-1)

DC AL1(DSun-DCh,L'DSun-1)
DC AL1(DMon-DCh,L'DMon-1)
DC AL1(DTue-DCh,L'DTue-1)
DC AL1(DWed-DCh,L'DWed-1)
DC AL1(DThu-DCh,L'DThu-1)
DC AL1(DFri-DCh,L'DFri-1)

DCh DS 0C
DSat DC C'Saturday'
DSun DC C'Sunday'
DMon DC C'Monday'
DTue DC C'Tuesday'
DWed DC C'Wednesday'
DThu DC C'Thursday'
DFri DC C'Friday'
*
Months DC AL1(MJan-MCh,L'MJan-1)

DC AL1(MFeb-MCh,L'MFeb-1)
DC AL1(MMar-MCh,L'MMar-1)
DC AL1(MApr-MCh,L'MApr-1)
DC AL1(MMay-MCh,L'MMay-1)
DC AL1(MJun-MCh,L'MJun-1)
DC AL1(MJul-MCh,L'MJul-1)
DC AL1(MAug-MCh,L'MAug-1)
DC AL1(MSep-MCh,L'MSep-1)
DC AL1(MOct-MCh,L'MOct-1)
DC AL1(MNov-MCh,L'MNov-1)
DC AL1(MDec-MCh,L'MDec-1)

MCh DS 0C
MJan DC C'January'
MFeb DC C'February'
MMar DC C'March'
MApr DC C'April'
MMay DC C'May'
MJun DC C'June'
MJul DC C'July'
MAug DC C'August'
MSep DC C'September'
MOct DC C'October'
MNov DC C'November'
MDec DC C'December'
*
Line DC CL40' '
InRec DS CL80 Input record buffer

End P38_2

The printed output from the suggested test cases is:

 Tuesday June 30, 2009
 Friday January 1, 2000
 Saturday January 1, 1900

Programming Problem 38.3. Note that this solution modifies none of the registers that must be restored on
return.

1258 Assembler Language Programming for IBM System z™ Servers Version 2.00

HexUlp CSect , Return ulp of hex float arguments
* Calling sequences:
* Call HxUlpE(X) Calculate ulp(X) for short X
* Call HxUlpD(X) Calculate ulp(X) for long X
* Call HxUlpL(X) Calculate ulp(X) for extended X
* ulp(x) is returned in FPR0 (for short and long X), and in
* FPR0/2 for extended X.

ENTRY HxUlpE,HxUlpD,HxUlpL
*
HxUlpE L 1,0(,1) Get address of argument X

XGR 0,0 Clear GG0
OIHL 0,1 Set bit 31 to 1
ICMH 0,8,0(1) Insert characteristic 'cc' of X
LFGR 0,0 Copy X'cc000001 00000000' to FPR0
DE 0,0(,1) Divide by X
BR 14 Return short ulp(X) to caller

*
HxUlpD L 1,0(,1) Get address of argument X

XGR 0,0 Clear GG0
OILL 0,1 Set bit 63 to 1
ICMH 0,8,0(1) Insert characteristic 'cc' of X
LFGR 0,0 Copy X'cc000000 00000001' to FPR0
DD 0,0(,1) Divide by X
BR 14 Return long ulp(X) to caller

*
HxUlpL L 1,0(,1) Get address of argument X

XGR 0,0 Clear GG0
LD 4,0(,1) Put high half of X in FPR4
LD 6,8(,1) Put low half of X in FPR6
ICMH 0,8,0(1) Insert characteristic 'cc' of X
LFGR 0,0 Copy X'cc000000 00000000' to FPR0
LGHI 0,1 Put X'00000000 00000001' in GG0
LFGR 2,0 Copy it to FPR2
DXR 0,4 Divide by X
BR 14 Return extended ulp(X) to caller
End

Programming Problem 38.9. The changes of addressing mode in this little program are needed because the
PrintOut macro operates only in AMODE(24):

AM CSect ,
Using *,15
LG 0,=FD'-1' Preset GG0
LGR 1,0 Copy to GG1
SAM24 , Set addressing mode 24
BASSM 1,0 BASSM sets GG1
LGR 2,0 Copy GG0 to GG2
SAM31 , Set AM31
BASSM 2,0 BASSM sets GG2
LGR 3,0 Copy GG0 to GG3
SAM64 , Set AM64
BASSM 3,0 BASSM sets GG3
SAM24 , Reset to AM24 for PRINTOUT
PrintOut 16,17,18,19,Header=No Display the results

*
LGR 4,0 Copy GG0 to GG4
SAM24 , Set addressing mode 24
BASR 4,0 BASR sets GR4
LGR 5,0 Copy GG0 to GG5
SAM31 , Set AM31
BASR 5,0 BASR sets GR5
LGR 6,0 Copy GG0 to GG6
SAM64 , Set AM64
BASR 6,0 BASR sets GG5
SAM24 , Reset to AM24 for PRINTOUT

Suggested Solutions to Selected Exercises and Programming Problems 1259

PrintOut 20,21,22,*,Header=No
End

The results look like this (explanations added):

GGR 0 = X'FFFFFFFFFFFFFFFF' (Initialization value)

 GGR 1 = X'FFFFFFFF0002100E' (AM24: b bit 32 = 0)
 GGR 2 = X'FFFFFFFF80021016' (AM31: b bit 32 = 1)
 GGR 3 = X'000000000002101F' (AM64: e bit 63 = 1)

 GGR 4 = X'FFFFFFFF0002107C' (AM24: b bit 32 = 0)
 GGR 5 = X'FFFFFFFF80021084' (AM31: b bit 32 = 1)
 GGR 6 = X'000000000002108C' (AM64: e bit 63 = 0)
so the first-operand mode-bit settings are the same in AM24 and AM31.

Programming Problem 38.10.
HexExp CSect , Return exponent of HFP argument

L 1,0(,1) Get argument address
XR 0,0 Clear GR0
ICM 0,1,0(1) Insert sign and characteristic
NILL 0,B'01111111' Eliminate sign bit
AHI 0,-64 Remove bias
BR 14 Return to caller
End

1260 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 39 Solutions
Section 39.1

39.1.1. The symbols and their values are:

Value Symbol
000000 D39_1_1 DSect ,
000000 A DS CL9
00000C B DS F
000010 C DS X
000012 D DS H
000018 E DS D
000020 F Equ *-D39_1_1

39.1.2. Using the same symbols as in Figure 57 on page 161, we can define the DSECT this way:

ALStmt DSect , Assembler Language statement
Statemnt DS 0CL80 Define 80-column record area
Name DS 0CL8 Define name-field symbol

DS CL9 Reserve space for name-field symbol
Mnemonic DS 0CL5 Define 5-character mnemonic field
Mnemopnd DS 0CL25 Define both mnemonic and operands

DS CL6 Reserve space for mnemonic
Operand DS 0CL19 Define 19-character operand field

DS CL20 Reserve space for operand field
Comment DS CL36 Allocate 36 columns for comments
Continue DS C Define continuation-indicator column
Sequence DS CL8 Define sequencing columns
ALStmt_L Equ *-ALStmt Length of the DSECt

39.1.3. As defined in the solution to Exercise 39.1.2, the values and length attributes of all symbols are:

Section 39.2

39.2.1. Following the Equ statement defining the value of the symbol RecLen, add these two statements:

Org Record Position LC at start of DSECT
RecBase DS XL(RecLen) Define symbol with record length

39.2.2. You can do this with a single statement:

NewRec DS 0D,XL(RecLen)

Section 39.3

39.3.1. We assumed in Figure 625 on page 876 that the offset of the symbol RecID in the Record DSECT is greater
than 4096. So that the displacement of the second operand will be less than 4096, we must subtract 4096 and assign the
base register (GR8) with contents 4096 greater than the contents of GR7. You should never program this way!

39.3.2. The generated instruction is X'D204 000A 700A'. The base register for the first operand is zero, so the target
address is at address X'00000A', very probably causing a protection exception. (Note also that the Effective Length is 4,
meaning that the MVC is attempting to move 5 bytes.)

39.3.3. The generated instruction is X'D203 500A 700A'. Both the target address and the Effective Length are correct.

Symbol Value (Hex) Length Attr.

Statement 000000 80
Name 000000 8
Mnemonic 000009 5
MnemOpnd 000009 25
Operand 00000F 19
Comment 000023 36
Continue 000047 1
Sequence 000048 8
ALStmt_L 000050 1

Suggested Solutions to Selected Exercises and Programming Problems 1261

39.3.4. The LAY instruction (assuming the USING 0+X'F999',7 statement in the footnote on page 879) will generate
E320 7D07 0871, with GR7 as base register. (Note that the base value X'F999' plus the displacement X'8D07' is
X'186A0'=100000.)

Section 39.4

39.4.1. The instructions and their generated object code are:

LA 1,ABC 4110 C008
LA 2,Qual.ABC 4120 9004

39.4.2. The instructions and their generated object code are:

Qual Using *,9
Using *,6
LA 1,ABC 4110 6008
LA 2,Qual.ABC 4120 9008

Even though both instructions have the same displacement, the first USING specifies the higher-numbered register, so it
cannot be used to resolve the unqualified implied address of the first LA instruction. The lower-numbered register,
GR6, is assigned as base.

39.4.3. The three instructions and their generated object code are:

4100 9028 LA 0,A+40 Ordinary USING
4110 9028 LA 1,QQ.A+40 Labeled USING
4120 9028 LA 2,QQ.A+40 Labeled USING

All three generate the same object code.

39.4.4. You might expect the generated object code to be X'4130 7200'. However, the Assembler doesn't resolve quali-
fied absolute symbols, so the statement generates a diagnostic.

Section 39.5

39.5.2. The three DSECTs as written are short enough that all three can be addressed with a single base register, so the
order of their mapping with the Dependent USING statements does not matter. However, if one of the DSECTs is very
long (for example, DSECT A is defined with a DS XL6000 statement), it might be best to map the three DSECTS with
the longest one last.

39.5.3. If the two CSECTs are not assembled together, none of the symbols in the MsgSkels CSECT would be known in
the Program CSECT.

39.5.4. Consider these DSECT definitions:

A DSect , B DSect , C DSect ,
DS CL32 B1 DSD C1 DS CL80

BLoc DS XL(Blen) B2 DS D C2 DS XL8
CLoc DS XL(Clen) BLen Equ *-B CLen Equ *-C

DS (256-(*-A))

Section 39.6

39.6.2. Assuming that GR9 provides addressability to the Outer DSECT, you could write something like this:

Using Outer,9
LA 10,Out_Inr1 A(Out_Inr1) in GR10
Using Inner,10 Addressability for first instance
LA 11,Out_Inr2 A(Out_Inr1) in GR11
Using Inner,11 Addressability for second instance

Three base registers are needed, rather than one.

39.6.3. The Top DSECT starts at location zero. The length of the Bot DSECT is 16 (X'10') bytes because it is rounded
to the next doubleword boundary. The Mid DSECT length is X'C8' bytes. The Top is three times as long as Mid, or
X'258' bytes. Offsets of the other variables within their respective DSECTs are easy to determine. The offsets of the
four variables are:

• M1B1.X1 X'028'
• Mid1.MidVar1 X'038'
• M3B2.X2 X'209'
• Mid3.MidVar4 X'238'

1262 Assembler Language Programming for IBM System z™ Servers Version 2.00

39.6.4. The generated instructions are:

 Object Code Instruction
 D204 7028 702D MVC M1B1.X1,M1B1.X2
 D204 709D 7028 MVC M1B3.X2,M1B1.X1
 D204 7209 722D MVC M3B2.X2,M3B3.X2
 D204 70F0 7209 MVC M2B1.X1,M3B2.X2
 D20F 71B8 7228 MVC Mid3.B1,Mid3.B3
 D20F 7098 70F0 MVC Mid1.B3,Mid2.B1
 D213 714C 7190 MVC Mid2.MidVar3,Mid3.MidVar1
 D2C7 7000 70C8 MVC M1,M2

Section 39.7

39.7.1. The DSECTs and their lengths are:

Date X'008' = 8
Addr X'050' = 80
Phone X'010' = 16

39.7.2. The DSECTs and their lengths are:

Person X'098' = 152
Employee X'373' = 883

39.7.5. Yes.

Suggested Solutions to Selected Exercises and Programming Problems 1263

Section 40 Solutions
Section 40.1

40.1.1. The three statements should be written

LowerSub DC A(LBound)
UpperSub DC A(HBound)

- - -
XX DC (HBound-LBound+1)F'12345'

40.1.2. Yes, it is open to criticism on many grounds.337

1. Consider what happens if the addressing halfword of the L instruction named GetIt could address the start of the
table, but not the end.

2. Suppose the initial addressing halfword is X'FFF0': what happens when we want to fetch the fifth table element?

3. The method is quite inefficient, especially considering the availability of many instructions to do indexing automat-
ically,

4. Modifying instructions is considered an extremely poor technique under any circumstance: you can't debug the
code by reading the source or the listing, and the code cannot be shared by more than one process.

5. It's terribly inefficient, because storing into the instruction stream makes the CPU stop pre-processing instructions
and start over.

40.1.3. You can make a good case for either view:

• In favor of spacing by 8: Each element of the table is aligned on a halfword boundary, making the halfword integer
more likely to be aligned on correct boundaries; and calculating index offsets can use shift logical instructions
instead of multiplying by 7.

• Not in favor of spacing by 8: In programs needing to conserve memory space, adding the extra byte to each entry
could cause addressability problems.

In general, speed of access and simplicity of indexing code are more important considerations.

40.1.4. Only the single element of XX whose index is found at LowerSub will be stored at XSum.

40.1.5. Consider writing the DSECT this way:

Elem DSect ,
El_Int DS HL2
El_Chars DS CL5
The reason for writing the operand of El_Int as HL2 rather than H is to remind the reader that the integer field may not
always be aligned on a halfword boundary.

Section 40.2

40.2.1. To answer the last two questions first:

• The ordering of the array does not matter. Suppose the elements are stored in row order. Then

Addr(A(i,j)) = Addr(A) + L*[N*(i-1)+(j-1)] ('from' element)
Addr(A(j,i)) = Addr(A) + L*[N*(j-1)+(i-1)] ('to' element)

If the elements are stored in column order,

Addr(A(i,j)) = Addr(A) + L*[(i-1)+N*(j-1)] ('from' element)
Addr(A(j,i)) = Addr(A) + L*[(j-1)+N*(i-1)] ('to' element)

Since the array A is square, and we are simply exchanging elements, there is no difference between row and column
order.

• We don't have to swap the N “diagonal” elements A(i,i), so the number of elements involved is N*N − N, or
N*(N − 1). The elements are swapped in pairs, so the number of swaps is N*(N − 1)/2.

The code will need to do swaps only for subscripts j < i, for values of i from 2 to N and for values of j from 1 to i − 1.
(The inner loop is indented to help readability.)

337 Fortunately, that programmer has been out of business for many years.

1264 Assembler Language Programming for IBM System z™ Servers Version 2.00

RI Equ 2 Register for i values
RiMax Equ 3 Register for maximum i value
RJ Equ 4 Register for j values
RjMax Equ 5 Register for maximum j value

LA RiMax,N Maximum value of i
LA RI,2 Initial value of i

Outer LR RjMax,RI Copy current value of i
BCTR RjMax,0 Maximum value of j = i-1
LA RJ,1 Initial value of j

Inner LR 8,RI Copy i
BCTR 8,0 Form (i-1)
LR 10,8 Copy (i-1) to GR10
LR 9,RJ Copy j
BCTR 9,0 Form (j-1)
LR 11,9 Copy (j-1) to GR11
MHI 9,N Form N*(j-1)
SLDL 8,2 Form L*(i-1) and L*N*(j-1)
ALR 8,9 For linear subscript for A(i,j)
MHI 10,N Form N*(i-1)
SLDL 10,2 Form L*N*(i-1) and L*(j-1)
ALR 10,11 For linear subscript for A(j,i)
L 0,Array(8) Get Array(i,j) for swap
L 1,Array(10) Get Array(j,i) for swap
ST 0,Array(10) Store Array(i,j) at old A(j,i)
ST 1,Array(8) Store Array(j,i) at old A(i,j)

AHI RJ,1 Increase j by 1
CR RJ,RjMax See if we've completed a j cycle
JNH Inner If not, repeat

AHI RI,1 Increment i by 1
CR RI,RiMax Compare to upper limit for i
JNH Outer Repeat another cycle on i
- - -

Array DS (N*N)F N by N array

40.2.3. In a column-ordered array with R rows, we know that the address of an element A(i,j) is given by

addr(A(i,j)) = [addr(A(1,1))-(L*(R+1))]+[L*(i+R*j)].
We know the address of A(i,j); so after rearranging, we find

(i-1)+R*(j-1) = [addr(A(i,j))-addr(A(1,1))]/L
If we divide the right-hand expression by R, the remainder is (i-1) and the quotient is (j-1).

L Equ 4 Assume elements are 4 bytes long
R Equ 7 Assume 7 rows

L 1,ElemAddr Address of A(i,j)
S 1,BaseAddr Subtract address of A(1,1)
SRL 1,2 Divide by L
SR 0,0 Clear high-order register for divide
D 0,=A(R) Divide by number of rows
AHI 0,1 Add 1 to remainder (i-1)
ST 0,ISub Store I subscript
AHI 1,1 Add 1 to quotient (j-1)
ST 1,JSub Store J subscript
- - -

ElemAddr DS A Known address of A(i,j)
BaseAddr DS A Known address of A(1,1)
ISub DS F Calculated i subscript
JSub DS F Calculated j subscript

Section 40.3

40.3.7. We simply exchange the corresponding elements of the IVal and JVal arrays. These instructions will transpose
the sparse matrix A:

Suggested Solutions to Selected Exercises and Programming Problems 1265

L 1,NbrEls Get number of array elements
BCTR 1,0 Decrement by 1
SLA 1,2 Make into a word index
JNP Done Exit if no elements today
LA 0,4 Set word increment
SR 0,0 Initialize index

Next L 3,IVal(2) Get an I subscript
L 4,JVal(2) And a J subscript
ST 3,JVal(2) Store I where J used to be
ST 4,Ival(2) Store J where I used to be
JXLE 2,0,Next Increment index, test, and loop

Done - - - Transposition complete

Section 40.4

40.4.6. Here's one solution:

AddrTab DC (NRows)A(AA-L+L*(NRows*(*-AddrTab)/4))

40.4.7. There are these factors to consider:

1. Subscript sizes must be small enough so that address calculations will not overflow.

2. If subscript sizes are limited to avoid overflows, the address table may be so large that the additional memory
needed (in addition to the space required for the array itself) that it may be simpler to calculate “normal” subscript
addressing.

3. There is a fixed amount of storage available between the 16MB “line” and the 2GB “bar” (about 229 bytes).

Section 40.5

40.5.1. It will not matter, because you will be searching through the entire array.

40.5.2. Unless we were lucky enough to find the desired item on the first comparison, the search would end with the
element not found. For example, if the array elements were 5, 4, 3, 2, and 1 and we search for the value 2, the first
comparison (2 to 3) would show that we should move lower in the array. But all those elements are larger than 2, so
the search would never find the correct element.

40.5.5. You won't see much improvement, because the effort of comparing the sign of the search argument to the sign
of the current table “probe” element is about the same as just comparing the argument to the table entry.

40.5.7. The best estimate is N*(N-1)/2 comparisons.

Section 40.6

40.6.1. (3) will overwrite the element currently at the top of the stack, and then set the stack pointer to the address of
an empty stack position.

40.6.2. The LM/STM/LA instructions will do the initialization:

SP Equ 1 GR1 contains stack pointer
StkSize Equ 20 Number of elements for full stack

DS (StkSize)F Allocate space for the stack
Stack DS 0F Define name of stack area

- - -
LM 0,2,=F'6,2,9'
STM 0,2,Stack-3*L'STACK Set values
LA SP,Stack-3*L'STACK Initialize stack pointer

40.6.3. The main disadvantage of this method is that a check for stack overflow might be done after the “push”, which
might be too late. One (very) small advantage is that a CPU that overlaps the execution of several instructions need not
wait for the address of the stack top to be generated before it can use that address to store the new data item.

40.6.4. The values of the expressions are 210, 77, and 100.

(1) A possible infix notation is 2*3*5*7

1266 Assembler Language Programming for IBM System z™ Servers Version 2.00

Operator * * *
Operand 7 3 2 5 10 30 210
Stack 7 3 2 3 7

7 3 7
7

(2) A possible infix notation is 7*((3*2)+5)

Operator * + *
Operand 7 3 2 6 5 11 77
Stack 7 3 7 6 7

7 7

(3) A possible infix notation is (3+7)*(2*5)

Operator + * *
Operand 7 3 10 2 5 10 100
Stack 7 10 2 10

10

40.6.5. The first 5 statements define some symbolic names for registers.

EP Equ 11 Expression scan pointer
SP Equ 10 Stack pointer
StkSize Equ 10 Stack size
WT Equ 8 Work reg for type codes
WV Equ 9 Work reg for values, operators

SR SP,SP Initialize SP to 'empty stack'
LA EP,Expressn Initialize expression scan pointer

Fetch LH WT,0(,EP) Get expression item type code
LH WV,2(,EP) Get operand or operator
LTR WT,WT Check type of expression item
JM Finis Done if less than 0
JP Oprtr Branch if an operator
LR 1,WV Move to GR1 for storing

Push AHI SP,-4 Push stack contents down once
ST 1,Stack(SP) Place new operand onto stack

Step LA EP,4(,EP) Step pointer to next expression item
J Fetch And get next item

* Set up for operation on top two stack elements
Oprtr L 1,Stack+4(SP) Get next-to-top stack item

L 2,Stack(SP) Top stack element in GR2
LA SP,8(,SP) Pop both elements off the stack
LTR WV,WV Now check the operator code
JZ AddTwo If zero, add operator
MR 0,2 Otherwise, multiply
J Push And push the result back on stack

AddTwo AR 1,2 Add the operands
J Push Go push sum onto stack

Finis PrintOut 1,* Print result and stop
DS (StkSize)F Space for stack

Stack DS 0F
Expressn DC H'0,2,0,3,0,4,4,1,4,0,-1' Expression 234*+

40.6.7. Suppose the top of the two stacks are represented by values Stk1T and Stk2T; the bottom of Stk1 is A(1) and
the bottom of Stk2 is A(N). Then we can represent the four functions with this pseudo-code:

Push1(X): Stk1T = Stk1T+1;
if Stk1T = Stk2T then Stk1 Overflow
A(Stk1T) = X

Push2(X): Stk2T = Stk2T-1;
if Stk2T = Stk1T then Stk2 Overflow
A(Stk2T) = X

Pop1(X): if Stk1T < 1 then Stk1 Underflow
X = A(Stk1T)
Stk1T = Stk1T-1;

Suggested Solutions to Selected Exercises and Programming Problems 1267

Pop2(X): if Stk2T > N then Stk2 Underflow
X = A(Stk2T)
Stk2T = Stk2T+1;

You can now write the appropriate instructions without difficulty.

Section 40.7

40.7.1. The LstCount field should be zero, and the LstHLink and LstTLink fields should both contain the address of
LstAnchr.

40.7.5. The list is empty when both the forward and backward link addresses are the address of the list anchor.

40.7.10. We'll choose arbitrary values for the symbols DataLen and NLItms to show how the array can be allocated.

NLItms Equ 20 Assume a list of 20 elements
DataLen Equ 40 Assume data field length = 40
*
ArrStack DS F,XL(DataLen) Space for first list element
ElemLen Equ *-ArrStack Length of each list element

DS (NLItms-1)XL(ElemLen) Space for remaining elements

40.7.11. These instructions will initialize the list:

LHI 0,NLItms-1 One less than all list elements
LHI 2,2 Initial link value
LA 1,ArrStack Point to first list element

InitLoop ST 2,0(,1) Store a successor index
AHI 2,1 Increment the index
AHI 1,ElemLen Add the length of each list element
JCT 0,InitLoop Count down until last element
ST 0,0(,1) Last element has a null link
ST 0,HeadNdx Initialize head of working list
LA 0,1 Index of first free-list element
ST 0,FreeNdx Initialize index of free-list head

40.7.12. The steps would be like these:

1. If the FreeNdx is zero, there are no more free elements; branch to NoneLeft
2. NewNdx ← FreeNdx [The index of the “New” element is taken from the head of the free list]
3. FreeNdx ← Link(FreeNdx) [The new head of the free list is the previous second element on the free list]
4. Link(NewNdx) ← 0 [Assume the new element might be the end of the list]

40.7.13. We have already added elements with indexes 1 and 2 to the list, and the first element of the free list has index
3. After taking this free element from the list, the list would look like this:

Links Data HeadNdx = 1
┌─────────┬───────────────────────────┐ FreeNdx = 4
│ 2 │ data 1 │
├─────────┼───────────────────────────┤
│ 0 │ data 2 │ �── end of the current list
├─────────┼───────────────────────────┤
│ 0 │ │ �── NewNdx, prior to insertion
├─────────┼───────────────────────────┤
: : :
├─────────┼───────────────────────────┤
│ 0 │ │
└─────────┴───────────────────────────┘

Having acquired the New element, you can use steps like these to add it to the head of the list:

1. Data(NewNdx) ← NewData [Put the new data in the new element]
2. Link(NewNdx) ← HeadNdx [The link in the new element points to the previous head element]
3. HeadNdx ← NewNdx [Make the new element the head of the list]

After adding the new element to the head of the list, the list would look like this:

1268 Assembler Language Programming for IBM System z™ Servers Version 2.00

Links Data HeadNdx = 3
┌─────────┬───────────────────────────┐ FreeNdx = 4
│ 2 │ data 1 │
├─────────┼───────────────────────────┤
│ 0 │ data 1 │
├─────────┼───────────────────────────┤
│ 1 │ New Data │
├─────────┼───────────────────────────┤
: : :
├─────────┼───────────────────────────┤
│ 0 │ │
└─────────┴───────────────────────────┘

40.7.15. As written each element in the FSL links into the data field of the next element. If the second DC statement is
corrected to read

DC (Elem_Len/4)A(0),(NLstItms-1)A(*-Elem_Len,0,0,0,0,0)
there will be no difference in the way the two lists are used.

Section 40.8

40.8.1. Only two links need to be updated:

Q1 Using Q_El,5 Address of Q1
Q2 Using Q_El,9 Address of Q2
Q3 Using Q-El,2 Address of Q3

MVC Q1.RLink,Q2.RLink Forward chain Q1 to Q3
MVC Q3.LLink,Q2.LLink Backward chain Q3 to Q1

Section 40.9

40.9.1. It will make no difference, so long as elements are entered into the tree using the same left-right convention as
when they are retrieved.

40.9.2. There are four other 3-node binary trees, for a total of five. Let the nodes be indicated by “*” characters:

 * * * * *
/ \ / / \ \
* * * * * *

/ \ / \
* * * *

40.9.3. These “inorder” configurations should help you understand how the order of traversal affects the trees:

 B C C A A
/ \ / / \ \
A C B A C B

/ \ / \
A B B C

You'll enjoy sketching these five trees for preorder and postorder traversal.

Section 40.10

40.10.1. You might use shift instructions this way:

HashEnts Equ 73 Number of hash table entries
L 0,DataItem Load data item into GR0
SRDL 0,16 Last 2 bytes of data item in GR0
SRL 1,16 First 2 bytes of data item in GR1
XR 1,0 XOR the halves into GR1
XR 0,0 Clear GR0 for a division
D 0,=A(HashEnts) Divide by hash table size

Not a significant savings, but one less memory reference may help.

40.10.2. If the high-order bit of one of the 2-byte fields is 1 (but not in both fields), a different but still valid hash index
will be generated.

Suggested Solutions to Selected Exercises and Programming Problems 1269

Programming Problem 40.1.

The main feature of this solution is that the size of the graph is defined by the two EQU statements at the beginning. All
other quantities that depend on the length and width of the graph are then defined in terms of those values.

Title 'Solution to Problem 40.1'
P40_1 Start 0 Graph-plotting problem
*
XLen Equ 119 Number of X values
YLen Equ 59 Number of Y values
*

BASR 12,0
Using *,12 Inform assembler
PrintLin,Page,L'Page Print title line
LA 11,XLen Initial X position at 'XLen'

XLoop LR 10,11 Carry X value in GR10
SH 10,MiddlX Form true X value from index
JNZ NotYAxis If X not zero, no Y axis yet
LA 2,Graph+(XLen+1)/2 Position of Y-axis
LA 3,YLen Number of lines

*
YLoop MVI 0(2),C'|' Put Y-axis marker in line

LA 2,XLen(0,2) Increment by line length
JCT 3,YLoop Do YLen times

NotYAxis LR 1,10 Set up for parabola calculation
MR 0,1 X squared
AHI 1,25 Add roundoff factor
D 0,F50 Divide by 50
AHI 1,-25 Subtract 25 giving -y
AH 1,HalfY Add YLen/2 to get line index
JM NotStar If negative, off top of page
CH 1,HYLen See how close to bottom
JNL NotStar If bigger than YLen, off low end
MH 1,HXLen Otherwise multiply by line length
LA 2,Graph-1(11) Address of X position in top line
AR 2,1 Add line index
MVI 0(2),C'*' Store asterisk in graph

NotStar LCR 1,10 Set up for straight line
AHI 1,-12 Subtract 12
SRA 1,1 Divide by 2, giving -Y
AH 1,HalfY Add YLen/2 to get line index
BM NotX If negative, off the top
CH 1,HYLen See if off the bottom
JNL NotX Jump if so
MH 1,HXLen Mult line index by line length
LA 2,Graph-1(11) Construct X-position in top line
AR 2,1 Add line factor to get array loc
MVI 0(2),C'X' Store 'X' in the array

NotX JCT 11,XLoop Count down on X position
LA 4,YLen Set up for printing Ylen lines
LA 3,Graph Establish initial line address mover

Mover MVC Line+1(XLen),0(3) Move line to print position
PrintLin Line,L'Line Print line with space at left
LA 3,XLen(0,3) Increment address
JCT 4,Mover Loop until all lines are done
Printout *,Header=NO Exit

*
Page DC C'1 Solution to Problem 40.1' Heading line

DC CL(XLen+1)' ' Space for lines to be printed
F50 DC F'50'
HXLen DC AL2(XLen)
HalfX DC AL2(XLen/2)
HYLen DC AL2(YLen)
HalfY DC AL2(YLen/2)

1270 Assembler Language Programming for IBM System z™ Servers Version 2.00

MiddlX DC AL2((XLen+1)/2)
Graph DC (YLen/2)CL(XLen)' '

DC (XLen)C'-' X-Axis of minus signs
DC (YLen/2)CL(XLen)' '
End P40_1

Programming Problem 40.2.
Title 'Solution to Problem 40.2'

* As each character is read from the input record, it is
* immediately converted to a numeric index which controls
* all further operations. This master index selects the
* operation, determines the stack increment, and chooses
* the operands.
*
P40_2 START 0
StkSiz Equ 20 Size of stack

BASR 12,0 Use register 12 for base
Using *,12
J Begin Branch around data definitions

Formula DC 0CL82' ',C'0' Define print line and carriage ctrl
Record DC CL80' ',C' ' Define record, 1 blank to force stop
Master DC 256X'0' Initialize table to all zeros

ORG Master+C'A' Variable A
DC X'1'
ORG Master+C'B' Variable B
DC X'2'
ORG Master+C'C' Variable C
DC X'3'
ORG Master+C'0' Constants 0,1
DC X'0405'
ORG Master+C'N' NOT operation
DC X'6'
ORG Master+C'&&' AND operation
DC X'7'
ORG Master+C'|' OR operation
DC X'8'
ORG Master+C'X' XOR operation
DC X'9'
ORG * Set LC to end of translate table

*
Stack DC XL(StkSiz)'0' Stack
StkLim DC Y(StkSiz) Size of stack, for checking
Data DC X'F0CCAA00FFFF' Values for A,B,C,0,1,NOT
Incr DC H'0,1,1,1,1,1,0,-1,-1,-1' Stack ptr increments
IncrX DC AL1(0,2,4,6,8,10,12,14,16,18) Offsets into incr
Branch DC AL1(EndForm-Operate) Offset for all other chars

DC AL1(OprndA-Operate) Offset for 'A'
DC AL1(OprndB-Operate) Offset for 'B'
DC AL1(OprndC-Operate) Offset for 'C'
DC AL1(Oprnd0-Operate) Offset for '0'
DC AL1(Oprnd1-Operate) Offset for '1'
DC AL1(NOT-Operate) Offset for 'N'
DC AL1(AND-Operate) Offset for '&'
DC AL1(OR-Operate) Offset for '|'
DC AL1(XOR-Operate) Offset for 'X'

M0 DC C' Result is always False'
M1 DC C' Result is always True'
MM DC C' Result is indeterminate'
Quit DC C'0End of tests'
StkMsg DC C' *** Stack Overflow'
SynMsg DC C' *** Stack holds more than 1 item at end'
MsgList DS 0F Start of message list
M0P DC AL1(L'M0),AL3(M0) Result all zero
M1P DC AL1(L'M1),AL3(M1) Result all ones

Suggested Solutions to Selected Exercises and Programming Problems 1271

MMP DC AL1(L'MM),AL3(MM) Result mixed bits
*
* Register usage -- (all are set to 0 when record is read)
* R0 = Result of operation
* R1 = Master index and branch index
* R2 = Stack index increment table index
* R3 = Stack pointer
* R4 = Old stack top value
* R5 = Data value for variables and constants
* R6 = Input record scan pointer and message index
*
Begin ReadCard Record,Stop Read a record, stop if no more

PrintLin Formula,L'Formula
LM 0,6,=7F'0' Initialize all registers to 0

Fetch IC 1,Record(6) Get a character from the record
IC 1,Master(1) Replace it by its master index
IC 2,IncrX(1) Get (stack index increment) index
AH 3,Incr(2) Add increment to stack index
BNP StkErr Stack underflow if not positive
CH 3,StkLim Compare to stack size
BH StkErr Stack overflow if exceeds StkSiz
IC 0,Stack-1(3) Get new stack top
IC 4,Stack(3) Get old stack top
IC 5,Data-1(1) Get operand, if any
IC 1,Branch(1) Now set up branch index

****** PrintOut 0,1,2,3,4,5,6,Stack for debugging
B Operate(1) And go do the operation

Operate Equ * Start of operation list
OprndA Equ * Character is 'a'
OprndB Equ * Character is 'b'
OprndC Equ * Character is 'c'
Oprnd0 Equ * Character is '0'
Oprnd1 Equ * Character is '1'

LR 0,5 Move data to result register
B EndOps And go complete the operation

AND NR 0,4 Perform 'AND' operation
B EndOps Go store the result

OR OR 0,4 Perform 'OR' operation
B EndOps

NOT XR 0,5 Perform 'NOT' operation
B EndOps

XOR XR 0,4 Perform 'XOR' operation
EndOps STC 0,Stack-1(3) Store result back on stack
****** PrintOut 0,1,2,3,4,5,6,Stack for debugging

LA 6,1(0,6) Increment record scan pointer
B Fetch And go get next character

StkErr PrintLin StkMsg,L'StkMsg Indicate stack error
B Begin And start with a new record

SynErr PrintLin SynMsg,L'SynMsg Bad formula
B Begin Read next formula

EndForm CHI 3,1 Check final stack index
BNE SynErr Syntax error, stack holds too much
LA 6,M0P-MsgList Set for result being all zeros
TM Stack,X'FF' Test all bits on first stack entry
BZ PRINT
LA 6,MMP-MsgList Assume now the bits are mixed
BM PRINT Branch if that's true
LA 6,M1P-MsgList Otherwise they're all ones

PRINT L 1,MsgList(6) Get pointer to message
IC 2,MsgList(6) And message length
PrintLin 0(1),0(2) Print result message
B Begin And start all over again

Stop PrintLin Quit,L'Quit That's all, give up
BR 14 Return to supervisor
End P40_2

1272 Assembler Language Programming for IBM System z™ Servers Version 2.00

Programming Problem 40.6.

This solution uses indentation to show the nesting of the three loops. The size of the matrices is defined by the EQU
statement defining N.

P40_6 CSect ,
Using *,15

N Equ 5
* Begin Outer loop

LHI 1,N Initialize I in GR1
* Begin Middle loop
LOuter LHI 2,N Initialize J in GR2
LMiddle XR 0,0 Accumulated sum in GR0

LHI 3,N Initialize K in GR3
* Inner loop: calculate C(I,J)
LInner LR 4,1 I

BCTR 4,0 I-1
MHI 4,N (I-1)*N
ALR 4,3 (I-1)*N+K
BCTR 4,0 (I-1)*N+K-1
SLL 4,2 4*((I-1)*N+K-1)
L 7,A(4) Get A(I,K)
LR 5,3 K
BCTR 5,0 K-1
MHI 5,N (K-1)*N
ALR 5,2 (K-1)*N+J
BCTR 5,0 (K-1)*N+J-1
SLL 5,2 4*((K-1)*N+J-1)
M 6,B(5) A(I,K) * B (K,J)
AR 0,7 Accumulate sum
JCT 3,LInner Iterate on K

* End of Inner loop
LR 4,1 I
BCTR 4,0 I-1
MHI 4,N (I-1)*N
ALR 4,2 (I-1)*N+J
BCTR 4,0 (I-1)*N+J-1
SLL 4,2 4*(I*N+J)
ST 0,C(4) Store C(I,J)
JCT 2,LMiddle Iterate on J

* End of Middle loop
JCT 1,LOuter Iterate on I

* End of Outer loop
DumpOut C,C+4*(N*N) Display result in hex format
PrintOut *,Header=NO

A DC (N)F'1,2,3,4,5'
B DC (N)F'5,4,3,2,1'
C DS (N*N)F

End P40_6

Programming Problem 40.8.
* Solution to 'Bordered-Square' Programming Problem 40.8.
* This program is heavily parameterized, so that you need only to
* change the value of N, the length of each row of the square.
* If N exceeds 58 or is less than 6, various assembly errors occur.
*

Print NoGen
P40_8 Start 0 Print a square

Using *,15
*
N Equ 12 Length of one edge
SqSize Equ (N/2)*2 Ensure square size is an even value
NZeros Equ SqSize-2 Number of inner zeros to print

Suggested Solutions to Selected Exercises and Programming Problems 1273

Lines Equ 60 Assume 60 lines per page
TopRow Equ (Lines-SqSize)/2-1 Line number of top of square
LineLen Equ 120 Length of the line
LineCntr Equ LineLen/2 Center position on a line
OuterCh Equ C'1' Character for outer border
InnerCh Equ C'0' Character for inner border
LeftEdge Equ LineCntr-(SqSize/2) Left edge of printed square
*

PrintLin TopLine,1 Start a new page
LA 1,TopRow Calculate number of lines to skip
SR 0,0 Clear high-order word
D 0,=F'3' Divide by 3
LTR 1,1 Any lines to triple-space?
JZ NoSkip3

Skip3 PrintLin CCChars,1 Triple space
JCT 1,Skip3 Continue triple-spacing as needed

NoSkip3 LTR 0,0 Any lines to single/double space?
JZ NoSkips If not, done with skipping lines
LA 1,CCChars Point to CCChars
AR 1,0 Index to the needed CC character
PrintLin 0(1),1 Do the final skip

NoSkips MVI Square1+LeftEdge,OuterCh Start outermost row
MVC Square1+LeftEdge+1(SqSize-1),Square1+LeftEdge fill row
MVC Square2,Square1 Copy the row
MVI Square2+LeftEdge+1,InnerCh Start second row
MVC Square2+LeftEdge+2(NZeros-1),Square2+LeftEdge+1 fill row
MVC Square3,Square2 Copy the second row
MVI Square3+LeftEdge+2,C' ' Blank first interior character
MVC Square3+LeftEdge+3(SqSize-5),Square3+LeftEdge+2 fill

*
MVC OutLine,Square1 Copy top row
PrintLin OutBuf,L'OutBuf Print the line
MVC OutLine,Square2 Copy second row
PrintLin OutBuf,L'OutBuf Print the line
MVC OutLine,Square3 Copy next row
LA 1,SqSize-4 Number of innermost rows

PrtInner PrintLin OutBuf,L'OutBuf Print the line
JCT 1,PrtInner
MVC OutLine,Square2 Copy second row
PrintLin OutBuf,L'OutBuf Print the line
MVC OutLine,Square1 Copy top row
PrintLin OutBuf,L'OutBuf Print the line
PrintOut *,Header=NO Terminate the program

*
OutBuf DC CL(LineLen+1)' ' Initialize output buffer
OutLine Equ OutBuf+1,LineLen Define buffer position of output
Square1 DC CL(LineLen)' ' Top and bottom rows of square
Square2 DC CL(LineLen)' ' Second and N-1th rows of square
Square3 DC CL(LineLen)' ' Remaining rows of square
TopLine DC C'1'
CCChars DC C'- 0' CC characters for 1/2 spaces

End P40_8

1274 Assembler Language Programming for IBM System z™ Servers Version 2.00

Section 41 Solutions
Section 41.2

41.2.2. The first argument R is positional; the other two arguments A= and LV= are keyword.

Section 41.3

41.3.2. Because the expansion of the OPEN macro refers to it, and you don't want the assembly to fail due to an
undefined symbol.

Section 41.4

41.4.1. The address X'BAD' is odd, so branching to it will cause a specification exception. The address X'D1E' is even
and will cause a branch into the low area of memory, with unpredictable results.

41.4.2. The address C'BAD' is even, so it will cause a branch into the low area of memory, with unpredictable results.
The address C'D1E' is odd and will cause a specification exception.

41.4.3. The displacement in the LA instruction at offset X'000000' (statement 6) is X'04F', but it should be X'02A'.+

41.4.4. The target of the branch instruction is its third halfword, X'0002'.

Section 41.5

41.5.1. If executed in 24-bit addressing mode, the BAL instruction places the Instruction Length Code B'10' (BAL is 4
bytes long) in the two high-order bits of the R1 register. In 31-bit mode, the high-order bit of GR R1 is set from the
Basic Addressing Mode bit of the PSW, which is 1 for 31-bit mode.

Section 41.7

41.7.1. Some possible but unverified instruction sequences are:

(01) DC H'0' Invalid operation
(02) LPSW 0,8(0,0) Privileged operation
(03) EX 0,* Execute
(04) MVI 0,0 Protection
(05) LGHI 1,-1 Addressing

IC 1,0(,1)
(06) DC X'1D11' DR 1,1: Specification
(07) AP *,* Decimal Data
(08) LA 1,1 Fixed-point overflow

SLA 1,33
(09) SRDL 0,63 Fixed-point divide

DR 0,0
(0A) AP A,A Decimal overflow

A DC P'6'
(0B) DP A,=P'0' Decimal divide
(0C) LE 0,=E'1E72' Exponent overflow

MER 0,0
(0D) LE 0,=E'1E-72' Exponent underflow

MER 0,0
(0E) LE 0,=X'41000001' Significance

SU 0,=X'41000001'
(0F) LE 0,=E'1' Floating-point divide

D 0,=E'0'

+ I revised an earlier version of the figure and decided to leave the old displacement in place for you. Now: What was the original
value of the ABEND code?

Suggested Solutions to Selected Exercises and Programming Problems 1275

Programming Problem 41.2.

This program shows one way to read 80-byte records and display the results. It uses three conditional-assembly SETA
statements to set values of the input and output record lengths and the program name.

**
* Read and list 80-character fixed-length records, with a sequence *
* number preceding the record image in the listing. *
**
&OutLen SetA 121 Length of print line
&InLen SetA 80 Length of input records
&Name SetC 'Prob41_2' Name of program
&Name CSect ,
&Name AMode 24 Set required addressing mode
&Name RMode 24 Set required residence mode

Print NoGen DCB, DCBD expansions are VERY long!
*

SAVE (14,12) Save caller's registers
LR 12,15 Copy entry address
Using &Name,12 Establish base address
LR 11,13 Copy caller's save area address
LA 13,SaveArea Point to local save area
ST 11,SaveArea+4 Store backward link in our area
ST 13,8(,11) Store forward link in caller's area
OPEN (OutDCB,(OUTPUT)) Open output DCB

Out Using IHADCB,OutDCB Map the output DCB
TM Out.DCBOFLGS,DCBOFOPN Did the output DCB open OK?
JO OpenIn Yes, open the input DCB
ABEND 1,DUMP No sense trying to go further

OpenIn OPEN (InDCB,(INPUT)) Open input DCB
In Using IHADCB,InDCB Map the input DCB

TM In.DCBOFLGS,DCBOFOPN Did the input DCB open OK?
Drop Out,In No more DCBD mappings needed
JO Proceed Yes, continue
PUT OutDCB,OpenMsg Tell the user the open failed
CLOSE OutDCB Close the output DCB
J Finish Say Farewell

Proceed XR 2,2 Set record count to zero
GetaRec GET InDCB,InRec Read a record

AHI 2,1 Increment record count
CVD 2,DTemp Convert to packed decimal.
MVC RecNum,NumPat Move edit pattern to line
ED RecNum,DTemp+5 Edit 5 digits
PUT OutDCB,OutLine Print the output line
J GetaRec Go read another record

EOF CLOSE (InDCB,,OutDCB) Close both DCBs
FREEPOOL InDCB Free input buffers

Finish FREEPOOL OutDCB Free output buffers
L 13,SaveArea+4 Point to caller's save area
LM 14,12,12(13) Restore caller's registers
XR 15,15 Set return code to zero
BR 14

*
NumPat DC X'402020202120' Up to 10**5-1 records
*
OutLine DS 0CL(&OutLen) Start of output line
RecNum DS CL(L'NumPat) Record number + carriage control

DC CL3' ' Spaces
InRec DS CL(&InLen) Input record to be listed

DC CL(&OutLen-(*-OutLine))' ' Blanks for rest of line
OpenMsg DC CL(&OutLen)'1Unable to open input DCB' We can't print
*
InDCB DCB DDNAME=INPUT,LRECL=&InLen,RECFM=FB,DSORG=PS,MACRF=GM, X

1276 Assembler Language Programming for IBM System z™ Servers Version 2.00

EODAD=EOF,BLKSIZE=&InLen*10
OutDCB DCB DDNAME=OUTPUT,LRECL=&OutLen,RECFM=FBA,DSORG=PS,MACRF=PM,X

BLKSIZE=&OutLen*10
*
SaveArea DC 9D'0' Local save area
DTemp DS D Work area for CVD

DCBD DSORG=PS,DEVD=DA Generate IHADCB DSect
End &Name.

Using the data in Programming Problem 24.14 on page 400, the output of this program was:

1 Four score and seven years ago our fathers brought forth on this continent a ne
2 w nation, conceived in liberty, and dedicated to the proposition that all men a
3 re created equal. Now we are engaged in a great civil war, testing whether that
4 nation, or any nation, so conceived and so dedicated, can long endure. We are
5 met on a great battle-field of that war. We have come to dedicate a portion of
6 that field, as a final resting place for those who here gave their lives that t
7 hat nation might live. It is altogether fitting and proper that we should do th
8 is.
9
10 But, in a larger sense, we can not dedicate, we can not consecrate, we can not
11 hallow this ground. The brave men, living and dead, who struggled here, have co
12 nsecrated it, far above our poor power to add or detract. The world will little

 13 note, nor long remember what we say here, but it can never forget what they di
14 d here. It is for us the living, rather, to be dedicated here to the unfinished

 15 work which they who fought here have thus far so nobly advanced. It is rather
16 for us to be here dedicated to the great task remaining before us -- that from
17 these honored dead we take increased devotion to that cause for which they gave

 18 the last full measure of devotion -- that we here highly resolve that these de
19 ad shall not have died in vain -- that this nation, under God, shall have a new

 20 birth of freedom -- and that government of the people, by the people, for the
21 people, shall not perish from the earth.

Suggested Solutions to Selected Exercises and Programming Problems 1277

Section 42 Solutions
Section 42.1

42.1.1. Try XC *,=X'01'. The XC instruction changes alternately into OC, XC, OC,

Similarly, XI *,1 alternates between OI, XI, OI,

What property of these two pairs of opcodes makes this possible?

You will of course remember that modifying instructions is a very poor practice that slows execution considerably, and
makes the program non-reenterable. +

Section 42.2

42.2.1. By convention, GR15 must contain the entry point address when entering a subprogram. The entry point
address is used as a base address for any instructions (particularly in the macro expansions) that must be resolved
using base-displacement addressing.

42.2.3. You can see that the GETMAIN macro generates a BAL instruction that requires base-displacement resolution.
The FREEMAIN macro generates a LA instruction with explicit operands. All the other instructions either address the
WA DSect using GR13 as a base register, or use relative addressing within the RSect. Thus, the earliest position for the
DEOP 3 statement is immediately following the GETMAIN instruction.

Programming Problem 42.1

This factorial program was written to manage its own internal stack and call itself recursively.

FactA CSect ,

* Evaluate N! recursively. The largest valid N is 12. *

Using *,15
ST 14,Temp Save return address
L 1,0(,1) Get parameter address
L 1,0(,1) Get N
ST 1,Temp+4 Save current value of N
ST 2,Temp+8 Save current value of GR2
L 2,StackPtr Get stack pointer
AHI 2,12 Increment stack pointer
MVC 0(12,2),Temp Save return address, N, GR2
ST 2,StackPtr Save new stack pointer
CHI 1,1 Compare N to 1
JH Recur If greater, call again
LA 0,1 1 Factorial = 1
J Exit Return

Recur BCTR 1,0 N-1 *

ST 1,Data Save for recursive call *
LA 1,DataPtr Point to argument address *
BASR 14,15 Call ourselves recursively *

L 2,StackPtr Retrieve stack pointer
L 1,4(,2) Get value of N from call
MR 0,0 Form N*Fact(N-1)
LR 0,1 Form return value

*
Exit L 2,StackPtr Retrieve stack pointer

L 14,0(,2) Get proper return address
AHI 2,-12 Decrement stack pointer
ST 2,StackPtr Save updated stack top pointer
L 2,12+8(,2) Restore caller's GR2

+ Doing things like that could also endanger your job security.

1278 Assembler Language Programming for IBM System z™ Servers Version 2.00

BR 14 Return to caller
*
Temp DS 2F Word 1 = return addr, Word 2 = N
Data DC F'0' Value of N for next call (it's N-1)
DataPtr DC A(Data) Address of data item for call
StackPtr DC A(Stack-8) Initial stack pointer
Stack DC (13*3)F'0' Fact(13) is too big, anyway

End

This is a calling program:

CallFac CSect ,
Using *,12 Establish addressability
LR 12,15 Copy base register
LA 5,12 Max N that fits in a fullword = 12!

Test ST 5,Value Store N for call
ConvertO 5,LineN Convert N to characters
LA 1,AP Point to argument list
L 15,AF Address of factorial routine
BASR 14,15 Call it
ConvertO 0,LineFac Convert result to characters
PrintLin Line,Linelen Print the result
JCT 5,Test Reduce N by 1 and repeat
Printout *,Header=No Terminate caller

AF DC V(FactA) Address of factorial routine
AP DC A(Value) Address of N
Value DS F Argument N

LinePos DS 0C Position of the output line
LineN DC CL12' ' Carriage control, Value of N

DC C' factorial = '
LineFac DC Cl12' ' Value of N factorial
LineLen Equ (*-Line) Line Length

Org LinePos Step back to line position
Line DS 0CL(LineLen) Define symbolic output line length

Drop 12
End

The output from this program is:

12 factorial = 479001600
11 factorial = 39916800
10 factorial = 3628800
9 factorial = 362880
8 factorial = 40320
7 factorial = 5040
6 factorial = 720
5 factorial = 120
4 factorial = 24
3 factorial = 6
2 factorial = 2
1 factorial = 1

Programming Problem 42.3

Mine created a storage protection error for a very remote address.

Suggested Solutions to Selected Exercises and Programming Problems 1279

1280 Assembler Language Programming for IBM System z™ Servers Version 2.00

Index

Special Characters
' apostrophe

in attribute reference 104
in C-type constants 150
in self-defining terms 86

− minus sign
in expressions 97
negation operator 13
unary 97

_ underscore
in symbols 89

/ slash, solidus
division operator 13
in expressions 97

() parentheses
address constant delimiters 147
in expressions 97

× product sign
multiplication operation 13

@ at sign
in symbols 89
non-invariant character 432

• bullet character
representation of blank

character 13
representation of space

character 13
$ dollar sign

$$GENIO macro instruction
definition 1028
description 1023

in symbols 89
non-invariant character 432

* asterisk
in expressions 97
location counter reference 97
multiplication operator 97

*PROCESS statement 1051
& ampersand

in C-type constants 150
in self-defining terms 86

hash, sharp, (US) pound sign
in symbols 89
non-invariant character 432

+ plus sign
addition operator 13
in expressions 97
unary 97

= equal sign
literal indicator 154

| | vertical bars
absolute value operator 13

÷ quotient sign
division operation 13

A
A machine instruction 216
A-type address constant

definition 866

ABEND
definition 981

ABEND macro instruction 956, 977
abnormal termination 972

ABEND macro instruction 956,
972

any kind 976
definition 981
memory dump 956

ABS
absolute value operator 13

absolute implied address 131
absolute USING location 130
access exception 57
access register 48
ACONTROL assembler

instruction 1051
definition 1041

AD machine instruction 606
ADATA assembler option 89
ADB machine instruction 661
ADBR machine instruction 661
adcon

See also address constant
definition 158, 1041

addend
definition 238, 1041

addition
binary floating-point 661
decimal floating-point 703
fixed-point binary 216
fixed-point binary integers 31
floating-point 578
hexadecimal floating-point 606,

612
complement addition 614
process 612

immediate 321
logical 224
packed decimal 485
packed decimal operand order

dependence 486
packed decimal process 492
register-immediate 321
with carry 228

address 92
assembly time 1041
definition 1041
execution time 92, 1041
location 1041
vs. location 92

address constant
definition 158, 866, 1041
delimited by parentheses 147
expression as nominal value 147
S-type 149
type A 147
type AD 157
type V 820
type Y 149

address generation 302

address generation (continued)
base-displacement addressing 62
execution time 116
relative-immediate 302, 305
signed 20-bit displacement 302
unsigned 12-bit displacement 62,

302
address resolution

addressable 126
addressing halfword 1041
base-displacement form 126
definition 1041
displacement 123
DSECT 874
explicit address 119
highest-numbered register 128
implied address 120, 126
implied addresses 1041
multiple 127
qualified symbol 882
relocation attribute 125
rules 132, 303
signed 20-bit displacement 303
smallest displacement 128
unsigned 12-bit displacement 62
valid displacement 126

address table 917
definition 944, 1041

address translation 67
DAT 67
definition 68, 1041
virtual address 67

address vs. location
execution vs. assembly time 92

addressability 66, 132
definition 68, 133, 1041
error 129, 1041

definition 133
addressable

assembly time 1042
base-displacement

resolution 1042
definition 1042
execution time 1042
resolution 1042

addressing
addressability 66
base address 62
base register 62
base-displacement addressing 62,

1043
base-displacement format 1043
Effective Address 62
Effective Address Register 62
in large programs 790
index 63
indexed Effective Address 64
internal subroutine 798
mode 307
not addressable 66
relative-immediate 305

Index 1281

addressing (continued)
with address constants 793
without local addressability 797

addressing halfword 53, 62
base register specification digit 62
definition 69, 1042
signed 20-bit displacement 302
unsigned 12-bit displacement 62

addressing mode 307
24-bit 307
31-bit 307
64-bit 307
address generation 307
AMODE 827
AMODE assembler

instruction 827
definition 1042
entry symbols 850

ADR machine instruction 606
ADTR machine instruction 701
ADTRA machine instruction 701
AE machine instruction 606
AEB machine instruction 661
AEBR machine instruction 661
AER machine instruction 606
AFI machine instruction 321
AG machine instruction 216
AGF machine instruction 230
AGFI machine instruction 321
AGFR machine instruction 230
AGHI machine instruction 321
AGR machine instruction 216
AH machine instruction 216
AHI machine instruction 321
AL machine instruction 224
ALC machine instruction 228
ALCG machine instruction 228
ALCGR machine instruction 228
ALCR machine instruction 228
ALFI machine instruction 321
ALG machine instruction 224
ALGF machine instruction 230
ALGFI machine instruction 321
ALGFR machine instruction 230
algorithm

definition 14, 1042
ALGR machine instruction 224
ALIAS assembler instruction

external symbol renaming 1046
alignment 44

automatic 140
by CNOP 208
by NOALIGN option 139
by ORG 167
by SECTALGN option 139
CNOP and SECTALGN 809
DC and SECTALGN 809
doubleword 44
DS and SECTALGN 809
fullword 44
halfword 44
implied length 140
instructions 50
ORG and SECTALGN 809
quadword 44

alignment (continued)
SECTALGN option 809
word 44

ALR machine instruction 224
AMODE

definition 866, 1042
AMODE assembler instruction

See addressing mode
ampersand

in C-type constants 150
in self-defining terms 86

anchor
base location 1042
base register 1042
definition 1042

AND operation 289, 298, 1042
definition 298, 1042
OR operation

definition 298
register-immediate 323
register-register 290
storage-immediate 354
storage-storage 376

AP machine instruction 497, 501
apostrophe

in C-type constants 150
in self-defining terms 86

AR machine instruction 216
architecture

definition 5, 14, 1042
argument 765

definition 788, 1042
argument address list 766
argument passing 759
arithmetic

binary addition 31
binary division 274
binary floating-point special

values 647
binary multiplication 265
binary subtraction 32
decimal floating-point 701
double-length shift 252
hexadecimal floating-point 591
packed decimal 484
packed decimal addition 492
packed decimal arithmetic

rules 484
packed decimal subtraction 493
real vs. realistic floating-point arith-

metic 745
scaled packed decimal 522

general rules 522
shifts 252
single-length shift 252

arithmetic division
definition 284, 1042
process 280

arithmetic multiplication
definition 284, 1042
process 272

arithmetic representation 28
definition 39, 1042

arithmetic shift
definition 261, 1042

arithmetic shift (continued)
process 244

array 908
address table 917
as a list of items 908
as a table 914
binary search 920
column order 910
definition 944, 1042
general subscripts 913
multi-dimensional 913
non-homogeneous 914
one-dimensional 908
row order 910
search 919
subscripting function 911
two-dimensional 910

ASCII
C-type constant 151
CA-type constant 157
numeric character 462, 478, 479

definition 483, 1042
pack 478
representation 432
table 1013
translation 433
unpack 479

Assembler 4
definition 14, 82, 1042
input record fixed length 75

assembler instruction
CSECT 80
END 80
ORG

extended syntax 168
START 80

assembler instruction statement 74
ACONTROL 1041
AMODE 827
CNOP 208
COM 803
CSECT 803
CSECT and LOCTR 811
DC 137
DROP 128, 883, 890, 905
DS 159
DSECT 804, 874
DXD 804
ENTRY 821
EQU 93, 162
EXTRN 818

difference from WXTRN 820
LOCTR 810
LOCTR and CSECT 811
LTORG 156
ORG 167
RMODE 827
RSECT 803, 984
START 803
TITLE 78
USING 120, 126, 882, 885, 891
WXTRN 818

difference from EXTRN 820
Assembler Language 4

definition 14, 1042

1282 Assembler Language Programming for IBM System z™ Servers Version 2.00

assembler option 133
*PROCESS statement 1051
ACONTROL assembler

instruction 1051
ADATA 89
CODEPAGE 439
COMPAT(TRANSDT) 88, 433
DBCS 436
G O F F 809, 849, 854
NOALIGN 139
NOTHREAD 810, 1252
RENT 984
SECTALGN 139, 156, 809
TEST 89
TRANSLATE 88, 158, 433
USING(MAP) 133

assembly
External Symbol Dictionary 93
input records 75
invocation 72
location counter vs. instruction

address 92
object code 73
process 72

pass 1 123
pass 2 125

separate 802
statements 73

assembly time 74
definition 82, 1042
location 92

assisted linkage 783, 847
V-type address constant 820

attribute
assembler 166
definition 1042
integer 90
length 90, 143
program 138, 166
reference 90
relocation 90, 125
scale 90, 467
type 90
value 90, 125

attribute reference
See also attribute reference
definition 1042
integer 96
length 96, 155
scale 96
to literals 155

augend
definition 238, 1042

AXBR machine instruction 661
AXR machine instruction 606
AXTR machine instruction 701
AXTRA machine instruction 701

B
B extended mnemonic 210
B-tree 940

definition 944, 1042
BAS machine instruction 758
base address 117, 126

base address (continued)
definition 69, 1042, 1043
displacement 1042
effective address 1043
first operand of USING

statement 1043
general purpose register 1042

base digit 62
See also base register specification

digit
definition 1043

base location
base-displacement address resol-

ution 1043
definition 1043
dependent USING

statement 1043
displacement 1043
in USING assembler

instruction 126
ordinary USING statement 1043

base register 62, 120
definition 69, 1043

base register specification digit 62,
109

definition 69, 1043
base register zero 131
base-displacement addressing 62

definition 1043
base_location 120

absolute 130
definition 133

base_register
definition 133

BASR machine instruction 116, 758
BASSM machine instruction 858
BC machine instruction 204, 205
BCD representation 429
BCR machine instruction 204, 205
BCT machine instruction 334
BCTG machine instruction 334
BCTGR machine instruction 334
BCTR machine instruction 334
BE extended mnemonic 211
BEAR 212
begin column 75
BER extended mnemonic 211
BH extended mnemonic 211
BHR extended mnemonic 211
bias 575, 584

definition 585, 1043
exponent 584
rounding 575

biased rounding
definition 530, 1043

Big-Endian 453
definition 1043

binary
floating-point 638
integer addition 31
integer subtraction 32
overflow detection recipe 31
shift 242
subtraction recipe 35
two's complementation recipe 27

binary digit
See bit

binary floating-point
addition 661
characteristic 639

reserved values 640
compare and signal 663
comparison 662
constant 643, 644, 645

length modifier 645
modifiers 644, 645
rounding-mode suffix 643
special values 643
type DB 642
type EB 642
type LB 642

convert to decimal floating-point
and hexadecimal
floating-point 743

converting from integer 666
converting to integer 666
data classes

denormalized numbers 639
infinity 639
normal numbers 639
quiet NaN 639
signaling NaN 639
zero 639

Data Exception Code 650
data formats 638
decimal exponent 644
definition 1043
divide to integer 669
division 659
division by zero 649
exception handling 650
exponent field width 639
exponent modifier 644
exponent overflow 649
exponent underflow 649
floating-point integer 668
inexact result 649
infinity 641
invalid operation 649
lengthening instructions 664
multiplication 657
multiply and add/subtract 672
NaN (Not a Number) 639, 640

payload 644
quiet 641
signaling 641

overview 646
arithmetic with special

values 647
denormalized numbers 647
exceptions 649
rounding modes 646

remainder 668
representation 639
representation range 641
rounding instructions 664
set rounding mode 651
signed zero 748
significand 639
special values 639, 640

denormalized numbers 640

Index 1283

binary floating-point (continued)
special values (continued)

infinity 640
NaN 640

square root 671
subtraction 661
test data class 654

binary search 920
definition 944, 1043

binary self-defining term
See self-defining term

binary tree 937
definition 944, 1043

bind time
after assembly time 1043
before execution time 1043
definition 1043

Binder 849
definition 1043

bit 19
data 358
definition 39, 1043
invert 354
naming problems 359
reset 354
set 354
test 356

bit bucket 244
bit-length constant 259
BL extended mnemonic 211
blank

definition 14, 1043, 1054
in constants 147, 150
not in self-defining terms 147, 150
representation in examples 13
text representation 14, 1043

Blefuscu 453
block comments 76
blocked records 967
BLR extended mnemonic 211
BM extended mnemonic 211
BMR extended mnemonic 211
BNE extended mnemonic 211
BNER extended mnemonic 211
BNH extended mnemonic 210
BNHR extended mnemonic 210
BNL extended mnemonic 210
BNLR extended mnemonic 210
BNM extended mnemonic 210
BNMR extended mnemonic 210
BNO extended mnemonic 210
BNOR extended mnemonic 210
BNP extended mnemonic 210
BNPR extended mnemonic 210
BNZ extended mnemonic 211
BNZR extended mnemonic 211
BO extended mnemonic 211
Boolean operations 288
BOR extended mnemonic 211
boundary alignment

See also alignment
by CNOP instruction 208
by DC/DS instruction 139
by ORG instruction 168
definition 145, 1043

BP extended mnemonic 211
BPR extended mnemonic 211
BR extended mnemonic 210
branch address 204, 305

and execute instruction 389
definition 213, 1043

branch condition 204
definition 213, 1043

branch mask 205
definition 213, 1043

branch relative 329
and execute instruction 393
and save 758
extended mnemonics 330
in place of branch on

condition 330
on condition 329
on count 334
on index 340

BRAS machine instruction 758
BRASL machine instruction 758
BRC extended mnemonic 330
BRCT machine instruction 334
BRCTG machine instruction 334
BRE extended mnemonic 330
Breaking Event Address

Register 212
BREL extended mnemonic 330
BRH extended mnemonic 330
BRHL extended mnemonic 330
BRL extended mnemonic 330
BRLL extended mnemonic 330
BRM extended mnemonic 330
BRML extended mnemonic 330
BRNE extended mnemonic 330
BRNEL extended mnemonic 330
BRNH extended mnemonic 330
BRNHL extended mnemonic 330
BRNL extended mnemonic 330
BRNLL extended mnemonic 330
BRNM extended mnemonic 330
BRNML extended mnemonic 330
BRNO extended mnemonic 330
BRNOL extended mnemonic 330
BRNP extended mnemonic 330
BRNPL extended mnemonic 330
BRNZ extended mnemonic 330
BRNZL extended mnemonic 330
BRO extended mnemonic 330
BROL extended mnemonic 330
BRP extended mnemonic 330
BRPL extended mnemonic 330
BRU extended mnemonic 330
BRUL extended mnemonic 330
BRXH machine instruction 341
BRXHG machine instruction 341
BRXLE machine instruction 341
BRXLG machine instruction 341
BRZ extended mnemonic 330
BRZL extended mnemonic 330
BSM machine instruction 858
BXH machine instruction 341
BXHG machine instruction 341
BXLE machine instruction 341
BXLEG machine instruction 341

byte 43
bit numbering 43
definition 48, 1043
memory address 43

byte reversal 453
BZ extended mnemonic 211
BZR extended mnemonic 211

C
C machine instruction 222
C-string 415

definition 427, 1043
destructive overlap
interruptible
null byte

calling point identifier 778
definition 788, 1043

CC
See Condition Code

CD machine instruction 615
CDB machine instruction 662
CDBR machine instruction 662
CDFBR machine instruction 666
CDFR machine instruction 620
CDGBR machine instruction 666
CDGR machine instruction 620
CDGTR machine instruction 707
CDGTRA machine instruction 707
CDR machine instruction 615
CDSTR machine instruction 709
CDTR machine instruction 705
CDUTR machine instruction 711
CDXT machine instruction 712
CDZT machine instruction 712
CE machine instruction 615
CEB machine instruction 662
CEBR machine instruction 662
CEDTR machine instruction 706
CEFBR machine instruction 666
CEFR machine instruction 620
CEGBR machine instruction 666
CEGR machine instruction 620
central processing unit (CPU) 42

access register 48
Condition Code 47
control register 48
definition 49, 1044
floating-point register 46
general register 45
general register pair 46
Instruction Address 47
Program Mask 47
Program Status Word 47

CER machine instruction 615
CEXTR machine instruction 706
CFDBR machine instruction 666
CFDR machine instruction 620
CFEBR machine instruction 666
CFER machine instruction 620
CFI machine instruction 322
CFXBR machine instruction 666
CFXR machine instruction 620
CG machine instruction 222
CGDBR machine instruction 666

1284 Assembler Language Programming for IBM System z™ Servers Version 2.00

CGDR machine instruction 620
CGDTR machine instruction 707
CGDTRA machine instruction 707
CGEBR machine instruction 666
CGER machine instruction 620
CGF machine instruction 230
CGFI machine instruction 322
CGFR machine instruction 230
CGHI machine instruction 322
CGR machine instruction 222
CGXBR machine instruction 666
CGXR machine instruction 620
CGXTR machine instruction 707
CGXTRA machine instruction 707
CH machine instruction 222
character

ASCII 432
BCD 429
C-string 415
decimal floating-point 687
double-byte EBCDIC 434
EBCDIC 430
glyph 439
not allowed in symbols 89
representation

ASCII 157, 1013
EBCDIC 87, 1012
Unicode 438

shift-in 434
shift-out 434
Unicode 438

character self-defining term
See self-defining term

characteristic
binary floating-point 639
decimal floating-point 687
definition 585, 1043
floating-point 584
hexadecimal floating-point 586

CHI machine instruction 322
CHY machine instruction 222
CL machine instruction 232
class

definition 867, 1044
class name 1046
CLC machine instruction 365, 378
CLCL machine instruction 404, 407
CLCLE machine instruction 404,

413
CLCLU machine instruction 441,

443
CLFI machine instruction 322
CLG machine instruction 232
CLGF machine instruction 232
CLGFI machine instruction 322
CLGFR machine instruction 232
CLGR machine instruction 232
CLI machine instruction 354
CLIY machine instruction 354
CLM machine instruction 232
CLMH machine instruction 232
CLMY machine instruction 232
CLOSE macro instruction 970
CLR machine instruction 232
CLST machine instruction 415, 419

CNOP assembler instruction 208
definition 1044

CNOP instruction
definition 213

code
definition 83, 1044

code page
definition 1044

CODEPAGE assembler option 439
coefficient 686
cohort 683

definition 737, 1044
column order 910

definition 944, 1044
column-major order

definition 944, 1044
COM assembler instruction 803,

1044
combination field 686, 687
comment statement 74
common

definition 867, 1044
common section 803, 1046

COM assembler instruction 1044
definition 1044

comparison
binary floating-point 662, 663
decimal floating-point 705
decimal floating-point biased expo-

nent 706
fixed-point arithmetic 222
fixed-point logical 232
hexadecimal floating-point 615
packed decimal 503
register-immediate 322
storage-immediate 354
storage-storage 378

COMPAT(TRANSDT) assembler
option 88, 433

complement addition
definition 1044
hexadecimal floating-point 613,

614
process 613

packed decimal 493
complement decimal addition

definition 496, 1044
complementation

fixed-point overflow 28
complex relocatability 99

definition 99, 104, 1044
term

symbol attribute reference 104
complex relocatability attribute 132
COND= in macro operand 960
Condition Code 47, 234

definition 49
retrieve/set 234

conditional assembly
conditional assembly

language 1044
definition 1044

conditional no-operation 207
definition 213, 1044

constant

constant (continued)
address constant 147
alignment 137
all types 1014
ASCII 433

translation 433
binary 150
binary floating-point

decimal exponent 644
exponent modifier 644
length modifier 645
rounding-mode suffix 643
type DB 642
type EB 642
type LB 642

binary floating-point symbolic
operand

(DMin) 643
(Inf) 643
(Max) 643
(Min) 643
(NaN) 643
(QNaN) 643
(SNaN) 643

bit-length 259
boundary alignment 139
character 150

type C 157
type CA 157
type CE 157
type CU 157

DBCS 436
decimal exponent 143, 590, 644,

692
decimal floating-point 690

rounding-mode suffix 691
type DD 690
type ED 690
type LD 690

decimal floating-point symbolic
operand

(DMin) 690
(Inf) 690
(Max) 690
(Min) 690
(NaN) 690
(QNaN) 690
(SNaN) 690

duplication factor 141
embedded blanks 147, 150
exponent modifier 144, 593, 644,

692
fixed-point binary 146, 147

unsigned 147
floating-point

summary 742
hexadecimal 150
hexadecimal floating-point 590,

595
decimal exponent 591
exponent modifier 593
length modifier 592
padding 592
rounding mode suffix 595
scale modifier 592
truncation 592

Index 1285

constant (continued)
hexadecimal floating-point (con-

tinued)
type D 590
type DH 590
type E 590
type EH 590
type L 590
type LH 590
type LQ 594

hexadecimal floating-point sym-
bolic operand

(DMin) 595
(Max) 595
(Min) 595

length 137
length attribute 143
length modifier 140
literal 154
location-counter dependent 172
multiple values 142
nominal value 137
offset 839

Q-type 839
packed decimal 467
padding 152
program modifier 138
Q-type 839
rounding-mode suffix

summary 742
S-type 149
scaled fixed-point binary 555
truncation 152
type 137
type A 147
type AD 157
type B 150
type C 150

ASCII characters 157
EBCDIC characters 150
Unicode characters 157

type CA 157
type CE 157
type CU 157
type D 567
type DB 567
type DD 567
type DH 567, 594
type E 567
type EB 567
type ED 567
type EH 567, 594
type extension 157
type F 146
type FD 146, 157
type H 146
type HD 146
type L 567
type LB 567
type LD 567
type LH 567, 594
type LQ 594
type S 149
type V 820
type X 150

constant (continued)
type Y 149
Unicode 439
unsigned binary 147
vs. self-defining term 150
zero duplication factor 160
zoned decimal 464

constant modifiers 138
constant type 138

definition 145, 1044
continue column 75
control register 48
control section 803

See also section
blank 826
COM 803
common control section 1044
CSECT 803, 1044
definition 1044
DSECT assembler

instruction 804
dummy control section 872
DXD 804
executable 803
literals 808
ordinary control section 1044
Private Code 826
reference 803
resuming 807
RSECT 803, 1044
START 803

conversion
among floating-point types 743
BCD to declet 685
between arbitrary bases 19
between binary and

hexadecimal 18
between decimal and binary 20
between packed and zoned

decimal 469
binary floating-point to

integer 666
decimal floating-point to

integer 707
decimal floating-point to signed

packed decimal 709
decimal floating-point to unsigned

packed decimal 711
declet to BCD 685
fractions between bases 557
hexadecimal floating-point to

integer 621
hexadecimal floating-point trun-

cation 620
In-Out 743
integer to binary

floating-point 666
integer to decimal

floating-point 707
integer to hexadecimal floating-

point 620
Out-In 744
signed packed decimal to decimal

floating-point 709
unsigned packed decimal to

decimal floating-point 711

CONVERTI macro instruction 1016
definition 1024
description 1016

CONVERTO macro
instruction 1017

definition 1024
description 1017

CP machine instruction 497, 503
CPSDR machine instruction 570,

700
CPU

See central processing unit
CR machine instruction 222
CSDTR machine instruction 709
CSECT

definition 1044
CSECT assembler instruction 803
CSECT instruction 803
CSXTR machine instruction 709
CU12 machine instruction 448
CU14 machine instruction 448
CU21 machine instruction 448
CU24 machine instruction 448
CU41 machine instruction 448
CU42 machine instruction 448
CUDTR machine instruction 711
CUSE machine instruction 415, 423
CUTFU machine instruction 448
CUUTF machine instruction 448
CUXTR machine instruction 711
CVB machine instruction 532, 534
CVBG machine instruction 532, 534
CVBY machine instruction 532, 534
CVD machine instruction 532
CVDG machine instruction 532, 533
CVDY machine instruction 532
CXBR machine instruction 662
CXD-type address constant

definition 867, 1044
CXFBR machine instruction 666
CXFR machine instruction 620
CXGR machine instruction 620
CXGTR machine instruction 707
CXGTRA machine instruction 707
CXR machine instruction 615
CXSTR machine instruction 709
CXTR machine instruction 705
CXUTR machine instruction 711
CY machine instruction 222
CZDT machine instruction 712
CZXT machine instruction 712

D
D machine instruction 274, 275
DAT 67

See also address translation
Dynamic Address Translation 67

data
access method 964
access technique 966
BDW 968
BLKSIZE 967
block descriptor word 968
blocked records 967

1286 Assembler Language Programming for IBM System z™ Servers Version 2.00

data (continued)
BPAM 967
BSAM 966
Data Control Block 966
Data Definition Name 962
Data Set Name 962
DCB 966, 967, 968
DCB macro 966
DCBD macro 970
DCBE macro 971
DDName 962
direct access 971
DSName 962
DSORG 967
EODAD 966, 968
EXLST 966, 968
FIND 967
fixed length records 967
FREEPOOL macro 970
IHADCB dummy section 970
indexed access 971
JFCB 962
Job File Control Block 962
LRECL 967
MACRF 967
Partitioned Organization 967
QSAM 966
RDW 968
RECFM 967
record descriptor word 968
record formats 968
sequential access 966, 971
undefined length records 967
variable length records 967
VSAM 971

Data Control Block 963
data exception 57
Data Exception Code 650

binary floating-point
divide by zero 650
inexact 650
invalid operation 650
underflow 650

decimal floating-point
divide by zero 699
inexact 699
instruction availability 699
invalid operation 699
quantum exception 699
underflow 699

data groups
decimal floating-point 725

data structure
array 908
B-tree 940
doubly-linked list 934
DSECT 875
free storage list 929
hash table 941
list 927
mapping identical structures 895
mapping with DSECT 875
queue 934
stack 923, 924
tree 937

data structure (continued)
tree search 940

DBCS 434
constant 436
continuation rules 437
self-defining term 436
shift-in character 434
shift-out character 434
ward 435

DBCS assembler option 436
DC assembler instruction 137
DC statement 138

alignment 146
operands 138

delimiters 138
duplication factor 138
modifiers 138
nominal value 138
type 138

DCB 963
DCB macro instruction 966

DCB
DSORG 967
EODAD 966
EXLST 966

Partitioned Organization
FIND macro 967
library member 967
READ macro 967
WRITE macro 967

DCBD macro instruction 970
IHADCB dummy section 970

DCBE macro instruction 971
DD machine instruction 603
DDB machine instruction 659
DDBR machine instruction 659
DDR machine instruction 603
DDTR machine instruction 701
DDTRA machine instruction 701
DE machine instruction 603
DEB machine instruction 659
DEBR machine instruction 659
decimal data exception 485

definition 496, 1044
packed decimal arithmetic 496

decimal divide exception 57, 491
definition 496, 1044

decimal exponent 143
definition 145, 1044
in binary floating-point

constant 644
in decimal floating-point

constant 692
in fixed-point binary constant 143
in hexadecimal floating-point con-

stant 591
decimal floating-point

addition/subtraction 703
binary-significand format 729
characteristic 687
coefficient 686
cohort 683
combination field 687
compare and signal 705
compare biased exponent 706

decimal floating-point (continued)
comparison 705
conceptual representation 682
constant 690

decimal exponent 692
exponent modifier 692
rounding-mode suffix 691
special values 690
type DD 690
type ED 690
type LD 690

convert BCD to declet 685
convert decimal floating-point to

integer 707
convert decimal floating-point to

signed packed decimal 709
convert decimal floating-point to

unsigned packed decimal 711
convert declet to BCD 685
convert integer to decimal floating-

point 707
convert signed packed decimal to

decimal floating-point 709
convert to binary floating-point and

hexadecimal floating-point 743
convert unsigned packed decimal

to decimal floating-point 711
data classes

infinity 693
normal 693
QNaN 693
SNaN 693
subnormal 693
zero 693

data encoding 684
data formats 686
data groups 725

infinity or NaN 726
normal or subnormal, extreme

exponent 726
normal, non-extreme exponent,

nonzero leftmost digit 726
normal, non-extreme exponent,

zero leftmost digit 726
zero, extreme exponent 726
zero, non-extreme

exponent 726
declet 684
definition 1044
division 703
extract biased exponent 719
extract significance 720
floating-point integer 715
infinity 687
insert biased exponent 719
lengthening instructions 716
multiplication 702
NaN (Not a Number) 687
overview

exceptions 698
preferred encoding 685
preferred quantum 696
quantize 722
quantum 683
quantum exception 698

Index 1287

decimal floating-point (continued)
redundant representations 683
representation 686

options 681
properties 688

reround 724
rounding 695
rounding instructions 717
set rounding mode 718
shift significand 720
signed zero 749
significance of zero 749
test data class 693
test data group 726
TSF 686
ulp (unit in the last place) 683
zero 688

decimal overflow
See overflow

decimal overflow exception 57, 496,
1044

definition 496, 1044
packed decimal arithmetic 496

decimal self-defining term
See self-defining term

decimal specification exception 489
definition 1045

declet 684
definition 738, 1045

defined symbol
definition 95, 1045

definition
$$GENIO macro

instruction 1028
A-type address constant 866
ABEND 981
abnormal termination 981
absolute symbol 104, 1041
adcon 158, 1041
addend 238, 1041
address constant 158, 866, 1041
address table 944, 1041
address translation 68, 1041
addressability 68, 133, 1041
addressability error 133, 1041
addressing halfword 69, 1042
addressing mode 315, 1042
algorithm 14, 1042
AMODE 315, 866, 1042
anchor 1042
AND operation 298, 1042
architecture 14, 1042
argument 788, 1042
arithmetic division 284, 1042
arithmetic multiplication 284,

1042
arithmetic representation 39,

1042
arithmetic shift 261, 1042
array 944, 1042
ASCII 1042
ASCII numeric character 483,

1042
assembler 14, 82, 1042
Assembler Language 14, 1042

definition (continued)
assembly time 82, 1042
augend 238, 1042
B-tree 944, 1042
base 69, 1043
base address 69, 1043
base register 69, 1043
base register specification

digit 69, 1043
base_location 133
base_register 133
BCD 1043
BEAR 1043
bias 585, 1043
biased rounding 530, 1043
Big-Endian 1043
Binary Coded Decimal 1043
binary floating-point 1043
binary search 944, 1043
binary tree 944, 1043
Binder 1043
bit 39, 1043
blank 14, 1043
boundary alignment 145, 1043
branch address 213, 1043
branch condition 213, 1043
branch mask 213, 1043
Breaking Event Address

Register 1043
byte 48, 1043
C-string 427, 1043, 1044
calling point identifier 788, 1043
Central Processing Unit 49, 1044
characteristic 585, 1043
class 867, 1044
CNOP assenbler instruction 1044
CNOP instruction 213
code 83, 1044
code page 1044
cohort 737, 1044
column order 944, 1044
column-major order 944, 1044
common 867, 1044
common section 1044
comparand 350, 1044
complement addition 1044
complement decimal

addition 496, 1044
complex relocatability 104, 1044
Condition Code 49
conditional no-operation 213,

1044
constant type 145, 1044
control section 1044
CONVERTI macro

instruction 1024
CONVERTO macro

instruction 1024
CSECT 1044
CXD-type address constant 867,

1044
data dxception 1044
data exception 1044
Data Exception Code 677, 1044
DBCS 1045

definition (continued)
decimal data exception 1044
decimal divide exception 496,

1044
decimal exponent 145, 1044
decimal floating-point 1044
decimal overflow exception 496,

1044
decimal specification

exception 496, 1045
declet 738, 1045
decode 1045
defined symbol 95, 1045
denormalization 585, 1045
denormalized number 677, 1045
densely packed decimal 738,

1045
Dependent USING 906, 1045
destructive overlap 427, 1045
DH displacement

component 315, 1045
digit selector 548, 1045
digit selector and significance

starter 549, 1054
diminished radix-complement rep-

resentation 39, 1045
displacement 1045

20-bit 302
unsigned 12-bit 62

dividend 284, 1045
divisor 284, 1045
DL displacement component 315,

1045
Double-Byte Character Set 1045
double-ended queue 944, 1045
doubly-linked list 944, 1045
D P D 738, 1045
DROP assembler instruction 133,

1045
DSECT assembler

instruction 906, 1045
dummy section 1045
DUMPOUT macro

instruction 1025
duplication factor 145, 1045
DXC (Data Exception

Code) 677, 1045
DXD 1045
EBCDIC 95, 1045
Effective Address 69, 1046
Effective Address Register 69,

1045
element 867, 1046
Encoded Length 115, 1046
entry point 788, 1046
entry point identifier 788, 1046
EQU extended syntax 174, 1046
Ex 1046
exception 1046
exception condition 59, 678,

1046, 1047
executable control section 867,

1046
execute 1046
execution time 83, 1046

1288 Assembler Language Programming for IBM System z™ Servers Version 2.00

definition (continued)
explicit address 115, 1046
explicit length 115, 1046
exponent 572, 1046
exponent modifier 145, 1046
exponent overflow 585, 1046
exponent underflow 585, 1046
expression 104, 1046
expression evaluation 104, 1046
extended mnemonic 213, 1046
external dummy 867, 1052
External Dummy Section 1046
External Symbol Dictionary 867,

1046
extreme exponent 738, 1046
field separator 548, 1046
fill character 548, 1047
floating-point 572, 1047
Floating-Point Control

Register 678, 1047
Floating-Point Register 49, 1047
floating-point system FP(r,p) 572,

1047
floating-point system

FPF(r,p) 572, 1047
floating-point system

FPI(r,p) 572, 1047
free storage list 944, 1047
general register 49, 1047
GGn 202, 1047
glyph 1047
G O F F 867, 1051
gradual underflow 678, 1047
graphic data type 1047
GRn 202, 1047
guard digit 585, 1047
hash function 944, 1047
hash table 944, 1047
hexadecimal 39, 1047
High Level Assembler 1048
HLASM 14, 1047
ILC 49, 59
immediate operand 328, 1048
implied address 115, 1048
implied length 115, 1048
increment 350, 1048
index 69, 350, 1048
index register specification

digit 69, 1048
indexing 69, 1048
infix notation 944, 1048
inorder tree traversal 944, 1048
insert 202, 1048
Instruction Address 1048
instruction cycle 1048
instruction decode 59
instruction execute 59
instruction fetch 59, 1046
Instruction Length Code 49, 59,

1048
instruction register 59, 397, 1048
interruptible 1048
interruption 59, 1048
invariant EBCDIC

character 1048

definition (continued)
IR 397, 1048
Job Control Language 83, 1049
jump 1049
keyword argument 981
Labeled Dependent USING 906,

1049
Labeled USING 906, 1049
LC 1050
length attribute reference 104,

1049
Length Expression 115, 397,

1049
length modifier 145, 1049
Length Specification Byte 397
Length Specification Digit 1049
library 1049
linear subscript 944, 1049
linkage convention 788, 1049
linked list 944, 1049
Linker 83, 1049
linking loader 867, 1049
list 945, 1049
literal 158, 1049
literal pool 158, 1049
Little-Endian 1049
load module 83, 867, 1049
load operation 202, 1050
location counter (LC) 95, 1050
logical AND 1042
logical arithmetic 238, 1050
logical division 284, 1050
logical multiplication 284, 1050
logical operation 1050
logical OR 1051
logical representation 39, 1050
logical shift 261, 1050
logical XOR 1056
machine language 60, 1050
machine length 115, 1050
macro instruction 83, 1050
mantissa 572, 1050
mask 678, 1050
mask digit 1050
MaxReal 585, 1050
MBCS 1050
message character 549, 1050
millicode 49, 1050
MinReal 585, 1050
minuend 238, 1050
mnemonic 83, 115, 1050
modal instruction 315, 1050
modifier 145, 1050
Multiple-Byte Character Set 1050
multiplicand 284, 1050
multiplier 284, 1050
multiply and add/subtract 636,

1050
N' (Number attribute

reference) 1051
N (Length Expression) 1051
NaN (Not a Number) 678, 1051
no-operation instruction 214,

1051
nominal value 145, 1051

definition (continued)
non-overflowed zero 496, 1051
normalization 585, 1051
null byte 1051
numeric digit 483, 1051
OBJ 867, 1051
object code 83, 1051
object module 83, 867, 1051
offset 530, 1051
ones' complement

representation 39, 1051
opcode 115, 1051
operand 83, 1051
operand order dependence 530,

1051
operation code 60, 115, 1051
operator 15, 104, 1051
option 1051
OR operation 298, 1051
order dependence 496, 1051
Ordinary USING 906, 1051
ORG extended syntax 175, 1051
origin 83, 1051
overflow 39, 1051
overflowed zero 496, 1051
padding 158, 1051
parameter 788, 1051
parameterization 175, 1052
pattern character 549, 1052
payload 738, 1052
pipeline 214, 1052
P M 1052
positional argument 981
post-normalization 585, 1052
postfix notation 945, 1052
postorder tree traversal 945, 1052
pre-normalization 585, 1052
precision 530, 1052
preferred exponent 738, 1052
preferred quantum 738, 1052
preferred sign codes 483, 1052
preorder tree traversal 945, 1052
PRINTLIN macro

instruction 1026
PRINTOUT macro

instruction 1026
problem state 49, 1052
program interruption 981, 1052
program length 115, 1052
program linking 867, 1052
Program Loader 83, 1052
Program Mask 60, 1052
program object 867, 1052
Program Status Word 49, 1052
pseudoregister 867, 1052
Q-type address constant 867,

1052
QNaN 678, 1052
qualified symbol 906, 1052
qualifier 906, 1052
quantum 738, 1052
queue 945, 1052
quotient 284, 1052
R(r1 +1) 1053
R(r3|1) 1053

Index 1289

definition (continued)
radix 572, 1053
radix-complement

representation 39, 1053
READCARD macro

instruction 1028
real address 69, 1053
recovery routine 981
recursion 992
reenterability 992
reenterable 1053
reentrant 993
reference control section 867,

1053
relative address 315, 1053
relocatable 95, 1053
relocate 867, 1053
relocating loader 867, 1053
relocation 83, 95, 867, 1053
relocation dictionary 868, 1053
remainder 284, 1053
return address 788, 1053
return code 788, 1053
RMODE 868, 1053
rotating shift 261, 1053
rounding digit 585, 1053
rounding mode 678, 1053
rounding modifier 678, 1054
rounding-mode suffix 636, 1054
row order 945, 1054
row-major order 945, 1054
RSECT 1054
SBCS 1054
scaled arithmetic 530, 1054
section 868, 1054
segment 868, 1054
self-defining term 95, 1054
Shift-In 1054
Shift-Out 1054
sign extension 203, 1054
sign-magnitude representation 39,

1054
significance exception 636, 1054
significance indicator 549, 1054
significance starter 549, 1054
significand 572, 1054
simple relocatability 104, 1054
Single-Byte Character Set 1054
SNaN 678, 1054
space 15, 1054
special value 678, 1054
stack 945, 1055
statement 83, 1055
statement field 84, 1055
status flag 678, 1055
store operation 203, 1055
subtrahend 238, 1055
supervisor state 49, 1055
symbol 95, 1055
symbol attribute 95, 1055
symbol attribute reference 104,

1055
Symbol Table 133, 1055
Syntactic Character Set 1055
system interruption 982

definition (continued)
system service 982
table 945, 1055
target instruction 398, 1055
term 104, 1055
text 868, 1055
true addition 1055
true decimal addition 496, 1055
truncation 158, 1055
two's complement 1055
two's complement

representation 39, 1055
type extension 158, 1055
UCS 1055
ulp (unit in the last place) 585,

1055
unbiased rounding 530, 1055
Unicode 1055
Unicode numeric character 483,

1055
Unicode Transformation

Format 1056
Universal Character Set 1055
unnormalized add/subtract 636,

1056
unnormalized number 1056
unsigned 12-bit displacement 69
USING assembler

instruction 133, 1056
USING Table 134, 1056
UTF 1056
V-type address constant 868,

1056
virtual address 69, 1056
virtual origin 945, 1056
XOR operation 298, 1056
zero duplication factor 175, 1056
zero extension 203, 1056
zone digit 483, 1056
zoned digit 549

denormalization 647
definition 585, 1045

denormalized numbers 639
binary floating-point 647

densely packed decimal
definition 738, 1045

dependent USING 885, 904
anchor 1045
complex structures 885
definition 906, 1045
DROP assembler instruction 890

DER machine instruction 603
DIDBR machine instruction 669
DIEBR machine instruction 669
digit selector 537

definition 548, 1045
digit selector and significance

starter 537
definition 549, 1054

diminished radix-complement repre-
sentation 24

definition 39, 1045
discontinuity

Location Counter 808
displacement 62

displacement (continued)
20-bit 302
addressing halfword 1045
definition 69, 1045
unsigned 12-bit 62

dividend
binary division

by shifting 253
definition 284, 1045
fixed-point binary division 274
packed decimal 490

division
arithmetic 275
binary floating-point 659
decimal floating-point 703
double-length 275
fixed-point 274
fixed-point binary process 280
Fixed-Point Divide

Exception 274
floating-point 578
hexadecimal floating-point 603
logical 279
packed decimal 490, 509
register pair 274
single-length 278

divisor
definition 284, 1045
fixed-point binary division 274
packed decimal 490

DL machine instruction 274, 279
DLG machine instruction 274, 279
DLGR machine instruction 274, 279
DLR machine instruction 274, 279
Double-Byte Character Set

definition 1045
double-byte EBCDIC 434

shift-in 434
shift-out 434
ward 435

double-ended queue
definition 944, 1045

doubleword 44, 177
doubly-linked list 934

definition 944, 1045
DP machine instruction 497, 509
D P D

definition 738, 1045
DR machine instruction 274, 275
DROP assembler instruction 128,

883, 890, 905
definition 133, 1045
dependent USING 890, 905
labeled dependent USING 905
labeled USING 883, 905
ordinary USING 128, 905
summary 905

DS assembler instruction 159
DSECT assembler instruction 804,

872, 874
address resolution 874
as External Dummy Section 838
DCBD 970
definition 906, 1045
EPIE 975

1290 Assembler Language Programming for IBM System z™ Servers Version 2.00

DSECT assembler instruction (con-
tinued)

Location Counter 873
multiple data structures 875
named in Q-type address

constant 838
relocation attribute 873

DSG machine instruction 274, 275
DSGF machine instruction 275
DSGFR machine instruction 275
DSGR machine instruction 274, 275
Dummy Control Section

See DSECT assembler instruction
dummy external section 1046
dummy section

DSECT instruction 1045
DXD instruction 1045

DUMPOUT macro instruction 1018
definition 1025
description 1018

duplicate definition 123
duplication factor 138

default 138
definition 145, 1045

DXBR machine instruction 659
DXC 649

See also Data Exception Code
DXD assembler instruction 804
DXR machine instruction 603
DXTR machine instruction 701
DXTRA machine instruction 701

E
EBCDIC 430, 434

C-type constants 150
code pages 430
definition 95, 1045
double-byte 434
in character self-defining terms 86
table 1012

ED machine instruction 532, 538
editing 536

flow diagram 547
overview 536
pattern 536
process 539
zoned digit 546

EDMK machine instruction 532,
543

EEDTR machine instruction 719
EEXTR machine instruction 719
Effective Address 62

24-bit addressing mode 308
31-bit addressing mode 308
64-bit addressing mode 308
definition 69, 1046
relative-immediate 305
signed 20-bit displacement 302
unsigned 12-bit displacement 302

Effective Address Register 62
definition 69, 1045

EFPC machine instruction 651
element

definition 867, 1046

Encoded Length 366
definition 115, 1046
Length Specification Byte 366
machine length 366

end column 75
END record in object module 832
ENTRY assembler instruction 821,

1046
entry point 765

definition 788, 1046
entry point identifier 777

definition 788, 1046
EPICA

See Program Interruption Control
Area

EPIE
See Program Interruption Element

EQU assembler instruction 93, 162
extended syntax 166, 1046

definition 174
ESD record in object module 831

CM symbol type 826
CQ symbol type 826
ER symbol type 826
LD symbol type 826
PC symbol type 826
PQ symbol type 826
SD symbol type 826
SQ symbol type 826
WX symbol type 826
XD symbol type 826

ESDID 818, 831
ESDTR machine instruction 720
ESPIE macro instruction 973

program interruption exit 973
ESTAE macro

recovery routine 977
retry routine 977

ESTAE macro instruction 977, 978
ESTAEX macro instruction 977
ESXTR machine instruction 720
EX machine instruction 389
exception 56

See also interruption
binary floating-point 649

division by zero 649
exponent overflow 649
exponent underflow 649
inexact result 649
invalid operation 649
signaling NaN 641

decimal floating-point
divide by zero 699
inexact 699
instruction availability 699
invalid operation 699
quantum 698, 699
underflow 699

definition 1046
hexadecimal floating-point

division by zero 603
exponent overflow 602
exponent underflow 602
lost significance 607

exception action

exception action (continued)
binary floating-point

divide by zero 652
exponent overflow 652
exponent underflow 652
inexact result 652
invalid operation 651

exception condition 58
definition 59, 1046
interruption if enabled 58

executable control section 803
CSECT 803
definition 867, 1046
RSECT 803
START 803

execute exception 57
execute instructions 389
execution time 74

address 92
definition 83, 1046

explicit address 109, 110, 367
definition 115, 1046

explicit length 113, 368
definition 115, 1046
in constants 140

exponent
binary floating-point 639
decimal floating-point 687
definition 572, 1046
hexadecimal floating-point 586

exponent modifier 143
binary floating-point constant 644
decimal floating-point

constant 692
definition 145, 1046
hexadecimal floating-point

constant 593
exponent of a floating-point number

definition 1046
exponent overflow 582

binary floating-point 649
definition 585, 1046
hexadecimal floating-point 602

exponent underflow 582
binary floating-point 649
definition 585, 1046
hexadecimal floating-point 602

expression 97
absolute 99
complexly relocatable 99
definition 104, 1046
evaluation 98, 103

definition 104
factor 103
operator

− 97
/ 97
* 97
+ 97
unary − 97
unary + 97

operator precedence 98
paired terms 99
parentheses 97
primary 103

Index 1291

expression (continued)
products 98
quotients 98
relocatable terms 98
simply relocatable 99
term 104
unpaired term 99

EXRL machine instruction 389
extended mnemonic 210

B 210
BE 211
BER 211
BH 211
BHR 211
BL 211
BLR 211
BM 211
BMR 211
BNE 211
BNER 211
BNH 210
BNHR 210
BNL 210
BNLR 210
BNM 210
BNMR 210
BNO 210
BNOR 210
BNP 210
BNPR 210
BNZ 211
BNZR 211
BO 211
BOR 211
BP 211
BPR 211
BR 210
BRC 330
BRE 330
BREL 330
BRH 330
BRHL 330
BRL 330
BRLL 330
BRM 330
BRML 330
BRNE 330
BRNEL 330
BRNH 330
BRNHL 330
BRNL 330
BRNLL 330
BRNM 330
BRNML 330
BRNO 330
BRNOL 330
BRNP 330
BRNPL 330
BRNZ 330
BRNZL 330
BRO 330
BROL 330
BRP 330
BRPL 330
BRU 330

extended mnemonic (continued)
BRUL 330
BRZ 330
BRZL 330
BZ 211
BZR 211
definition 213, 1046
J 330
JC 330
JCT 334
JCTG 334
JE 330
JH 330
JL 330
JLC 330
JLE 330
JLH 330
JLL 330
JLM 330
JLNE 330
JLNH 330
JLNL 330
JLNM 330
JLNO 330
JLNOP 330
JLNP 330
JLNZ 330
JLO 330
JLP 330
JLU 330
JLZ 330
JM 330
JNE 330
JNH 330
JNL 330
JNM 330
JNO 330
JNOP 330
JNP 330
JNZ 330
JO 330
JP 330
jump instructions 330
JXH 343
JXHG 343
JXLE 343
JXLEG 343
JZ 330
NOP 206, 211
NOPR 206, 211

extended save area conventions 773
external dummy section 804

definition 867, 1052
External Dummy Section.

definition 1046
external symbol 818, 1046

ALIAS assembler
instruction 1046

class name 1046
COM 818
common section 1046
control section name 1046
CSECT 818
definition 1046
DSECT

named in Q-type address con-
stant 838

external symbol (continued)
DSECT assembler

instruction 818
dummy external section 1046

DXD 1046
DXD assembler instruction 818
ENTRY 818
ENTRY assembler

instruction 1046
EXTRN 818
EXTRN statement 1046
pseudoregister 1046
renaming via ALIAS

statement 1046
RSECT 818
START 818
WXTRN 818
WXTRN statement 1046

External Symbol Dictionary 93
definition 867, 1046
ESDID 818
Owning ID 818
relocation attribute 825

extreme exponent
binary floating-point 649
decimal floating-point 699
definition 738, 1046
hexadecimal floating-point 602

EXTRN assembler instruction 818,
820

difference from WXTRN 820
EXTRN statement 1046

F
F-format records 967
FIDBR machine instruction 668
FIDR machine instruction 625
FIDTR machine instruction 715
FIEBR machine instruction 668
field separator 537

definition 548, 1046
FIER machine instruction 625
fill character 537

definition 548, 1047
FIND macro 967

DCB
MACRF 967

FIXBR machine instruction 668
fixed length records 967, 968
fixed-point binary

arithmetic division 275
compare instructions 232
comparison 222
divide exception 57
division 274
double-length division 275
double-length multiplication 265
logical division 279
logical multiplication 270
mixed integer-fraction represen-

tation 554
multiplication 264
shifting 252
signed multiplication 265

1292 Assembler Language Programming for IBM System z™ Servers Version 2.00

fixed-point binary (continued)
single-length division 278
single-length multiplication 267

fixed-point overflow 28
See also overflow
binary complementation 28
two's complement 31

fixed-point overflow exception 57
FIXR machine instruction 625
FIXTR machine instruction 715
flag bit

Floating-Point Control
Register 649

floating-point
as rational numbers 562
binary 1043
constant

type D 567
type DB 567
type DD 567
type DH 594, 567
type E 567
type EB 567
type ED 567
type EH 594, 567
type L 567
type LB 567
type LD 567
type LH 594, 567
type LQ 594

constants summary 742
convert among types 743
decimal 1044
definition 572, 1047
exceptions summary 741
GPR-FPR copying

instructions 569
load zero instructions 569
MaxReal 582
MinReal 582
overview 560, 743

addition/subtraction 578
base 560
bias 584
characteristic 584
division 578
exponent 560
exponent overflow 582
exponent representation 561
exponent sign 561
exponent underflow 582
exponent width 560
FP(r,p) 743
FPF(r,p) 563
FPI(r,p) 563
FPN(r,p) 563
guard digit 575
multiplication 573
normalization 573
post-normalization 573
pre-normalization 574
radix 560
representation 560
rounding 563
rounding digit 575
significand 560

floating-point (continued)
properties summary 741
real vs. realistic arithmetic 745
representation examples 749
representation summary 739
representation-independent

instructions 568, 699
rounding-mode suffix

summary 742
sign-copying instructions 570
summary 739
System z

base 10 564
base 16 564
base 2 564
floating-point register

pairs 565
floating-point registers 564

ulp (unit in the last place) 581
zero behavior 747

Floating-Point Control Register 649
binary floating-point 649
binary rounding mode 650
decimal floating-point 701, 718
decimal rounding mode 718
DXC 649
instructions 651

floating-point guard digit 575
floating-point overflow

See overflow
floating-point register 46, 564
floating-point rounding digit 575
floating-point summary

constant rounding-mode
suffix 742

constants 742
exceptions 741
properties 741
representations 739

floating-point system FP(r,p) 562
definition 572, 1047

floating-point system FPF(r,p) 563
definition 572, 1047

floating-point system FPI(r,p) 563
definition 572, 1047

floating-point system FPN(r,p) 563
floating-point underflow

See underflow
FPCR

See also Floating-Point Control
Register

definition 1047
F P R

See also floating-point register
definition 49, 1047

fraction conversion
between bases 557

free storage list 929
definition 944, 1047

FREEMAIN macro instruction 957,
959, 961

FREEPOOL macro instruction 970
fullword 44

G
general purpose register

definition 1047
general register

definition 49, 1047
pair 46
register halves 178

generalized object file format
definition 1047
object module 1047

GET macro instruction 964
GETMAIN macro instruction 957,

958, 961
GGn 190

definition 202, 1047
Glyph

definition 1047
G O F F

See generalized object file format
GOFF object module

definition 867, 1051
GOFF option

definition 1047
G P R

See general purpose register
See general register

gradual underflow 647
graphic data type

See also DBCS
definition 1047

GRn 179, 190
definition 202, 1047

guard digit 575
definition 585, 1047

H
halfword 44, 177
halfword operands 182
halve instructions

hexadecimal floating-point 604
hash function 941

definition 944, 1047
hash table 941, 942

definition 944, 1047
HDR machine instruction 604
HER machine instruction 604
hex 19

See also hexadecimal
abbreviation for hexadecimal 19

hexadecimal
definition 39, 1047
digits 18

hexadecimal floating-point 586
addition/subtraction 606

no pre-normalization 606
characteristic 586
comparison 615
constant 590
conversion instructions

to/from fixed binary 620
convert to binary floating-point and

decimal floating-point 743
data representation 586

Index 1293

hexadecimal floating-point (con-
tinued)

division 603
exponent 586
exponent overflow 602
exponent underflow 602, 612
halve 604
history 629
integer values 625
lengthening instructions 618
lost significance exception 607
more precise rounding 595
multiplication 599
multiply and add/subtract 627
normalized addition 606
normalized subtraction 606
post-normalization 599, 603
pre-normalization 599, 603
pseudo-zero 748
remainder 625
rounding instructions 616
square root 626
subtype H 595
symbolic operand

(DMin) 595
(Max) 595
(Min) 595

truncation in conversion 620
unnormalized addition 609
unnormalized representation 588
unnormalized subtraction 609

hexadecimal floating-point divide 57
hexadecimal floating-point exponent

overflow 57
hexadecimal floating-point exponent

underflow 57
hexadecimal floating-point lost signif-

icance 57
hexadecimal self-defining term

See self-defining term
High Level Assembler

definition 1047, 1048
HLASM 4

definition 14, 1047

I
IA

See Instruction Address
IARV64 macro instruction 957
IBM High Level Assembler for z/OS

& z/VM & z/VSE 4
IC machine instruction 184
ICM machine instruction 185
ICMH machine instruction 189
IEDTR machine instruction 719
IEXTR machine instruction 719
IHADCB dummy section 970
IHADCB macro instruction 970
IHAEPIE dummy section 975
IHAEPIE macro instruction 975
IIHF machine instruction 318
IIHH machine instruction 318
IIHL machine instruction 318
IILF machine instruction 318

IILH machine instruction 318
IILL machine instruction 318
ILC

See also Instruction Length Code
definition 1048

immediate operand
add 321
arithmetic load 318
compare 322
logical AND 323, 354
logical insert 318
logical load 318, 321
logical OR 323, 354
logical XOR 324, 354
move 353
multiply 322
subtract 321
test 356

implied address 109, 110
absolute 131
base register zero 131
definition 115, 1048

implied length 113, 368
definition 115, 1048
in constants 140
in SS-type instructions 367

increment
definition 1048

index 63
definition 69, 1048

index register
definition 1048
general purpose register 1048
index register specification

digit 1048
index register specification digit 63

definition 69, 1048
indexed Effective Address 64
indexing 63

definition 69, 1048
operations 332

inexact result
binary floating-point 649
decimal floating-point 698

infinity
binary floating-point 641
decimal floating-point 687

infix notation 923
definition 944, 1048

inorder tree traversal 940
definition 944, 1048

input/output
access technique

direct 966
indexed 966
sequential 966

CLOSE macro 970
FREEPOOL macro 970
GET macro 964
OPEN macro 969
PUT macro 966
QSAM

locate mode 966
move mode 966

sequential access
basic 966

input/output (continued)
sequential access (continued)

BSAM 966
QSAM 966
queued 966

VSAM 971
insert 184

character 184
definition 202, 1048
logical-immediate 318

insert under mask
under mask 185

instruction
addressing halfword 53
basic types

R R 51
RS 51
RX 51
SI 51
SS 51

cycle 50
halfword alignment 50
Instruction Address 50
Instruction Length Code 53
instruction register 50
length 50
modal 308
operand address 53
operation code 52
operation code examples 54
partial completion 403
pipeline 207

Instruction Address 47, 50
definition 1048
updated 50
vs. location counter 92

instruction cycle
decode 51, 1045, 1048

definition 59
definition 1048
execute 51, 1046, 1048

definition 59
fetch 50, 1048

definition 59
with interruptions 56

instruction format
BRC 329
BRCL 329
RI-type 317
RIL-type 317
RRE-type 192, 415
RRF-type 444
RS-type 180, 186
RS-type shift 243
RSY-type 190, 410
RX-type 179
RXY-type 190
SI-type 352
SIY-type 352
SS-type, single-length 366
SS-type, two-length 469

Instruction Length Code 47, 53
definition 49, 59, 1048

instruction modification 361
instruction operation

1294 Assembler Language Programming for IBM System z™ Servers Version 2.00

instruction operation (continued)
CLCL 407
CLCLE 413
CLST 419
EX 389
EXRL 389
MVC 372
MVCL 405
MVCLE 411
MVST 417
SRST 416
TR 379
TRT 384
TRTR 387

instruction register 50
definition 59, 397, 1048

integer conversion
between bases 19

internal symbol
Assembler Language 1048
definition 1048
SYSADATA file 1048

internal symbol dictionary
See also symbol table
definition 1048

interruptible
definition 1048

interruptible instruction 403
interruption 55

asynchronous 56
binary floating-point division by

zero 649
binary floating-point exponent

overflow 649
binary floating-point exponent

underflow 649
binary floating-point inexact

result 649
binary floating-point invalid opera-

tion 649
binary floating-point rounding

instructions 664
classes 56
code 56
data exception 485
decimal divide 57, 491
decimal floating-point division by

zero 698
decimal floating-point exponent

overflow 698
decimal floating-point exponent

underflow 698
decimal floating-point inexact

result 698
decimal floating-point invalid oper-

ation 698
decimal floating-point quantum

exception 698
decimal floating-pointquantum

exception 698
decimal overflow 57, 485
definition 59, 1048
disabled 56
enabled 56
ESPIE macro 973

interruption (continued)
exception 58
execute 389
execute exception 57
fixed-point divide 57
fixed-point overflow 57
hexadecimal floating-point

divide 57, 603
hexadecimal floating-point expo-

nent overflow 57, 602, 617
hexadecimal floating-point expo-

nent underflow 57, 58, 602
hexadecimal floating-point lost sig-

nificance 57, 58, 607
hexadecimal floating-point square

root 627
invalid operation 57
involuntary 56
maskable 974
packed decimal division 491
packed decimal

multiplication 489
PIE 973
privileged operation 57
program 56, 974
program interruption exit 973
Program Mask 58
specification exception 489, 491
SPIE macro 973
SVC 950
synchronous 56
voluntary 56

interruption code 56
1 (invalid operation) 57
10 (decimal overflow) 57, 485
11 (decimal divide) 57, 491
12 (hexadecimal floating-point

exponent overflow) 602, 57, 617
13 (hexadecimal floating-point

exponent underflow) 602, 57, 58
14 (hexadecimal floating-point lost

significance) 57, 58, 607
15 (hexadecimal floating-point

divide) 57, 603
2 (privileged operation) 57
29 (hexadecimal floating-point

square root) 627
3 (execute exception) 57, 389
4 (access exception) 57
5 (addressing) 57
6 (specification) 57, 489, 491
7 (binary floating-point

exception) 650
7 (data exception) 57, 485
7 (decimal floating-point

exception) 699
8 (fixed-point overflow) 57
9 (fixed-point divide) 57, 274
definition 59, 1048

invalid operation exception 57
invariant EBCDIC character

definition 1048
IPM machine instruction 234
IR

See also Instruction Register

IR (continued)
definition 1048

J
J extended mnemonic 330
JC extended mnemonic 330
JCL 962
JCT extended mnemonic 334
JCTG extended mnemonic 334
JE extended mnemonic 330
JFCB 962
JH extended mnemonic 330
JL extended mnemonic 330
JLC extended mnemonic 330
JLE extended mnemonic 330
JLH extended mnemonic 330
JLL extended mnemonic 330
JLM extended mnemonic 330
JLNE extended mnemonic 330
JLNH extended mnemonic 330
JLNL extended mnemonic 330
JLNM extended mnemonic 330
JLNO extended mnemonic 330
JLNOP extended mnemonic 330
JLNP extended mnemonic 330
JLNZ extended mnemonic 330
JLO extended mnemonic 330
JLP extended mnemonic 330
JLU extended mnemonic 330
JLZ extended mnemonic 330
JM extended mnemonic 330
JNE extended mnemonic 330
JNH extended mnemonic 330
JNL extended mnemonic 330
JNM extended mnemonic 330
JNO extended mnemonic 330
JNOP extended mnemonic 330
JNP extended mnemonic 330
JNZ extended mnemonic 330
JO extended mnemonic 330
Job Control Language 81, 962

definition 83, 1049
Job File Control Block 962
JP extended mnemonic 330
jump

definition 1049
jump extended mnemonic 330
jump instructions 330
JXH extended mnemonic 343
JXHG extended mnemonic 343
JXLE extended mnemonic 343
JXLEG extended mnemonic 343
JZ extended mnemonic 330

K
KDB machine instruction 663
KDBR machine instruction 663
KDTR machine instruction 705
KEB machine instruction 663
KEBR machine instruction 663
keyword argument

definition 981

Index 1295

KXBR machine instruction 663
KXTR machine instruction 705

L
L machine instruction 179
LA machine instruction 309
label

definition 1049
labeled USING statement 1049
name field symbol 1049
qualifier 1049

labeled dependent USING 891, 904
complex data structures 891
definition 906, 1049
identical data structures 895

labeled USING 882, 904
address resolution 882
definition 906, 1049
DROP assembler instruction 883

large programs 790
address constants 793
addressability 790

uniform addressability 790
LARL machine instruction 309
LAY machine instruction 309
LB machine instruction 196
LBR machine instruction 196
LC

definition 1050
LCDBR machine instruction 655
LCDFR machine instruction 568
LCDR machine instruction 597
LCDTR machine instruction 715
LCEBR machine instruction 655
LCER machine instruction 597
LCGFR machine instruction 194
LCGR machine instruction 192
LCR machine instruction 187
LCXBR machine instruction 655
LCXR machine instruction 597
LD machine instruction 568
LDE machine instruction 619
LDEB machine instruction 665
LDEBR machine instruction 665
LDER machine instruction 619
LDETR machine instruction 716
LDGR machine instruction 570, 700
LDR machine instruction 568, 700
LDXBR machine instruction 664
LDXR machine instruction 616
LDXTR machine instruction 717
LDY machine instruction 568
LE machine instruction 568
LEDBR machine instruction 664
LEDR machine instruction 616
LEDTR machine instruction 717
length attribute 90
length attribute reference 368

definition 104, 1049
Length Expression 366, 369

definition 115, 1049
explicit 366
implied 366

length field 113, 469

length field (continued)
explicit 113, 469
implied 113, 469
single-length instruction 113
two-length instruction 114

length modifier 139, 259
binary floating-point constant 645
bit 259
byte 140, 259
decimal floating-point

constant 692
definition 145, 1049
fixed-point binary 140
hexadecimal floating-point

constant 592
packed decimal constant 467
zoned decimal constant 464

Length Specification Byte 366, 370
definition 397, 1049
relation to Length Expression 370

Length Specification Digit
definition 1049

lengthening instructions
binary floating-point 664
decimal floating-point 716
hexadecimal floating-point 618

LER machine instruction 568, 700
LEXBR machine instruction 664
LEXR machine instruction 616
LEY machine instruction 568
LFAS machine instruction 651
LFPC machine instruction 651
LG machine instruction 189
LGB machine instruction 196
LGBR machine instruction 196
LGDR machine instruction 570, 700
LGF machine instruction 194
LGFI machine instruction 319
LGFR machine instruction 194
LGH machine instruction 189
LGHI machine instruction 319
LGHR machine instruction 192
LGR machine instruction 192
LH machine instruction 182
LHI machine instruction 319
LHR machine instruction 192
library

definition 1049
load module 846
PDS 845

Lilliput 453
linear subscript 911

definition 944, 1049
linkage 757
linkage convention 765

argument 765
argument address list 766
argument passing

32-bit addresses 766
assisted linkage 783, 847
calling point identifier 778
definition 788, 1049
entry point 765
entry point identifier 777
parameter 765

linkage convention (continued)
return address 765
return code 779
return flag 778
RETURN macro instruction 781
save area 770
SAVE macro instruction 777
subroutine 765
V-type address constant 820
variable-length argument list 767

linked list 927
See also list
definition 944, 1049

Linker 73
Binder 849
boundary alignment 139, 809
common sections 836
Composite External Symbol Dic-

tionary 835
control sections 802
definition 83, 1049
library search 820
load module 845
options 984

linking
See program linking

linking loader
definition 867, 1049

list 927
as an array 908
definition 945, 1049
deletion 929
doubly-linked 934
insertion 927

literal 154
as a term 96
definition 158, 1049
in multiple control sections 808,

854
in Private Code section 826
rules 154
special symbol 154

literal pool 156
definition 158, 1049

Little-Endian 453
definition 1049

LLC machine instruction 196
LLCR machine instruction 196
LLGC machine instruction 196
LLGCR machine instruction 196
LLGF machine instruction 196
LLGFR machine instruction 196
LLGH machine instruction 196
LLGHR machine instruction 196
LLGT machine instruction 196, 863
LLGTR machine instruction 196,

863
LLH machine instruction 196
LLHR machine instruction 196
LLIHF machine instruction 319
LLIHH machine instruction 319
LLIHL machine instruction 319
LLILF machine instruction 319
LLILH machine instruction 319
LLILL machine instruction 319

1296 Assembler Language Programming for IBM System z™ Servers Version 2.00

LM machine instruction 180
LMG machine instruction 189
LMH machine instruction 189
LNDBR machine instruction 655
LNDFR machine instruction 568
LNDR machine instruction 597
LNDTR machine instruction 715
LNEBR machine instruction 655
LNER machine instruction 597
LNGFR machine instruction 194
LNGR machine instruction 192
LNR machine instruction 187
LNXBR machine instruction 655
LNXR machine instruction 597
load immediate

arithmetic 318
logical 318
with IILF 318

load module 73
CESD record 846
creation 73
CTL/RLD record 846
definition 83, 867, 1049
EOM record 846
IDR record 846
loaded into memory 73
Partitioned Data Set 846
PDS 846
RLD record 846
SYM record 846
TEXT record 846

load operation 179
definition 202, 1050

location 92
assembly time 92, 1050
base location 1043
definition 1050
execution time address 1050
location counter 1050
vs. address 92

Location Counter 92
definition 95, 1050
discontinuity 808
Location Counter values and

LOCTR 810
reference 121
symbol definition 123
threading 809
vs. Instruction Address 92

location counter reference 97, 121
location vs. address 92

assembly vs. execution time 92
LOCTR group
logical

AND operation 289, 290
definition 298

Boolean 288
differences vs. arithmetic 37
operations 288
OR operation 289, 291

definition 298
XOR operation 289, 292

definition 298
logical AND

definition 1042

logical arithmetic 224
definition 238, 1050

logical division 279
definition 284, 1050

logical multiplication 270
definition 284, 1050

logical operation
AND 1042
definition 1050
OR 1051
XOR 1056

logical OR
definition 1051

logical representation 37
definition 39, 1050

logical shift 243
definition 261, 1050
double-length 248
process 243
single-length 245

logical XOR
definition 1056

LPDBR machine instruction 655
LPDFR machine instruction 568
LPDR machine instruction 597
LPDTR machine instruction 715
LPEBR machine instruction 655
LPER machine instruction 597
LPGFR machine instruction 194
LPGR machine instruction 192
LPR machine instruction 187
LPXBR machine instruction 655
LPXR machine instruction 597
LR machine instruction 187
LRDR machine instruction 616
LRER machine instruction 616
LRV machine instruction 453
LRVG machine instruction 453
LRVGR machine instruction 453
LRVH machine instruction 453
LRVR machine instruction 453
LT machine instruction 194
LTDBR machine instruction 655
LTDR machine instruction 597
LTDTR machine instruction 715
LTEBR machine instruction 655
LTER machine instruction 597
LTG machine instruction 194
LTGFR machine instruction 194
LTGR machine instruction 192
LTORG

in multiple control sections 808
LTORG assembler instruction 156
LTR machine instruction 187
LTXBR machine instruction 655
LTXR machine instruction 597
LXD machine instruction 619
LXDB machine instruction 665
LXDBR machine instruction 665
LXDR machine instruction 619
LXDTR machine instruction 715,

716
LXE machine instruction 619
LXEB machine instruction 665
LXEBR machine instruction 665

LXER machine instruction 619
LXR machine instruction 568, 700
LZDR machine instruction 569
LZER machine instruction 569
LZXR machine instruction 569

M
M machine instruction 264, 265
machine instruction

A 216
AD 606
ADB 661
ADBR 661
ADR 606
ADTR 701
ADTRA 701
AE 606
AEB 661
AEBR 661
AER 606
AFI 321
AG 216
AGF 230
AGFI 321
AGFR 230
AGHI 321
AGR 216
AH 216
AHI 321
AL 224
ALC 228
ALCG 228
ALCGR 228
ALCR 228
ALFI 321
ALG 224
ALGF 230
ALGFI 321
ALGFR 230
ALGR 224
ALR 224
AP 497, 501
AR 216
AXBR 661
AXR 606
AXTR 701
AXTRA 701
BAS 758
BASR 758
BASSM 858
BC 204, 205
BCR 204, 205
BCT 334
BCTG 334
BCTGR 334
BCTR 334
BRAS 758
BRASL 758
BRCT 334
BRCTG 334
BRXH 341
BRXHG 341
BRXLE 341
BRXLG 341

Index 1297

machine instruction (continued)
BSM 858
BXH 341
BXHG 341
BXLE 341
BXLEG 341
C 222
CD 615
CDB 662
CDBR 662
CDFBR 666
CDFR 620
CDGBR 666
CDGR 620
CDGTR 707
CDGTRA 707
CDR 615
CDSTR 709
CDTR 705
CDUTR 711
CDXT 712
CDZT 712
CE 615
CEB 662
CEBR 662
CEDTR 706
CEFBR 666
CEFR 620
CEGBR 666
CEGR 620
CER 615
CEXTR 706
CFDBR 666
CFDR 620
CFEBR 666
CFER 620
CFI 322
CFXBR 666
CFXR 620
CG 222
CGDBR 666
CGDR 620
CGDTR 707
CGDTRA 707
CGEBR 666
CGER 620
CGF 230
CGFI 322
CGFR 230
CGHI 322
CGR 222
CGXBR 666
CGXR 620
CGXTR 707
CGXTRA 707
CH 222
CHI 322
CHY 222
CL 232
CLC 365, 378
CLCL 404, 407
CLCLE 404, 413
CLCLU 441, 443
CLFI 322
CLG 232

machine instruction (continued)
CLGF 232
CLGFI 322
CLGFR 232
CLGR 232
CLI 354
CLIY 354
CLM 232
CLMH 232
CLMY 232
CLR 232
CLST 415, 419
CP 497, 503
CPSDR 570, 700
CR 222
CSDTR 709
CSXTR 709
CU12 448
CU14 448
CU21 448
CU24 448
CU41 448
CU42 448
CUDTR 711
CUSE 415, 423
CUTFU 448
CUUTF 448
CUXTR 711
CVB 532, 534
CVBG 532, 534
CVBY 532, 534
CVD 532
CVDG 532, 533
CVDY 532
CXBR 662
CXFBR 666
CXFR 620
CXGR 620
CXGTR 707
CXGTRA 707
CXR 615
CXSTR 709
CXTR 705
CXUTR 711
CY 222
CZDT 712
CZXT 712
D 274, 275
D D 603
DDB 659
DDBR 659
D D R 603
D D T R 701
DDTRA 701
DE 603
DEB 659
DEBR 659
DER 603
DIDBR 669
DIEBR 669
DL 274, 279
D L G 274, 279
D L G R 274, 279
DLR 274, 279
D P 497, 509

machine instruction (continued)
D R 274, 275
DSG 274, 275
DSGF 275
DSGFR 275
DSGR 274, 275
DXBR 659
DXR 603
DXTR 701
DXTRA 701
ED 532, 538
EDMK 532, 543
EEDTR 719
EEXTR 719
EFPC 651
ESDTR 720
ESXTR 720
EX 389
EXRL 389
FIDBR 668
FIDR 625
FIDTR 715
FIEBR 668
FIER 625
FIXBR 668
FIXR 625
FIXTR 715
H D R 604
HER 604
IC 184
ICM 185
ICMH 189
IEDTR 719
IEXTR 719
IIHF 318
IIHH 318
IIHL 318
IILF 318
IILH 318
IILL 318
IPM 234
KDB 663
KDBR 663
KDTR 705
KEB 663
KEBR 663
KXBR 663
KXTR 705
L 179
LA 309
LARL 309
LAY 309
LB 196
LBR 196
LCDBR 655
LCDFR 568
LCDR 597
LCDTR 715
LCEBR 655
LCER 597
LCGFR 194
LCGR 192
LCR 187
LCXBR 655
LCXR 597

1298 Assembler Language Programming for IBM System z™ Servers Version 2.00

machine instruction (continued)
LD 568
LDE 619
LDEB 665
LDEBR 665
LDER 619
LDETR 716
L D G R 570, 700
LDR 568, 700
LDXBR 664
LDXR 616
LDXTR 717
LDY 568
LE 568
LEDBR 664
LEDR 616
LEDTR 717
LER 568, 700
LEXBR 664
LEXR 616
LEY 568
LFAS 651
LFPC 651
LG 189
LGB 196
LGBR 196
L G D R 570, 700
L G F 194
LGFI 319
L G F R 194
L G H 189
LGHI 319
L G H R 192
LGR 192
LH 182
LHI 319
LHR 192
LLC 196
LLCR 196
LLGC 196
LLGCR 196
LLGF 196
LLGFR 196
LLGH 196
LLGHR 196
LLGT 196, 863
LLGTR 196, 863
LLH 196
LLHR 196
LLIHF 319
LLIHH 319
LLIHL 319
LLILF 319
LLILH 319
LLILL 319
LM 180
L M G 189
L M H 189
LNDBR 655
LNDFR 568
LNDR 597
LNDTR 715
LNEBR 655
LNER 597
LNGFR 194

machine instruction (continued)
LNGR 192
LNR 187
LNXBR 655
LNXR 597
LPDBR 655
LPDFR 568
LPDR 597
LPDTR 715
LPEBR 655
LPER 597
LPGFR 194
LPGR 192
LPR 187
LPXBR 655
LPXR 597
LR 187
LRDR 616
LRER 616
LRV 453
LRVG 453
LRVGR 453
LRVH 453
LRVR 453
LT 194
LTDBR 655
LTDR 597
LTDTR 715
LTEBR 655
LTER 597
LTG 194
LTGFR 194
LTGR 192
LTR 187
LTXBR 655
LTXR 597
LXD 619
LXDB 665
LXDBR 665
LXDR 619
LXDTR 715, 716
LXE 619
LXEB 665
LXEBR 665
LXER 619
LXR 568, 700
LZDR 569
LZER 569
LZXR 569
M 264, 265
MAD 627
MADB 672
MADBR 672
MADR 627
MAE 627
MAEB 672
MAEBR 672
MAER 627
MDB 657
MDBR 657
M D E 599
MDEB 657
MDEBR 657
M D E R 599
M D R 599

machine instruction (continued)
M D T R 701
MDTRA 701
ME 599
MEE 599
MEEB 657
MEEBR 657
MEER 599
MER 599
M G H I 322
M H 264, 268
MHI 322
ML 264, 270
M L G 264, 270
M L G R 264, 270
MLR 264, 270
M P 497, 506
M R 264, 265
MS 264, 268
MSD 627
MSDB 672
MSDBR 672
MSDR 627
MSE 627
MSEB 672
MSEBR 672
MSER 627
MSG 264, 268
MSGF 264, 268
MSGFR 264, 268
MSGR 264, 268
MSR 264, 268
MSY 264, 268
MVC 365, 372
MVCIN 365, 373
MVCL 404, 405
MVCLE 404, 411
MVCLU 441, 442
MVCOS 374
MVI 353
MVIY 353
MVN 460
MVO 497, 516
MVST 415, 417
MVZ 460
MXBR 657
MXD 599
MXDB 657
MXDBR 657
MXDR 599
MXR 599
MXTR 701
MXTRA 701
N 288
NC 365, 376
N G 288
N G R 288
NI 353
NIHF 323
NIHH 323
NIHL 323
NILF 323
NILH 323
NILL 323
NIY 353

Index 1299

machine instruction (continued)
NR 288
O 288
OC 365, 376
OG 288
OGR 288
OI 353
OIHF 324
OIHH 324
OIHL 324
OILF 324
OILH 324
OILL 324
OIY 353
operand formats 102
operands 96
OR 288
PACK 460, 471
PC 950
PFPO 745
PKA 460, 478
PKU 460, 478
QADTR 722
QAXTR 722
RLL 242
RLLG 242
RR-type 107
R R D T R 724
RRXTR 724
RS-type 111
RX-type 108
S 216
SAM24 858
SAM31 858
SAM64 858
SBRM 651
SD 606
SDB 661
SDBR 661
SDR 606
SDTR 701
SDTRA 701
SE 606
SEB 661
SEBR 661
SER 606
SFASR 651
SFPC 651
SG 216
SGF 230
SGFR 230
SGR 216
SH 216
SI-type 112
SL 224
SLA 242
SLAG 242
SLB 228
SLBG 228
SLBGR 228
SLBR 228
SLDA 242
SLDL 242
SLDT 720
SLFI 321

machine instruction (continued)
SLG 224
SLGF 230
SLGFI 321
SLGFR 230
SLGR 224
SLL 242
SLLG 242
SLR 224
SLXT 720
SP 497, 501
SPM 234
SQD 627
SQDB 671
SQDBR 671
SQDR 627
SQE 627
SQEB 671
SQEBR 671
SQER 627
SQXBR 671
SQXR 627
SR 216
SRA 242
SRAG 242
SRDA 242
SRDL 242
SRDT 720
SRL 242
SRLG 242
SRNMT 718
SRP 497, 511
SRST 415
SRSTU 441
SRXT 720
SS-type 113
SS-type length fields 113
ST 179
STC 184
STCM 185
STCMH 189
STD 568
STDY 568
STE 568
STEY 568
STFPC 651
STG 189
STH 182
STM 180
STMG 189
STMH 189
STRV 453
STRVG 453
STRVH 453
SVC 950
SXBR 661
SXR 606
SXTR 701
SXTRA 701
TAM 858
TCDB 654
TCEB 654
TCXB 654
TDCDT 693
TDCET 693

machine instruction (continued)
TDCXT 693
TDGDT 726
TDGET 726
TDGXT 726
TM 356
TMY 356
TP 497
TR 365, 379
TRE 421
TROO 444
TROT 444
TRT 365, 384
TRTE 450
TRTO 444
TRTR 365, 387
TRTRE 450
TRTT 444
UNPK 460, 474
UNPKA 460, 479
UNPKU 460, 479
X 288
XC 365, 376
XCGBR 666
XG 288
XGR 288
XI 353
XIHF 324
XILF 324
XIY 353
XR 288
ZAP 497, 499

machine instruction statement 74
machine language 73

definition 60, 1050
machine length 366

definition 115, 1050
macro argument 951
macro instruction

ABEND 956, 977
arguments 951
call 951
CLOSE 970
COND= argument 960
CONVERTI 82, 1016
CONVERTO 82, 1017
DCB 966
DCBD 970
DCBE 971
definition 83, 1050
DUMPOUT 82, 1018
ESPIE 973
ESTAE 977, 978
ESTAEX 977
execute form 952
FREEMAIN 957, 959, 961
FREEPOOL 970
GET 964
GETMAIN 957, 958, 961
IARV64 957
IHADCB 970
invocation 951
list form 952
MODE= argument 954
OPEN 969

1300 Assembler Language Programming for IBM System z™ Servers Version 2.00

macro instruction (continued)
PRINTLIN 82, 1018
PRINTOUT 82, 1019
PUT 966
R-form 954
READCARD 82, 1020
register arguments 954
RETURN 781
SAVE 777
SETRP 977
SPIE 973
STAE 977
standard form 952
STORAGE 957, 960, 961
SYSSTATE 955
system services 951

macro-instruction statement 74
MAD machine instruction 627
MADB machine instruction 672
MADBR machine instruction 672
MADR machine instruction 627
MAE machine instruction 627
MAEB machine instruction 672
MAEBR machine instruction 672
MAER machine instruction 627
mantissa

definition 572, 1050
mask bit

Floating-Point Control
Register 649

Program Mask 234, 58
mask byte 356
mask digit 186, 191, 205

and execute instruction 361
branch 205, 330

MaxReal 582
definition 585, 1050

MDB machine instruction 657
MDBR machine instruction 657
MDE machine instruction 599
MDEB machine instruction 657
MDEBR machine instruction 657
MDER machine instruction 599
MDR machine instruction 599
MDTR machine instruction 701
MDTRA machine instruction 701
ME machine instruction 599
MEE machine instruction 599
MEEB machine instruction 657
MEEBR machine instruction 657
MEER machine instruction 599
memory address 43

alignment 44
memory dump

ABEND macro instruction 956
DUMPOUT macro

instruction 957
MER machine instruction 599
message character 537

definition 549, 1050
MGHI machine instruction 322
MH machine instruction 264, 268
MHI machine instruction 322
millicode 48

definition 49, 1050

MinReal 582
definition 585, 1050

minuend
definition 238, 1050

ML machine instruction 264, 270
MLG machine instruction 264, 270
MLGR machine instruction 264,

270
MLR machine instruction 264, 270
mnemonic 82, 133

as abbreviation 106
definition 83, 115, 1050
extended 210
instruction name 82, 83, 133,

1050
modal instruction 308
modifier

bit length 259
byte length 259
definition 145, 1050
explicit length 140
exponent 138
length 138
scale 138

MP machine instruction 497, 506
MR machine instruction 264, 265
MS machine instruction 264, 268
MSD machine instruction 627
MSDB machine instruction 672
MSDBR machine instruction 672
MSDR machine instruction 627
MSE machine instruction 627
MSEB machine instruction 672
MSEBR machine instruction 672
MSER machine instruction 627
MSG machine instruction 264, 268
MSGF machine instruction 264, 268
MSGFR machine instruction 264,

268
MSGR machine instruction 264, 268
MSR machine instruction 264, 268
MSY machine instruction 264, 268
multiplicand

definition 284, 1050
multiplication

binary floating-point 657
decimal floating-point 702
fixed-point binary 264

process 272
fixed-point binary double-length

product 265
fixed-point binary single-length

product 267
floating-point 573
hexadecimal floating-point 599
logical 270
packed decimal 506
packed decimal operand order

dependence 489
register-immediate 322
signed 265

multiplier
definition 284, 1050

multiply and add/subtract
binary floating-point 672

multiply and add/subtract (continued)
hexadecimal floating-point 627

multiply-defined symbols 123
MVC machine instruction 365, 372
MVCIN machine instruction 365,

373
MVCL machine instruction 404, 405
MVCLE machine instruction 404,

411
MVCLU machine instruction 441,

442
MVCOS machine instruction 374
MVI machine instruction 353
MVIY machine instruction 353
MVN machine instruction 460
MVO machine instruction 497, 516
MVST machine instruction 415, 417
MVZ machine instruction 460
MXBR machine instruction 657
MXD machine instruction 599
MXDB machine instruction 657
MXDBR machine instruction 657
MXDR machine instruction 599
MXR machine instruction 599
MXTR machine instruction 701
MXTRA machine instruction 701

N
N machine instruction 288
NaN (Not a Number)

binary floating-point 639
decimal floating-point 687

NC machine instruction 365, 376
NG machine instruction 288
NGR machine instruction 288
NI machine instruction 353
NIHF machine instruction 323
NIHH machine instruction 323
NIHL machine instruction 323
NILF machine instruction 323
NILH machine instruction 323
NILL machine instruction 323
NIY machine instruction 353
no-operation instruction 206

conditional 207
definition 214, 1051

NOALIGN assembler option 139
nominal value 138

definition 145, 1051
fixed-point binary

type F 146
type FD 146
type H 146
type HD 146

type of constant 138
non-modal instruction 309
non-overflowed zero

definition 496, 1051
NOP extended mnemonic 206, 211
NOPR extended mnemonic 206, 211
normalization 573

definition 585, 1051
notation

binary 17

Index 1301

notation (continued)
blank representation in

examples 13
data fields 12
hexadecimal 18
instruction components 13
positional 16
space representation in

examples 13
subscripts 12

NOTHREAD assembler option 810
NR machine instruction 288
null byte

definition 1051
null-terminated string 415
numeric digit 460

definition 483, 1051
in packed decimal 460

O
O machine instruction 288
OBJ object module

definition 867, 1051
object code 73

creation 73
definition 83, 1051
pass 2 generation 125

object module 831
creation 73
definition 83, 867, 1051
END record 832
ESD record 831
ESDID 831
RLD record 831
SYM record 831
TXT record 831

OC machine instruction 365, 376
offset

by ORG instruction 168
CUSE instruction 423
definition 530, 1051
during relocation 855
in Q-type constant 832
MVO instruction 516
with dependent USING 887

OG machine instruction 288
OGR machine instruction 288
OI machine instruction 353
OIHF machine instruction 324
OIHH machine instruction 324
OIHL machine instruction 324
OILF machine instruction 324
OILH machine instruction 324
OILL machine instruction 324
OIY machine instruction 353
ones' complement representation

definition 39, 1051
opcode

See also operation code
definition 115, 1051

OPEN macro instruction 969
operand 44

address 53
assembly-time 107

operand (continued)
definition 83, 1051
execution-time 107
halfword 182
immediate 112, 317
in an instruction description 13
in an instruction statement 13
machine instruction 44
optional 443
subject of an operation 13

operand order dependence 486, 489
definition 530, 1051

operation code
and instruction length 53
definition 60, 115, 1051
examples 54

operator
− 15, 97
/ 15, 97
× 15
* 15, 97
+ 15, 97
÷ 15
definition 15, 104, 1051
unary − 97
unary + 97

option
See also assembler option
*PROCESS statement 1051
ACONTROL assembler

instruction 1051
definition 1051
G O F F 809, 849, 854

OR machine instruction 288
OR operation 289, 298, 1051

definition 298, 1051
register-immediate 323
register-register 291
storage-immediate 354
storage-storage 376
XOR operation

definition 298
order dependence

definition 496, 1051
ordinary control section

See also control section
common control section 1044
CSECT 1044
offsets fixed at assembly

time 1044
positions at execution time 1044
relocation at later times 1044
RSECT 1044

ordinary symbol 89, 1048
external 89
internal 89

ordinary USING 120
definition 906, 1051
shortcomings 876, 881

ORG assembler instruction 167
extended syntax 168, 1051

definition 175, 1051
origin 80

definition 83, 1051
initial location 80

overflow
binary floating-point 649
binary floating-point

rounding 664
definition 39, 1051
fixed-point binary 28, 31
hexadecimal floating-point 602
hexadecimal floating-point

rounding 617
packed decimal 485
two's complement 31

overflowed zero
definition 496, 1051

overlay 847

P
PACK machine instruction 460, 471
packed decimal

addition process 492
addition rules 485
arithmetic rules 484
comparison 503
comparison rules 487
constant 467
convert to/from decimal floating-

point 709
data exception 485
divide exception 491
division 509
division rules 490
editing overview 536
mixed integer-fraction represen-

tation 553
move with offset 516
multiplication 506
multiplication data exception 489
multiplication rules 489
operand order dependence 486,

489, 530, 1051
overflow 485, 486
representation 465
scale attribute 467
scaled arithmetic 522

general rules 522
shifting 511
sign-magnitude

representation 466
specification exception 489, 491
subtraction process 493
subtraction rules 485

padding 152
by compare and move long 403
character 403
definition 158, 1051
hexadecimal floating-point

constant 592
in constants 152
with blanks 153
with sign bits 153
with zeros 467

parameter 765
definition 788, 1051

parameterization 169
definition 175, 1052

1302 Assembler Language Programming for IBM System z™ Servers Version 2.00

partial-completion instruction 403
Partitioned Data Set Extended 849
pattern 536

character 537
definition 549, 1052

digit selector 537, 1052
digit selector and significance

start 1052
digit selector and significance

starter 537
editing 536
field separator 537, 1052
fill character 537, 1052
message character 537, 1052

payload
definition 738, 1052

PC machine instruction 950
PDSE 849
percolate 977, 980
PFPO machine instruction 745
PICA

See also Program Interruption
Control Area

maskable program
interruptions 974

PIE
See Program Interruption Element

pipeline 207
definition 214, 1052

PKA machine instruction 460, 478
PKU machine instruction 460, 478
P M

See Program Mask
positional argument

definition 981
post-normalization

definition 585, 1052
hexadecimal floating-point

division 603
hexadecimal floating-point multipli-

cation 599
postfix notation 923

definition 945, 1052
postorder tree traversal 940

definition 945, 1052
pre-normalization

definition 585, 1052
hexadecimal floating-point

division 603
hexadecimal floating-point multipli-

cation 599
precision

definition 530, 1052
preferred exponent 698

definition 738, 1052
preferred quantum 697

definition 738, 1052
preferred sign codes

zoned and packed decimal
numbers

definition 483, 1052
preorder tree traversal 940

definition 945, 1052
PRINTLIN macro instruction 1018

definition 1026

PRINTLIN macro instruction (con-
tinued)

description 1018
PRINTOUT macro instruction 1019

definition 1026
description 1019

Private Code section 826
privileged operation 48
privileged operation exception 57
problem state 48

definition 49, 1052
process

binary division 280
binary multiplication 272
hexadecimal floating-point

addition 612
hexadecimal floating-point comple-

ment addition 613
hexadecimal floating-point sub-

traction 612
packed decimal addition 492
packed decimal subtraction 493

program interruption 56
See also interruption
access exception 57
addressing 57
data 57
decimal divide 57
decimal overflow 57
definition 981, 1052
ESPIE macro 973

identifying token 973
execute exception 57
fixed-point divide 57
fixed-point overflow 57
hexadecimal floating-point

divide 57
hexadecimal floating-point expo-

nent overflow 57
hexadecimal floating-point expo-

nent underflow 57
hexadecimal floating-point lost sig-

nificance 57
invalid operation 57
PIE 973
privileged operation 57
Program Mask control

decimal overflow 58
fixed-point overflow 58
hexadecimal floating-point

exponent underflow 58
hexadecimal floating-point lost

significance 58
specification 57
SPIE macro 973

Program Interruption Control
Area 973

Program Interruption Element 975
contents 975
DSECT EPIE 975
mapping macro IHAEPIE 975

Program Interruption Exit 975
program length

definition 115, 1052
program linking 833

program linking (continued)
combining object modules 833
Composite External Symbol Dic-

tionary 835
definition 867, 1052
load modules 845
overview 73

Program Loader 73, 116, 809
boundary alignment 139, 809
definition 83
load modules 856
relocation 73

program loading
boundary alignment 809
Program Loader 73

Program Mask 47, 234, 602, 607
decimal overflow 58
definition 60, 1052
fixed-point overflow 58
hexadecimal floating-point expo-

nent underflow 58, 602
hexadecimal floating-point lost sig-

nificance 58, 607
mask bits 234
retrieve/set 234

program object 848
definition 867, 1052
Partitioned Data Set

Extended 849
PDSE 849
program object class 849

program objects
Program Status Word 47

basic addressing mode 308
Condition Code 47, 204
definition 49, 1052
extended addressing mode 308
Instruction Address 47, 50
instruction address vs. location

counter 92
Instruction Length Code 47
interruptions 55
new 56
old 56
Program Mask 47
switching 55

pseudoregister 1046
definition 867, 1052

PSW
See Program Status Word

PUT macro instruction 966

Q
Q-type address constant

definition 867, 1052
QADTR machine instruction 722
QAXTR machine instruction 722
quadword 44, 177
qualified symbol 882

definition 906, 1052
qualifier 882

definition 906, 1052
quantum 683

decimal floating-point
quantize 722

Index 1303

quantum (continued)
definition 738, 1052
preferred 696, 697

quantum exception
decimal floating-point 698

queue 934
definition 945, 1052

quotient
definition 284, 1052
fixed-point binary division 274
packed decimal 490

R
radix 560

definition 572, 1053
radix point 553
radix-complement representation 24

definition 39, 1053
READCARD macro

instruction 1020, 1020
definition 1028
description 1020

real address 67
address translation 67
DAT 67
definition 69, 1053

real numbers 745
realistic numbers 745
recipe

binary overflow detection 31
binary subtraction 35
two's complementation 27

recovery routine 977
definition 981

recovery/termination manager 977
percolate 977
retry routine 977
RTM 977

recursion 987
definition 992

reenterability 983, 984
assembly time 984
definition 992
linking time 984
RSECT 1053

reenterable
definition 1053

reentrant
See also reenterability
definition 993, 1053

reference control section 803
COM 803
definition 867, 1053
DSECT 804
DXD 804

reference table
ASCII representation 1013
DC statement types 1014
EBCDIC representation 1012
fractions in hexadecimal and

decimal 1011
hexadecimal addition 996
hexadecimal digits 995
hexadecimal multiplication 996

reference table (continued)
integers in hexadecimal and

decimal 1003
powers of 10 in

hexadecimal 1001
powers of 16 1000
powers of 2 997

register
access 48
control 48
floating-point register 45, 564
floating-point register pair 565
general register 45
general register pair 242, 274

relative-immediate 305
address generation 305

relocatability
complex 1044

relocatability attribute 132
complex 132

relocatable 91, 118
absolute 104, 1041
complex 104, 1044
definition 95, 1053
location counter reference 97
simple 104, 1054

relocatable program 126
relocate

definition 867, 1053
relocating loader

definition 867, 1053
relocation 73, 92

by Program Loader 855
definition 83, 95, 867, 1053
load module creation 855
of A-type constant 837
of V-type constant 837

relocation attribute 90
complex 807
definition 825
dummy control section 873
ESDID 818
in expression evaluation 98
in External Symbol Dictionary 93

relocation dictionary
definition 868, 1053

remainder
binary floating-point 668
definition 284, 1053
fixed-point binary division 274
hexadecimal floating-point 625
in shift instructions 248
packed decimal 490

RENT assembler option 984
representation 639, 641

arithmetic vs. logical 37
ASCII 432, 1013
BCD 429
Big-Endian 1043
binary floating-point 639, 641
binary numbers 24
blanks in examples 13
decimal floating-point 686
decimal floating-point

(conceptual) 682

representation (continued)
decimal floating-point

encoding 684
diminished radix-complement 24
EBCDIC 87, 430, 1012
hexadecimal 18
hexadecimal floating-point 586
Little-Endian 1049
logical 25
packed decimal 465
radix-complement 24
redundant decimal

floating-point 683
sign extension 30
sign-magnitude 24, 466
spaces in examples 13
Unicode 438
zoned decimal 460

residence mode
RMODE 827
RMODE assembler

instruction 827
retry 980
retry routine 977
return address 765

definition 788, 1053
return code 779

definition 788, 1053
return flag 778
RETURN macro instruction 781
returned values 762
RLD record in object module 831

A-type constant 831
Cumulative External Dummy 832
Q-type constant 832
V-type constant 832

RLL machine instruction 242
RLLG machine instruction 242
RMODE

definition 868, 1053
rotating shift 257

definition 261, 1053
rounding

binary floating-point 646
decimal floating-point 695
decimal floating-point

reround 724
rounding digit 575

definition 585, 1053
rounding instructions

binary floating-point 664
decimal floating-point 717
hexadecimal floating-point 616
packed decimal 511

rounding mode
binary floating-point 650
decimal floating-point 718

rounding-mode suffix 595, 643
binary floating-point

constants 643
decimal floating-point

constants 691
hexadecimal floating-point con-

stants 595
row order 910

1304 Assembler Language Programming for IBM System z™ Servers Version 2.00

row order (continued)
definition 945, 1054

row-major order
definition 945, 1054

RR-type machine instruction 107
RRDTR machine instruction 724
RRXTR machine instruction 724
RS-type machine instruction 111
RSECT

control section 1054
definition 1054
External Symbol Dictionary 1054
reenterable 1054

RSECT assembler instruction 803,
984

RTM 977
run time

See also execution time
definition 1054

RX-type machine instruction 108

S
S machine instruction 216
S-type address constant 149
S-type constant 149
SAM24 machine instruction 858
SAM31 machine instruction 858
SAM64 machine instruction 858
save area

32-bit registers 770
chaining 772
doubly-linked list 771
extended conventions 773
standard 18-word 770

SAVE macro instruction 777
SBCS 434
SBRM machine instruction 651
scale modifier

fixed-point binary constant 555
hexadecimal floating-point

constant 592
scaled arithmetic

definition 530, 1054
SD machine instruction 606
SDB machine instruction 661
SDBR machine instruction 661
SDR machine instruction 606
SDTR machine instruction 701
SDTRA machine instruction 701
SDWA 977
SE machine instruction 606
SEB machine instruction 661
SEBR machine instruction 661
SECTALGN assembler option 139,

156, 809
section

See also control section
alignment 809
common 803
control 803
definition 868, 1054
dummy 804
entry point 818
external dummy 804

section (continued)
linking 833
literals 808
private code 826
program object section 849
resuming 807
types 803

segment 68
definition 868, 1054

self-defining term
assembly-time constants 85
binary 85
character 86

ampersand 86
apostrophe 86
translation 88, 433

DBCS 436
decimal 85
definition 95, 1054
hexadecimal 85
no embedded blanks 86
vs. C-type constant 150

sequence symbol 89
SER machine instruction 606
set rounding mode

binary floating-point 651
decimal floating-point 718

SETRP macro instruction 977
sexadecimal representation 18
SFASR machine instruction 651
SFPC machine instruction 651
SG machine instruction 216
SGF machine instruction 230
SGFR machine instruction 230
SGR machine instruction 216
SH machine instruction 216
shift

bit bucket 244
decimal floating-point

significand 720
double-length arithmetic 252
double-length logical 248
general register pair 242
packed decimal 511
process 243
rotating 257
single-length arithmetic 252
single-length logical 245
unit 243

Shift-In
definition 1054

shift-in character 434
Shift-Out

definition 1054
shift-out character 434
SI-type instructions 352
SI-type machine instruction 112
sign extension 30, 183

definition 203, 1054
signed 20-bit displacement 303

sign-magnitude representation 24
definition 39, 1054
packed decimal 466

significance indicator 537
definition 549, 1054

significance starter 537
definition 549, 1054

significand
binary floating-point 639
decimal floating-point 687
definition 572, 1054
hexadecimal floating-point 560

simple I/O macros
$$GENIO 1023
CONVERTI 1016
CONVERTO 1017
DUMPOUT 1018
installation 1023
PRINTLIN 1018
PRINTOUT 1019
READCARD 1020
usage notes 1021

Single-Byte Character Set
definition 1054

SIY-type instructions 352
SL machine instruction 224
SLA machine instruction 242
SLAG machine instruction 242
SLB machine instruction 228
SLBG machine instruction 228
SLBGR machine instruction 228
SLBR machine instruction 228
SLDA machine instruction 242
SLDL machine instruction 242
SLDT machine instruction 720
SLFI machine instruction 321
SLG machine instruction 224
SLGF machine instruction 230
SLGFI machine instruction 321
SLGFR machine instruction 230
SLGR machine instruction 224
SLL machine instruction 242
SLLG machine instruction 242
SLR machine instruction 224
SLXT machine instruction 720
SP machine instruction 497, 501
space

See also blank
ASCII representation 433
EBCDIC representation 88
representation in examples 13
text representation 15, 1054

specification exception 57
packed decimal 489

SPIE macro instruction 973
program interruption exit 973

SPM machine instruction 234
SQD machine instruction 627
SQDB machine instruction 671
SQDBR machine instruction 671
SQDR machine instruction 627
SQE machine instruction 627
SQEB machine instruction 671
SQEBR machine instruction 671
SQER machine instruction 627
square root

binary floating-point 671
hexadecimal floating-point 626
hexadecimal floating-point inter-

ruption 627

Index 1305

SQXBR machine instruction 671
SQXR machine instruction 627
SR machine instruction 216
SRA machine instruction 242
SRAG machine instruction 242
SRDA machine instruction 242
SRDL machine instruction 242
SRDT machine instruction 720
SRL machine instruction 242
SRLG machine instruction 242
SRNMT machine instruction 718
SRP machine instruction 497, 511
SRST machine instruction 415
SRSTU machine instruction 441
SRXT machine instruction 720
SS-type machine instruction 113
ST machine instruction 179
stack 923

definition 945, 1055
pop 924
push 924

STAE macro instruction 977
START assembler instruction 803
statement 73

*PROCESS statement 1051
ACONTROL assembler

instruction 1051
column positions

begin column 75
continue column 75
end column 75

CSECT 80
DC 137
definition 83, 1055
dependent USING 885
DROP assembler instruction 128
DS 159
END 80
EQU 93
EQU assembler instruction 162
free-field 77
job control 81
labeled dependent USING 891
labeled USING 882
LOCTR assembler

instruction 810
LTORG 156
ORG 167
ORG extended syntax 1051
RSECT 1054
START 80
USING 126

statement field
comment 76
definition 84, 1055
name 76
operand 76
operation 76
remarks 76

statement type
Assembler 74
comment 74
machine instruction 74
macro-instruction 74

status preservation 763

STC machine instruction 184
STCM machine instruction 185
STCMH machine instruction 189
STD machine instruction 568
STDY machine instruction 568
STE machine instruction 568
STEY machine instruction 568
STFPC machine instruction 651
STG machine instruction 189
STH machine instruction 182
STM machine instruction 180
STMG machine instruction 189
STMH machine instruction 189
STORAGE macro instruction 957,

960, 961
subpool 961

store operation 179
definition 203, 1055

STRV machine instruction 453
STRVG machine instruction 453
STRVH machine instruction 453
subpool 961

FREEMAIN 961
GETMAIN 961
STORAGE 961

subroutine 756
argument 765
argument passing 759, 766

32-bit addresses 766
entry point 765
internal 798
linkage 757
linkage convention 765
lowest level 785
parameter 765
return address 765
returned values 762
status preservation 763
without addressability 797

subtraction
binary floating-point 661
binary integer 32
decimal floating-point 703
fixed-point binary 216
floating-point 578
hexadecimal floating-point 606
logical 224
packed decimal 485
packed decimal operand order

dependence 486
packed decimal process 493
register-immediate 321
with borrow 228

subtrahend
definition 238, 1055

supervisor state 48
definition 49, 1055

SVC machine instruction 950
SXBR machine instruction 661
SXR machine instruction 606
SXTR machine instruction 701
SXTRA machine instruction 701
SYM record in object module 831
symbol

absolute 90

symbol (continued)
attribute 95, 1042, 1055

assembler 166
definition 95
integer 90
length 90, 143
program 166
relocation 90, 125
scale 90
type 90
value 90, 125

complexly relocatable 99
defined 90
definition 95, 1055
duplicate 123
external 89, 818
external symbol 1046
internal 89, 91
internal symbol 1048
multiply defined 123
ordinary 89

external 89
internal 89

ordinary symbol 1048
qualified symbol 882
qualifier 882
relocatable 90
sequence 89
undefined 123
value vs. variable 94
variable 89

symbol attribute reference
definition 104, 1055
integer 96
length 96
scale 96

Symbol Table 123
definition 133, 1055
External Symbol Dictionary 93
external symbol table 89
ordinary symbols 123

symbolic operand
binary floating-point (DMin) 644
binary floating-point (Inf) 644
binary floating-point (Max) 644
binary floating-point (Min) 644
binary floating-point (NaN) 644
binary floating-point (QNaN) 644
binary floating-point (SNaN) 644
decimal floating-point

(DMin) 690
decimal floating-point (Inf) 690
decimal floating-point (Max) 690
decimal floating-point (Min) 690
decimal floating-point (NaN) 690
decimal floating-point

(QNaN) 690
decimal floating-point

(SNaN) 690
hexadecimal floating-point sym-

bolic operand (DMin) 595
hexadecimal floating-point sym-

bolic operand (MAX) 595
hexadecimal floating-point sym-

bolic operand (Min) 595

1306 Assembler Language Programming for IBM System z™ Servers Version 2.00

Syntactic Character Set
definition 1055

SYSSTATE macro instruction 955
System Diagnostic Work Area 977
system interruption

definition 982
system service

definition 982

T
table 914

definition 945, 1055
TAM machine instruction 858
target instruction

definition 398
TCDB machine instruction 654
TCEB machine instruction 654
TCXB machine instruction 654
TDCDT machine instruction 693
TDCET machine instruction 693
TDCXT machine instruction 693
TDGDT machine instruction 726
TDGET machine instruction 726
TDGXT machine instruction 726
term

definition 104, 1055
illustration 104
literal 96
location counter reference 96
self-defining 96
symbol 96
symbol attribute reference

integer 96
length 96
scale 96

TEST assembler option 89
text 831

definition 868, 1055
in load module 846
machine language 831

threading
Location Counter values 809

time 1054
assembly 74, 1043
binding 1043
execution 74, 1043
linking 1043
run time

See execution time
TITLE assembler instruction 78
TM machine instruction 356
TMY machine instruction 356
TP machine instruction 497
TR machine instruction 365, 379
trailing significand field 686
transformation format

(Unicode) 438
TRANSLATE assembler option 88,

158, 433
translate table 379, 384, 387
TRE machine instruction 421
tree

B-tree 940
binary 937

tree search
inorder traversal 940
postorder traversal 940
preorder traversal 940

TROO machine instruction 444
TROT machine instruction 444
TRT machine instruction 365, 384
TRTE machine instruction 450
TRTO machine instruction 444
TRTR machine instruction 365, 387
TRTRE machine instruction 450
TRTT machine instruction 444
true addition

definition 1055
true decimal addition

definition 496, 1055
truncation 152

definition 158, 1055
hexadecimal floating-point

constant 592
in constants 152

two's complement overflow 31
two's complement representation

definition 39, 1055
recipe 27

TXT record in object module 831
type extension 157

all types 1014
definition 158, 1055
type AD 157
type CA 157
type CE 157
type CU 157
type DB 567, 642
type DD 567
type DH 567
type EB 642
type EH 567
type FD 157
type LB 567, 642
type LD 567
type LH 567
type LQ 594

U
U-format records 967
ulp (unit in the last place) 581

definition 585, 1055
relative precision 581

unbiased rounding
definition 530, 1055

undefined length records 967, 969
undefined symbol 123
underflow

binary floating-point 649
hexadecimal floating-point 602

Unicode
C-type constant 151
constant 439
CU-type constant 157
definition 1055
glyph 439
numeric character 462, 478

definition 483, 1055

Unicode (continued)
pack 478
transformation format 447
translate instructions 444
unpack 479

Unicode numeric character
definition 1055

unit shift 243
unnormalized addition

hexadecimal floating-point 609
unnormalized hexadecimal floating-

point representation 588
unnormalized subtraction

hexadecimal floating-point 609
UNPK machine instruction 460, 474
UNPKA machine instruction 460,

479
UNPKU machine instruction 460,

479
USING assembler instruction 120,

126, 882, 885, 891
absolute USING location 131
base location 120, 126
base register 120
definition 133, 1056
dependent 1043, 1045
dependent USING 885
labeled 882, 1049
labeled dependent 891, 1045
ordinary 120, 882
qualified symbol 1049

USING Map 133
USING Table 125, 128, 133

definition 134, 1056
USING Map 133

USING(MAP) option 133
UTF-16 447
UTF-32 447
UTF-8 447

V
V-format records 967
V-type address constant 820, 868,

1056
definition 868, 1056

variable
vs. symbol value 94

variable length records 967, 968
variable symbol 89
variable symbols

attribute 1042
symbol itself 1042
symbol's value 1042

variable-length argument list 767
virtual address 67

address translation 67
DAT 67
definition 69, 1056

virtual origin 912
definition 945, 1056
of array 912

Von Neumann Architecture 5
Von Neumann, John 5
VSAM 971

Index 1307

W
ward in double-byte EBCDIC 435
widget 526, 528, 727
word 44, 177
workstation data 453
WXTRN assembler instruction 818,

820
difference from EXTRN 820

WXTRN statement 1046

X
X machine instruction 288
XC machine instruction 365, 376
XCGBR machine instruction 666
XG machine instruction 288
XGR machine instruction 288
XI machine instruction 353
XIHF machine instruction 324
XILF machine instruction 324
XIY machine instruction 353
XOR operation 289, 298, 1056

definition 298, 1056
register-immediate 324
register-register 292
storage-immediate 354
storage-storage 376

XR machine instruction 288

Z
z/Architecture 3
ZAP machine instruction 497, 499
zero

unexpected floating-point
behavior 747

zero duplication factor 160
definition 175, 1056

zero extension 196
definition 203, 1056

zone digit 460
ASCII characters 462
definition 483, 1056
Unicode characters 462

zoned decimal
constant 464
numeric digit 460
preferred sign 462
representation 460
sign digit 460
zone digit 460

zoned digit 546
definition 549, 1056
in edited data 546

1308 Assembler Language Programming for IBM System z™ Servers Version 2.00

